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Asymptotic behavior of type I blowup solutions to
a parabolic-elliptic system of drift-diffusion type

Yoshikazu Giga, Noriko Mizoguchi and Takasi Senba

Abstract A Cauchy problem for a parabolic-elliptic system of drift-diffusion type is
considered. The problem is formally of the form

Ut = ∇ · (∇U − U∇(−∆)−1U).

This system describes a mass-conserving aggregation phenomenon including gravita-
tional collapse and bacterial chemotaxis. Our concern is the asymptotic behavior of
blowup solutions when the blowup is type I in the sense that its blowup rate is the
same as the corresponding ordinary differential equation yt = y2 (up to a multiple
constant). It is shown that all type I blowup is asymptotically (backward) self-similar
provided that the solution is radial, nonnegative when the blowup set is a singleton
and the space dimension is greater than or equal to three.

2000 Mathematics Subject Classification. 35K55, 35K57, 92C17.
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1 Introduction

In this paper, we consider the blowup of radial solutions to the system

(1.1)


Ut = ∇ · (∇U − U∇V ) in RN × (0, T ),
0 = ∆V + U in RN × (0, T ),
U(x, 0) = U0(x) ≥ 0 in RN ,

where N ≥ 3 and U0 ∈ L∞(RN) is radially symmetric. We first recall the definition of
a solution (U, V ) to (1.1). For any radial function U0 ∈ L∞(RN), there exists a unique
radial function U ∈ C([0, T ); L∞(RN)) satisfying

U(x, t) =

∫
RN

G(x− x̃, t)U0(x̃)dx̃

+

∫ t

0

∫
RN

[
∇x̃G(x− x̃, t− t̃) · x̃

ωN |x̃|N

∫
|x̂|≤|x̃|

U(x̂, t̃)dx̂

]
U(x̃, t̃)dx̃dt̃

in RN × [0, T ) for some constant T > 0, where ωN is the area of the unit sphere in RN

and G is the Gauss kernel of ∂t −∆ in RN . Define V by

(1.2) V (x, t) = C −
∫ |x|

0

1

ωNrN−1

∫
|x̃|<r

U(x̃, t)dx̃dr,

where C is an arbitrary constant. Then (U, V ) satisfies (1.1) in the classical sense by
the parabolic regularity argument. We call (U, V ) defined above a solution of (1.1). It
is immediate that U > 0 in RN × (0, T ) if U0 ≥ 0 and U0 6≡ 0 in RN .

The system (1.1) was introduced in [7] as a simplified system of

(1.3)

{
Ut = ∇ · (∇U − U∇V ) ,
Vt = ∆V − V + U.

The system (1.3) is a model for several biological problems (e.g.[12]) and physical
problems (e.g. [2]).

In a biological problem, the system (1.3) describes that cellular slime molds aggre-
gate owing to the motion of the cells which move towards higher concentration of a
chemical substance produced by themselves. In the model, U(x, t) and V (x, t) represent
the density of cells and the concentration of the chemical substance, respectively.

We say that a solution (U, V ) blows up at t = T if lim supt→T |U(t)|∞ = ∞ with
the L∞-norm in RN . Moreover if for p ∈ RN there exists a sequence {(xn, tn)} ⊂
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RN × (0, T ) with xn → p and tn → T as n → ∞ such that U(xn, tn) → ∞ as
n → ∞, then p is called a blowup point of (U, V ). The set of all blowup points is
called the blowup set of (U, V ) and denoted by B(U, V ). It was shown in [9, 16, 17]
that the systems (1.1), (1.3) have blowup solutions. We say that a solution (U, V )
of (1.1) defined in RN × (−∞, 0) is backward self-similar if λ2U(λx, λ2t) = U(x, t) in
RN×(−∞, 0) for each λ > 0. The system (1.1) has radial backward self-similar blowup
solutions (see [8] for N = 3 and [16] for N ≥ 3).

Let (U, V ) be a radial solution to (1.1). Put

(1.4) u(ξ, t) =
1

ωNξN

∫
|x|<ξ

U(x, t)dx for (ξ, t) ∈ [0,∞)× [0, T ).

Then u satisfies

∂u

∂t
=

∂2u

∂ξ2
+

(N + 1)

ξ

∂u

∂ξ
+ u

(
ξ
∂u

∂ξ
+ Nu

)
in (0,∞)× (0, T )(1.5)

and
∂u

∂ξ
(0, t) = 0 for t ∈ (0, T ).

It is immediate that u is positive in [0,∞)× (0, T ). The definition of blowup point and
blowup set for u is similarly done to above. For T > 0, put

w(r, s) = (T − t)u(ξ, t)

with
r = (T − t)−1/2ξ and s = − log(T − t).

Then w satisfies
(1.6)

∂w

∂s
=

∂2w

∂r2
+

(
N + 1

r
− r

2

)
∂w

∂r
− w + w

{
r
∂w

∂r
+ Nw

}
in (0,∞)× (s0,∞),

w(r, s0) = w0(r) ≡ Tu(T 1/2r, 0) in [0,∞),

where s0 = − log T . For α > 0, let ϕα be a solution to

(1.7) ϕ′′ +

(
N + 1

r
− r

2

)
ϕ′ − ϕ + ϕ (rϕ′ + Nϕ) = 0 in (0, r(α))

with ϕ′(0) = 0 and ϕ(0) = α, where r(α) = sup{r > 0 : 0 < ϕα(r̃) < ∞ for r̃ ∈ [0, r)}.
Let S = {α > 0 : r(α) = ∞}. A solution u of (1.5) defined in [0,∞) × (−∞, 0) is
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backward self-similar if λ2u(λξ, λ2t) = u(ξ, t) in [0,∞) × (−∞, 0) for each λ > 0. It
is equivalent to u(ξ, t) = (−t)−2ϕα((−t)−1/2ξ) for (ξ, t) ∈ [0,∞)× (−∞, 0) with some
α ∈ S. It is immediate that ϕ∞ defined by

ϕ∞(r) =
2

r2
for r > 0

is a singular solution of (1.7).
A solution (U, V ) of (1.1) is said to exhibit type I blowup at t = T if there exists a

constant K > 0 such that |U(t)|∞ ≤ K(T − t)−1 for t ∈ [0, T ). In other words, |w(s)|∞
is uniformly bounded in [s0,∞) for the corresponding solution w of (1.6). In [6], an
asymptotic behavior of w(s) associated with type I blowup solution as s → ∞ was
studied for (1.1) in B1 with the boundary conditions

∂U

∂ν
− U

∂V

∂ν
= 0 and V = 0 on ∂B1 × (0, T ),

where BR = {x ∈ RN : |x| < R} for R > 0 and ν is the outward normal unit vector.
They showed that if u(ξ, 0) satisfies

(1.8) uξ(ξ, 0) ≤ 0 for ξ ∈ [0, 1)

and

(1.9) uξξ(ξ, 0) +
N + 1

ξ
uξ(ξ, 0) + u(ξ, 0) {ξuξ(ξ, 0) + Nu(ξ, 0)} ≥ 0 for ξ ∈ (0, 1),

then w(s) converges to ϕα locally uniformly in [0,∞) as s → ∞ for some α̂ ∈ S with
z(ϕα̂−ϕ∞) = 1. Here for a function f 6≡ 0 on [a, b] with 0 ≤ a < b ≤ ∞, let z(f : [a, b))
be the supremum over all j such that there exist a ≤ r1 < r2 < · · · < rj+1 < b with
f(ri) ·f(ri+1) < 0 for i = 1, 2, · · · , j. Denote by z(f) for simplicity when b = ∞. It was
given in [15] that if 3 ≤ N ≤ 9, then there exists a sequence {αn} ⊂ S with αn → ∞
as n → ∞ such that z(ϕαn − ϕ∞) → ∞ as n → ∞. The condition (1.9) excludes the
possibility of the convergence of w(s) to ϕα with α 6= α̂ as s →∞.

Put S = S ∪ {0}. We first obtain the convergence of w(s) corresponding to type I
blowup solution to ϕα for some α ∈ S under no extra assumptions.

Theorem 1.1 Suppose that a radial solution (U, V ) of (1.1) undergoes type I
blowup at t = T and that B(U, V ) = {0}. Let w be the corresponding solution of
(1.6). Then, w(s) converges to ϕα locally uniformly as s →∞ for some α ∈ S. Under
an additional assumption (1.8), the above conclusion holds with α ∈ S.
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This theorem means that a solution u of (1.5) corresponding to a radial solution of
(1.1) undergoing type I blowup at t = T is asymptotically backward self-similar near
ξ = 0 as t → T .

Throughout the present paper, we denote L∞loc([0,∞)) and Ci
loc([0,∞)) by L∞loc and

Ci
loc, respectively. Let ω(w0) be the omega-limit set of the solution w of (1.6) in

Theorem 1.1, that is,

ω(w0) = {W : w(sn) → W in L∞loc as n →∞
for a sequence {sn} with sn →∞ as n →∞}.

The equation (1.6) without the convection term rwwr appears in the study of blowup
problem for a semilinear heat equation. In that case, the standard argument of infinite
dimensional dynamical system based on a Lyapunov function plays an essential role to
show that the omega-limit set consists of stationary solutions. On the other hand, the
convection term rwwr prevents us from an easy construction of a Lyapunov function.
In [6], a well-known method to treat a parabolic equation in one-dimensional bounded
interval introduced by [19] was modified to get a Lyapunov function in implicit form
with an advantage of bounded interval. However the method needed so complicated
calculations. We make use of the analyticity with respect to the spatial variable to
avoid such hard calculations, namely, we require no Lyapunov function.

Let us sketch our proof. It is immediate that ω(w0) is nonempty by the parabolic
regularity argument. We first show that W (0) is constant for W ∈ ω(w0) by use of the
intersection comparison between w and ϕα for α ∈ S (Lemma 4.3). Based on the fact,
we show

∂kw

∂sk
(0, s) → 0 as s →∞

for each positive integer k (Lemma 4.4). This leads us to

(1.10)
∂i+j+1

∂rj∂si+1
w(0, s) → 0 as s →∞

for any nonnegative integers i, j (Lemma 4.5). There exist S > s0 and R > 0 such that

(1.11) sup

{
1

k!

∣∣∣∣ ∂k

∂rk
ws(r, s)

∣∣∣∣ · rk : r ∈ (0, R) and s ≥ S0

}
→ 0 as k →∞

(Corollary 2.1). This is derived from a general theorem on spatial analyticity (Theorem
2.1). Let

V = {V : ws(sn) → V in L∞loc as n →∞
for a sequence {sn} with sn →∞ as n →∞}.
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Take V ∈ V arbitrarily. By the parabolic regularity argument, for each nonnegative
integer j there exists a sequence {sn} with sn → ∞ such that ws(sn) → V in Cj

loc as
n →∞. It follows from (1.10) that

(1.12)
dj

drj
V (0) = 0 for j = 1, 2, 3, · · · .

By the Taylor expansion, we get

ws(r, s) = ws(0, s) +
∂

∂r
ws(0, s) · r +

1

2

∂2

∂r2
ws(0, s) · r2

+ · · ·+ 1

(k − 1)!

∂k−1

∂rk−1
ws(0, s) · rk−1 +

1

k!

∂k

∂rk
ws(rθ, s) · rk

with some θ ∈ (0, 1) for r > 0 and s > s0. This implies

V (r) = V (0) +
d

dr
V (0) · r +

1

2

d2

dr2
V (0) · r2

+ · · ·+ 1

(k − 1)!

dk−1

drk−1
V (0) · rk−1 +

1

k!

dk

drk
V (rθ) · rk

for r > 0. We now obtain that V is analytic at r = 0 by (1.11) and hence V ≡ 0
from (1.12). Since for each W ∈ ω(w0), there exists a sequence {sn} with sn → ∞ as
n →∞ such that w(sn) → W and ws(sn) → 0 in C2

loc as n →∞, we get

Wrr +
N + 1

r
Wr −

r

2
Wr −W + W (rWr + NW ) = 0 in (0,∞).

Since W (0) is constant for W ∈ ω(w0), we obtain ω(w0) = {ϕα} for some α ∈ S. This
implies that w(s) → ϕα in L∞loc as s →∞.

For a solution u of (1.5), let U(ξ, t) = ξ1−N(ξNu)ξ and Vξ(ξ, t) = −ξu(ξ, t) for
(ξ, t) ∈ [0,∞) × [0, T ). Then (U, V ) satisfies (1.1). We say that a solution (U, V ) of
(1.1) defined in [0,∞) × (−∞, 0) is backward self-similar if λ2U(λξ, λ2t) = U(ξ, t) in
[0,∞)× (−∞, 0) for each λ > 0. Put Uα(ξ, t) = (−t)−1Φα((−t)−1/2ξ) and (Vα)ξ(ξ, t) =
−(−t)−1ξϕα((−t)−1/2ξ) for (ξ, t) ∈ [0,∞) × (−∞, 0) for α ∈ S, where Φα(r) =
r(ϕα)r(r) + Nϕα(r) for r ≥ 0. It is immediate that (Uα, Vα) is a backward self-similar
solution of (1.1). It follows from (1.1) and (1.2) that

U(ξ, t) = −
(

Vξξ +
N − 1

ξ
Vξ(ξ, t)

)
= ξuξ(ξ, t) + Nu(ξ, t).

Therefore we easily get the following result from Theorem 1.1.
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Corollary 1.1 Suppose that a radial solution (U, V ) of (1.1) undergoes type I
blowup at t = T and that B(U, V ) = {0}. Let ϕα be as in Theorem 1.1. Then we have

(T − t)U((T − t)1/2r, t) → r(ϕα)r(r) + Nϕα(r) in L∞loc as t → T.

In other words, (U, V ) is asymptotically backward self-similar near ξ = 0 as t → T .

This paper is organized as follows: In Section 2, we get an estimate on the analyticity
with respect to space variable. In section 3, we study the behavior of ϕα(r) as r →∞
for α ∈ S. Section 4 is devoted to the proof of the main theorem.

2 Estimates related to analyticity

We shall state spatial analyticity of solutions of parabolic equations with analytic
nonlinearity. Such a statement has been proved by [4] for a general system of fully
nonlinear parabolic equations. Although it is stated in his paper as Theorem 2 of [4],
we give here a version for semilinear equations to avoid complification. We also give
a different proof based on Hölder estimates since such estimates simplifies induction
argument significantly.
We first recall parabolic Hölder norms. For a domain D in RN × R and a function u
on D we denote a parabolic µ - Hölder seminorm on D by

[u]µ,D = sup{|u(x, t)− u(y, s)|/(|x− y|µ + |t− s|µ/2) : (x, t), (y, s)∈D},

where 0 < µ < 1. For our convenience we denote the maximum norm by

[u]0,D = sup{|u(x, t)| : (x, t) ∈ D}

The parabolic µ - Hölder norm is now defined by

|u|µ,D = [u]µ,D + [u]0,D

We use a standard convention of multi-indices α = (α1, ..., αN) for order of spatial
partial derivatives, i.e.,

∂α
x = ∂α1

x1
· · · ∂αN

xN
, ∂xj

= ∂/∂xj, j = 1, 2, . . . , N

and |α| = α1 + · · ·+ αN . To simplify the notation we also use the convention that

[w(k)]µ,D = sup
|α|=k

[∂α
x w]µ,D
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for higher derivatives. Of course, [w(h)]0,D and |w(h)|µ,D are defined similarly. Note that
these quantities only contain spatial derivatives.
We recall a parabolic ball of radius r centered at (0,0) defined by

Q(R) = BR × (−R2, 0), BR = {x ∈ Rn : |x| < R}.

We now state spatial analyticity of solutions for semilinear parabolic equations with
analytic nonlinearity.

Theorem 2.1 Let w be a smooth solution of

∂w

∂t
= ∆w + f(x, w,∇w) in Q(1).

assume that there exist M > 0 and M̃ > 0 such that

[w]0,Q(1) ≤ M, [w(1)]0,Q(1) ≤ M̃.

Assume that f is analytic in a neighborhood of

W = {(x, p, q) ∈ R2N+1 : x ∈ B1, |p| ≤ M, |q| ≤ M̃}.

Then there exist constants C, d > 0 depending only on M , M̃ , N , f such that

[w(k)]0,Q(1/2) ≤ Ckkdk

i.e.,
|∂α

x w(x, t)| ≤ Ckkdk in Q(1/2).

By the Stirling formula we have

k! =
√

2πkk+ 1
2 e−k+θk/12k

with some constant θk ε (0, k). Theorem 2.1 with this representation of k! yields the
following strong convergence result for ws of (1.6) as s → ∞. This is a key for the
proof of Theorem1.1.

Corollary 2.1 Let w be a uniformly bounded global solution of (1.6). Then there
exist S > s0 and R > 0 such that

lim
k→∞

sup{ 1

k!
| ∂k

∂rk
ws(r, s)| · rk : r ∈ (0, R), s ≥ S} = 0
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Proof of Theorem 2.1. We may assume that M ′ = [w(2)]0,Q(1) < ∞ by replacing
Q(1) by a smaller parabolic ball Q(r).
Our goal is to prove that for a fixed Hölder exponent µ ∈ (0, 1)

[w(k)]µ,δ≤A(Hk/δ)k+µ, k = 1, 2, . . . (2.1)

with some positive constants A and H independent of k and δ ∈ (0, 1/2)(depending
only on µ, M , M̃ and N), where

[u]µ,δ = [u]µ,Q(1−δ).

We recall a few a priori estimates for the heat equation. Let u be a solution of

∂tu−∆u = h in Q(1− δ′), 0 < δ′ < δ

which is smooth in a parabolic neighborhood of Q(1− δ′). The solution u is of the
form

u = G[h] + P [u].

Here G is the Green operator with the Dirichlet condition and P is the Poisson operator
with the boundary data u. In other words G[h] is the unique solution of

vt −∆v = h in Q(1− δ′)

with v = 0 on a parabolic boundary ∂pQ(1− δ′), i.e.,

∂pQ(1− δ′) = ∂B(1− δ′)× (−(1− δ′)2, 0) ∪B(1− δ′)× {−(1− δ′)2}

and P [ϕ] is the unique solution of

Zt −∆Z = 0 in Q(1− δ′), v = ϕ on ∂pQ(1− δ′).

For G a classical Schauder estimate implies

|(G[h])(2)|µ,δ′ ≤ c1|h|µ,δ′ (2.2)

with a constant c1 depending only on N and µ, and independent of h and δ′ provided
that 0 ≤ δ′ < 1/2. For the proof see e.g. [13]. The constant c2 depends on domains
but in our case Q(1 − δ′) is homothesic in parabolic scale for all δ′ < 1 so if the size
is pinched from above and below, the constant c1 can be taken uniform. (Note that G
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and P depends on δ′ but we suppress its dependence.)
For P a direct computation of fundamental solution ([5], [11], [13]) implies that

[P[ϕ](j)]0,δ ≤
mj

(δ − δ′)j
[ϕ]0,δ′ , j = 0, 1, 2, . . .

with mj independent of ϕ, δ, δ′ provided that 0 < δ′ < δ < 1/2 and depending only on
j and N . (The dependence on j for large j is jj but we do not use such an estimate.)
Here [ϕ]0,δ′ denotes the maximum norm of ϕ over ∂pQ(1− δ′), where ϕ is defined only
on the boundary ∂pQ(1− δ′). By a trivial interpolation inequality

[v]µ,δ ≤ 21−µ[v(1)]µ0,δ[v]1−µ
0,δ , (2.3)

the derivative estimate for P yields the Hölder estimate

[P[ϕ](j)]µ,δ ≤
c2

(δ − δ′)j+µ
[ϕ]0,δ′ , (2.4)

with a constant c2 depending only on N and µ.
We are now ready to carry out the proof of (2.1). By our assumptions and (2.3) we
know that (2.1) holds for k = 1. We argue by induction. Suppose that (2.1) is valid
for k = r − 1 for r ≥ 2. We take δ′ such that δ − δ′ = δ/r and use the representation
to formula for ∂α

x w :
∂α

x w = G[∂α
x F ] + P[∂α

x w]

with F (x) = f(x, w(x),∇w(x)) and |α| = r − 2. By (2.2) and (2.4) we have

[w(r)]µ,δ ≤ c1|F (r−2)|µ,δ′ + c2(
r

δ
)2+µ[w(r−2)]0,δ′ . (2.5)

We shall use an interpolation inequality (proved later in Lemma 2.1)

[u(1)]0,δ′ ≤ c3[u
(1)]1−µ

µ,δ′ [u]µµ,δ′ (2.6)

with c3 depending only on N and µ to derive estimates for maximum norm. Our
induction assumption implies that

[w(k)]0,δ′ ≤ c3 A(Hk/δ′)k for 0 ≤ k ≤ r − 1. (2.7)

For the first term a calculation similar to the proof of Lemma 1 in [4] together with
(2.7) implies

[∂α
x F ]µ,δ′ ≤ CA(H(r − 1)/δ′)r−1+µ, [∂α

x F ]0,δ′ ≤ CA(H(r − 1)/δ′)r−1 (2.8)
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with C independent of δ′ and r provided that H is taken large but largeness is inde-
pendent of δ′ and r. The constant C depends on analyticity of f . Since we estimate
Hölder norm, we frequently invoke a trivial inequality

[gh]µ,δ′ ≤ [g]0,δ′ [h]µ,δ′ + [g]µ,δ′ [h]0,δ′

to derive (2.8). Note that the highest derivative term of w is in ∂α
x F is ∂f/∂(∇w) ·

∂α
x∇w, so ∂α

x F only includes derivatives of w up to r−1 order. Since we may assume
that H > 1, we conclude from (2.8) that

|F (r−2)|µ,δ′ ≤ 2CA(H(r − 1)/δ′)r−1+µ

= 2CA(Hr/δ)r−1+µ. (2.9)

Combining (2.5), (2.7) and (2.9), we have

[w(r)]µ,δ′ ≤ c12CA(Hr/δ′)r−1+µ + c2c3A(H(r − 2)/δ′)r−2(r/δ)2+µ.

Taking H larger (independent of r and δ ∈ (0, 1/2)), say,

2c1CH−1 · 1

2
+ c2c3H

−2 ≤ H,

we observe that
[w(r)]µ,δ ≤ A(Hr/δ)r−1+µ.

We have proved (2.1).
Our conclusion follows from (2.1) with interpolation inequality (2.6). �
We now give a short proof for an interpolation inequality (2.6) for parabolic Hölder
norm.

Lemma 2.1 Let r0 and R0 be positive constants such that r0 < R0. For µ ∈ (0, 1)
and N = 1, 2, . . . there is a constant c = c(r0, R0, µ,N) such that

[w(1)]0 ≤ c[w(1)]1−µ
µ [w]µµ

for all w ∈ C(Q(R)) such that ∇w ∈ C(Q(R)) and r0 < R < R0, where Q(R) ⊂
RN ×R. Here [h]µ denotes the norm on Q(R), i.e. [h]µ,Q(R).

Proof. We first prove that

[∂xi
w]0,U ≤ C[∂xi

w]1−µ
µ,U [w]µµ,U for w ∈ Cµ(U), U = RN × (−∞, 0).
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It suffices to prove that

[∂xi
w]0,U ≤ c′(λµ[∂xi

w]µ,U + λµ−1[w]µ,U)

for all λ > 0 with some constant c′ independent of λ and w. By scaling it suffices to
prove the case λ = 1. For this purpose it suffices to prove

[∂xi
w]0,Q ≤ C ′

1([∂xi
w]µ,Q + [w]µ,Q)

in a cube Q ⊂ U .
Suppose that this inequality would not hold. Then there would exist a sequence of
function wj such that

[∂xi
wj]0 = 1 and [∂xi

wj]µ,Q + [wj]µ,Q ≤ 1/j.

By Ascoli-Arzelà theorem ∂xi
wj converges uniformly in Q to some function g. Since

[∂xi
wj]µ,Q → 0, g is a function independent of xi. However, since [wj]µ,Q → 0, we have

wj → const.(j →∞). This is absurd.
We thus proved that

[w(1)]0,U ≤ c[w(1)]1−µ
µ,U [w]µµ,U . (2.10)

To prove the same inequality on Q(R) (r0 < R < R0) instead of U it suffices to extend
function on Q(R) to a function on U . For a given function f ∈ C1(Q(R)) we define its
extension to RN × (−R2, 0) by a kind of reflection

f̃(x, t) = 2f(Rx/|x|, t)− f(R2x/|x|2, t) for |x| ≥ R

We further extend for t ≤ −R2 by a similar method, i.e.

f(x, t) = 2f̃(x,−R2)− f̃(x,−R4/t) for t ≤ −R2.

It is clear that
[f ]µ,U ≤ a[f ]µ,Q(R), [f

(1)
]µ,U ≤ b[f ]µ,Q(R)

with a constant a and b depending only on r0, R0, µ and N . Thus (2.10) yields the
desired estimate for Q(R) so the proof of Lemma2.1 is now complete. �

3 Properties of positive solutions of (1.7)

For α > 0, let ϕα be a solution to

(3.13)

 ϕ′′ +

(
N + 1

r
− r

2

)
ϕ′ − ϕ + ϕ (rϕ′ + Nϕ) = 0 in (0, r(α))

ϕ′(0) = 0, ϕ(0) = α,
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where r(α) = sup{r > 0 : 0 < ϕα(r̃) < ∞ for r̃ ∈ [0, r)}. Let S = {α > 0 : r(α) =
∞}.

The following is the main result in this section.

Proposition 3.1 Let N ≥ 3. For α ∈ S, the limit Λα ≡ limr→∞ r2ϕα(r) exits.
Furthermore, if α1, α2 ∈ S and α1 6= α2, then Λα1 6= Λα2.

Put κ = 1/N and let

Lκ(φ) = φ′′ +
N + 1

r
φ′ − r

(
1

2
− 1

N

)
φ′ + φ.

Let L2
ρ be the Lebesgue measurable functions f on [0,∞) satisfying∫ ∞

0

f(r)2rN+1ρ(r)dr < ∞,

where

ρ(r) = exp

(
−N − 2

4N
r2

)
for r ≥ 0.

For a nonnegative integer j, let λκ
j be the jth eigenvalue of Lκ(φ) = −λφ, and let φκ

j

be the jth eigenfunction normalized in L2
ρ such that φκ

j (r) > 0 for r � 1. Here and
henceforth, for positive constants a and b a � b denotes that a/b is sufficiently large.
It is known that

(3.14) λκ
j =

N − 2

N
j − 1 and φκ

j (r) = (−1)jcjS
N/2
j

(
N − 2

4N
r2

)
,

respectively. Here

cj =

{∫ ∞

0

(
S

N/2
j

(
N − 2

4N
r2

))2

rN+1ρ(r)dr

}−1/2

and Sa
j is the Sonine’s polynomial of order a for j = 0, 1, 2, · · · . Then we see

φκ
j (r) = cj

(
N − 2

4N
r2

)j

(1 + O(r−2)) as r →∞(3.15)

and

d

dy
φκ

j (r) =
2j

r
cj

(
N − 2

4N
r2

)j

(1 + O(r−2)) as r →∞.(3.16)
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Lemma 3.1 Let α ∈ S \ {κ}. If z(ϕα − κ) = ∞, there exists a sequence {rn} ⊂
[0,∞) with rn → ∞ as n → ∞ such that ϕα(rn) = κ and that ϕα < κ in (r2n, r2n+1)
for n = 1, 2, 3, · · · .

Proof. If z(ϕα − κ) = ∞, then there exists {rn} ⊂ [0,∞) such that ϕα(rn) = κ
and that ϕα < κ in (r2n, r2n+1) for n = 1, 2, 3, · · · . If {rn} is bounded, then there exists
R > 0 with rn → R as n → ∞ taking a subsequence if necessary. If ϕα is bounded
in [0, 2R], we get ϕα(R) = κ and ϕ′α(R) = 0 by the elliptic regularity argument. This
implies α = κ by the uniqueness of solution to the initial value problem for the ordinary
differential equation. This contradicts that α ∈ S \ {κ}, which completes the proof. �

Lemma 3.2 If α ∈ S \ {κ}, then z(ϕα − κ) < ∞.

Proof. On the contrary, we assume z(ϕα−κ) = ∞. Put Φ = κ−ϕα. The function
Φ satisfies

Φ′′ +
N + 1

r
Φ′ −

(
1

2
− 1

N

)
rΦ′ − Φ + N(κ + ϕα)Φ− rΦΦ′ = 0

and

(3.17)
1

g

d

dr

(
g
dΦ

dr

)
− Φ + N(κ + ϕα)Φ− rΦΦ′ = 0,

where

(3.18) g(r) = rN+1 exp

(
−N − 2

4N
r2

)
.

For j = 0, 1, 2, · · · , we see

(3.19)
1

g

d

dr

(
g
dφκ

j

dr

)
+ φκ

j = −λκ
j φ

κ
j .

Let {rn} be the sequence in Lemma 3.1. It follows from (3.19) that∫ r2n+1

r2n

d

dr

(
g
dφκ

j

dr

)
Φdr +

∫ r2n+1

r2n

φκ
j Φgdr + λκ

j

∫ r2n+1

r2n

φκ
j Φgdr = 0.

Therefore we have

−
∫ r2n+1

r2n

(λκ
j + 1)Φgφκ

j dr =

∫ r2n+1

r2n

d

dr

(
g
dφκ

j

dr

)
Φdr >

∫ r2n+1

r2n

φκ
j (Φ′g)

′
dr.
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Applying (3.17) to this inequality yields

(3.20)

∫ r2n+1

r2n

rφκ
j gΦΦ′dr < −λκ

j

∫ r2n+1

r2n

φκ
j gΦdr < 0 for n � 1.

It follows from (3.15) and (3.16) that

(
rφκ

j g
)′

=

{
N + 2 + 2jcj(1 + O(1)

1

r2
)−

(
1

2
− 1

N

)
r2

}
φκ

j g for r � 1.

Therefore we obtain∫ r2n+1

r2n

rφκ
j gΦΦ′dr = −1

2

∫ r2n+1

r2n

(
rφκ

j g
)′

Φ2dr

= −1

2

∫ r2n+1

r2n

{
N + 2 + 2jcj(1 + O(1)

1

r2
)−

(
1

2
− 1

N

)
r2

}
φκ

j gΦ2dr > 0

for n � 1. This contradicts (3.20), which completes the proof. �

Lemma 3.3 If α ∈ S, then supr≥0 ϕα(r) < ∞.

Proof. On the contrary, we assume lim supr→∞ ϕα(r) = ∞ for some α ∈ S. By
Lemma 3.2, we have ϕα(r) > κ for r � 1. If ϕα has a local minimum at R � 1, then

ϕ′′α(R) = ϕα(R)−N (ϕα(R))2 < 0.

This contradicts that ϕα(R) is a local minimum, which implies limr→∞ ϕα(r) = ∞ and
ϕ′α(r) ≥ 0 for r � 1. Hence we get

ϕ′′a(r) + 2rϕ′a(r) < 0 for r ≥ R

with some R � 1. This inequality leads us to

ϕ′α(r) < ϕ′α(R)
R2

r2
for r > R.

This contradicts that lim supr→∞ ϕα(r) = ∞, which completes the proof. �

Lemma 3.4 If α > 0, then ϕα(r) < ∞ for r ∈ (0, r(α)].
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Proof. On the contrary, we assume lim supr→r(α) ϕα(r) = ∞. By Lemma 3.1, we
see r(α) < ∞. If ϕα has a local minimum at R ∈ (r(α)/2, r(α)), it follows from (3.13)
that

0 ≤ ϕ′′α(R) = ϕα(R)−N (ϕα(R))2

The inequality implies ϕα(R) ∈ (0, κ]. Therefore there exists a positive constant h
independent of R ∈ (r(α)/2, r(α)) such that

h ≤ sup {r ≥ R : ϕα(r̃) ≤ κ + 1 for r̃ ∈ [R, r]}

by the elliptic regularity argument. These imply that ϕ′α ≥ 0 in [R1, r(α)] and
limr→r(α) ϕα(r) = ∞, where R1 = max (r(α)/2, r(α)− h), from which we get

−ϕα(r) + Nϕα(r)2 > 0 for r ∈ [R2, r(α))

and
N + 1

r
− r

2
+ rϕα(r) > 0 for r ∈ [R2, r(α))

with some R2 ∈ [R1, r(α)). Applying these inequalities to (3.13), we obtain ϕ′′α < 0 in
[R2, r(α)). Then ϕα is bounded in (0, r(α)). This contradicts lim supr→r(α) ϕα(r) = ∞,
which completes the proof. �

Lemma 3.5 If α ∈ S \ {κ}, then limr→∞ ϕα(r) = 0 and ϕ′α(r) < 0 and ϕ′′α(r) ≥ 0
for r � 1.

Proof. Let r1 be the largest zero of ϕα− κ if ϕα− κ has at least one zero, and let
r1 = 0 if ϕα − κ has no zeros. Put

Gα(r) = rN+1 exp

(
−r2

4
+

∫ r

r0

sϕα(s)ds

)
.

We see

(3.21) Gα(r)ϕ′α(r) = Gα(r̃)ϕ′α(r̃) +

∫ r

r̃

(
ϕα(s)−Nϕα(s)2

)
Gα(s)ds

for r, r̃ ∈ (0,∞). Suppose that ϕ′α has a zero r2 in (r1,∞). It follows from (3.21) that
ϕ′α(r) < 0 in (r2,∞) if ϕα > κ in (r1,∞) and that ϕ′α(r) > 0 in (r2,∞) if ϕα < κ in
(r1,∞). From this and Lemma 3.3, there exists a limit Cα = limr→∞ ϕα(r) ∈ [0,∞).
Suppose that Cα = κ. If ϕ′α < 0 in (r2,∞), then ϕα > κ in (r1,∞). Applying these
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inequalities to (3.13) yields ϕ′′α(r) ≥ 0 and (N + 1)/r − r/2 + rϕα(r) < 0 with some
r ∈ (r2,∞), which contradicts (3.13). If ϕ′α > 0 in (r2,∞), then ϕα < κ in (r1,∞).
Thus we get ϕ′′α(r) ≤ 0 and (N + 1)/r− r/2 + rϕα(r) < 0 with some r ∈ (r2,∞). This
contradicts (3.13). Then we have Cα 6= κ. Suppose that Cα > 0. The equation (3.13)
can be written as

ϕα(r)− ϕα(r)2 − 2

r
ϕ′α(r)− 2(N + 2)

r
ϕα(r)

= ϕα(r2)− ϕα(r2)
2 − 2

r2

ϕ′α(r2)−
2(N + 2)

r2

ϕα(r2)

+

∫ r

r2

2

s

(
−ϕα(s) + Nϕα(s)2 +

2(N + 2)

s2
ϕα(s)

)
ds.

Take {Rn} ⊂ [r2,∞) with limn→∞ Rn = ∞ such that limn→∞ ϕ′α(Rn) = 0. If Cα ∈
(0, κ), then

lim
n→∞

(
ϕα(Rn)− ϕα(Rn)2

)
= −∞,

and if Cα > κ, then
lim

n→∞

(
ϕα(Rn)− ϕα(Rn)2

)
= ∞.

This is a contradiction by Lemma 3.3. Then we get limr→∞ ϕα(r) = 0 and ϕ′α(r) < 0
for r � 1.

Differentiating (3.13) with respect to r yields

ϕ′′′α +

(
N + 1

r
− r

2

)
ϕ′′α +

(
N + 1

r
− r

2

)′

ϕ′α − ϕ′α

+ϕ′α (rϕ′α + Nϕα) + ϕα (ϕ′α + rϕ′′α + Nϕ′α)

= ϕ′′′α +

(
N + 1

r
− r

2
+ rϕα

)
ϕ′′α

−
{

N + 1

r2
+

3

2
− (2N + 1)ϕα

}
ϕ′α + r(ϕ′α)2

= 0.

Take

r3 = max

(
r2, sup

{
r ≥ 0 : ϕα(r) ≥ 1

2N + 1

})
If there exists r4 ≥ r3 such that ϕ′′α(r4) < 0, then

ϕ′′α(r) ≤ 1

rN+1
exp

(
r2

4
− r2

2(2N + 1)

)
Gα(r4)ϕ

′′
α(r4) → −∞ as r →∞.
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This contradicts limr→∞ ϕα(r) = 0. Consequently we obtain ϕ′′α(r) ≥ 0 for r � 1,
which completes the proof. �

Lemma 3.6 If α, α̃ ∈ S and α 6= α̃, then z(ϕα −ϕα̃) < ∞ and z(ϕα −ϕ∞) < ∞.

Proof. For α, α̃ ∈ S with α 6= α̃, suppose that z(ϕα − ϕα̃) = ∞ and put
{rn} = {r ∈ (0,∞) : ϕα(r) = ϕα̃(r)}. If {rn} has an accumulating point r∗, we see
ϕα(r∗) = ϕα̃(r∗) and ϕ′α(r∗) = ϕ′α̃(r∗). This implies ϕα ≡ ϕα̃, which contradicts α 6= α̃.
Then we may assume without loss of generality that limn→∞ rn = ∞ and ϕα > ϕα̃ in
(r2n, r2n+1). Put Ψ = ϕα − ϕα̃. The function Ψ satisfies

Ψ′′ +
N + 1

r
Ψ′ −

(
1

2
− κ

)
rΨ′ −Ψ

−κrΨ′ + r(Ψϕα̃)′ + rΨΨ′ + N(ϕα + ϕα̃)Ψ = 0

and

(3.22)
1

g
(gΨ′)′ −Ψ− κrΨ′ + r(Ψϕα̃)′ + rΨΨ′ + N(ϕα + ϕα̃)Ψ = 0,

where g is in (3.18). It follows from (3.19) that

−(λκ
j + 1)

∫ r2n+1

r2n

φκ
j gΨdr =

∫ r2n+1

r2n

(φκ′
j g)′Ψdr

= −
∫ r2n+1

r2n

φκ′
j (gΨ′)dr

>

∫ r2n+1

r2n

φκ
j (gΨ′)′dr for n � 1.

Take j ≥ 1 such that λκ
j > 0. Applying (3.22) to this inequality yields

(2 + λκ
j )

∫ r2n+1

r2n

Ψφκ
j gdr + κ

∫ r2n+1

r2n

Ψ′(rφκ
j g)dr −

∫ r2n+1

r2n

(Ψϕα̃)′(rφκ
j g)dr

−
∫ r2n+1

r2n

ΨΨ′(rφκ
j g)dr −N

∫ r2n+1

r2n

(ϕα + ϕα̃)Ψ(φκ
j g)dr < 0,

from which we get∫ r2n+1

r2n

{
2 + λκ

j −N(ϕα + ϕα̃)
}

Ψφκ
j gdr <

∫ r2n+1

r2n

(
κ− ϕα̃ −

1

2
Ψ

)
Ψ(rφκ

j g)′dr.
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The right-hand side is negative and the left-hand side is positive for n � 1. This
contradiction implies z(ϕα − ϕα̃) < ∞. Similarly to above, we get z(ϕα − ϕ∞) < ∞.
�

Lemma 3.7 Let N ≥ 3. For α ∈ S \ {κ}, Λα ≡ limr→∞ r2ϕα(r) exists in (0,∞).
Moreover we have

lim
r→∞

rϕ′α(r)

ϕα(r)
= −2.

Proof. For simplicity, we write ϕ = ϕα. Putting ρ(r) = exp (−r2/4), we have

−ϕ′(r)rN+1ρ(r) =

∫ ∞

r

τN+1ρ(ϕ− τϕϕ′ −Nϕ2)dτ.

and

−rϕ′(r)

ϕ(r)
=

∫∞
r

τN+1ρ(ϕ− τϕϕ′ −Nϕ2)dτ

ϕ(r)rNρ(r)
.

The l’Hospital’s rule yields

− lim
r→∞

rϕ′(r)

ϕ(r)
= lim

r→∞

−rN+1ρ(r)ϕ(r)(1− rϕ(r)ϕ′(r)−Nϕ(r))

(ϕ(r)rNρ(r))′
(3.23)

= lim
r→∞

−1 + rϕ′(r) + Nϕ(r)(
ϕ′(r)

rϕ(r)
+

N

r2
− 1

2

) .

It follows from Lemma 3.5 and (3.13) that

0 >

(
−ϕ− N + 1

r2
+

1

2

)
rϕ′ > −ϕ(r) for r � 1.

Combining the inequality with Lemma 3.5, we have

lim
r→∞

rϕ′(r) = 0 and lim
r→∞

ϕ′(r)

rϕ(r)
= 0.

Hence it follows from (3.23) that

(3.24) − lim
r→∞

rϕ′(r)

ϕ(r)
= 2.
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Therefore for any positive constant ε there exists R > 0 such that

rϕ′(r)

ϕ(r)
< −2 + ε and ϕ(r) < R2−εr−2+εϕα(R) for r ≥ R.

Take k ∈ (0, 2− ε). The l’Hospital’s rule yields

lim
r→∞

rk

(
rϕ′(r)

ϕ(r)
+ 2

)
= − lim

r→∞

1

d

dr

{
ϕ(r)rN−kρ(r)

} d

dr

{∫ ∞

r

τN+1ρ
(
ϕ− τϕϕ′ −Nϕ2

)
dτ − 2ϕrNρ(r)

}

= lim
r→∞

−rk+1ϕ′ + Nrkϕ + 2Nrk−2 + 2rk−1(ϕ′(r)/ϕ(r))

N − k

r2
+

ϕ′(r)

rϕ(r)
− 1

2

and hence

(3.25) lim
r→∞

rk

(
rϕ′(r)

ϕ(r)
+ 2

)
= 0.

This implies ∣∣∣∣rk

(
rϕ′(r)

ϕ(r)
+ 2

)∣∣∣∣ < 1 for r ≥ R1

and

−2

r
− 1

rk+1
<

ϕ′(r)

ϕ(r)
< −2

r
+

1

rk+1
for r ≥ R1

with some R1 � 1. Therefore there exist K1, K2 > 0 such that

(3.26)
K1

r2
< ϕ(r) <

K2

r2
for r ≥ R1.

Set

(3.27) h(η) = r2ϕ(r) and η = log r.

The equation (3.13) is written as

(3.28) h′′ + (N − 4)h′ − e2η

2
h′ − 2(N − 2)h + hh′ + (N − 2)h2 = 0.
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Suppose that the limit limη→∞ h(η) does not exist. It follows from (3.26) that

K1 ≤ lim inf
η→∞

h(η) < lim sup
η→∞

h(η) ≤ K2.

Therefore there exist {η∗n} and {η∗n} with 0 < η∗n < η∗n < η∗n+1 such that h(η∗n) and
h(η∗n) are a local minimum and a local maximum, respectively. From this and (3.13),
we obtain h(η∗n) < 2 < h(η∗n) for any n and hence z(h − 2) = ∞, i.e., z(ϕ − ϕ∞) =
∞. This is a contradiction by Lemma 3.6, which implies that limη→∞ h(η) exists.
Consequently the conclusion follows from (3.26). �

Lemma 3.8 Let N ≥ 3. For α1, α2 ∈ S with α1 6= α2, we have Λα1 6= Λα2.

Proof. For simplicity, we write Λi = Λαi
and hi = hαi

(i = 1, 2), where Λα is the
constant in Lemma 3.7 and hα is defined by (3.27).

Suppose that Λ1 = Λ2. Put f = h1h
′
2 − h′1h2 and

g(η) = (N − 4)η − 1

4
e2η +

∫ η

0

h1(τ)dτ.

It follows from (3.28) that

d

dη

(
eg(η)f(η)

)
= eg(η)

[
h1

{
h′′2 + (N − 4)h′2 −

1

2
e2ηh′2(η) + h1(η)h′2(η)

}
(3.29)

−h2

{
h′′1 + (N − 4)h′1 −

1

2
e2ηh′1(η) + h1(η)h′1(η)

} ]
= eg(η)h1(η)(h1(η)− h2(η)) {h′2(η) + (N − 2)h2(η)} .

Suppose that Λ1 = Λ2 = 2. Since z(h1 − 2 : R) < ∞, h1 satisfies

(3.30) h1(r) > 2 or h1(r) < 2 for r � 1.

Let us consider the case where h1(r) > 2 for r � 1. For r � 1, h1 does not have a
local minimum and hence h′1 < 0. Combining this with (3.30) yields

d

dη

(
eg(η) d

dη
h1

)
< 0 for r � 1,

which implies limη→∞h′1(η) = −∞. This contradicts Lemma 3.7. We reach a contra-
diction in the latter case in (3.30). Consequently we obtain Λ1 = Λ2 6= 2.
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Suppose that Λ1 = Λ2 > 2. Since z(h1 − h2 : R) < ∞, there exists η0 ∈ R such
that h1(η) > h2(η) for η ≥ η0 or h1(η) < h2(η) for η ≥ η0. Suppose that h1 > h2 in
(η0,∞).

Since limη→∞ h′2(η) = 0 by Lemma 3.7, we have

d

dη

(
eg(η)f(η)

)
> 0 for η ≥ η1

with some η1 ≥ η0. Therefore there exists η2 ≥ η1 such that

eg(η)f(η) < 0 for η ≥ η2

since limη→∞ eg(η)f(η) = 0. This implies that(
h2

h1

)′

=
h′2h1 − h2h

′
1

h2
1

=
f

h2
1

< 0 in [η2,∞).

Thus we get
Λ2

Λ1

= lim
η→∞

h2(η)

h1(η)
≤ h2(η2)

h1(η2)
< 1,

which contradicts Λ2/Λ1 = 1.
If h1(η) < h2(η) for η � 1, we define

(3.31) f = h2h
′
1 − h′2h1 and g = (N − 4)η − 1

4
e2η +

∫ η

0

h2(τ)dτ.

Similarly to above, we obtain the same conclusion. Suppose that Λ1 = Λ2 < 2.
As mentioned in the case where Λ1 = Λ2 > 2, we can assume that h1(η) < h2(η) for
η ≥ η3 with some η3. It follows from (3.29) that

d

dη

(
eg(η)f(η)

)
< 0 for η ≥ η3.

with some η3 > 0. Since limη→∞ eg(η)f(η) = 0, we get

eg(η)f(η) > 0 for η ≥ η4

with some η4 ≥ η3, that is, (h2(η)/h1(η))′ > 0 for η ≥ η4. Therefore we obtain

Λ2

Λ1

= lim
η→∞

h2(η)

h1(η)
≥ h2(η4)

h1(η4)
> 1.

In the case where Λ1 = Λ2 < 2 and h1(η) > h2(η) for η � 1, we can treat similarly.
This completes the proof. �

Proposition 3.1 is now immediate from Lemmas 3.7, 3.8.
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4 Proofs of the main theorems

This section is devoted to the proof of Theorem 1.1. Throughout this section, let
(U, V ) be a radial solution of (1.1) which undergoes type I blowup at t = T with
B(U, V ) = {0}. For the corresponding solution w of (1.6), let ω(w0) be the omega-
limit set of w, i.e.,

ω(w0) = {W : w(sn) → W in L∞loc as n →∞
for a sequence {sn} with sn →∞ as n →∞}.

Since |w(s)|∞ is bounded in [s0,∞), we have that ω(w0) is nonempty by the parabolic
regularity argument.

Lemma 4.1 Suppose that w1, w2 ∈ ω(w0) and w1(0) < w2(0). If α ∈ I ≡
(w1(0), w2(0)), then α ∈ S.

Proof. On the contrary, assume that there exists α ∈ I such that α 6∈ S. Since
r(α) < ∞, we have

z(w(s)− ϕα : [0, r(α))) ≤ k for any s > s0

with some positive integer k. It is known that z(w(s)−ϕα : [0, r(α))) is nonincreasing
in s and that

z(w(s)− ϕα : [0, r(α))) < z(w(s̃)− ϕα : [0, r(α))) for s > s1 > s̃

if w(r1, s1)−ϕα(r1) = wr(r1, s1)− (ϕα)r(r1) = 0 at some r1 ∈ [0, r(α)) and s1 > s0. On
the other hand, w(0, s)−ϕα(0) changes sign infinitely many times. This contradiction
completes the proof. �

Let B(u) be the blowup set of u. It is immediate that u(ξ, T ) ≡ limt→T u(ξ, t) exists
for ξ 6∈ B(u).

Lemma 4.2 Suppose that w1, w2 ∈ ω(w0) and w1(0) < w2(0). For α ∈ I ≡
(w1(0), w2(0)), let

uα(ξ, t) = (T − t)−1ϕα((T − t)−1/2ξ) for (ξ, t) ∈ [0,∞)× [0, T ).

Then for any α ∈ I we have

u(ξ, T ) = uα(ξ, T ) =
Λα

ξ2
for ξ > 0,

where Λα is the limit in Proposition 3.1.
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Proof. On the contrary, assume that there exist α ∈ I and ξα > 0 such that
u(ξα, T ) 6= uα(ξα, T ). Then we have

u(ξα, t) 6= uα(ξα, t) for t ∈ [tα, T )

with some tα ∈ (0, T ), and hence z(u(t)− uα(t) : [0, ξα)) ≤ k for t ∈ [tα, T ) with some
positive integer k. This contradicts that u(0, t)− uα(0, t) changes sign infinitely many
times. Therefore u(ξ, T ) = uα(ξ, T ) in (0,∞) for any α ∈ I, which completes the proof.
�

The following is immediate from Proposition 3.1 and Lemma 4.2.

Lemma 4.3 If w1, w2 ∈ ω(w0), then w1(0) = w2(0).

Proposition 3.1 gives an essential property for ϕα for α ∈ S, which would be also
useful for other purposes. We give another proof of Lemma 4.3 without Proposition
3.1. We need the following given in [3].

Proposition 4.1 For positive constants R, T , let QR,T = (RN\BR)× [0, T ], where
BR = {x ∈ RN : |x| ≤ R}. Assume that u satisfies

|∆u + ut| ≤ M(|u|+ |∇u|) in QR,T

and
|u(x, t)| ≤ M exp(M |x|2) in QR,T

for some constant M > 0. If u(x, 0) = 0 for any x ∈ RN\BR, then u vanishes
identically in QR,T .

Another proof of Lemma 4.3 The conclusion is trivial if the solution u under
consideration is a backward self-similar solution. Therefore we may suppose without
loss of generality that u is not a backward self-similar solution. Assume that there
exist w1, w2 ∈ ω(w0) such that w1(0) 6= w2(0). Then we get a contradiction by Lemma
4.2 and Proposition 4.1, �

According to Lemma 4.3, there exists K ∈ R such that

(4.32) w(0, s) → K as s →∞.
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Lemma 4.4 For each positive integer k, we have

∂kw

∂sk
(0, s) → 0 as s →∞.

Proof. On the contrary, we assume that there exist k, {sn} ⊂ [s0,∞) and δ > 0
such that limn→∞ sn = ∞ and |∂kw/∂sk(0, sn)| > δ for n. We assume without loss of
generality that lims→∞ ∂iw/∂si(0, s) = 0 for i = 1, 2, 3, · · · , k − 1 if k ≥ 2 and that
∂kw/∂sk(0, sn) > δ for n. By the parabolic regularity argument, there exist C1 > 0
and S1 > s0 such that ∣∣∣∣∂k+1w

∂sk+1
(0, s)

∣∣∣∣ ≤ C1 for s ≥ S1.

Let Kk = K with the constant K in (4.32) if k = 1 and let Kk = 0 if k ≥ 2. For
ε ∈ (0, δ2/(8C1)) there exists S2 ≥ S1 such that

(4.33)

∣∣∣∣∂k−1w

∂sk−1
(0, s)−Kk

∣∣∣∣ < ε for s ≥ S2.

Putting s̃n = sn + δ/C1, we see

∂k−1w

∂sk−1
(0, s̃n) =

∂k−1w

∂sk−1
(0, sn) +

∂kw

∂sk
(0, sn)(s̃n − sn) +

1

2

∂k+1w

∂sk+1
(0, τn)(s̃n − sn)2

≥ Kk − ε + δ(s̃n − sn)− C1

2
(s̃n − sn)2

≥ Kk +
3δ2

8C1

> Kk + 3ε

for some τn ∈ (sn, s̃n). This contradicts (4.33), which completes the proof. �

Lemma 4.5 For any nonnegative integers i, j, we have

∂i+j+1

∂rj∂si+1
w(0, s) → 0 as s →∞.

Proof. For X ∈ RN+2 with |X| = r, put w̃(X, s) = w(r, s). The function w̃ is a
solution to

(4.34) w̃s = ∆Xw̃ − X

2
· ∇Xw̃ − w̃ + f̃(X, w̃) in RN+2 × (s0,∞),
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where

∆X =
N+2∑
i=1

∂2

∂X2
i

, ∇X =

(
∂

∂X1

,
∂

∂X2

, · · · ,
∂

∂XN+2

)
and

f̃(X, w̃) = w̃ (X · ∇Xw̃ + Nw̃)

for X = (X1, X2, · · · , XN+2) ∈ RN+2. Since w̃ is radial and smooth, w satisfies

(4.35)
∂j

∂rj

(
∂i

∂si
w(0, s)

)
= 0 for s ∈ (s0,∞), j = 1, 3, 5, · · · and i = 0, 1, 2, · · · .

Differentiating (4.34) with respect to s yields

(4.36)
∂i+1

∂si+1
w̃ = ∆X

∂i

∂si
w̃ − X

2
· ∇X

∂i

∂si
w̃ − ∂i

∂si
w̃ +

∂i

∂si
f̃(X, w̃) for i ≥ 1.

According to Lemma 4.4, it follows from (4.35) and (4.36) that

lim
s→∞

∆X
∂i

∂si
w̃(0, s) = 0 for i ≥ 1.

Let J be a positive integer. We assume that

(4.37) lim
s→∞

∆j
X

∂i

∂si
w̃(0, s) = 0 for j = 0, 1, 2, 3, · · · , J and i ≥ 1.

Operating ∆J
X for (4.36) yields

∆J
X

∂i+1

∂si+1
w̃ = ∆J+1

X

∂i

∂si
w̃ −∆J

X

(
X

2
· ∇X

∂i

∂si
w̃

)
−∆J

X

(
∂i

∂si
w̃

)
+ ∆J

X

(
∂i

∂si
f̃(X, w̃)

)
.(4.38)

For j = 0, 1, 2, 3, · · · , J and i ≥ 1, it follows from (4.37) that

lim
s→∞

∆j
X

(
X

2
· ∇X

∂i

∂si
w̃(0, s)

)
= lim

s→∞

1

2
(N + 2)j

2jC1
∂2j

∂r2j

(
∂i

∂si
w(0, s)

)
= lim

s→∞
j∆j

X

∂iw̃

∂si
(0, s)

= 0.
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Combining this with (4.36) and (4.35) yields

lim
s→∞

∆J
X

(
∂i

∂si
f̃(0, w̃(0, s))

)
= lim

s→∞
∆J

X

(
X

2
· ∇X

∂iw̃2

∂si
(0, s)

)
+ lim

s→∞

1

2
∆J

X

(
∂iw̃2

∂si
(0, s)

)
= 0

for i ≥ 1. Those imply lims→∞ ∆J+1
X

∂iw̃
∂si (0, s) = 0 for i ≥ 1, which completes the proof.

�

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let

V = {V : ws(sn) → V in L∞loc as n →∞
for a sequence {sn} with sn →∞ as n →∞}.

Take V ∈ V arbitrarily. By the parabolic regularity argument, for each nonnegative
integer i there exists a sequence {sn} with sn →∞ as n →∞ such that

(4.39) ws(sn) → V in Cj
loc as n →∞.

Therefore we have

(4.40)
dj

drj
V (0) = 0 for j = 1, 2, 3, · · ·

from Lemma 4.5. By the Taylor expansion, we get

ws(r, s) = ws(0, s) +
∂

∂r
ws(0, s) · r +

1

2

∂2

∂r2
ws(0, s) · r2

+ · · ·+ 1

(k − 1)!

∂k−1

∂rk−1
ws(0, s) · rk−1 +

1

k!

∂k

∂rk
ws(rθ, s) · rk(4.41)

with some θ ∈ (0, 1) for r > 0 and s > s0. According to Proposition 2.1, there exist
S > s0 and R > 0 such that

(4.42) sup

{
1

k!

∣∣∣∣ ∂k

∂rk
ws(r, s)

∣∣∣∣ · rk : r ∈ (0, R) and s ≥ S

}
→ 0 as k →∞.
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Therefore it follows from (4.39) and (4.41) that

V (r) = V (0) +
d

dr
V (0) · r +

1

2

d2

dr2
V (0) · r2

+ · · ·+ 1

(k − 1)!

dk−1

drk−1
V (0) · rk−1 +

1

k!

dk

drk
V (rθ) · rk(4.43)

for r > 0. Since
1

k!

dk

drk
V (rθ) · rk → 0 as k →∞

by (4.42), we see that V is analytic at r = 0. Thus it follows from (4.40) and (4.43)
that V (r) = 0 for r ≥ 0. Since for each W ∈ ω(w0) there exists a sequence {sn} with
sn →∞ as n →∞ such that w(sn) → W and ws(sn) → 0 in C2

loc as n →∞, we get

Wrr +
N + 1

r
Wr −

r

2
Wr −W + W (rWr + NW ) = 0 in (0,∞).

Since W (0) is constant for W ∈ ω(w0) by Lemma 4.3, we obtain ω(w0) = {ϕα} for
some α ∈ S. This means that w(s) → ϕα in L∞loc as s →∞.

Let u be defined in (1.4). Under an additional assumption (1.8), we see

u(0, t) = |u(t)|∞ ≥ 1

N
(T − t)−1 in [0, T )

by the comparison theorem, and hence w(0, s) ≥ 1/N for s ≥ s0. This implies that
α ∈ S. �
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