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Abstract

A new notion of a viscosity solution for Eikonal equations in a general
metric space is introduced. A comparison principle is established. The
existence of a unique solution is shown by constructing a value function
of the corresponding optimal control theory. The theory applies to in-
finite dimensional setting as well as topological networks, surfaces with
singularities.
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1 Introduction

The goal of this paper is to establish a notion of viscosity solutions for Eikonal
equations in an open set of a general metric space which is consistent with usual
notion when the metric space is Euclidean. Let X be a metric space and let
Ω be an open set in X . We would like to consider an Eikonal equation for a
function u defined on Ω of the form

|Du| = f(x) in Ω, (1.1)

where f is a given function on Ω. The symbol Du formally denotes the gradient
of u but it is not well-defined in a general metric space. However, as we see
later its modulus |Du| is able to be characterized.

Eikonal equations are fundamental to describe propagation of a wave front
or interfaces in various disciplines of sciences and technology. The theory of
viscosity solutions for Eikonal equations or more general Hamilton-Jacobi equa-
tions is well-developed when X is a Euclidean space; see, e.g., [9], [15] or more
generally a Banach space [10]. In these days it is also desirable to extend the
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notion for more general metric spaces. For example, the theory of viscosity
solutions is extended to the spaces where Du is well-defined such as Wassertein
metric spaces [12] and Riemannian manifolds [11]. A Hamilton-Jacobi equation
on a topological network is also considered in [1], [8], and [14], which seems to
be important in handling a social network problem. There are several works on
elliptic and parabolic equations in a singular manifold. The reader is referred to
[2] and references theirin. The theory for a gradient flow in a general complete
metric space is discussed in [4]. However, there seem to be no theories for the
first-order nonlinear partial differential equations. Thus it is very natural to
extend the notion of solutions for (1.1) to general metric spaces.

Let us describe our idea to define the notion of viscosity solutions for (1.1).
For a given curve ξ = ξ(t) in X , one is able to define its metric derivative
|ξ′|(t) although ξ′(t) may not be well-defined; see (2.4) and [4] for definition.
In a Euclidean space we have |Du(x)| = supξ |(u ◦ ξ)′(0)|/|ξ′(0)|, when ξ is a
smooth curve passing x at t = 0, i.e., ξ(0) = x. Reflecting this property, we
say that u is a metric viscosity subsolution of (1.1) if |(u ◦ ξ)′(0)| ≤ f(x) (in
the viscosity sense) for each x ∈ Ω and curve ξ satisfying |ξ′| ≤ 1 and ξ(0) = x.
The definition of a supersolution is more involved. Roughly speaking, we say
that u is a metric viscosity supersolution if for each x ∈ Ω there is a curve ξ
with |ξ′| ≤ 1 and ξ(0) = x such that |w′(t)| & f(ξ(t)) for all t until ξ hits the
boundary ∂Ω where w is an upper approximation of u◦ξ with w(x) = (u◦ξ)(0).
More rigorous definition is found in Section 2. The point is that we reduce
the notion to one-dimension. Fortunately, we are able to establish a standard
comparison principle by reflecting the classical idea of Ishii [15] even when Ω
is unbounded under the assumption infΩ f > 0. (If f is allowed to be zero, we
know that the comparison principle fails because the set {f = 0} is an Aubry
set.)

The existence of a metric viscosity solution for (1.1) with a given boundary
condition is proved by constructing the value function of the corresponding
optimal control problem. Since there may be no optimal curves, we need an
approximation w in the definition of supersolutions. By the comparison principle
and the verification that the value function is a solution, we are able to establish
a unique existence result for a boundary value problem.

Our solution also enjoys a stability property. For a subsolution it is similar
to the Euclidean case. However, for a supersolution it is valid in a restrictive
setting. Our argument requires uniform convergence of supersolutions.

The notion of a metric viscosity subsolution is consistent with the classical
one when X is Euclidean. However, the notion of a metric viscosity supersolu-
tion is stronger than the Euclidean one since our notion is not a local notion.
Fortunately, for (1.1) it turns out that Euclidean viscosity solution is a metric
one when a suitable comparison principle holds. We establish this property by
representing a solution as a value function of the corresponding optimal control
problem.

This paper is organized as follows. In Section 2 we give our definition of met-
ric viscosity solutions. In Section 3 we establish a comparison principle while in
Section 4 we verify that the value function of the corresponding control problem
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is indeed a metric viscosity solution. We also discuss its stability in Section 5.
In Section 6 we discuss the consistency of our metric viscosity solutions when
the metric space is Euclidean.

2 Definition

Let (X , d) be a metric space. Let f be a nonnegative continuous function on an
open set Ω in X . We consider the Eikonal equation of the form

|Du| = f(x) in Ω. (2.1)

To motivate the problem we begin with the case that (X , d) = (RN , dE),
where dE is the standard Euclidean metric, i.e., dE(a, b) = |a − b|. Here |a| is
the standard Euclidean norm of a defined by |a|2 = a ·a. Let u be a C 1 function
satisfying |Du(x)| = f(x) for all x ∈ Ω. Fix x ∈ Ω and let ξ be a C 1 curve on
X = RN satisfying ξ(0) = x. Differentiating a composite function yields

|(u ◦ ξ)′(0)| = |Du(x) · ξ′(0)| ≤ |Du(x)||ξ′(0)| (2.2)

by the Schwarz inequality. Moreover, there exists a curve ξ such that the equality
of (2.2) holds. Hence we have

|Du(x)| = sup
ξ

|(u ◦ ξ)′(0)|
|ξ′(0)|

. (2.3)

We define a new notion of solutions to (2.1) based on this fact.
We return to the general case. We should recall a modulus of tangent vectors

for a curve on a metric space. Let ξ be a curve in X . In other words, ξ is a
mapping from an interval I of R to X . For each t ∈ I we define |ξ′|(t) as a
metric derivative

|ξ′|(t) := lim
s→t

d(ξ(s), ξ(t))

|s− t|
(2.4)

although ξ′(t) itself is not well-defined. We say that ξ is an absolutely continuous
curve if the limit of (2.4) exists for a.e. t ∈ I and |ξ′| belongs to L1

loc(I) and
satisfies

d(ξ(s), ξ(t)) ≤
∫ t

s

|ξ′|(r)dr

for all s, t ∈ I, s ≤ t. For an equivalent definition of absolute continuity and
its properties, the reader is referred to a book of L. Ambrosio et al. [4], where
the metric space is assumed to be complete. However, to establish a notion of
absolute continuity the completeness is unnecessary [3].

We hereafter only consider a curve whose speed does not exceed one, i.e.,

|ξ′| ≤ 1 a.e. in I, (2.5)

and we say that an absolutely continuous curve ξ is admissible if ξ satisfies (2.5).
The set of all admissible curves defined on an interval I is denoted by A(I,X ).
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In addition, for a fixed point x ∈ X we say that an admissible curve ξ belongs
to Ax(I,X ) with 0 ∈ I if ξ satisfies ξ(0) = x. For Ω ⊂ X and ξ ∈ Ax(I,X ) with
x ∈ Ω, define the exit time and entrance time as below respectively:

T+
Ω [ξ] := inf {t ∈ I ∩ [0,∞) | ξ(t) /∈ Ω} ∈ [0,∞],

T−
Ω [ξ] := sup {t ∈ I ∩ (−∞, 0] | ξ(t) /∈ Ω} ∈ [−∞, 0].

To introduce our notion we recall super- and subdifferentials. For a general
function f defined on an open set W in RN , let D+f(x) be the superdifferential
of f at x ∈ W and let D−f(x) be the subdifferential of f at x. Namely, let

D+f(x) :=
{
Dϕ(x) | ϕ ∈ C 1(W ), f − ϕ has a local maximum at x

}
,

D−f(x) :=
{
Dϕ(x) | ϕ ∈ C 1(W ), f − ϕ has a local minimum at x

}
.

For a subset Ω of X the set of all upper (resp. lower) semicontinuous functions
on Ω is denoted by USC (Ω) (resp. LSC (Ω)). We introduce a weaker notion of
continuity for our solutions. We say that a function u defined on Ω is arcwise
upper (resp. lower) semicontinuous if for each admissible curve ξ ∈ A(I,Ω) with
an interval I the composite function u ◦ ξ is upper (resp. lower) semicontinuous
on I. The set of all arcwise upper (resp. lower) semicontinuous functions on Ω
is represented by USC a(Ω) (resp. LSC a(Ω)). We say that a function defined on
Ω is arcwise continuous if it is both arcwise upper and lower semicontinuous.
Let Ca(Ω) be the set of all arcwise continuous functions.

Definition 2.1 (Metric viscosity solution). We say that u ∈ USC a(Ω) is a
metric viscosity subsolution of (2.1) if for each x ∈ Ω and ξ ∈ Ax(R,Ω) the
inequality

|p| ≤ f(x)

holds for all p ∈ D+w(0) with w = u ◦ ξ.
We say that u ∈ LSC a(Ω) is a metric viscosity supersolution of (2.1) if for

each x ∈ Ω and ε > 0 there exist ξ ∈ Ax(R,X ) and w ∈ LSC (T−, T+) such
that

both T± := T±
Ω [ξ] are finite, (2.6)

u(ξ(t))− ε ≤ w(t), w(0) = u(x), (2.7)

and the inequality
|p| ≥ f(ξ(t))− ε (2.8)

holds for all t ∈ (T−, T+) and p ∈ D−w(t). We call this pair (ξ, w) an ε-pair
at x for u and f . Since x ∈ Ω, i.e., x is not on the boundary, T± 6= 0. The
existence of ξ satisfying (2.6) implicitly assumes that ∂Ω is nonempty.

Finally, we say that u ∈ Ca(Ω) is a metric viscosity solution if it is both a
metric viscosity subsolution and a metric viscosity supersolution.

We hereafter suppress the words “metric viscosity” unless confusion occurs.
For example, we simply say “a subsolution” instead of “a metric viscosity sub-
solution”.
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Remark 2.2. (i) The formula (2.3) means that we measure Du in (2.1) with the
dual norm when X is a Banach space.

(ii) We actually do not invoke the symmetry property of the metric d, i.e.,
d(x, y) = d(y, x) throughout this paper. Thus our theory applies to a general
quasi-metric space.

Remark 2.3. The notion of our subsolutions is local in the sense that u is a
subsolution in Ω if and only if u is a subsolution in some open neighborhood of
each point in Ω. However, for a supersolution this type of locality does not hold
in general although a weaker version is valid (Lemma 6.4). In fact, as shown in
the next example, the notion of our supersolutions is a concept stronger than
that of conventional viscosity supersolutions.

Example 2.4. Let (X , d) = (R, dE). We consider the boundary value problem{
|u′(x)| = 1 in (0,∞),

u(0) = 0.
(2.9)

A function u(x) := x is a unique solution by Theorem 4.5. In particular, another
function v(x) := −x is not a solution although v satisfies (2.9) in the classical
sense. In fact, we are able to confirm that v is not a supersolution directly from
the definition. Fix x > 0 and choose ε < min{1, x}. For each ξ ∈ Ax(R,X ) and
w ∈ LSC (T−, T+) satisfying (2.6) and (2.7), we have lim inft→T± w(t) ≥ −ε >
−x = w(0). This means that w attains its minimum at some t ∈ (T−, T+).
Hence 0 ∈ D−w(t) but (2.8) does not hold since 0 < 1− ε.

Remark 2.5. Such a kind of asymmetry between the definition of a subsolution
and a supersolution also occurs in the theory of viscosity solutions on topolog-
ical networks [8]. That is to say, their notion and ours are similar in spirit:
For a subsolution we test all curves passing through a given point while for a
supersolution we need find an appropriate curve satisfying a desired inequality
of subdifferentials. Indeed, we see that the notion of our metric subsolutions
consists with their notion of viscosity subsolutions on a topological network.
We also expect that our metric supersolution should consist with the network
supersolution although it is not verified.

In [1] the authors construct a unique state constraint solution for a Bellman
equation, which excludes our eikonal equation, by considering the infinite hori-
zon problem. In [8] a class of equations including Eikonal equations is treated.
Moreover, the network is allowed to have finitely many junctions. The paper
[14] studies a class of Hamiltonians of evolution type and it allows a discontinu-
ity with respect to the gradient variable. The network they study allows only
one junction. However, the authors of [14] deduce their definition from the one
of weak solution of a conservation law on a network, which is quite natural.
In any case it is nontrivial to compare definitions of solutions in these three
papers with ours for Eikonal equations on a topological network. We also point
out that a numerical scheme for Eikonal equations on a topological network is
proposed in a recent preprint [7] and it is actually used to compute numerically
the distance to a target and the corresponding shortest path in some settings.
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We establish a necessary and sufficient condition for subsolutions.

Proposition 2.6. Assume

f ∈ Ca(Ω) and f ≥ 0 in Ω. (2.10)

Let u ∈ USC a(Ω). Then the following statements are equivalent:

(i) u is a subsolution of (2.1).

(ii) The inequality

u(ξ(s)) ≤
∫ t

s

f(ξ(r))dr + u(ξ(t)) (2.11)

holds for all ξ ∈ A(R,Ω) and s, t ∈ R, s < t.

(iii) The inequality

|u(ξ(s))− u(ξ(t))| ≤
∫ t

s

f(ξ(r))dr (2.12)

holds for all ξ ∈ A(R,Ω) and s, t ∈ R, s < t.

Proof. (ii) ⇒ (iii): This is clear by taking a curve r 7→ ξ(−r).

(i) ⇒ (ii): By Lemma A.1 a function t 7→ u(ξ(t)) −
∫ t

0
f(ξ(s))ds is nonin-

creasing. Therefore, we have (2.11) for all s < t.
(iii) ⇒ (i): Fix x ∈ Ω and ξ ∈ Ax(R,Ω). Suppose that u ◦ ξ − ϕ has a local

maximum at 0 for ϕ ∈ C 1(R). Then we observe by (2.12) that

ϕ(0)− ϕ(h) ≤ u(x)− u(ξ(h)) ≤

{∫ h

0
f(ξ(s))ds for h > 0,∫ 0

h
f(ξ(s))ds for h < 0.

Therefore, we have |ϕ′(0)| ≤ f(ξ(0)) = f(x).

Similarly, we show a sufficient condition for supersolutions.

Proposition 2.7. Assume (2.10). Let u ∈ LSC a(Ω). Then u is a supersolution
of (2.1) if for every x ∈ Ω and ε > 0 there exists ξ ∈ Ax([0,∞),X ) satisfying
T := T+

Ω [ξ] < ∞ and

u(x) + ε ≥
∫ t

0

f(ξ(s))ds+ u(ξ(t)) (2.13)

for all 0 ≤ t < T .

Proof. Define ξ̃ ∈ Ax(R,X ) as ξ̃(t) = ξ(|t|) and let

w(t) := u(x)−
∫ |t|

0

f(ξ(s))ds
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for t ∈ (−T, T ). We have w(0) = u(x) and w(t) ≥ u(ξ̃(t)) − ε by (2.13). We
also observe that

w′(t) =

{
−f(ξ̃(t)) for t ∈ (0, T ),

f(ξ̃(t)) for t ∈ (−T, 0),

and D−w(0) = ∅ if f(x) > 0. We hence have |p| ≥ f(ξ̃(t)) for all t ∈ (−T, T )
and p ∈ D−w(t). Therefore, (ξ̃, w) is an ε-pair at x for u.

3 Comparison principle

Theorem 3.1 (Comparison). Assume f ∈ Ca(Ω) and

σ := inf
x∈Ω

f(x) > 0. (3.1)

Let u ∈ USC a(Ω) be a subsolution of (2.1) and let v ∈ LSC a(Ω) be a superso-
lution of (2.1). If u ≤ v on ∂Ω and c ≤ v on ∂Ω for some constant c ∈ R, then
u ≤ v in Ω.

Before proving this theorem we recall a typical comparison principle ([15])
for the Eikonal equation (2.1) when (X , d) = (RN , dE). In [15] it is shown in
more general setting that under the assumption that

Ω is bounded, f ∈ C (Ω), and f > 0 in Ω (3.2)

we have u ≤ v in Ω for a conventional viscosity subsolution u ∈ USC (Ω) and
supersolution v ∈ LSC (Ω) of (2.1) if u ≤ v on ∂Ω. The reason we do not
need the boundedness of Ω in Theorem 3.1 is that we compare the sub- and
supersolution not in the whole of Ω but in the bounded interval (T−, T+) which
appears in the definition of a metric supersolution.

Proof. Suppose that m := (u − v)(x) > 0 for some x ∈ Ω. Take λ ∈ (0, 1)
satisfying (1− λ)u(x) < m/2 and (λ− 1)c < m/4. By this choice we have

(λu− v)(x) = (λ− 1)u(x) + (u− v)(x) > m/2 (3.3)

and
(λu− v)(z) = (λ− 1)v(z) + λ(u− v)(z) < m/4 (3.4)

for all z ∈ ∂Ω because of the assumptions u ≤ v on ∂Ω and c ≤ v on ∂Ω. For
each ε > 0 take an ε-pair (ξ, w) at x for the supersolution v and set T± := T±

Ω [ξ].
By extending w as w(T±) := v(ξ(T±)) − ε we have w ∈ LSC ([T−, T+]) and
v(ξ(t))− ε ≤ w(t) for all t ∈ [T−, T+].

Define Φα ∈ USC ([T−, T+]2) as

Φα(t, s) := λu(ξ(t))− w(s)− α(t− s)2
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for α > 0 and choose a maximum point (tα, sα) ∈ [T−, T+]2 of Φα. We then
have

Φα(tα, sα) ≥ Φα(0, 0) = (λu− v)(x) > m/2 (3.5)

by (3.3). This implies

α(tα − sα)
2 ≤ λ max

[T−,T+]
(u ◦ ξ)− min

[T−,T+]
w −m/2 < ∞.

Thus, we may assume that limα→∞(tα, sα) = (t̂, t̂) for some t̂ ∈ [T−, T+].
We claim t̂ ∈ (T−, T+). Taking lim supα→∞ in (3.5), we have

m/2 ≤ λu(ξ(t̂))− w(t̂) ≤ (λu− v)(ξ(t̂)) + ε.

If ξ(t̂) ∈ ∂Ω, we see that m/2 ≤ m/4 + ε by (3.4). This is impossible since one
may choose ε < m/4. Therefore, we have t̂ ∈ (T−, T+) and so tα, sα ∈ (T−, T+)
for sufficiently large α.

Since t 7→ Φα(t, sα)/λ attains its maximum at tα ∈ (T−, T+) and u is a
subsolution, we have

|2α(tα − sα)| ≤ λf(ξ(tα)).

Similarly, since s 7→ −Φα(tα, s) attains its minimum at sα ∈ (T−, T+) and v is
a supersolution, we have

|2α(tα − sα)| ≥ f(ξ(sα))− ε.

These two inequalities yield

0 ≥ f(ξ(sα))− λf(ξ(tα))− ε.

Sending α → ∞, we obtain

0 ≥ (1− λ)f(ξ(t̂))− ε ≥ (1− λ)σ − ε,

which is a contradiction if we choose ε < (1− λ)σ.

It is impossible to remove the assumption that c ≤ v on ∂Ω in general.

Example 3.2. Let (X , d) = (R2, dE). We consider the boundary value problem{
|Du(x, y)| = 1 in Ω := R× (0,∞),

u(x, 0) = x on ∂Ω = R× {0}.

Then u(x, y) = x is a subsolution while v(x, y) = x + ky is a supersolution for
each k ∈ R. Evidently, the comparison principle is violated because u > v in
R× (0,∞) when k < 0. (Note that v is not bounded from below on ∂Ω.) Let us
check that v is indeed a supersolution. Fix P = (a, b) ∈ Ω and let Qz = (z, 0) ∈
∂Ω. Define ξz ∈ AP (R,X ) as ξz(t) = (1− |t|/lz)P + (|t|/lz)Qz, where lz is the
length of the line segment joining P and Qz, i.e., lz =

√
(z − a)2 + b2. A direct

calculation yields (v ◦ξ)(t) = (z−a−kb)|t|/lz+a+kb and (z−a−kb)/lz → −1
as z → −∞. This implies that v is a supersolution.
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4 Solutions by optimal control theory

We next construct a unique solution of (2.1) with a boundary condition

u = g on ∂Ω (4.1)

by applying the optimal control theory. Here g is a given function on ∂Ω. We
say that u ∈ Ca(Ω) is a solution of the boundary value problem (2.1) and (4.1)
if u is a solution of (2.1) and satisfies (4.1).

For x ∈ Ω and a curve ξ ∈ Cx :=
{
ξ ∈ Ax([0,∞),X ) | T+

Ω [ξ] ∈ [0,∞)
}
, we

consider the cost functional

C[ξ] :=

∫ T+
Ω [ξ]

0

f(ξ(s))ds+ g(ξ(T+
Ω [ξ])).

We define the value function u as the infimum of the cost, i.e.,

u(x) := inf
ξ∈Cx

C[ξ].

The goal of this section is to show that the value function u is a unique solution
of the boundary value problem (2.1) and (4.1). It is clear that u satisfies (4.1).

Our basic assumptions are the following:

Cx is nonempty for each x ∈ Ω. (4.2)

f ∈ Ca(Ω) and f ≥ 0 in Ω. (4.3)

g is bounded from below on ∂Ω. (4.4)

These assumptions imply that u is well-defined as a real-valued function.

Lemma 4.1 (Dynamic programming principle). Assume (4.2)–(4.4). Let
u(x) = infξ∈Cx C[ξ]. Then we have

u(x) = inf
ξ∈Cx

{∫ T

0

f(ξ(s))ds+ u(ξ(T ))

}

with T = min{T0, T
+
Ω [ξ]} for all x ∈ Ω and T0 ≥ 0.

This lemma is proved by an argument similar to that in the conventional
theory; see, e.g., [5, Proposition IV.2.1].

We show that the value function u is a solution of (2.1).

Theorem 4.2. Assume (4.2)–(4.4). Then u(x) = infξ∈Cx C[ξ] is a solution of
(2.1).

Proof. By Lemma 4.1 we see that u satisfies (ii) in Proposition 2.6. It now
follows that u ∈ Ca(Ω) and u is a subsolution.

Let x ∈ Ω and ε > 0. Then take ξ ∈ Cx satisfying u(x)+ ε ≥
∫ T

0
f(ξ(s))ds+

g(ξ(T )) with T = T+
Ω [ξ]. By the definition of u(ξ(t)) we also have u(ξ(t)) ≤∫ T

t
f(ξ(s))ds+g(ξ(T )) for each t ∈ [0, T ]. Combining these two inequalities, we

obtain (2.13).
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We next show that the value function u is a unique solution of the boundary
value problem (2.1) and (4.1). It remains to establish u ∈ Ca(Ω), which is
required to apply Theorem 3.1 for uniqueness. We have already shown u ∈
Ca(Ω) but the arcwise continuity on the boundary turns out to be an issue.

Example 4.3. Let (X , d) = (R, dE). We consider the boundary value problem{
|u′(x)| = 1 in (0, 1),

u(0) = 0, u(1) = a

with a ≥ 0. Then the value function is of the form u(x) = min{x,−x+ a+ 1}
for x ∈ [0, 1) and u(1) = a. When a > 1, this is not arcwise continuous at x = 1.

This example suggests that we have to impose a certain growth condition
on g in order to guarantee the continuity of u. We use the following condition:

The inequality g(x) ≤
∫ T

0

f(ξ(s))ds+ g(ξ(T )) holds

for all x ∈ ∂Ω and ξ ∈ Ax([0,∞),Ω) satisfying ξ(T ) ∈ ∂Ω.

(4.5)

Lemma 4.4. Assume (4.2)–(4.4). Let u(x) = infξ∈Cx C[ξ]. Then u ∈ Ca(Ω) if
and only if (4.5) holds.

Proof. Assume (4.5). We only have to show limt→T u(ξ(t)) = g(ξ(T )) for all
ξ ∈ A([0,∞),Ω) such that ξ(T ) ∈ ∂Ω with T > 0. By the definition of u(ξ(t))
and (4.5), we observe that

u(ξ(t)) ≤
∫ Tt

t

f(ξ(s))ds+ g(ξ(Tt)) ≤
∫ T

t

f(ξ(s))ds+ g(ξ(T ))

for all t ∈ [0, T ], where Tt = inf {s ∈ [t,∞) | ξ(s) /∈ Ω} ∈ [t, T ]. We thus have
lim supt→T u(ξ(t)) ≤ g(ξ(T )). We next observe by (4.5) that

g(ξ(T )) ≤
∫ T

t

f(ξ(s))ds+

∫ T̃

0

f(ξ̃(s))ds+ g(ξ̃(T̃ ))

for all t ∈ [0, T ] and ξ̃ ∈ Cξ(t), where T̃ = T+
Ω [ξ̃]. Thus we have

u(ξ(t)) = inf
ξ̃∈Cξ(t)

C[ξ̃] ≥ −
∫ T

t

f(ξ(s))ds+ g(ξ(T )),

and so lim inft→T u(ξ(t)) ≥ g(ξ(T )).
Suppose that (4.5) were false, i.e., there would exist x ∈ ∂Ω and ξ ∈

Ax([0,∞),Ω) satisfying ξ(T ) ∈ ∂Ω and g(x) >
∫ T

0
f(ξ(s))ds+ g(ξ(T )) for some

T > 0. Since u(ξ(t)) ≤
∫ T

t
f(ξ(s))ds+ g(ξ(T )) for all t > 0, we would have

lim sup
t→0

u(ξ(t)) ≤
∫ T

0

f(ξ(s))ds+ g(ξ(T )) < g(x).

Hence, u would not be arcwise continuous at x. The proof is now complete.
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Combining Theorem 3.1, 4.2, and Lemma 4.4, we have

Theorem 4.5. Assume (3.1), (4.2)–(4.4), and (4.5). Then u(x) = infξ∈Cx C[ξ]
is a unique solution of (2.1) and (4.1).

Let dg(x, y) be a geodesic distance

dg(x, y) = inf
{
T+
X\{x}[ξ] | ξ ∈ Ay([0,∞),X )

}
∈ [0,∞]

for each x, y ∈ X . When X is a Banach space equipped with a norm ‖ · ‖, this
metric dg is nothing but d defined by d(x, y) = ‖x− y‖.

Example 4.6. We consider the boundary value problem{
|Du| = 1 in Ω := X \ {a},
u(a) = 0

(4.6)

with a ∈ X . Then the value function is u(x) = dg(a, x) and u is a unique
solution of (4.6) provided that Cx is nonempty for all x ∈ X .

Remark 4.7. One of sufficient conditions for (4.5) is that g is a Lipschitz con-
tinuous function on ∂Ω with the Lipschitz constant less than or equal to the
infimum of f , i.e., |g(x)− g(y)| ≤ (infΩ f)d(x, y) for all x, y ∈ ∂Ω.

Remark 4.8. The value function u is arcwise continuous in Ω. However, it may
not be continuous in general (Example 4.9). The following condition is sufficient
to guarantee that u is continuous at a ∈ Ω:

dg(x, a) → 0 as x → a in the sense that d(x, a) → 0. (4.7)

f is bounded from above on {x ∈ Ω | dg(x, a) ≤ r} for some r > 0. (4.8)

Indeed, for each ε ∈ (0, r] we take δ > 0 such that dg(x, a) < ε whenever
d(x, a) < δ. Since there exists ξ ∈ Aa([0,∞),X ) satisfying ξ(ε) = x, we have
|u(a)− u(x)| ≤

∫ ε

0
f(ξ(s))ds ≤ Mε for some M < ∞.

Example 4.9. Let X = ([0, 2]×{0})∪({0}× [0, 1])∪(
⋃∞

n=1[0, 1]×{1/n}) ⊂ R2

and d = dE . We consider the boundary value problem (4.6) with a = (2, 0).
Then the value function is

u(x, y) =


2− x if y = 0,

2 + y if x = 0,

2 + 1/n+ x if y = 1/n.

However, this is not continuous at (1, 0), where (4.7) does not hold.

5 Stability

By applying Proposition 2.6 we easily obtain stability results for subsolutions.

11



Proposition 5.1. Let Λ be a nonempty index set. Assume fλ, f ∈ Ca(Ω) and
let uλ ∈ USC a(Ω) be a subsolution of (2.1) with f = fλ for each λ ∈ Λ.

(1) If supλ∈Λ fλ(x) ≤ f(x) and u1(x) := supλ∈Λ uλ(x) < ∞ for all x ∈ Ω,
then u1 is a subsolution of (2.1).

(2) Let Λ = N. Assume that there exists g ∈ Ca(Ω) such that supn∈N fn ≤ g.
If lim supn→∞ fn(x) ≤ f(x) and u2(x) := lim supn→∞ un(x) < ∞ for all
x ∈ Ω, then u2 is a subsolution of (2.1).

Proof. We only prove (2) because (1) is verified by a similar argument. Fix
ξ ∈ A(R,Ω) and s < t. By Proposition 2.6 we have

un(ξ(s)) ≤
∫ t

s

fn(ξ(r))dr + un(ξ(t))

for all n ∈ N. Since lim supn→∞
∫ t

s
fn(ξ(r))dr ≤

∫ t

s
f(ξ(r))dr by Fatou’s lemma,

we see that u2 satisfies (2.11).

Remark 5.2. In the literature ([6, Theorem A.2], [16, Proposition 1.2] see also
[13, Chapter 2]) the stability is often shown in the sense of a relaxed limit, i.e.,

u3(x) := lim
n→∞

sup {uk(y) | k ≥ n, dg(y, x) < 1/n} . (5.1)

In our situation, however, this relaxed limit u3 is nothing but u2 if supn∈N fn
satisfies (4.8) for all a ∈ Ω. Let us check this fact. For fixed x ∈ Ω and n ∈ N
we let k ≥ n and dg(y, x) < 1/n. Then we have uk(y) ≤

∫ 1/n

0
fk(ξ(s))ds+uk(x)

for some ξ ∈ Ax([0,∞),Ω) such that ξ(1/n) = y. Since
∫ 1/n

0
fk(ξ(s))ds → 0

as n → ∞, we obtain u3(x) ≤ u2(x). It is clear that u3(x) ≥ u2(x) by the
definitions.

Example 5.3. If one replaces dg by d in (5.1), i.e.,

u4(x) := lim
n→∞

sup {uk(y) | k ≥ n, d(y, x) < 1/n} , (5.2)

then it may happen that u4 is not a subsolution of (2.1). For example, we
consider the same setting as in Example 4.9. Set un = u in (5.2) and then
we have u4(x, 0) = 2 + x for 0 ≤ x ≤ 1 and u4(x, 0) = 2 − x for 1 < x ≤ 2.
Discontinuity at (1, 0) implies that u4 is not a subsolution.

We establish a stability result for supersolutions.

Proposition 5.4. Assume fn, f ∈ Ca(Ω) and let un ∈ LSC a(Ω) be a superso-
lution of (2.1) with f = fn for each n ∈ N. If lim infn→∞ supΩ(f − fn) ≤ 0
and un converges to u ∈ LSC a(Ω) uniformly in Ω, then u is a supersolution of
(2.1).
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Proof. Fix ε > 0. Then we have supΩ |uN − u| < ε and supΩ(f − fN ) < ε for
some N ∈ N. For each x ∈ Ω we take an ε-pair (ξN , wN ) for uN and fN .

Let ξ be ξN and define w as w(t) = wN (t) + u(x) − uN (x). We claim that
(ξ, w) is a 3ε-pair at x for u and f . Indeed, for all t ∈ (T−

Ω [ξ], T+
Ω [ξ]) we have

w(0) = u(x) and u(ξ(t)) − 2ε ≤ uN (ξ(t)) − ε ≤ wN (t) ≤ w(t) + ε. We also
observe that |p| ≥ fN (ξ(t)) − ε ≥ f(ξ(t)) − 2ε for all p ∈ D−w(t) = D−wN (t).
Therefore, u is a supersolution.

6 Consistency with Euclidean viscosity solution

In this section we investigate the consistency of our metric solutions with Eu-
clidean solutions. Let Ω be an open set in X = RN . In this situation our absolute
continuity is equivalent to conventional absolute continuity. In addition, we have
USC a(Ω) = USC (Ω) and LSC a(Ω) = LSC (Ω). Indeed, for each sequence of
points xn ∈ Ω converging to x ∈ Ω, there exists a zigzag line ξ consisting of seg-
ments [xn, xn+1] and going to x. Since we may assume that

∑
n |xn−xn+1| < ∞,

the curve ξ is admissible so that the inclusion USC a(Ω) ⊂ USC (Ω) follows. The
other direction is easier.

We recall the definition of conventional viscosity solutions. We say that
u ∈ USC (Ω) (resp. u ∈ LSC (Ω)) is a Euclidean viscosity subsolution (resp.
Euclidean viscosity supersolution) of (2.1) if the inequality |p| ≤ f(x) (resp.
|p| ≥ f(x)) holds for all x ∈ Ω and p ∈ D+u(x) (resp. p ∈ D−u(x)). We say
that u ∈ C (Ω) is a Euclidean viscosity solution if it is both a Euclidean viscosity
subsolution and a Euclidean viscosity supersolution.

We first assert equivalence of a metric subsolution and a Euclidean subsolu-
tion.

Proposition 6.1. Assume (2.10), i.e.,

f ∈ C (Ω) and f ≥ 0 in Ω. (6.1)

Let u ∈ USC (Ω). Then u is a metric viscosity subsolution of (2.1) if and only
if u is a Euclidean viscosity subsolution of (2.1).

Proof. Let u be a metric viscosity subsolution. Fix x ∈ Ω and suppose that
u − ϕ has a local maximum at x for ϕ ∈ C1(Ω). For each unit vector v we
set ξ(t) = x + vt. Since u ◦ ξ − ϕ ◦ ξ has a local maximum at 0, we have
|(ϕ ◦ ξ)′(0)| = |Dϕ(x) · v| ≤ f(x). We thus obtain |Dϕ(x)| ≤ f(x) by taking
v = Dϕ(x)/|Dϕ(x)| if |Dϕ(x)| 6= 0. The case when |Dϕ(x)| = 0 is trivial.

Let u be a Euclidean viscosity subsolution. Fix x ∈ Ω and ξ ∈ Ax(R,Ω).
Suppose that u ◦ ξ − ϕ has a local maximum at 0 for ϕ ∈ C 1(R). Then we
observe that

−(ϕ(h)− ϕ(0))/|h| ≤ −(u(ξ(h))− u(x))/|h| ≤ |u(ξ(h))− u(x)|/|h|

≤

{
|u(ξ(h))− u(x)|/|ξ(h)− x| if ξ(h) 6= x,

0 if ξ(h) = x
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for h ∈ R \ {0}. Taking lim suph↓0 and lim suph↑0, we conclude that |ϕ′(0)| ≤
f(x) by Lemma A.2.

We also show that a metric supersolution is a Euclidean supersolution.

Proposition 6.2. Assume (6.1). If u ∈ LSC (Ω) is a metric viscosity superso-
lution of (2.1), then u is a Euclidean viscosity supersolution of (2.1).

Proof. Suppose that u−ϕ attains its local minimum at x̂ for ϕ ∈ C 1(Ω). We may
assume that (u−ϕ)(x̂) = 0 and u−ϕ ≥ |x−x̂|2 inB :=

{
x ∈ RN | |x− x̂| ≤ R

}
⊂

Ω with R > 0. For each ε > 0 we take an ε-pair (ξε, wε) at x̂. Set T
±
ε = T±

B2
[ξε]

with B2 :=
{
x ∈ RN | |x− x̂| < R/2

}
. We mollify each component of ξε by

convolving the Friedrichs’ mollifier. For each index ν ∈ N let ξνε ∈ C∞(R,Rn)
be the mollification, which converges to ξε uniformly on [T−

ε , T+
ε ] as ν → ∞.

We thus have |ξνε (t) − ξε(t)| ≤ R/2 and |ϕ(ξνε (t)) − ϕ(ξε(t))| ≤ ε by uniform
continuity of ϕ on B for all t ∈ [T−

ε , T+
ε ] and sufficiently large ν. We also remark

that |(ξνε )′| ≤ 1 since |ξ′ε| ≤ 1 a.e. and (ξνε )
′ is nothing but the mollification of

ξ′ε.
Take a minimum point tνε of wε − ϕ ◦ ξνε on [T−

ε , T+
ε ]. Then we have

ε = (u− ϕ)(x̂) + ε ≥ (wε − ϕ ◦ ξνε )(0) ≥ (wε − ϕ ◦ ξνε )(tνε )
≥ (u− ϕ)(ξε(t

ν
ε ))− 2ε,

which implies |ξε(tνε ) − x̂|2 ≤ 3ε. Noting that |ξε(T±
ε ) − x̂| = R/2, we see that

tνε ∈ (T−
ε , T+

ε ) for sufficiently small ε. Since (ξε, wε) is an ε-pair, we have

f(ξε(t
ν
ε ))− ε ≤ |(ϕ ◦ ξνε )′(tνε )| ≤ |Dϕ(ξνε (t

ν
ε ))|.

We may assume that tνε → tε ∈ [T−
ε , T+

ε ] as ν → ∞ by choosing a subse-
quence. Then we obtain

|ξε(tε)− x̂|2 ≤ 3ε, |Dϕ(ξε(tε))| ≥ f(ξε(tε))− ε.

We thus have ξε(tε) → x̂ as ε → 0 and hence |Dϕ(x̂)| ≥ f(x̂).

As we observed in Example 2.4, a Euclidean supersolution is not necessarily
a metric supersolution. We give a sufficient condition that a Euclidean solution
is indeed a metric solution.

Proposition 6.3. Assume (4.2) and (4.4). Assume that f ∈ C (Ω) and f ≥ 0
in Ω. If u ∈ C (Ω) is a unique Euclidean viscosity solution of (2.1) and (4.1),
then u is a metric viscosity solution of (2.1) and (4.1).

Proof. Let ũ be the value function, i.e., ũ(x) := infξ∈Cx C[ξ] for x ∈ Ω. Theorem
4.2 implies that ũ ∈ Ca(Ω) and this is a metric solution of (2.1). Thus ũ is also
a Euclidean solution of (2.1) by Proposition 6.1 and 6.2. If we prove ũ ∈ C (Ω),
the conclusion follows since we are able to conclude that u = ũ by uniqueness.
Since ũ ∈ Ca(Ω) = C (Ω), it is sufficient to show limx→z,x∈Ω ũ(x) = g(z) for all
z ∈ ∂Ω.
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We first show u(x) ≤ ũ(x) for all x ∈ Ω. Since u is a metric subsolution
by Proposition 6.1, we observe that u satisfies (2.11) for all ξ ∈ Cx and s, t ∈
[0, T+

Ω [ξ]), s < t. By the continuity of u up to the boundary we have u(x) ≤ C[ξ]
so that u(x) ≤ ũ(x). Hence we obtain lim infx→z ũ(x) ≥ g(z).

We next let ξx(t) = x+ (z − x)t/|z − x| for x ∈ Ω \ {z}. Then we see that

ũ(x) ≤
∫ Tx

0

f(ξx(s))ds+ g(ξx(Tx)),

where Tx = T+
Ω [ξx]. Since Tx → 0 and ξx(Tx) → z as x → z, we obtain

lim supx→z ũ(x) ≤ g(z).

We prepare Lemma 6.4 to remove the assumption of the continuity of u on
the boundary in Proposition 6.3.

Lemma 6.4. Let Ω be an open set in a metric space X . Let Ωn be an open
subset of Ω for each n ∈ N such that supz∈∂Ωn

dg(∂Ω, z) → 0 as n → ∞,
where dg(∂Ω, z) = infy∈∂Ω dg(y, z). Assume (2.10) and that f is bounded. If
an arcwise uniformly continuous function u defined on Ω is a metric viscosity
supersolution of |Du| = f(x) in Ωn for all n ∈ N, then u is a metric viscosity
supersolution in Ω.

Here we say that a function u defined on Ω is arcwise uniformly continuous
if for each ε > 0 there exists δ > 0 such that

|u(ξ(s))− u(ξ(t))| < ε for all ξ ∈ A(I,Ω) and s, t ∈ I, |s− t| < δ. (6.2)

Proof. Fix x ∈ Ω and ε > 0. Take δ > 0 satisfying (6.2) and δ sup f < ε. We
have x ∈ Ωn and dg(∂Ω, z) < δ for all z ∈ ∂Ωn by choosing n ∈ N large enough.
Take an ε-pair (ξ, w) at x for the supersolution u in Ωn. Let T

± = T±
Ωn

[ξ]. Since

dg(∂Ω, ξ(T
±)) < δ, it is possible to construct ξ̃ ∈ A(R,X ) satisfying

ξ̃ = ξ on [T−, T+] and [T̃−, T̃+] ⊂ [T− − δ, T+ + δ]

with T̃± := T±
Ω [ξ̃]. Define w̃ ∈ LSC (T̃−, T̃+) as

w̃(t) =


w(t) for T− < t < T+,

u(ξ(T+))− ε−
∫ t

T+ f(ξ̃(s))ds for T+ ≤ t < T̃+,

u(ξ(T−))− ε−
∫ T−

t
f(ξ̃(s))ds for T̃− < t ≤ T−.

Then we have

u(ξ̃(t))− 3ε ≤ u(ξ̃(T+))− 2ε = w̃(t) +

∫ t

T+

f(ξ̃(s))ds− ε ≤ w̃(t)

for all T+ ≤ t < T̃+. We also observe that w̃′(t) = −f(ξ̃(t)) for all T+ < t <
T̃+ and that p ≤ −f(ξ̃(T+)) if p ∈ D−w̃(T+). We have a similar result for
T̃− < t ≤ T−. Therefore, (ξ̃, w̃) is a 3ε-pair for u in Ω.
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To simplify assumptions for uniqueness we restrict ourselves to the case when
(3.2) holds so that Ishii’s comparison result [15] applies to |Du| = f(x) in U for
every open subset U of Ω.

Proposition 6.5. Assume (3.2). If u ∈ C (Ω) is a Euclidean viscosity solution
of (2.1), then u is a metric viscosity solution.

Proof. Let Ωn = {x ∈ Ω | infy∈∂Ω |y − x| > 1/n} for each n ∈ N. Since u ∈
C (Ωn), Proposition 6.3 yields that u is a metric solution in Ωn. In addition,
since u is a metric subsolution in Ω by Proposition 6.1, we see that u is arcwise
uniformly continuous by (2.12) and the boundedness of f . We now apply Lemma
6.4 to conclude that u is a metric solution of (2.1).

A Results on Euclidean viscosity solutions

In this section we gather some results for Euclidean viscosity solutions used in
this paper.

Lemma A.1. Let I be an open interval of R and let w ∈ USC (I). Then w is
a Euclidean viscosity subsolution of w′(t) = 0 in I, i.e., p ≤ 0 for all t ∈ I and
p ∈ D+w(t) if and only if w is nonincreasing in I.

This lemma is more or less known with extra assumptions; see, e.g., [5,
Lemma II.5.15]. Since their argument requires w ∈ C (I), we give a different
proof.

Proof. It is easy to show that w is a subsolution if w is nonincreasing. Assume
that w is a subsolution. We suppose that w(a) < w(b) for some a, b ∈ I, a < b.
Take c ∈ I satisfying b < c. Define ϕ ∈ C 1(I) as

ϕ(t) =

{
C(t− a) + w(a) if t ≤ b,

C(t− a) + w(a) + k(t− b)2 if t ≥ b

with C = (w(b) − w(a))/(b − a) > 0 and k > 0. Obviously, w(a) = ϕ(a)
and w(b) = ϕ(b). We also have w(c) ≤ ϕ(c) by taking k large enough. Hence
w − ϕ ∈ USC (I) attains its maximum on [a, c] at some t̂ ∈ (a, c). We have
ϕ′(t̂) ≤ 0 since w is a subsolution while ϕ′(t̂) ≥ C > 0 by the definition of ϕ.
This is a contradiction.

Lemma A.2. Let Ω be an open set in RN and assume (6.1). If u ∈ USC (Ω)
is a Euclidean viscosity subsolution of (2.1), then the inequality

lim sup
y→x

|u(y)− u(x)|
|y − x|

≤ f(x) (A.1)

holds for all x ∈ Ω.
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Proof. Let Br =
{
y ∈ RN | |y − x| < r

}
⊂ Ω and Mr = maxBr

f for r > 0.
Since u is a subsolution of (2.1), it is also a subsolution of |Du| = Mr in Br.

We show
u(b)− u(a) ≤ Mr|b− a| (A.2)

for all a, b ∈ Br/4. Fix a, b ∈ Br/4 such that u(b) > u(a). Define ϕ ∈ C (RN ) as

ϕ(y) =

{
C|y − a|+ u(a) if |y − a| ≤ r/2,

C|y − a|+ u(a) + k(|y − a| − r/2)2 if |y − a| ≥ r/2

with C = (u(b) − u(a))/|b − a| > 0 and k > 0. Note that u(a) = ϕ(a),
u(b) = ϕ(b), and |Dϕ| ≥ C = (u(b) − u(a))/|b − a| in RN \ {a}. We also have
max∂Br (u − ϕ) ≤ 0 for sufficiently large k. Hence u − ϕ ∈ USC (Br) attains
its maximum at some x̂ ∈ Br \ {a}. We then have |Dϕ(x̂)| ≤ Mr since u is a
subsolution. Thus (A.2) holds.

We now have |u(y) − u(x)|/|y − x| ≤ Mr for all y ∈ Br/4 \ {x}. Taking
lim supy→x and r → 0, we obtain (A.1).
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