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SOME SIEGEL MODULAR STANDARD L-VALUES, AND
SHAFAREVICH-TATE GROUPS

NEIL DUMMIGAN, TOMOYOSHI IBUKIYAMA, AND HIDENORI KATSURADA

Abstract. We explain how the Bloch-Kato conjecture leads us to the follow-
ing conclusion: a large prime dividing a critical value of the L-function of a

classical Hecke eigenform f of level 1, should often also divide certain ratios of
critical values for the standard L-function of a related genus two (and in general
vector-valued) Hecke eigenform F. The relation between f and F (Harder’s con-

jecture in the vector-valued case) is a congruence involving Hecke eigenvalues,
modulo the large prime. In the scalar-valued case we prove the divisibility,
subject to weak conditions. In two instances in the vector-valued case, we
confirm the divisibility using elaborate computations involving special differ-

ential operators. These computations do not depend for their validity on any
unproved conjecture.

1. Introduction

The Bloch-Kato conjecture [BK, Fo2] gives a conjectural formula for the leading
term (up to units) of any motivic L-function at any integer point. When combined
with other conjectures on orders of vanishing, it may be viewed as a great general-
isation of Dirichlet’s class number formula (about the Dedekind zeta function of a
number field at s = 0) and the Birch and Swinnerton-Dyer conjecture (about the
L-function of an elliptic curve at s = 1). In this paper, we shall be concerned only
with critical values, the subject of [De]. For such values, Deligne’s conjecture gives
an interpretation of the L-value as an algebraic multiple of a certain period (which
is in fact only defined up to an algebraic multiple). The Bloch-Kato conjecture is
an integral refinement, giving a conjectural factorisation of the ratio of the L-value
to the period, once choices have been made to fix the period.

The L-function L(f, s) of a cuspidal Hecke eigenform f = q +
∑

1

n=2 an(f)qn

of weight k ′ for SL2(Z), is an example of an L-function to which the Bloch-Kato
conjecture should apply, the critical values being at s = 1, . . . , k ′ − 1. Choosing
canonical periods to divide by, one obtains normalised L-values Lalg(f, t) for integers
1 ≤ t ≤ k ′−1. According to the Bloch-Kato conjecture, a sufficiently large prime λ

dividing Lalg(f, t) should be the order of an element in some generalised Shafarevich-
Tate group. This element will live in a group defined using the Galois cohomology
of the tth Tate twist of the λ-adic representation ρf,λ of Gal(Q/Q), attached to f.

In the case that k ′ = 2k − 2 with k even, and t = k (or equivalently t =
k ′ − 1 − k = k − 2), Brown [Br] has shown how to construct such an element using
Siegel modular forms of genus 2 and weight k for Sp(2, Z). There is such a form f̂,
the Saito-Kurokawa lift of f. Its spinor L-function is L(f, s)ζ(s−(k−1))ζ(s−(k−2)),
while its standard zeta function is ζ(s)L(f, s + k − 1)L(f, s + k − 2). It is a cuspidal
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Hecke eigenform, and the Hecke eigenvalue for T(p) is given by λf̂(p) = ap(f) +

pk−1 + pk−2. Under certain conditions, it is possible to show [Br, Ka1] that there
exists another cuspidal Hecke eigenform F of genus 2 and weight k for Sp(2, Z),
but which is not a Saito-Kurokawa lift, such that the Hecke eigenvalues of F and
f̂ are congruent modulo λ. To this F may be attached a 4-dimensional λ-adic
Galois representation ρF,λ, by a theorem of Weissauer [We1]. Interpreting Hecke
eigenvalues as eigenvalues of Frobenius, it follows from the congruence that if we
reduce modulo λ then the composition factors of the reduced representation ρF,λ

are ρf,λ (if we ensure it is irreducible) together with the twists Fλ(1 − k) and
Fλ(2 − k) of the trivial representation. The required Galois cohomology class may
be constructed using a non-trivial extension of Fλ(2 − k) by ρf,λ inside ρF,λ. This
generalises Ribet’s construction of elements in class groups of cyclotomic fields [R],
which uses the Galois interpretation of congruences between classical Eisenstein
series and cusp forms.

In this paper we exploit Brown’s construction, together with an injection of
ρf,λ(2−k) (i.e. ρf,λ∧Fλ(2−k)) into ∧2ρF,λ, to construct a non-zero element of order
λ in a Selmer group defined in terms of the Galois cohomology of an appropriate
twist of ∧2ρF,λ. Although the standard L-function of F is not actually known to
arise from a premotivic structure, it ought to, so assuming that it does we can see
what consequence our construction should have, given that the L-function attached
to the Galois representation ∧2ρF,λ is ζ(s − (j + 2k − 3))L(F, s − (j + 2k − 3), St).
The prediction we arrive at (the case j = 0 of Conjecture 5.3) is that (under certain
conditions) the ratio of L(F, 2, St) to (a power of π times) any other critical value,
has a factor of λ in the numerator. (The trick of looking at a ratio of critical values
has the effect of making unknown Deligne periods in the Bloch-Kato conjecture
cancel out.) If we replace F by f̂, the factor of λ arises because L(f, k) is a factor of
L(f̂, 2,St) (using L(f̂, s, St) = ζ(s)L(f, s + k − 1)L(f, s + k − 2)). In §6, we show how
this divisibility can be somehow transmitted across the congruence between f̂ and
F.

Brown’s construction can be applied to other critical values L(f, t) (not just
t = k) if one accepts a conjecture of Harder [Ha, vdG]. In general, we write the
weight of f as k ′ = j + 2k − 2, and look at large λ dividing Lalg(f, j + k). So far
we have only considered the case j = 0. This time we must look at Siegel modular
forms for Sp(2, Z), of type detk ⊗Symj(C2), which are vector valued when j > 0.
Once j > 0 there is no Saito-Kurokawa lift, but Harder’s conjecture cuts out this
intermediary, and asserts nonetheless the existence of a cuspidal eigenform F such
that, for all primes p,

λF(p) ≡ ap(f) + pj+k−1 + pk−2 (mod λ).

Using ρF,λ as before, we are led to Conjecture 5.3, on the ratio of L(F, j + 2,St) to
other critical values. In particular, in the case k = 10, j = 4, for which the space of
cusp forms is 1-dimensional, we predict that ord41

(
π6 L(F,6,St)

L(F,8,St)

)
> 0.

In the case that k ′/2 is odd, L(f, k ′/2) vanishes, and if f is ordinary at λ then
using either a theorem of Skinner and Urban [SU] or a theorem of Nekovář [N],
we get an element of order λ in a Selmer group associated to ρf,λ(k ′/2), which as
before may be moved, using the supposed congruence, to a Selmer group for a twist
of ∧2ρF,λ. We are then led to a conjecture (5.4) on the ratio of L(F, (j/2)+ 1,St) to
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other critical values. In particular, in the case k = 11, j = 10, for which the space
of cusp forms is again 1-dimensional, we predict that ord97

(
π6 L(F,6,St)

L(F,8,St)

)
> 0.

In these cases where j > 0, there is no Saito-Kurokawa lift with which to prove
our predictions (assuming Harder’s conjecture), but we may, without the need to
assume any conjecture, seek to confirm our predictions numerically by calculating
the standard L-values in question. Kozima [Koz] gave a formula for the pullback,
to H2 ×H2, of a genus 4 Siegel-Eisenstein series, to which a certain composition of
differential operators (due to Böcherer) had been applied to produce a vector-valued
form. Choosing the operators appropriately, a desired critical value of the standard
L-function of F appears in the coefficient of F ⊗ F on the right hand side. The case
of the rightmost critical value was already in [BSY]. In principle, using knowledge
of the Fourier coefficients of the Siegel-Eisenstein series [Ka2], one could hope to
use this pullback formula to calculate the critical values we require. However,
the differential operators are not easy to work with, so we replace them by certain
differential operators introduced in [I1], which are known to be necessarily the same
up to a multiplicative constant (which may be determined by applying both to a
test function). Computing these operators is possible (just) in the cases at hand,
and involves finding certain invariant pluriharmonic polynomials, one of which takes
two pages just to write down.

Section 2 introduces the Bloch-Kato conjecture in the case of critical values of
L(f, s). In Section 3 we state Katsurada’s version of the theorem on congruences
of Hecke eigenvalues between Saito-Kurokawa lifts and non-lifts, and also Harder’s
conjecture on the analogous congruence in the vector-valued case. Section 4 gives
a summary of Brown’s construction of elements in Selmer groups. In Section 5 we
exploit this as outlined above to make our conjectures about ratios of standard L-
values. Section 6 contains the proof of the scalar valued case, while Sections 7 and
8 report on the two big computations confirming our specific predictions involving
` = 41 and ` = 97.

1.1. Definitions and notation. Let Hr be the Siegel upper half plane of r by
r complex symmetric matrices with positive-definite imaginary part. Let Γr :=

Sp(r, Z) = Sp2r(Z) = {M ∈ GL2r(Z) : tMJM = J}, where J =

(
0r Ir

−Ir 0r

)
. For

M =

[
A B

C D

]
∈ Γr and Z ∈ Hr, let M(Z) := (AZ + B)(CZ + D)−1 and J(M,Z) :=

CZ + D. Let V be the space of a finite-dimensional representation ρ of GL(r, C).
A holomorphic function f : Hr → V is said to belong to the space Mρ = Mρ(Γr) of
Siegel modular forms of genus r and weight ρ if

f(M(Z)) = ρ(J(M,Z))f(Z) ∀M ∈ Γr, Z ∈ Hr.

Such an f has a Fourier expansion

f(Z) =
∑
S≥0

a(S)e(Tr(SZ)) =
∑
S≥0

a(S, f)e(Tr(SZ)),

where the sum is over all positive semi-definite half-integral matrices, and e(z) :=
e2πiz.

The Siegel operator Φ on Mρ(Γr) is defined by

Φf(z) = lim
t!1

f

([
z 0

0 it

])
for z ∈ Hr−1, t ∈ R.



4 NEIL DUMMIGAN, TOMOYOSHI IBUKIYAMA, AND HIDENORI KATSURADA

The kernel of Φ, denoted Sρ, is the space of Siegel cusp forms of genus r and
weight ρ. When ρ is of the special form detk ⊗Symj(Cr) (where Cr is the standard
representation of GLr(C)), we put Mk,j and Sk,j for Mρ and Sρ, and we let Mk :=
Mk,0, Sk := Sk,0. For Sk,j, the Petersson inner product and Hecke operators will
be as in §2 of [Koz] and §2 of [Ar], respectively. For a Hecke eigenform F, the
spinor and standard L-functions L(F, s, spin) and L(F, s, St) may be defined in terms
of Satake parameters as in §20 of [vdG].

2. The Bloch Kato conjecture for critical values of modular
L-functions

Let f =
∑

1

n=1 an(f)qn ∈ Sk ′(Γ1) be a normalised Hecke eigenform. Attached
to f is its L-function L(f, s), defined by the Dirichlet series

∑
1

n=1 an(f)n−s for
<(s) > k ′+1

2
, but having an analytic continuation to the whole complex plane.

Also attached to f is a “premotivic structure” Mf over Q with coefficients in K,
any number field (considered as a subfield of C) containing Q(f), the extension of
Q generated by the an(f). Thus there are 2-dimensional K-vector spaces Mf,B and
Mf,dR (the Betti and de Rham realisations) and, for each finite prime λ of OK, a 2-
dimensional Kλ-vector space Mf,λ, the λ-adic realisation. These come with various
structures and comparison isomorphisms, such as Mf,B ⊗K Kλ ' Mf,λ. See 1.1.1
of [DFG] for the precise definition of a premotivic structure, and 1.6.2 of [DFG]
for the construction of Mf. The λ-adic realisation Mf,λ comes with a continuous
linear action of Gal(Q/Q). Let ρf,λ be this representation. For each prime number
p, the restriction to Gal(Qp/Qp) may be used to define a local L-factor (which is in
fact known to be independent of λ in this case), and the Euler product is precisely
Lf(s). In particular, ρf,λ is unramified at all primes p 6= `, with

Tr(ρf,λ(Frob−1
p )) = ap, det(ρf,λ(Frob−1

p )) = pk
′
−1,

where Frobp ∈ Gal(Qp/Qp) lifts the p-power map of Gal(Fp/Fp). As the L-function
attached to a premotivic structure, its orders of vanishing and leading terms at
integer points may be interpreted via the Bloch-Kato conjecture.

On Mf,B there is an action of Gal(C/R), and the eigenspaces M±
f,B are 1-

dimensional. On Mf,dR there is a decreasing filtration, with Ft a 1-dimensional
space precisely for 1 ≤ t ≤ k ′ − 1. The de Rham isomorphism Mf,B ⊗K C '
Mf,dR ⊗K C induces isomorphisms between M±

f,B ⊗ C and (Mf,dR/F) ⊗ C, where
F := F1 = . . . = Fk ′−1. Define Ω± to be the determinants of these isomor-
phisms. These depend on the choices of K-bases for M±

f,B and Mf,dR/F, so should
be viewed as elements of C×/K×. The Tate-twisted premotivic structures Mf(t),
for 1 ≤ t ≤ k ′ − 1, are critical (because the above maps are isomorphisms), and
the Deligne period (“c+”, see [De]) of Mf(t) is (2πi)tΩ(−1)t

. Deligne’s conjecture
for Mf(t), known in this case, asserts then that L(f, t)/(2πi)tΩ(−1)t

is an element
of K.

If we choose K-bases for Mf,B and Mf,dR, to pin down Ω±, then the Bloch-Kato
conjecture predicts the prime factorisation of the element L(f, t)/(2πi)tΩ(−1)t

of
K. In fact, we shall choose an OK-submodule Mf,B, generating Mf,B over K, but
not necessarily free, and likewise an OK[1/S]-submodule Mf,dR, generating Mf,dR

over K, where S is the set of primes dividing k ′!. We take these as in 1.6.2 of [DFG].
They are part of the “S-integral premotivic structure” associated to f. With these
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choices it is still natural to talk of an element “L(f, t)/(2πi)tΩ(−1)t

” of the group
of fractional ideals of OK[1/S], and the Bloch-Kato conjecture predicts its prime
factorisation.

In order to define the various terms appearing in the conjecture, we shall need,
for each prime λ of OK, the element Mf,λ of the S-integral premotivic structure
(which includes also the crystalline realisations Mf,λ-crys for each λ /∈ S). We choose
these as in 1.6.2 of [DFG]. For each λ, Mf,λ is a Gal(Q/Q)-stable Oλ-lattice in
Mf,λ. Let Aλ := Mf,λ/Mf,λ, and let A[λ] be the λ-torsion subgroup of Aλ. Let
Ǎλ := M̌f,λ/M̌f,λ, where M̌f,λ and M̌f,λ are the vector space and Oλ-lattice dual to
Mf,λ and Mf,λ respectively, with the natural Gal(Q/Q)-actions. Let A := ⊕λAλ,
etc. Let ρf,λ denote the representation on Gal(Q/Q) on A[λ].

Following [BK] (Section 3), for p 6= ` (including p = ∞, where λ | `) let

H1
f(Qp,Mf,λ(t)) = ker

(
H1(Dp,Mf,λ(t)) → H1(Ip,Mf,λ(t))

)
.

Here Dp is a decomposition subgroup at a prime above p, Ip is the inertia subgroup,
and Mf,λ(t) is a Tate twist of Mf,λ, etc. The cohomology is for continuous cocycles
and coboundaries. For p = ` let

H1
f(Q`, Mf,λ(t)) = ker

(
H1(D`,Mf,λ(t)) → H1(D`,Mf,λ(t) ⊗Q`

Bcrys)
)
.

(See §1 of [BK] or §2 of [Fo1] for the definition of Fontaine’s ring Bcrys.) Let
H1

f(Q,Mf,λ(t)) be the subspace of those elements of H1(Q,Mf,λ(t)) that, for all
primes p, have local restriction lying in H1

f(Qp,Mf,λ(t)). There is a natural exact
sequence

0 −−−−→ Mf,λ(t) −−−−→ Mf,λ(t)
π−−−−→ Aλ(t) −−−−→ 0.

Let H1
f(Qp, Aλ(t)) = π∗H

1
f(Qp, Mf,λ(t)). Define the λ-Selmer group H1

f(Q, Aλ(t))

to be the subgroup of elements of H1(Q, Aλ(t)) whose local restrictions lie in
H1

f(Qp, Aλ(t)) for all primes p. Note that the condition at p = ∞ is superflu-
ous unless ` = 2. Define the Shafarevich-Tate group

X̃(t) =
⊕

λ

H1
f(Q, Aλ(t))

π∗H
1
f(Q,Mf,λ(t))

.

Conjecture 2.1 (Case of Bloch-Kato). Suppose that 1 ≤ t ≤ k ′−1. Then we have
the following equality of fractional ideals of OK[1/S]:

L(f, t)

(2πi)tΩ(−1)t =

∏
p≤1

c̃p(t) #X̃(t)

#H0(Q, A(t))#H0(Q, Ǎ(1 − t))
.

We omit the definition of the Tamagawa factors c̃p(t), but note that c̃
1

(t) is at
worst a power of 2, that for λ | ` with ` 6= p the λ-part of c̃p(t) is trivial (a simple
consequence of Mf,λ being unramified at all p 6= `) and that even the λ-part of
c̃`(t) is trivial as long as ` > k ′ (a consequence of Theorem 4.1(iii) of [BK]). See
§2.4 of [DFG], or §11 of [Fo2], for precise definitions.

If the λ-part of H0(Q, A(t)) is non-trivial, then A[λ] has a Gal(Q/Q)-submodule
isomorphic to Fλ(−t), with quotient isomorphic to Fλ(1 − k ′ + t) (so that the
determinant is Fλ(1 − k ′)). Evaluating at Frob−1

p , and taking the trace, we find

that ap(f) ≡ pt +pk
′
−1−t (mod λ), for all p 6= `. A straightforward generalisation

of Lemma 8 of [SD] shows that this is only possible if ` < k ′ or if ord`(Bk ′) > 0
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(in which case t = k ′ − 1). Noting also that Ǎ(1 − t) ' A(k ′ − t), we have the
following.

Lemma 2.2. For some 1 ≤ t ≤ k ′ − 1, suppose that ordλ

(
L(f,t)

(2πi)tΩ(−1)t

)
> 0,

with λ | ` and ` > k ′. If t = 1 or k ′ − 1, suppose also that ord`(Bk ′) = 0. The
Bloch-Kato conjecture predicts that the λ-part of X̃(t) is non-trivial, hence also
that H1

f(Q, Aλ(t)) is non-trivial.

3. Congruences between Saito-Kurokawa lifts and non-lifts, and
Harder’s conjecture

Let f ∈ Sk ′(Γ1) be as above. For 1 ≤ t ≤ k ′ − 1, define Lalg(f, t) :=
L(f,t)

(2πi)tΩ(−1)t .
If t > k ′/2, we choose j, k ≥ 0 such that t = j + k and k ′ = j + 2k − 2. In other
words, k = k ′ + 2 − t, j = 2t − 2 − k ′. Note that t = k ′ − (k − 2) is paired with
k − 2 by the functional equation relating Lf(s) and Lf(k

′ − s).
First we consider the case t = (k ′/2)+1, the critical point immediately right-of-

centre. In this case, t = k, k ′ = 2k − 2 and j = 0. We suppose that k is even. For
any quadratic character χD associated to a fundamental discriminant D < 0, define
Lalg(f, k − 1, χD) :=

L(f,k−1,χD)
(2πi)k−1τ(χD)Ω+ , where L(f, s, χD) =

∑
1

n=1 χD(n)an(f)n−s

and τ(χD) is a Gauss sum. Associated with f is a Hecke eigenform f̂ ∈ Sk(Γ2), its
Saito-Kurokawa lift. This is only defined up to scaling. It is related to f by its
standard L-function

L(f̂, s, St) = ζ(s)L(f, s + k − 1)L(f, s + k − 2)

and its spinor L-function

L(f̂, s, spin) = ζ(s − (k − 1))ζ(s − (k − 2))L(f, s).

Related to the latter is the following, for any prime p:

µf̂(p) = pk−1 + pk−2 + ap(f),

where T(p)f̂ = µf̂(p) f̂. Let Q(f) be the field generated by the Hecke eigenvalues
of f. Likewise, for any Hecke eigenform F ∈ Sk(Γ2), let Q(F) be the field generated
by the Hecke eigenvalues of F. The following is (a consequence of) Theorem 6.1 of
[Ka1]. Theorem 6.5 of [Br] is also closely related. It is essentially part of what is
proved in §6 below.

Theorem 3.1. Let f =
∑

1

n=1 an(f)qn ∈ Sk ′(Γ1) be a normalised Hecke eigenform,
with k ′ = 2k − 2 and k even. Let λ ′ | `, with ` > 2k, be a prime of Q(f), such that
ordλ ′Lalg(f, k) > 0. Suppose that

(1) λ ′ is not a congruence prime for f in Sk ′(Γ1), i.e. there does not exist an-
other normalised Hecke eigenform g ∈ Sk ′(Γ1), and a prime λ of Q(f)Q(g),
dividing λ ′, such that an(f) ≡ an(g) (mod λ) for all n ≥ 1.

(2) There exists a fundamental discriminant D < 0 such that ordλ ′(|D|k−1Lalg(f, k−
1, χD)) = 0.

(3) There exists even m such that 2 < m < k − 2 and

ordλ ′(Lalg(m + k − 2)Lalg(m + k − 1)ζ(1 − m)) = 0.
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Then there exists a Hecke eigenform F ∈ Sk(Γ2), not a Saito-Kurokawa lift from
Sk ′ , and a prime λ | λ ′ in (any field containing) Q(f)Q(F), such that for all primes
p,

µF(p) ≡ µf̂(p) (mod λ) and µF(p2) ≡ µf̂(p
2) (mod λ).

In particular, for all primes p,

µF(p) ≡ pk−2 + pk−1 + ap(f) (mod λ).

The conditions (1)–(3) are very weak.
In the case j > 0 there is no Saito-Kurokawa lift with which to prove such a

theorem. The following, due to Harder, is Conjecture 3 in §26 of [vdG]. Special
cases are discussed in [Ha].

Conjecture 3.2. Let f =
∑

an(f)qn ∈ Sk ′(Γ1) be a normalised eigenform, and
suppose that a “large” prime λ ′ of Q(f) divides Lalg(f, t), with (k ′/2) < t ≤ k ′ − 1.
As above, let k = k ′ + 2 − t, j = 2t − 2 − k ′. In the case j > 0, there exists an
eigenform F ∈ Sk,j(Γ2), and a prime λ | λ ′ in (any field containing) Q(f)Q(F) such
that, for all primes p,

µF(p) ≡ pk−2 + pj+k−1 + ap(f) (mod λ).

Numerical evidence obtained by Faber and van der Geer [vdG] supports the
conjecture in the following cases (where the subscript on f is the weight k ′):

41 | Lalg(f22, 14), 43 | Lalg(f26, 23), 97 | Lalg(f26, 21), 29 | Lalg(f26, 19),

(and in some other cases with k ′ ≤ 38). The corresponding spaces S10,4(Γ2),
S5,18(Γ2), S7,14(Γ2) and S9,10(Γ2) are all 1-dimensional.

Note that if one tries to allow j = 0 in this conjecture (the case to which Theorem
3.1 applies), one must exclude the case that k is odd. For example, when k ′ = 48

(so k = 25), ordλ ′Lalg(f, k) > 0, for λ ′ | ` = 7025111 (obtained from [St]), but
Sk = {0} for odd k < 35. We also note that a variant of Harder’s conjecture for
Siegel modular forms of half-integral weight is proposed in [I2], directly connected
to the integral weight case through a conjectural Shimura type correspondence.

4. Brown’s construction of elements in Selmer groups

To a Hecke eigenform F ∈ Sk,j(Γ2) may be associated a cuspidal automorphic
form ΦF ∈ L2

0(Z(AQ)GSp4(Q)\GSp4(AQ)). This adelic interpretation is described
in detail in §3 of [AS] (§3.1 for the scalar-valued case, §3.5 for the vector-valued
case). Let ΠF be any irreducible constituent of the unitary representation of
GSp4(AQ) generated by right translates of ΦF, as in 3.4 of [AS]. They are all
isomorphic, in fact this unitary representation is expected to be irreducible already.
To such a ΠF we shall shortly apply (with our special choice of λ) the following
theorem, which is part of Theorem I of [We1].

Theorem 4.1 (Weissauer). Suppose that Π is a unitary, irreducible, automorphic
representation of GSp4(AQ) for which Π

1

belongs to the discrete series of weight
(k1, k2). Let S denote the set of ramified places of the representation Π. Put
w = k1 + k2 − 3. Then there exists a number field E such that

(1) for any prime p /∈ S, if Lp(p−s) = Lp(Πp, s − w/2) is the local factor in
the spinor L-function, then Lp(X)−1 ∈ E[X];
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(2) for any prime λ of OE, there exists a finite extension K of E (and Kλ of
Eλ), and a 4-dimensional semisimple Galois representation

ρΠ,λ : Gal(Q/Q) → GL4(Kλ),

unramified outside S∪ {`} (where λ | `), such that for each prime p /∈ S∪ {`},

Lp(Πp, s − w/2) = det(I − ρΠ,λ(Frob−1
p )p−s)−1.

These Galois representations are found (when Π is neither CAP nor a weak endo-
scopic lift) in the third `-adic cohomology (in general with non-trivial coefficients)
of an inverse system of Siegel modular threefolds. They were studied by Taylor [T],
who deduced a list of possibilities, but he was not able to narrow it down enough
to prove the existence of a 4-dimensional representation (or in that case to prove
such a strong statement about the set of primes where the L-factors match). To
prove Theorem 4.1 required trace formula methods. The main theorems in [We1]
depend on hypotheses (A and B), whose proofs have now appeared in [We2].

Now recall the situation of §3, where F ∈ Sk,j(Γ2) is a Hecke eigenform such that,
for all primes p,

(1) µF(p) ≡ pk−2 + pj+k−1 + ap(f) (mod λ),

where λ is a “large” prime divisor (in any field K containing Q(f)Q(F)) of Lalg(f, j+
k). Recall that, in the case j = 0, k even, the existence of such a non-Saito-
Kurokawa lift F is given by Theorem 3.1, assuming weak hypotheses, while in the
case j > 0 we assume Harder’s conjecture.

Proposition 4.2. Let F and λ be as above. Suppose that k ≥ 3, ` > k ′ + 1 and
ord`(Bk ′) = 0. Then the following hold.

(1) If K is sufficiently large then there exists a 4-dimensional semisimple Galois
representation

ρF,λ : Gal(Q/Q) → GL(4, Kλ),

unramified outside {`}, such that for each prime p 6= `, det(I−ρF,λ(Frob−1
p )p−s)−1

is the local factor in the spinor L function of F.
(2) Choose a Gal(Q/Q)-invariant Oλ-lattice T ′

λ in V ′
λ (the space of ρF,λ) and

consider the representation ρF,λ of Gal(Q/Q) on T ′
λ/λT ′

λ. Then the compo-
sition factors of ρF,λ are Fλ(2 − k), Fλ(1 − j − k) and ρf,λ.

Proof. (1) This is a direct consequence of Theorem 4.1, applied to ΠF. Note
that here k1 = j + k, k2 = k, w = j + 2k − 3, and the condition k ≥ 3 is
necessary to ensure that Π

1

is discrete series. Also ΠF is unramified at all
primes p, since F is for the full modular group Γ2.

(2) The congruence (1), with conclusion (1), implies that tr(ρF,λ(Frob−1
p )) =

tr((χ2−k ⊕ χ1−j−k ⊕ ρf,λ)(Frob−1
p )), where χ is the (mod `) cyclotomic

character. It remains to observe that ρf,λ is (absolutely) irreducible, a
consequence of ` > k ′ + 1 and ` - Bk ′ , by Lemma 8 of [SD].

¤

The following is a very straightforward generalisation of Theorem 8.4 of [Br],
which is the case j = 0. In the case j > 0, Harder [Ha] clearly recognised this
consequence of his conjecture.
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Proposition 4.3. Let f =
∑

1

n=1 an(f)qn ∈ Sk ′(Γ1) be a normalised Hecke eigen-
form. Suppose that k ′ = j + 2k − 2, with j ≥ 0 and k ≥ 3, and that F ∈ Sk,j(Γ2) is
a Hecke eigenform such that, for all primes p,

µF(p) ≡ pk−2 + pj+k−1 + ap(f) (mod λ),

where λ | ` is a prime divisor (in any field K containing Q(f)Q(F)) of Lalg(f, j + k).
Suppose that ` > k ′ + 1 and ord`(Bj+2) = ord`(Bk ′) = 0. Let K be large enough
as in Proposition 4.2. With notation as in §2, H1

f(Q, Aλ(j + k)) is non-trivial, in
accord with the Bloch-Kato conjecture (see Lemma 2.2).

Proof. We merely sketch the proof. The isomorphism class of ρF,λ depends on the
choice of T ′

λ, though the set of composition factors is well-defined. We claim it
is possible to choose T ′

λ in such a way that T ′
λ/λT ′

λ (the space of ρF,λ) has a 3-
dimensional submodule, with a submodule ρf,λ and a quotient Fλ(2 − k). Clearly
it is possible to arrange for ρf,λ to be a submodule of T ′

λ/λT ′
λ. If it is not possible

to make Fλ(2 − k) the “next factor up” then the quotient of T ′
λ/λT ′

λ by ρf,λ must
be a non-trivial extension of Fλ(2 − k) by Fλ(1 − j − k), which gives a non-trivial
extension of Fλ by Fλ(−j−1). As in §8 of [Br] (which is the case j = 0), the action of
Gal(Q/Q) on this 2-dimensional representation factors through Gal(F/Q), where F

is an extension of Q(µ`) which corresponds, by Class Field Theory, to a non-trivial
quotient of the χ−1−j-isotypical part of the `-part of the class group of Q(µ`). But
by Herbrand’s theorem, this would contradict our assumption that ` - Bj+2.

We get then, inside T ′
λ/λT ′

λ, an extension of Fλ(2 − k) by ρf,λ. For a dif-
ferent choice, T ′′

λ , of Gal(Q/Q)-invariant Oλ-lattice, this extension is inside a 3-
dimensional quotient of T ′′

λ /λT ′′
λ . If it was a trivial extension (of Fλ[Gal(Q/Q)]-

modules) then, applying the method of the proof of Proposition 2.1 of [R] (as in
the proof of Proposition 8.3 of [Br], where all the sums should start at n = 0), we
would get a quotient of rank 1 of T ′′

λ , which is not possible, as explained in the
proof of Proposition 8.3 of [Br].

This non-trivial extension of Fλ(2 − k) by ρf,λ gives, by twisting, a non-trivial
extension of Fλ by ρf,λ(k − 2), hence a non-zero element of H1(Q, A[λ](k − 2)).
(Recall that A[λ] is the space of ρf,λ.) One may show, just as in §8 of [Br], that its
image in H1(Q, Aλ(k − 2)) is a non-zero element of the Bloch-Kato Selmer group
H1

f(Q, Aλ(k− 2)). The proof of the local conditions at p 6= ` uses the fact that ρF,λ

is unramified at such p, while the proof of the local condition at ` uses the fact that
ρF,λ|Gal(Q`/Q`) is crystalline (Theorem 3.2(ii) of [U], which refers to [Fa] and [CF]).

By the main result of [Kato], H1
f(Q, V ′

λ(r)) = 0 for any integer r 6= k ′/2 with
1 ≤ r ≤ k ′ − 1. Hence H1

f(Q, Aλ(k − 2)) = X̃(k − 2). Using [Fl], we may reflect
across the central point s = k ′/2 to get a non-zero element of λ-torsion in X̃(j+k),
and hence in H1

f(Q, Aλ(j + k)), as required. ¤

5. The Bloch-Kato conjecture for critical values of genus-two
standard L-functions

5.1. The conjecture. Let F ∈ Sk,j(Γ2) be a cuspidal Hecke eigenform. There
ought to exist an “L-admissible premotivic structure” (c.f. 1.1.1 of [DFG]) M ′

over Q, with coefficients in some finite extension K of Q(F), such that L(M ′, s) =
L(F, s, spin). For each prime λ of OE there would be a 4-dimensional representation
of Gal(Q/Q), with coefficients in Kλ, arising from the λ-adic realisation M ′

λ. In
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particular L(M ′
λ, s) = L(F, s, spin). At least these Galois representations are known

to exist, by Proposition 4.2. Strictly speaking, for each non-archimedean completion
of Q(F) there is a representation with coefficients in some finite extension. Let’s
just imagine that these are all completions of a fixed K. Eventually we shall be
concerned only with the particular prime λ of previous sections.

If M := ∧2M ′ then L(M,s) = ζ(s−(j+2k−3))L(F, s−(j+2k−3),St). M ′ should
have Hodge-type {(0, j + 2k − 3), (k − 2, j + k − 1), (j + k − 1, k − 2), (j + 2k − 3, 0)}.
(On this list, (p, q) appears hp,q = dimHp,q times, where M ′

B ⊗C = ⊕Hp,q is the
Hodge decomposition.) Consequently, M would have Hodge-type

{(k−2, 2j+3k−4), (j+k−1, j+3k−5), (j+2k−3, j+2k−3), (j+2k−3, j+2k−3),

(j + 3k − 5, j + k − 1), (2j + 3k − 4, k − 2)}.

Now dimM ′
B

+ and dimM ′
B

− would both be 2 (since complex conjugation switches
Hp,q and Hq,p), from which would follow dimM+

B = 2 and dimM−
B = 4. Then

the right-of-centre critical points for M would be of the form r = m + (j + 2k − 3),
where m is even with 0 < m ≤ k − 2. Note that r is chosen so that M

(−1)r

B

and MdR/Fr have the same dimension, 4 in this case. According to Deligne’s
conjecture, L(M, m + (j + 2k − 3))/(2πi)4m+4j+8k−12ω−(M) belongs to K. Here
ω−(M) is the determinant (w.r.t. K-bases of M−

B and MdR/Fr) of the isomorphism
M−

B ⊗ C ' (MdR/Fr) ⊗ C. Different choices of bases result in it being scaled by
some factor in K×.

Let V ′
λ be the (space of the) 4-dimensional representation of Gal(Q/Q) that is

supposed to be M ′
λ. Let T ′

λ be a choice of Gal(Q/Q)-invariant Oλ-lattice in V ′
λ, and

W ′
λ = V ′

λ/T ′
λ. Let W ′[λ] denote the λ-torsion in W ′

λ. Let Vλ = ∧2V ′
λ, Tλ = ∧2T ′

λ

and Wλ = Vλ/Tλ. Then let W := ⊕λWλ. Having made the choice of Tλ, and having
chosen also a K-basis of MdR, the factors appearing in the equation (2) below may
be defined as in the case of Mf in §2.

According to the Bloch-Kato conjecture,

(2)
L(M,m + (j + 2k − 3))

(2πi)4rω−(M)
=

∏
p cp(r) #X(r)

#H0(Q,W(r)) #H0(Q, W̌(1 − r))
,

where r := m+(j+2k−3), with m even and 0 < m ≤ k−2. We read the two sides
of this equation as fractional ideals of K. Note that L(M,s) would be the same
thing as ζ(s − (j + 2k − 3))L(F, s − (j + 2k − 3), St).

We return now to the situation of §3, and direct our attention to the λ-part of
the Bloch-Kato conjecture, for critical values of L(M,s). We shall make a different
choice of T ′

λ from that used in §4. From now on T ′
λ will be like the T ′′

λ of §4. So
T ′

λ/λT ′
λ ⊃ B ⊃ C ⊃ {0}, with C ' Fλ(1 − j − k), B/C ' ρf and (T ′

λ/λT ′
λ)/B '

Fλ(2 − k).

5.2. Construction of elements of Selmer groups for the standard L-function.

Proposition 5.1. Let f =
∑

1

n=1 an(f)qn ∈ Sk ′(Γ1) be a normalised Hecke eigen-
form. Suppose that k ′ = j + 2k − 2, with j ≥ 0 and k ≥ 3, and that F ∈ Sk,j(Γ2) is
a Hecke eigenform such that, for all primes p,

µF(p) ≡ pk−2 + pj+k−1 + ap(f) (mod λ),

where λ | ` is a prime divisor (in any field K containing Q(f)Q(F)) of Lalg(f, j + k).
Suppose that ` > 2j+2k−1 and ord`(Bj+2) = ord`(Bk ′) = 0. Let K be large enough
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as in Proposition 4.2. Then, with notation as in §5.1, H1
f(Q,Wλ(2j + 2k − 1)) is

non-trivial.

Note that 2j + 2k − 1 = (j + 2) + (j + 2k − 3).

Proof. Since ∧2(Fλ(1 − j − k)) = 0, we see that W[λ] = ∧2W ′[λ] has a submodule
isomorphic to ρf,λ(1− j−k). Hence W[λ](2j+ 2k− 1) has a submodule isomorphic
to ρf,λ(j + k) ' A[λ](j + k), and the inclusion map will induce a map in Galois
cohomology.

From Proposition 4.3, we have a non-zero element c ′′ of H1(Q, A[λ](j+k)), whose
image d ′′ in H1(Q, Aλ(j + k)) lies in H1

f(Q, Aλ(j + k)). Let c be the image of c ′′ in
H1(Q,W[λ](2j + 2k − 1)), and let d be the image of c in H1(Q,Wλ(2j + 2k − 1)).
Our goal is to show that d is a non-zero element of H1

f(Q, Wλ(2j + 2k − 1)).
First we show that it is non-zero. There are two 1-dimensional subfactors of

W[λ] = ∧2(W ′[λ]), both isomorphic to Fλ(3−2k−j). Hence the only 1-dimensional
subfactors of W[λ](2j + 2k − 1) are isomorphic to Fλ(2 + j). Since ` > 3 + j, this
is non-trivial. Hence H0(Q,W[λ](2j + 2k − 1)) = 0, from which it follows that
H0(Q,Wλ(2j + 2k − 1)) = 0. Also, H0(Q,W[λ](2j + 2k − 1)/A[λ](j + k)) = 0.
Hence H1(Q, A[λ](j + k)) injects into H1(Q,W[λ](2j + 2k − 1)), which injects into
H1(Q,Wλ(2j + 2k − 1)), so d is indeed non-zero.

Next we show that resp(d) ∈ H1
f(Qp,Wλ(2j + 2k − 1)) for any p 6= `. Since

W ′[λ] is unramified at p, the image of c ′′ in H1(Ip, A[λ](j + k)) is zero. It follows
that the image of d in H1(Ip,Wλ(2j + 2k − 1)) is zero. Since Wλ(2j + 2k − 1) is
unramified at p, this guarantees that resp(d) ∈ H1

f(Qp,Wλ(2j + 2k − 1)) (see, for
example, Lemma 7.4 of [Br]).

Finally we show that res`(d) ∈ H1
f(Q`,Wλ(2j + 2k − 1). In Lemma 4.4 of [BK],

a cohomological functor {hi}i≥0 is constructed on the Fontaine-Lafaille category
of filtered Dieudonné modules over Zp. hi(M) = 0 for all i ≥ 2 and all M, and
hi(M) = Exti(1FD,M) for all i and M, where 1FD is the “unit” filtered Dieudonné
module.

Recall that ρF,λ|Gal(Q`/Q`) (whose space is V ′
λ) is crystalline, so Vλ = ∧2V ′

λ is
also crystalline. Examination of the composition factors of Tλ/λTλ shows that the
Hodge-Tate weights of Vλ must be as expected, i.e.

k − 2, j + k − 1, j + 2k − 3, j + 2k − 3, j + 3k − 5, 2j + 3k − 4.

Meanwhile, the Hodge-Tate weights of ρf,λ|Gal(Q`/Q`) are 0 and j+2k−3. Let E and
D be filtered Dieudonné modules over Z` such that the associated representations
of Gal(Q`/Q`) are (on) Tλ and Mf,λ respectively (viewed as representations with
Z` coefficients). The condition ` > 2j + 2k − 1 ensures that these both exist, and
that E{2j + 2k − 1} and D{j + k} both satisfy FilaM = M, Fila+`−1M = {0}, with
a = −2j − k − 1. It is essentially the condition (*) in §4 of [BK].

By Lemma 4.5 (c) of [BK], (with the typo that substituted “e” for “f” corrected),

h1(D) ' H1
f(Q`,Mf,λ),

(defined to be the inverse image in H1(Q`, Mf,λ) of H1
f(Q`,Mf,λ)). Twists may be

applied to both sides of this isomorphism.
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Something like the exact sequence in the middle of page 366 of [BK] gives us a
commutative diagram

h1(D(j + k))
π−−−−→ h1(D(j + k)) −−−−→ h1(D(k)/λD(j + k))y y y

H1(Q`,Mf,λ(j + k)) −−−−→ H1(Q`, Mf,λ(j + k)) −−−−→ H1(Q`, A[λ](j + k))

Here π is a uniformiser at λ. The vertical arrows are all inclusions and we know
that the image of h1(D(j + k)) in H1(Q`, Mf,λ(j + k)) is exactly H1

f(Q`,Mf,λ(j +

k)). The top right horizontal map is surjective since h2(D(j + k)) = 0. In fact,
Lemma 4.4 of [BK] gives a description of Ext1(1FD,M) as a quotient of M, namely
M/(1 − φ0)(Fil0M), from which the surjectivity is obvious.

The class c ′′ ∈ H1(Q`, A[λ](j + k)) is in the image of H1
f(Q`, Mf,λ(j + k)) and

therefore is in the image of h1(D(j + k)/λD(j + k)). Recall that W[λ](2j + 2k − 1)
has a Galois submodule isomorphic to A[λ](j + k). By the fullness of the Fontaine-
Lafaille functor [FL] (see Theorem 4.3 of [BK]), E(2j + 2k − 1)/λE(2j + 2k − 1) has
a subobject isomorphic to D(j + k)/λD(j + k).

It follows that the class c ∈ H1(Q`,W[λ](2j+2k−1)) is in the image of h1(E((2j+
2k−1)/λE(2j+2k−1)) by the vertical map in the exact sequence analogous to the
above. Since the map from h1(E(2j+ 2k− 1)) to h1(E(2j+ 2k− 1)/λE(2j+ 2k− 1))
is surjective, c lies in the image of H1

f(Q`, Tλ(2j+2k−1)). From this it follows that
d ∈ H1

f(Q`, Wλ(2j + 2k − 1)), as desired.
¤

Proposition 5.2. Let f =
∑

1

n=1 an(f)qn ∈ Sk ′(Γ1) be a normalised Hecke eigen-
form, with k ′/2 odd. Suppose that k ′ = j + 2k − 2, with j ≥ 0 and k ≥ 3, and that
F ∈ Sk,j(Γ2) is a Hecke eigenform such that, for all primes p,

µF(p) ≡ pk−2 + pj+k−1 + ap(f) (mod λ),

where λ | ` is a prime divisor (in any field K containing Q(f)Q(F)) of Lalg(f, j + k).
Suppose that ` > 2j + 2k − 1 and ord`(Bk ′) = 0, and that f is ordinary at λ (i.e.
λ - a`). Let K be large enough as in Proposition 4.2. Then, with notation as in
§5.1, H1

f(Q, Wλ((k ′/2) + j + k − 1)) is non-trivial.

Note that (k ′/2) + j + k − 1 = (3j/2) + 2k − 2 = (j/2) + 1 + (j + 2k − 3).

Proof. The sign in the functional equation of L(f, s) is (−1)k ′/2 = −1. Applying
either Théorème A of [SU] or the main theorem of §12 of [N] (both require the
condition that f is ordinary at λ), H1

f(Q,Mf,λ(k ′/2)) is non-trivial, from which
one easily deduces that H1

f(Q,Mf,λ(k ′/2)) and H1
f(Q, A[λ](k ′/2)) are non-trivial.

Taking non-zero c ′′ ∈ H1
f(Q, A[λ](k ′/2)), one proceeds as above. This time, the

only 1-dimensional subfactors of W[λ]((k ′/2) + j + k − 1) are isomorphic to Fλ(1 +
(j/2)). ¤

Note that the condition that f is ordinary at ` is, conjecturally, not neces-
sary for the non-triviality of H1

f(Q,Mf,λ(k ′/2)). By an analogue of the Birch
and Swinnerton-Dyer conjecture, vanishing of L(f, k ′/2) should suffice. (See the
“conjectures” Cr(M) in §1 of [Fo2], and Ci

λ(M) in §6.5 of [Fo2].)
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5.3. Conjectural consequences. Suppose we are in the situation of Proposition
5.1 or Proposition 5.2. Recall that the only 1-dimensional composition factors of
W[λ] are isomorphic to Fλ(3 − 2k − j). It follows that none of the global torsion
terms appearing in (2) for critical r could have a non-trivial λ-part, since ` > k− 1.
For p 6= `, the λ-part of cp(r) is trivial, as in the case of Mf. If we choose the
basis for the conjecturally existing MdR in such a way that V(M) = Tλ, where M
is the Oλ-lattice in MdR ⊗ Kλ spanned by the basis and V is the Fontaine-Lafaille
functor, then the λ-part of c`(r) is also trivial. The (conjecturally existing) period
ω−(M) depends on our choices, but will cancel when we consider ratios of critical
values of L(M,s). The Selmer groups attached to these (non-central) critical points
are conjecturally finite, so should be equal to the corresponding Shafarevich-Tate
groups. Recalling that L(M,s) = ζ(s − (j + 2k − 3))L(F, s − (j + 2k − 3), St), we are
led, by the Bloch-Kato conjecture (2) and Propositions 5.1 and 5.2, to the following.
(In any particular example it seems unlikely that the λ-part of X(m+(j+2k−3))
could be non-trivial, though strictly speaking there might be cases which would
have to be excluded from the conjectures.)

Conjecture 5.3. Let f =
∑

1

n=1 an(f)qn ∈ Sk ′(Γ1) be a normalised Hecke eigen-
form. Suppose that k ′ = j + 2k − 2, with j ≥ 0 and k ≥ 4, and that F ∈ Sk,j(Γ2) is
a Hecke eigenform such that, for all primes p,

µF(p) ≡ pk−2 + pj+k−1 + ap(f) (mod λ),

where λ | ` is a prime divisor (in any field K containing Q(f)Q(F)) of Lalg(f, j + k).
Suppose that ` > 2j+2k−1 and ord`(Bj+2) = ord`(Bk ′) = 0. Suppose that j ≤ k−4

(so that 0 < j + 2 ≤ k − 2). Take any even m with 0 < m ≤ k − 2 but m 6= j + 2.
Then

ordλ

(
π3(m−(j+2))L(F, j + 2,St)

L(F,m,St)

)
> 0.

Under mild conditions, we shall prove the case j = 0 in §6 below, using the Saito-
Kurokawa lift, but in the vector-valued case we have to resort to computation.
In the case that f is a normalised generator of S22(Γ1) and F is a generator of
the 1-dimensional space S10,4(Γ2), there is good numerical evidence for Harder’s
conjecture, with ` = 41 dividing Lalg(f, 14) [FvdG, vdG]. In this case j + 2 = 6,
which is in the required range, and in §7 below we shall confirm that

ord41

(
π6 L(F, 6, St)
L(F, 8,St)

)
> 0.

Conjecture 5.4. Let f =
∑

1

n=1 an(f)qn ∈ Sk ′(Γ1) be a normalised Hecke eigen-
form, with k ′/2 odd. Suppose that k ′ = j + 2k − 2, with j ≥ 0 and k ≥ 3, and that
F ∈ Sk,j(Γ2) is a Hecke eigenform such that, for all primes p,

µF(p) ≡ pk−2 + pj+k−1 + ap(f) (mod λ),

where λ | ` is a prime divisor (in any field K containing Q(f)Q(F)) of Lalg(f, j + k).
Suppose that ` > 2j+ 2k− 1 and ord`(Bk ′) = 0. Suppose that (j/2) is odd, and that
j ≤ 2k − 6, so that (j/2) + 1 is even, with 0 < (j/2) + 1 ≤ k − 2. Suppose also that
ord`(B(j/2)+1) = 0. Take any even m with 0 < m ≤ k − 2 but m 6= (j/2) + 1. Then

ordλ

(
π3(m−((j/2)+1))L(F, (j/2) + 1,St)

L(F,m,St)

)
> 0.
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The requirement that (j/2) + 1 is even rules out j = 0, so there is nothing to
try to prove in the scalar-valued case here. In the case that f is one of the Galois-
conjugate pair of normalised eigenforms spanning S30(Γ1), and F is an appropriate
Hecke eigenform in the 1-dimensional space S11,10(Γ2), there is good numerical
evidence for Harder’s conjecture, with λ | ` = 97 dividing Lalg(f, 21) [vdG]. In this
case (j/2) + 1 = 6, which is in the required range (while j + 2 fails to be ≤ k − 2),
and in §8 below we shall confirm that

ordλ

(
π6 L(F, 6,St)
L(F, 8, St)

)
> 0.

6. The scalar-valued case

First we shall investigate the orders at λ of (normalised) standard L-values for
the Saito-Kurokawa lift f̂, then we shall note the occurrence of these values, as well
as standard L-values for non-lifts, in a pullback formula. This will then be used
to prove what we need about the standard L-values of the non-lift F to which f̂ is
congruent (mod λ).

Let f ∈ S2k−2(Γ1) be a normalised Hecke eigenform, with k even. Let K be
a number field containing Q(f). Let f̃ =

∑
c(n)qn ∈ Sk−1/2(Γ0(4))+ be a Hecke

eigenform in the Kohnen plus-space, corresponding to f under the Kohnen-Shimura
correspondence. Though f̃ is only defined up to scalar multiples, we may (and
shall) assume that its Fourier coefficients belong to K. (This follows from the fact
that Sk−1/2(Γ0(4))+ has a basis consisting of forms with rational Fourier coeffi-
cients [Koh1], together with the fact that the eigenvalues of the Hecke operators
T+

k−1/2
(p2) (with p odd) on f̃ are the same as those of T2k−2(p) on f.) We de-

fine the Saito-Kurokawa lift to be the image of f̃ under a natural linear map from
Sk−1/2(Γ0(4))+ to Sk(Γ2), as in [EZ] (passing through Jacobi cusp forms of weight
k and index 1 on the way). The scaling of f̃ then determines the scaling of f̂, and
f̂ also has Fourier coefficients in K. Note also that Q(f̂) = Q(f). By Kohnen and
Skoruppa [KS],

(3)
Γ(k)L(f, k)

(2π)k
= 3 · 23−k 〈f̂, f̂〉

〈f̃, f̃〉
.

By Kohnen and Zagier [KZ],

(4)
c(|D|)2

〈f̃, f̃〉
=

Γ(k − 1)|D|k−3/2L(f, k − 1, χD)

πk−1 〈f, f〉
,

where D < 0 is a fundamental discriminant. Combining (3) and (4) gives

〈f̂, f̂〉 =
(k − 1)

233π
· c(|D|)2

|D|k−3/2
· L(k, f)

L(k − 1, f, χD)
〈f, f〉.

Calculating as in (5.18) of [Hi] (and using Lemma 5.1.6 of [De], and the latter
part of 1.5.1 of [DFG]), one finds that, up to S-units (where S is the set of primes
dividing k ′!),

〈f, f〉
iΩ+Ω−

= c(f),

where c(f) is a certain “cohomology congruence ideal”, which is integral. Take now
an even integer 0 < m ≤ k − 2. Then L(f̂,m,St) is a critical value. Combining the
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previous two equations, and recalling that L(f̂, s,St) = ζ(s)L(f, s+k−1)L(f, s+k−2),
we arrive at (up to S-units)

(5)
L(f̂,m,St)

π2k+3m−3〈f̂, f̂〉
=

ζ(m)

πm
Lalg(f,m + k − 1)Lalg(f,m + k − 2) · |D|k−1

c(|D|)2
· Lalg(f, k − 1, χD)

Lalg(f, k)c(f)
.

(We have pretty much followed [Br] or [Ka1].)
Let {F1, . . . , Fd} be a basis for Sk(Γ2), consisting of Hecke eigenforms. Let Q(Fi)

be the field generated by the Hecke eigenvalues of Fi, and let K be the compositum
of the Q(Fi). Let

Fi(Z) =
∑
A

ai(A) exp(2πitr(AZ)),

where A runs over positive definite, half-integral, symmetric matrices, be the Fourier
expansion of Fi. We may (and shall) assume that these Fourier coefficients belong
to Q(Fi). This follows from the fact that there exists a basis for Sk(Γ2) consisting of
forms with rational Fourier coefficients [Ba]. For a positive definite, half-integral,

symmetric matrix A =

[
u v/2

v/2 w

]
, define the content contA := gcd(u, v,w), and

let DA := v2 − 4uw. The following is a special case of Lemma 5.1 of [Ka1].

Lemma 6.1. Let {F1, . . . , Fd} and K be as above. Suppose that G ∈ Sk(Γ2), with
Fourier expansion G =

∑
A aG(A) exp(2πitr(AZ)). Let λ be a prime ideal of the

ring of integers of K, dividing a rational prime `. Assume that
(1) all aG(A) ∈ K, with ordλ(aG(A)) ≥ 0 for all A and, for some A1, ordλ(aF1

(A1)) =
0;

(2) there exist c1, . . . , cd ∈ K such that ordλ(c1) < 0 and

G =

d∑
i=1

ciFi.

Then there exists i 6= 1 such that, for all primes p,

µF1
(T(p)) ≡ µFi

(T(p)) (mod λ) and µF1
(T(p2)) ≡ µFi

(T(p2)) (mod λ).

If F is a Hecke eigenform in Sk(Γ2), we shall need a certain multiple Λ(F,m, St) =

Ck,m
L(F,m,St)

π2k+3m−3〈F,F〉 , as defined precisely in the next section. All we need to know
here about the constant Ck,m is that it is a rational number with ord`(Ck,m) = 0

for any prime ` > 2k − 2. According to Theorem 4.4 of [Ka1], for any even integer
m with 0 < m < k − 2,

(6) Fm+2,k;A1
(Z) =

d∑
j=1

Λ(Fj,m,St)aj(A1)Fj(Z).

Here Fm+2,k;A1
(Z) ∈ Sk(Γ2) has rational Fourier coefficients, with denominators

divisible at worst by primes less than or equal to 2m − 1. It is a coefficient in a
partial Fourier expansion of the pullback to H2 × H2 of the result of applying a
certain differential operator to the Siegel-Eisenstein series of degree 4 and weight
m+2. Comparing (6) with [Ka1], note that Fj(−Z) = Fj(Z), since we have arranged
for the Fourier coefficients of the Fj to belong to K, which is totally real.
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Lemma 6.2. Suppose that λ | ` > k − 2, and that
(1) ordλLalg(f, t) ≥ 0 for all 1 ≤ t ≤ 2k − 3;
(2) there exists a fundamental discriminant D < 0 with ordλ(|D|k−1Lalg(f, k −

1, χD)) = 0.
Then

(1) it is possible to scale f̃ in such a way that ordλ(c(|D|)) = 0 and, for all n,
ordλ(c(n)) ≥ 0;

(2) for the corresponding scaling of f̂, ordλ(af̂(A)) ≥ 0 for all A. Furthermore,
if we choose A1 such that DA1

= D, then ordλ(af̂(A1)) = 0.

Proof. (1) Let D ′ < 0 be any fundamental discriminant. Using modular sym-
bols, Lalg(f, k − 1, χD ′) may be expressed as a linear combination of the
Lalg(f, t). See for example the formula (8.6) of [MTT] (together with the
discussion in §2 of [MTT] for the reduction of the modular symbols). This
formula has in its denominator a (k − 2)! and a power of the conductor
of the character, but ` > k − 2, and the power of the conductor cancels
with |D ′|k−1, so in our case the coefficients in the linear combination for
|D ′|k−1Lalg(f, k − 1, χD ′) will be integral at ` (hence at λ). Given assump-
tion (1), it follows that ordλ(|D ′|k−1Lalg(f, k − 1, χD ′)) ≥ 0. Given that
ordλ(|D|k−1Lalg(f, k − 1, χD)) = 0, it follows from equation (4) that, if
we fix any scaling of f̃ then, among fundamental discriminants D ′ < 0,
ordλ(c(|D|)) is the minimum. Part (1) follows easily from this.

(2) This is a direct consequence of the formula

a(A) =
∑

b|contA

bk−1c

(
|DA|

b2

)
,

which comes from Theorem 1 and Proposition 3 of [Koh2]. For the second
part, note that contA1 = 1.

¤

Let {f1 = f, f2, . . . , fr} be a basis of normalised Hecke eigenforms in S2k−2(Γ1).
Order the basis {F1, . . . , Fd} for Sk(Γ2) in such a way that (F1, . . . , Fr) = (f̂1, . . . , f̂r).
Recall that K is the compositum of the Q(Fi) for 1 ≤ i ≤ d, and note that Q(f) ⊂ K,
since Q(f̂) = Q(f).

Theorem 6.3. Suppose that λ | ` > 2k − 2 and that

ordλLalg(f, k) > 0,

with
(1) ordλLalg(f, t) ≥ 0 for all 1 ≤ t ≤ 2k − 3;
(2) there exists a fundamental discriminant D < 0 with ordλ(|D|k−1Lalg(f, k −

1, χD)) = 0;
(3) there exists an even m such that 2 < m < k − 2 and ordλ(BmLalg(m + k −

1)Lalg(m + k − 2)) = 0;
(4) there does not exist 1 < i ≤ r such that ap(f) ≡ ap(fi) for all primes p.

Then
(1) there exists a Hecke eigenform F ∈ Sk(Γ2), not a Saito-Kurokawa lift, such

that
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(a) for all primes p,

µF(p) ≡ µf̂(p) ≡ pk−2 + pk−1 + ap(f) (mod λ) and µF(p2) ≡ µf̂(p
2) (mod λ);

(b) if we scale F to have Fourier coefficients integral at λ, then, for m as
in (3),

ordλΛ(F,m,St) < 0.

(2) If F is unique (up to scaling) with the property (1a), and if we scale F so
that ordλ(aF(A)) ≥ 0 for all A but ordλ(aF(B)) = 0 for some B, then

ordλΛ(F, 2, St) ≥ 0.

Note that the Λ(Fj, m,St) are solutions of linear equations with coefficients in
K, arising from (6), so they do belong to K.

Proof. (1) (a) Given assumptions (1) and (2), we may scale f̂ as in Lemma
6.2. Now we apply Lemma 6.1 to equation (6), with A1 as in Lemma
6.2. We need ordλΛ(f̂,m,St) < 0, but given assumption (3) and
ordλLalg(f, k) > 0, this follows from equation (5). If F were a Saito-
Kurokawa lift, it is easy to see that assumption (4) would be contra-
dicted.

(b) We can scale all the Fi to have Fourier coefficients integral at λ, and
move to the left hand side of equation (6) any terms with ordλΛ(Fi,m,St) ≥
0, before applying Lemma 6.1.

(2) When m = 2, the Lalg(m + k − 2) in the numerator of equation (5) can-
cels the Lalg(f, k) in the denominator, so (again scaling as in Lemma 6.2)
ordλΛ(f̂, 2, St) ≥ 0. Note that ordλ(c(|D|)) = 0, by Lemma 6.2, and if
ordλ(c(f)) > 0 then assumption (4) would be contradicted. Consider again
equation (6), with m = 2 and Fi scaled as above, and move to the left hand
side any terms with ordλΛ(Fi, 2,St) ≥ 0, including the i = 1 term. If it
were not the case that ordλ(F, 2, St) ≥ 0 then we could apply Lemma 6.1
(with F in place of F1) to deduce a congruence (mod λ) of Hecke eigenval-
ues between F and another Fi (not f̂), contradicting our assumption about
the uniqueness of F.

¤

This theorem may be illustrated by a numerical example in [Ka2], where k = 22

and ` = 1423.

Corollary 6.4. In the situation of Theorem 6.3, let F be as in (1a). Assuming that
such an F is unique up to scaling, and taking m as in (3),

ordλ

(
π3(m−2)L(F, 2,St)

L(F,m,St)

)
> 0.

7. Computational support for Conjecture 5.3: k = 10, j = 4, ` = 41.

First we review the pullback formula of the Siegel Eisenstein series following
Böcherer [Bö], Böcherer, Satoh and Yamazaki [BSY], and Kozima [Koz]. For a C-
vector space V and non-negative integer m we denote by V(m) its m-th symmetric
tensor product. We make the convention that V(0) = C. From now on we put
Vr = Cu1 ⊕ · · · ⊕ Cur, and identify V

(m)
r with the vector space of homogeneous
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polynomials in u1, ..., ur of degree m with coefficients in C. Let ν be a non-negative
integer. We then define the representation τr;(ν,m) : GLr(C) −→ Aut(V(m)

r ) as

τr;(ν,m)(g) · h(u) = (det g)νh(ug)

for g ∈ GLr(C) and h ∈ V
(m)
r . This is a realisation of detν ⊗Sym(m), which

will be fixed throughout this section. In particular, if r is even, we put Vr/2,1 =

Cu1 ⊕ · · · ⊕ Cur/2, and Vr/2,2 = Cur/2+1 ⊕ · · · ⊕ Cur. We then regard V
(m)
r/2,1

and

V
(m)
r/2,2

as subspaces of V
(m)
r in a natural way. Let Mk,m(Γr) (resp. Sk,m(Γr)) be the

space of Siegel modular forms (resp. cusp forms ) of weight detk ⊗Sym(m) with
respect to Γr. In particular we put Mk(Γr) = Mk,0(Γr) and the others as usual.
Then an element of Mk,m(Γ2n) can be regarded as a function with values in V

(m)
2n ,

and an element of Mk,m(Γn)⊗Mk,m(Γn) can be regarded as a function with values
in V

(m)
n,1 ⊗ V

(m)
n,2 . Let Z = (zij)1≤i,j≤2n be a matrix of variables with zij = zji, and

we write ∂ij =
(1+δij)

2
∂

∂zij
, and

(
∂

∂Z

)
= (∂ij)1≤i,j≤2n

. We use the notation in [Bö]
or [BS] and we put

∆(r, q) =
∑

a+b=q

(−1)b

(
q

b

)
z

[a]
2 ∂

[a]
4 t (1[r]

n t z
[b]
2 ∂

[b]
3 )(Ad[r+b]∂1)∂

[r+b]
2 ,

and

D̃α =
∑

r+q=n

(
n

q

)
Cq(−α + n/2)−1∆(r, q),

where Cp(s) = s(s + 1/2)...(s + (p − 1)/2) for s ∈ C. (Note that there are typos
in [BS] or in [Bö] in the definition of ∆(r, q), e.g. in [BS], there appears

(
n

b

)
but

the above
(
q

b

)
is correct. ) Here the definition of the notation is complicated, so

we do not repeat the details (cf. [Bö]), but we note that A[0] = 1, A[n] = det(A),
Ad[n]A = 1 and that if 0 < r < n, then A[r] is a matrix such that each component
is a homogeneous polynomial of components of A of positive order. We note that
D̃α can be written as

D̃α =
(−1)n

Cn(α − n + 1/2)

∑
r+q=n

(
n

r

)
(−1)rCr(α − n + 1/2)∆(r, q).

For non-negative integers ν and α, we define D̃ν
α as

D̃ν
α = D̃α+ν−1 ◦ · · · D̃α+1 ◦ D̃α.

The operator D̃ν
α maps C1(H2n, V

(m)
2n ) to C1(H2n, V

(m)
2n ) for any non-negative

integer ν. For non-negative integers m and f ∈ C1(H2n, V
(m)
2n ), put

D̃f = U

(
∂

∂Z
(f)

)
tU

for U = (u1, ..., u2n). Then D̃f belongs to C1(H2n, V
(m+2)
2n ). We note that this D̃f is

2πi times the Df defined in [BSY]. We also define two maps D̃
"

: C1(H2n, V
(m)
2n ) −→

C1(H2n, V
(m+2)
n,1 ) and D̃

#

: C1(H2n, V
(m)
2n ) −→ C1(H2n, V

(m+2)
n,2 ) by

D̃
"

(f)(u1, ..., un) = D̃(f)(u1, ...., un, 0, ..., 0)

and
D̃

#

(f)(un+1, ..., u2n) = D̃(f)(0, ..., 0, un+1, ...., u2n).
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Furthermore let L̃k,m be the differential operator defined as follows:

L̃k,m =
1

(k)m

[m/2]∑
µ=0

1

µ!(m − 2µ)!(2 − k − m)µ

(D̃
"

D̃
#

)µ(D̃ − D̃
"

− D̃
#

)m−2µ,

where (k)µ = k(k + 1) · · · (k + µ − 1). For non-negative integers k,m we put

Dk−ν,(k,m)(f) = L̃k,mD̃ν
k−ν(f)|Hn×Hn

.

In particular, Dk,(k,m) = L̃k,m. Then Dk−ν,(k,m) maps each element of C1(H2n, C)

to C1(Hn, V
(m)
n,1 )⊗C1(Hn, V

(m)
n,2 ). Furthermore it maps Mk−ν(Γ2n) to Mk,m(Γn)⊗

Mk,m(Γn), and in particular its image is contained in Sk,m(Γn)⊗Sk,m(Γn) if ν > 0.

For an even positive integer l, we define the Siegel Eisenstein series E2n,l(Z, s) of
degree 2n as

E2n,l(Z, s) = ζ(1 − l − 2s)

n∏
i=1

ζ(1 − 2l − 4s + 2i)

×
∑

M∈Γ2n,1

\Γ2n

j(M,Z)−l(det(Im(M(Z))))s

( Z ∈ H2n, s ∈ C), where ζ(∗) is Riemann’s zeta function, and Γ2n,1 =

{(
∗ ∗

O2n ∗

)
∈ Γ2n

}
.

This series converges for 2Re(s) + l > 2n + 1 and is continued meromorphically to
the whole plane as a function of s. Furthermore assume that l ≥ n + 3 or l ≥ n + 1

according as n ≡ 1 mod 4 or not. Then E2n,l(Z, 0) is a holomorphic Siegel mod-
ular form of weight l as a function of Z (cf. [Sh]). From now on we assume that
E2n,l(Z, 0) is holomorphic as a function of Z, and write E2n,l(Z) = E2n,l(Z, 0). For
an integer k ≥ l put

Fl,(k,m)(Z1, Z2) =
1

(2πi)n(k−l)+m
Dl,(k,m)(E2n,l)

((
Z1 O

O Z2

))
.

Now for F ∈ Sk,m(Γn), let

Λ(F, l,St) =

2n(2n+3)+2−2nk−l(n+1)−m(−1)l(n+1)/2 × ρk,k−l−n

(k)mm!

×
n−1∏
j=1

Γ(2k + 2j − 2n − 1)

Γ(2k + j − n − 2)
× Γ(k + m/2 − 1)Γ(k + m/2 − 1/2)Γ(k − n)Γ(2k + m − n − 1)

Γ(k)Γ(k − 1/2)Γ(k − 1)Γ(2k + m − 2)

× L(F, l, St)
πnk+m+l(n+1)−n(n+1)/2 < F, F >

,

where

ρk,ν =

ν−1∏
i=0

n∏
j=1

(−k + ν + (j − 1)/2 − i).

Then the following result is a special case of the pullback formula for the Siegel
Eisenstein series in [BSY] and [Koz]:
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Proposition 7.1. Assume that dim Sk,m(Γn) = 1 and let F be a generator of
Sk,m(Γn). Let l be an integer such that l ≡ n mod 2, and n + 3 ≤ l < k or
n + 1 ≤ l < k according as n ≡ 1 mod 4 or not. Then we have

Fl,(k,m)(Z1, Z2) = Λ(F, l − n,St)(F(−Z1) ⊗ F(Z2)).

Furthermore assume that dim Mk,m(Γn) = dimSk,m(Γn) = 1. Then we have

Fk,(k,m)(Z1, Z2) = Λ(F, k − n, St)(F(−Z1) ⊗ F(Z2)).

Here note that the right hand side does not depend on the choice of F. Also we
have F(−Z) = F(Z) if F has real Fourier coefficients, which is always the case under
the assumption of this proposition, for a suitably scaled generator.

Proof. Assume that dim Sk,m(Γn) = 1. Then Fl,(k,m)(Z1, Z2) can be expressed as

Fl,(k,m)(Z1, Z2) = dF(−Z1) ⊗ F(Z2)

with some constant d. Thus we have

〈F(Z2), Fl,(k,m)(−Z1, Z2)〉 = d̄F(Z1)〈F, F〉.

On the other hand, by the formula (4.1) in [Koz], we have

〈F(Z2), Fl,(k,m)(−Z1, Z2)〉 = cF(Z1)

with

c = (2πi)l−kζ(1 − l)

n∏
i=1

ζ(1 − 2l + 2i)

× ρk,k−l

(k)mm!
2n(n+1−k)−m+1inkπn(n+1)/2

n−1∏
j=1

Γ(2k + 2j − 2n − 1)

Γ(2k + j − n − 2)

×Γ(k + m/2 − 1)Γ(k + m/2 − 1/2)Γ(k − n)Γ(2k + m − n − 1)

Γ(k)Γ(k − 1/2)Γ(k − 1)Γ(2k + m − 2)

×(ζ(l)

n∏
j=1

ζ(2l − 2j))−1L(F, l − n, St).

Thus we have d = c̄〈F, F〉−1. By a simple calculation we can show that c = Λ(F, l −
n, St)〈F, F〉. We note that c is a real number, and therefore we have d = Λ(F, l −
n, St). This proves the first assertion. Similarly the second assertion holds. ¤

The differential operators described above are very useful to get the arithmetic
properties of the standard-L-values. However it does not seem so easy to get exact
standard L-values by using them. But in [I1] we have another general charac-
terization of differential operators which behave well under the restrictions of the
domains equivariant with the action of the real symplectic group on both domains.
These differential operators contain as a part of their formulation the restriction to
the locus Z12 = 0 after the action of the above Böcherer’s operators, and besides
they are easier to handle. So we use this formulation below. We extract what we
need from the theorem in [I1]. We take a positive integer l and put d = 2l. Let
X = (xrs) be an n × d matrix of variable components and for 1 ≤ i, j ≤ n, we put
∆ij =

∑d

s=1
∂2

∂xis∂xjs
. A polynomial P(X) in the entries of X is called pluriharmonic

if ∆ijP = 0 for any 1 ≤ i, j ≤ n. We fix non-negative integers ν and m and take
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a polynomial mapping P(X1, X2) from Mn,d(C) × Mn,d(C) to V
(m)
n,1 ⊗ V

(m)
n,2 such

that
D-1. P(X1, X2) is pluriharmonic in each Xi (i = 1, 2).
D-2. P(X1g, X2g) = P(X1, X2) for any g ∈ O(d), where O(d) is the orthogonal
group of degree d = 2l.

D-3. P(a1X1, a2X2) = (τn;(ν,m)(a1)⊗τn;(ν,m)(a2))P(X1, X2) for a1, a2 ∈ GLn(C).
Assume that l ≥ n. Then there exists a unique polynomial mapping Q(S) from

S2n(C) to V
(m)
n,1 ⊗ V

(m)
n,2 such that P(X1, X2) = Q

((
X1

tX1 X1
tX2

X2
tX1 X2

tX2

))
, where

S2n(C) denotes the set of symmetric matrices of degree 2n with entries in C. We
note that Q is homogeneous of degree nν + m. For any holomorphic function f on
H2n, we define DQ(f) and D̃Q(f) by

DQ(f) = Q

(
∂

∂Z

)
(f)

and
D̃Q(f) = DQ(f)

∣∣
Z12=0

,

where we write Z =

(
Z1 Z12

tZ12 Z2

)
with Z1, Z2 ∈ Hn and Z12 ∈ Mn(C). On the

other hand, for i = 1, 2, take gi =

(
Ai Bi

Ci Di

)
∈ Sp(n, R) and put

ι(g1, g2) =


A1 0 B1 0

0 A2 0 B2

C1 0 D1 0

0 C2 0 D2

 ∈ Sp(2n, R).

Let D be a V
(m)
n,1 ⊗V

(m)
n,2 -valued linear holomorphic differential operator with con-

stant coefficient. We consider the following condition on D.
D-0. For any holomorphic function f(Z) on H2n and any g1, g2 ∈ Sp(n, R), we
have (

D

(
f(ι(g1, g2)Z)det

((
C1 0

0 C1

)
Z +

(
D1 0

0 D2

))−l
))∣∣∣∣

Z12=0

= τn,(ν,m)((C1Z1 + D1)−1) ⊗ τn,(ν,m)((C2Z2 + D2)−1)(Df)

(
g1Z1 0

0 g2Z2

)
Theorem 7.2 ([I1]). We fix a positive integer d = 2l ≥ n and non-negative integers
ν and m.

(1) Notation being as above, there exists a polynomial P that satisfies D-1 to D-3.
It, and the associated Q, are unique up to constant multiples.

(2) For Q as in (1), DQ satisfies the condition D-0.
(3) Any linear holomorphic differential operator with constant coefficients, sat-

isfying D-0, is of the form DQ for some Q associated with a P satisfying D-1 to
D-3.

The effect of the action of D̃Q on the Fourier expansion is easily described as
far as Q is explicitly given. We consider the action of the above operator on the
Siegel Eisenstein series. We denote by Hm(Z) the set of half-integral matrices of
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degree m over Z. Furthermore we denote by Hm(Z)>0 (resp. Hm(Z)≥0) the subset
of Hm(Z) consisting of positive definite (resp semi-positive definite) matrices. Let

E2n,l(Z) =
∑
A

c2n,l(A)(tr(AZ))

be the Fourier expansion of the Siegel Eisenstein series. Put Gl,Q(Z1, Z2) :=

D̃Q(E2n,l)(Z1, Z2). Then, Gl,Q(Z1, Z2) belongs to Sl+ν,m(Γn) ⊗ Sl+ν,m(Γn), and
we have

Gl,Q(Z1, Z2) = (2πi)nν
∑

A1,A2∈Hn(Z)>0

exp(2πitr(A1Z1 + A2Z2))

×
∑

R∈Mn(Z)

Q

((
A1

1
2
R

1
2

tR A2

))
c2n,l

((
A1

1
2
R

1
2

tR A2

))
.

By the claim (3) of the above theorem, we have

Proposition 7.3. Under the above notation and the assumption, we have

Dl,(l+ν,m) = dQD̃Q,

where dQ is a non-zero constant. Therefore we have

Fl,(l+ν,m)(Z1, Z2) = dQGl,Q(Z1, Z2).

When ν = 0, for general m, the polynomial P is obtained using the classical
Gegenbauer polynomials and when n = 2 and m = 0, a generating function of P is
given (cf. in [I1] p.114). When both ν and m are positive, it is not so easy to find
a polynomial P(X1, X2) or Q(S) satisfying the above conditions. Here we give two
examples. Let S be a 4× 4 symmetric matrix of variables and U = (u1, u2, u3, u4)
a vector of variables. We divide U into u := (u1, u2) and v := (u3, u4). We also

divide S as S =

(
R T
tT S

)
with R, S symmetric 2 × 2 matrices and T a 2 × 2

matrix. First define a polynomial φk,(k,4)(S, U) as follows:

φk,(k,4)(S, U) =
k(k − 1)

6

(
4(k + 1)(k + 2)s4 − 12(k + 1)s2m0 + 3m2

0

)
,

where

m1 = m1(R, u) = (u1, u2)R

(
u1

u2

)
= r11u2

1 + 2r12u1u2 + r22u2
2

m2 = m2(S, v) = (u3, u4)S

(
u3

u4

)
= s11u2

3 + 2s12u3u4 + s22u2
4

m0 = m0(R, S, T, u, v)

= m1m2 = (r11u2
1 + 2r12u1u2 + r22u2

2)(s11u2
3 + 2s12u3u4 + s22u2

4)

s = s(R, S, T, u, v) = (u1, u2)T

(
u3

u4

)
= t11u1u3 + t12u1u4 + t21u2u3 + t22u2u4

for R =

(
r11 r12

r12 r22

)
, S =

(
s11 s12

s12 s22

)
and T =

(
t11 t12

t21 t22

)
. Then this is

associated with P satisfying D-1 to D-3 for ν = 0, d = 2k and m = 4. This has been
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already known in [I1] p. 114. Next we treat the case d = 2l = 2k − 4, ν = 2, and
m = 4. This case is more complicated. First we explain an outline, then we give an
explicit solution. Inside the space of polynomials in the entries of R, S, T , we seek
subspaces realising the representation τ2,(2,4) ⊗ τ2,(2,4) of GL(2) × GL(2). Since
(A, B) ∈ GL(2)×GL(2) acts on R, S, T by ARtA, BStB and ATtB, if we denote each
degree with respect to entries of R, S or T by a, b, 2c, then, considering degrees in
the entries of A and in the entries of B, we have 2a + 2c = 2b + 2c = nν + m = 8

(hence c is an integer). Hence a = b, and the total degree in the entries of R, S and
T is a+b+2c = 8. Calculating the characters, we can easily see the following facts.
As a representation space of GL(2) × GL(2), the space of degree a polynomials in
the entries of R decomposes into

[a/2]∑
ν=0

τ2,(2ν,2a−4ν) ⊗ τ2,(0,0)

where τ2,(0,0) is the trivial representation of GL(2), and the space of degree a

polynomials in the entries of S decomposes in the same way, where the left and the
right of the tensor are transposed. As a representation space of GL(2)×GL(2), the
space of polynomials of degree 2c in the entries of T decomposes as

c∑
ν=0

τ2,(ν,2c−2ν) ⊗ τ2,(ν,2c−2ν).

The space of homogenous polynomials of total degree 8 in the entries of R, S and T ,
with a = b, is a sum over a + c = 4 of tensor products of these three spaces. The
irreducible decomposition of tensor products of symmetric tensor representations
is known by Clebsch-Gordan. So we can easily count the multiplicity of τ2,(2,4) ⊗
τ2,(2,4), and it is 15. Now we consider polynomials P(R, S, T, u, v), homogeneous of
total degree 8 in the entries of R, S, T , and homogeneous of degree 4 in u1, u2 and
in u3, u4, where we put u = (u1, u2), v = (u3, u4), such that

P(ARtA,BStB,ATtB,u, v). = det(AB)2P(R, S, T, uA, vB).

Then the coefficients of such a P as a polynomial in the ui give a basis of a represen-
tation space of τ2,(2,4) ⊗τ2,(2,4). So the first task is to give 15 linearly independent
such polynomials. The second task is to find, among their linear combinations, a
polynomial pluri-harmonic with respect to each of X1 and X2, which is assured to
exist uniquely up to constants. Proceeding along these lines, we define a polynomial
φk−2,(k,4)(S, U) by

φk−2,(k,4)(S, U) =

4(d + 6)(d + 8)(d − 2)(d + 3)(d + 4)P0 s4 + 4(d + 6)(d + 8)(d + 3)(d + 4)P1 s4

+8(d + 6)(d + 8)(11d − 12)P2s4 − 8(d + 6)(d + 8)(d − 3)(d + 3) det(T)Q0 s2

−48(d + 6)(d + 8)(d − 3)Q1s2 − 8(d + 6)(d + 3)(5d2 + 4d − 36)P0s2m0

+(60d3 + 156d2 − 648d − 576)P0 m2
0 − 72(d + 6)(d2 + 5d − 10)P1 s2m0

−48(5d + 6)(d + 6)P2 m0s2 + 24(d − 3)(d + 6)(d + 1)det(T)Q0 m0

+48(d − 3)(d + 6)Q2m0 − 48(d + 6)(d + 8)(d − 3)Q2s2

+12(5d2 + 15d − 48)P1 m2
0 + 48(d − 3)(d + 6)Q1m0 + 72(d + 4)P2m2

0,
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where mi (i = 0, 1, 2) and s are as before and

P0 = P0(R, S, T) = det(T)2

P2 = P2(R, S, T) = det(RS)

P1 = P1(R, S, T) = −r11t2
21s22 + 2r11t21t22s12 − r11t2

22s11

+2r12t21t11s22 − 2r12t21t12s12 − 2r12t22t11s12

+2r12t22t12s11 − r22t2
11s22 + 2t11r22t12s12 − r22t2

12s11

Qr = Qr(R, T, v)

= (r11t2
21 − 2r12t11t21 + r22t2

11)u2
3

+2(r11t21t22 − r12(t11t22 + t12t21) + r22t11t12)u3u4

+(r11t2
22 − 2r12t12t22 + r22t2

12)u2
4

Qs = Qs(S, T, u)

= (s11t2
12 − 2s12t11t12 + s22t2

11)u2
1

+2(s11t12t22 − s12(t11t22 + t12t21) + s22t11t21)u1u2

+(s11t2
22 − 2s12t21t22 + s22t2

21)u2
2

Q1 = Q1(R, S, T, u, v) = Qrm1 det(S)

Q2 = Q2(R, S, T, u, v) = Qsm2 det(R)

Q0 = Q0(R, S, T, u, v) = (u2
1, u1u2, u2

2)

(
qij

)
1≤i,j≤3

 u2
3

u3u4

u2
4


= q11u2

1u2
3 + q12u2

1u3u4 + q13u2
1u2

4

+q21u1u2u2
3 + q22u1u2u3u4 + q23u1u2u2

4

+q31u2
2u2

3 + q32u2
2u3u4 + q33u2

2u2
4,

where

q11 = 2s11(r11t11t22 + r11t12t21 − 2r12t11t12) − 4t11s12(−t11r12 + r11t21)

q21 = 4s11(r11t21t22 − r22t12t11) − 4s12(r11t2
21 − r22t2

11)

q31 = 2s11(2r12t21t22 − r22t11t22 − r22t12t21) − 4s12t21(r12t21 − t11r22)

q12 = 4r11s11t12t22 − 4r12s11t2
12 − 4r11s22t11t21 + 4r12s22t2

11

q22 = 4r11s11t2
22 − 4r22t2

12s11 − 4r11s22t2
21 + 4r22s22t2

11

q32 = 4r12s11t2
22 − 4r22s11t12t22 − 4r12s22t2

21 + 4r22s22t11t21

q13 = 4r11s12t12t22 − 4r12s12t2
12 − 2r11s22t11t22 − 2r11s22t12t21 + 4r12s22t11t12

q23 = 4r11s12t2
22 − 4r22s12t2

12 − 4r11s22t21t22 + 4r22s22t11t12

q33 = 4r12s12t2
22 − 4r22s12t12t22 − 4r12s22t21t22 + 2r22s22t11t22 + 2r22s22t12t21
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Here we note that

Pi(ARtA, BStB,ATtB) = det(AB)2Pi(R, S, T),

m0(ARtA,BStB, ATtB,u, v) = m0(R, S, T, uA, vB),

s(ARtA,BStB, ATtB,u, v) = s(R, S, T, uA, vB),

Qr(ARtA,ATtB, v) = det(A)2Qr(R, T, vB)

Qs(BStB,ATtB,u) = det(B)2Qs(S, T, uA)

Q0(ARtA,BStB, ATtB,u, v) = det(AB)2Q0(R, S, T, uA, vB)

So the 15 terms in φk−2,(k,4) give the isobaric components associated with the
representation τ2,(2,4)⊗τ2,(2,4) of GL(2)×GL(2) with multiplicity 15 (if they are lin-
early independent). The condition of pluri-harmonicity determines the coefficients
given by the polynomials in d = 2k − 4. Since there is no ready-made program
suitable for this calculation, this part is a fairly elaborate hand calculation with the
aid of Maple.

Then for ν = 0 or 2 put

Φk−ν,(k,4) = φk−ν,(k,4)

(
∂

∂Z
,U

) ∣∣∣
Z12=O2

.

We note that Φk−ν,(k,4) is a polynomial in ∂
∂Z

and U. Then by a direct but long
and elaborate calculation with the aid of Maple we have

Proposition 7.4. Assume that k ≥ 4, and let l = k or k − 2. Define a polynomial
Pl,(k,4)(X1, X2) by

Pl,(k,4)(X1, X2) = φl,(k,4)

((
X1

tX1 X1
tX2

X2
tX1 X2

tX2

)
, U

)
for X1, X2 ∈ M2,2l(C). Then Pl,(k,4)(X1, X2) is a polynomial mapping from M2,2l(C)×
M2,2l(C) to V

(4)
2,1 ⊗ V

(4)
2,2 , and satisfies the conditions D-1∼D-3 stated above for the

representation τ2;k−l,4. Therefore we have

Dl,(k,4) = cl,(k,4)Φl,(k,4)

for some non-zero rational number cl,(k,4).

Now we shall consider the prime factors of cl,(k,4) more precisely.

Lemma 7.5. Let u = (u1, u2) and v = (u3, u4) be vectors of independent variables,
and W = (zij)1≤i≤2,3≤j≤4 be a 2 × 2 matrix with entries in variables.

(1) Define the differential operators
∣∣ ∂
∂W

∣∣ and E as∣∣∣∣ ∂

∂W

∣∣∣∣ = det
(

1

2

∂

∂zij

)
1≤i≤2,3≤j≤4

,

and

E =
1

2

2∑
i=1

4∑
j=3

zij

∂

∂zij

.

Then we have∣∣∣∣ ∂

∂W

∣∣∣∣ ((uWtv)m(det W)σ) =
σ(σ + m + 1)

4
(uWtv)m(det W)σ−1
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and
E((uWtv)m(det W)σ−1) =

2σ + m − 2

2
(uWtv)m(detW)σ−1

for any non-negative integer m and positive integer σ.

(2) We have D̃ − D̃
"

− D̃
#

= u

(
∂

∂zij

)
1≤i≤2,3≤j≤4

tv and

(D̃ − D̃
"

− D̃
#

)((uWtv)m) = m(uWtv)m−1〈u, u〉〈v, v〉,
and

(D̃
"

D̃
#

)(uWtv)m) = 0,

for any non-negative integers m, where 〈u, u〉 = u2
1 + u2

2, 〈v, v〉 = u2
3 + u2

4.

Proof. The assertions can be proved directly from the definitions of the differential
operators in question. ¤

Corollary 7.6. Let W =

(
z13 z14

z23 z24

)
, and u = (u1, u2), v = (u3, u4).

(1) We have

D̃ν
α((uWtv)m(det W)σ) = dα,(α+ν,m),σ(uWtv)m(det W)σ−ν

for any positive integers α and ν and non-negative integers σ and m, where

dα,(α+ν,m),σ =

ν−1∏
i=0

(σ − i)(σ − i + m + 1)(σ + i + 2α − 4)(σ + i + m + 2α − 3)

24ν
∏ν−1

i=0 C2(α + i − 3/2)
.

(2) We have

L̃k,m((uWtv)m) =
1

(k)m

〈u, u〉m〈v, v〉m

for any positive integer k and non-negative integer m.

Proof. By definition we have

D̃α = C2(α − 3/2)−1

2∑
r=0

(
2

r

)
Cr(α − 3/2)(1

[r]
2 t z

[2−r]
2 ∂

[2−r]
3 )det ∂2 + F

(
Z,

∂

∂Z

)
,

where F(Z, ∂
∂Z

) is a polynomial in Z and ∂
∂Z

whose degree with respect to ∂1 and
∂4 is greater than or equal to 1 and hence acts as zero. Thus we have

D̃α((uWtv)m(det W)σ) = C2(α − 3/2)−1

×
2∑

r=0

(
2

r

)
Cr(α − 3/2)(1

[r]
2 t z

[2−r]
2 ∂

[2−r]
3 )det ∂2((uWtv)m(det W)σ).

Using the definitions in [Bö], we have
2∑

r=0

(
2

r

)
Cr(α − 3/2)(1

[r]
2 t z

[2−r]
2 ∂

[2−r]
3 )det ∂2((uWtv)m(det W)σ)

=

(
det W

∣∣∣∣ ∂

∂W

∣∣∣∣2 + (α − 3/2)E
∣∣∣∣ ∂

∂W

∣∣∣∣ + (α − 3/2)(α − 1)

∣∣∣∣ ∂

∂W

∣∣∣∣
)

((uWtv)m(det W)σ),

and by (1) of Lemma 7.5 we have

D̃α((uWtv)m(det W)σ) = dα,(α+1,m),σ(uWtv)m(detW)σ−1.
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Thus the assertion (1) can be proved by repeated application of this formula. The
assertion (2) follows directly from (2) of Lemma 7.5. ¤

Proposition 7.7. Assume that k ≥ 4, and let l = k or k − 2. Let cl,(k,4) be as in
Proposition 7.4. Then cl,(k,4) is a p-unit for any prime number p > 2k − 1.

Proof. We note that both the operators Dl,(k,4) and Φl,(k,4) are polynomials in
∂

∂Z
and they can be also regarded as maps from C1(H4, V

(8)
4 ) to C1(H2, V

(8)
2,1) ⊗

C1(H2, V
(8)
2,2). Thus to prove the assertion we apply these two differential oper-

ators to the function (uWtv)4(det W)k−l, where W =

(
z13 z14

z23 z24

)
and u =

(u1, u2), v = (u3, u4). By Corollary 7.6 we have

Dl,(k,4)((uWtv)4(detW)k−l) =
dl,(k,4),k−l

(k)4

〈u, u〉4〈v, v〉4.

Now we apply Φl,(k,4) to (uWtv)4(det W)k−l. First write the polynomial φk,(k,4)(S, U)
as

φk,(k,4)(S, U) =
2k(k − 1)(k + 1)(k + 2)s4

3
+ ψ(S, U).

Then it is easily seen that

ψ

(
∂

∂Z
,U

)
((uWtv)4)|H2×H2

= 0.

Thus we have

Φk,(k,4)((uWtv)4) =
2k(k − 1)(k + 1)(k + 2)

3

(
u

(
1

2

∂

∂zij

)
i=1,2,j=3,4

tv

)4

((uWtv)4)|H2×H2

=
2k(k − 1)(k + 1)(k + 2)

3

4!

24
〈u, u〉4〈v, v〉4

by repeated application of (2) of Lemma 7.5, and hence ck,(k,4) = ((k − 1)k2(k +

1)2(k+ 2)2(k+ 3))−1 is p-unit for any prime number p > 2k− 1 if k ≥ 4. Similarly
the terms except for those coming from P0s4 acts as zero on (uWtv)4(det W)2, so
we have

Φk−2,(k,4)((uWtv)4(det W)2) = 23 ·32 ·7k(k+1)(k+2)(k−3)(2k−1)〈u, u〉4〈v, v〉4.

We also have

Dk−2,(k,4)((uWtv)4(det(W)2)) =
dk−2,(k,4),2

(k)4

〈u, u〉4〈v, v〉4

=
21

4

2k − 1

(k + 1)(k + 2)(k + 3)(2k − 7)
〈u, u〉4〈v, v〉4

Hence ck−2,(k,4) = (96(2k − 7)(k − 2)(k − 3)k(k + 1)2(k + 2)2(k + 3))−1 is a p-unit
for any prime number p > 2k − 1, if k ≥ 4. ¤

To get exact standard L-values of Siegel modular forms, we need an explicit
formula for the Fourier coefficients of E4,l. Let A be an element of Hm(Z)>0 with
m even. We then denote by ξA the Kronecker character corresponding to the
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extension Q(
√

(−1)m/2 det A)/Q. Let A =

(
a11 a12/2

a12/2 a22

)
∈ H2(Z)≥0. First

assume rank(A) = 1. Then we define

F(1)
p (A,X) =

ordp(contA)∑
i=0

(pX)i.

Next assume A > 0. Then we can write DA = dAf2A with dA a fundamental discrim-
inant and fA ∈ Z>0. Then we define

F(2)
p (A,X) =

ordp(contA)∑
i=0

(p2X)i

ordp(f
A

)−i∑
j=0

(p3X2)j

−ξA(p)pX

ordp(contA)∑
i=0

(p2X)i

ordp(f
A

)−i−1∑
j=0

(p3X2)j.

Then we have the following (cf. [Ka2].)

Proposition 7.8. Let A =

(
A1 R/2

tR/2 A2

)
be an element of H4(Z)≥0 of rank

m with A1, A2 ∈ H2(Z)>0, R ∈ M2(Z). Fix a prime number p0. Assume that
2A1 ∈ GL2(Zp) for any prime number p 6= p0, and 2A2 ∈ GL2(Zp0

). Then we
have m ≥ 3 and the A-th Fourier coefficient c4,l(A) of E4,l is given by

c4,l(A) = 22F(m−2)
p0

(
A1 −

1

4
RA−1

2
tR, ξA2

(p0)pl−m
0

)
×

∏
p6=p0

F(m−2)
p

(
A2 −

1

4
tRA−1

1 R, ξA1
(p)pl−m

)
×

{
L(3 − l, ξA) if m = 4

ζ(5 − 2l) if m = 3
,

Now put Gl,(k,4)(Z1, Z2) = Φl,(k,4)(E4,l)

((
Z1 O

O Z2

))
. Assume that Gl,(k,4)(Z1, Z2)

belongs to belongs to Sk,4(Γ2) ⊗ Sk,4(Γ2). Then, by the remark before Proposition
7.3, Gl,(k,4)(Z1, Z2) can be written as

Gl,(k,4)(Z1, Z2) =
∑

A,B∈H2(Z)>0

εl,(k,4)(A1, A2; U) exp(2πitr(A1Z1 + A2Z2)),

where

εl,(k,4)(A1, A2; U) =
∑

R∈M2(Z)

c4,l

((
A1 R/2

tR/2 A2

))
φl,(k,4)

((
A1 R/2

tR/2 A2

)
, U

)
.

Now we have computed εl,(k,4) exactly in some cases with Mathematica.

Theorem 7.9. With the above notation, we have

ε8,(10,4)(A2, 12;U) = 10391040(u2
1 + u1u2 + u2

2)2 ⊗ (u4
3 − 9u2

3u2
4 + u4

4)

and

ε10,(10,4)(A2, 12;U) = −17−1 · 10886400(u2
1 + u1u2 + u2

2)2 ⊗ (u4
3 − 9u2

3u2
4 + u4

4),

where A2 =

(
1 1/2

1/2 1

)
and 12 =

(
1 0

0 1

)
.



SOME SIEGEL MODULAR STANDARD L-VALUES, AND SHAFAREVICH-TATE GROUPS 29

Now we note that dimM10,4(Γ2) = dim S10,4(Γ2) = 1. Fix a Hecke eigenform F

of S10,4(Γ2). Then by Propositions 7.1 and 7.4, for l = 8, 10, we have

Gl,(10,4)(Z1, Z2) = c−1
l,(10,4)Λ(F, l − 2,St)(F(−Z1) ⊗ F(Z2)).

Thus we have

Corollary 7.10. We have

Λ(F, 6,St) = 10391040 c8,(10,4), and Λ(F, 8, St) = −17−1 · 10886400 c10,(10,4).

We note that we have

10391040/(17−1 · 10886400) = 2 · 3−3 · 5−1 · 7−1 · 11 · 17 · 41.

Thus by Proposition 7.7 we have

Theorem 7.11. With the above notation, we have

ord41(Λ(F, 6,St)/Λ(F, 8, St)) = 1.

We note that

Λ(F, 6,St)/Λ(F, 8,St) = −ρ10,2/ρ10,026π6L(F, 6,St)/L(F, 8,St).

Thus we have

Corollary 7.12. We have

ord41(π6L(F, 6, St)/L(F, 8, St)) = 1.

8. Computational support for Conjecture 5.4: k = 11,m = 10, ` = 97.

The method of the following calculation is the same as we outlined in the last
section. First, letting d = 2k − 2, we define a polynomial φk−1,(k,10)(S, U) as

φk−1,(k,10)(S, U) =
(
−2(d + 10)(d + 8)(d + 18)(d + 16)(d + 14)(d + 12)s10

+20(d + 16)(d + 14)(5d + 36)(d + 12)(d + 10)s8m0

−540(d + 14)(d + 12)(d + 10)(3d + 20)s6m2
0 + 5040(d + 10)(2d + 13)(d + 12)s4m3

0

−3150(d + 10)(7d + 48)s2m4
0 + 11340(d + 8)m5

0

)
det(T)

+(5(d + 10)(d + 14)(d + 18)(d + 12)(d + 16)s8

−180(d + 10)(d + 14)(d + 12)(d + 16)s6m0

+1890(d + 10)(d + 14)(d + 12)s4m2
0 − 6300(d + 12)(d + 10)s2m3

0

+4725(d + 10)m4
0)Q0.

Next, letting now d = 2k − 6, we define a polynomial φk−3,(k,10)(S, U) by

φk−3,(k,10)(S, U) =

51∑
ν=1

wνfν,
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where

w1 = 4725(d + 14)(d + 21)(11d2 + 143d + 18)

w2 = −18900(d + 14)(d + 21)(3d2 + 45d + 20)(d + 16)

w3 = 13230(d + 14)(d + 21)(d2 + 17d + 18)(d + 18)(d + 16)

w4 = −180(d + 14)(d + 20)(d + 21)(5d2 + 95d + 216)(d + 18)(d + 16)

w5 = 15(d + 14)(20 + d)(d + 11)(d + 10)(d + 22)(d + 21)(d + 18)(d + 16)

w6 = 198450(d + 14)(d + 10)(d + 21)

w7 = −37800(d + 14)(d + 21)(9d + 64)(d + 16)

w8 = 3780(d + 14)(37d + 162)(d + 21)(d + 18)(d + 16)

w9 = −1080(d + 14)(20 + d)(d + 21)(17d + 40)(d + 18)(d + 16)

w10 = 30(d + 14)(20 + d)(23d + 22)(d + 22)(d + 21)(d + 18)(d + 16)

w11 = 37800(d + 14)(d + 21)(d + 16)(d − 3)

w12 = −37800(d + 14)(d + 21)(d + 18)(d − 3)(d + 16)

w13 = 7560(d + 14)(20 + d)(d − 3)(d + 21)(d + 18)(d + 16)

w14 = −360(d + 14)(20 + d)(d + 22)(d + 21)(d − 3)(d + 18)(d + 16)

w15 = 37800(d + 14)(d + 21)(d + 16)(d − 3)

w16 = −37800(d + 14)(d + 21)(d + 18)(d − 3)(d + 16)

w17 = 7560(d + 14)(20 + d)(d − 3)(d + 21)(d + 18)(d + 16)

w18 = −360(d + 14)(20 + d)(d + 22)(d + 21)(d − 3)(d + 18)(d + 16)

w19 = 3780(d + 21)(44d3 + 957d2 + 4993d − 210)

w20 = −9450(d + 14)(d + 21)(39d3 + 831d2 + 3614d − 1720)

w21 = 52920(d + 14)(d + 21)(3d3 + 70d2 + 317d − 258)(d + 16)

w22 = −180(d + 14)(115d3 + 3015d2 + 16034d − 11184)(d + 21)(d + 18)(d + 16)

w23 = 420(d + 14)(20 + d)(d + 10)(d + 21)(2d2 + 39d + 7)(d + 18)(d + 16)

w24 = −6(d + 14)(20 + d)(d + 11)(d + 10)(d + 12)(d + 21)(d + 22)(d + 18)(d + 16)

w25 = 476280(d + 10)(d + 12)(d + 21)

w26 = −132300(d + 21)(d + 14)(9d + 70)(d + 10)

w27 = 211680(d + 14)(d + 21)(4d + 27)(d + 6)(d + 16)

w28 = −1080(d + 14)(d + 21)(209d2 + 2020d + 3252)(d + 18)(d + 16)

w29 = 120(d + 14)(20 + d)(d + 21)(187d2 + 1614d − 64)(d + 18)(d + 16)

w30 = −36(d + 14)(20 + d)(d + 10)(19d − 22)(d + 22)(d + 21)(d + 18)(d + 16)
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w31 = 132300(d + 21)(d + 10)(d + 14)(d − 3)

w32 = −151200(d + 14)(d + 21)(2d + 15)(d − 3)(d + 16)

w33 = 7560(d + 14)(d + 21)(17d + 130)(d + 18)(d − 3)(d + 16)

w34 = −1440(d + 14)(11d + 95)(d − 3)(20 + d)(d + 21)(d + 18)(d + 16)

w35 = 540(d + 14)(20 + d)(d + 22)(d + 10)(d − 3)(d + 21)(d + 18)(d + 16)

w36 = 132300(d + 21)(d + 10)(d + 14)(d − 3)

w37 = −151200(d + 14)(d + 21)(2d + 15)(d − 3)(d + 16)

w38 = 7560(d + 14)(d + 21)(17d + 130)(d + 18)(d − 3)(d + 16)

w39 = −1440(d + 14)(11d + 95)(d − 3)(20 + d)(d + 21)(d + 18)(d + 16)

w40 = 540(d + 14)(20 + d)(d + 22)(d + 10)(d − 3)(d + 21)(d + 18)(d + 16)

w41 = 14175(d + 14)(d + 21)(d3 + 3d2 + 4d + 116)

w42 = −18900(d + 14)(d + 21)(d3 + 7d2 + 8d + 68)(d + 16)

w43 = 5670(d + 14)(d + 21)(d3 + 11d2 + 20d − 4)(d + 18)(d + 16)

w44 = −540(d + 14)(20 + d)(d + 10)(d + 21)(d2 + 5d − 10)(d + 18)(d + 16)

w45 = 15(d + 14)(20 + d)(d + 11)(d + 10)(d + 22)(d + 21)(d − 2)(d + 18)(d + 16)

w46 = 3780(d + 21)(8d4 + 129d3 + 361d2 + 1530d + 12600)

w47 = −9450(d + 14)(d + 21)(5d4 + 101d3 + 530d2 + 1288d + 5888)

w48 = 17640(d + 14)(d + 21)(d4 + 24d3 + 173d2 + 426d + 648)(d + 16)

w49 = −180(d + 14)(d + 10)(d + 21)(13d3 + 227d2 + 876d + 144)(d + 18)(d + 16)

w50 = 60(d + 14)(20 + d)(d + 11)(d + 10)(2d2 + 19d − 4)(d + 21)(d + 18)(d + 16)

w51 = −2(d + 14)(20 + d)(d + 11)(d + 10)d(d + 12)(d + 21)(d + 22)(d + 18)(d + 16)

and

f1 = Q0P1m4
0, f2 = Q0P1m3

0s2, f3 = Q0P1m2
0s4, f4 = Q0P1m0s6, f5 = Q0P1s8,

f6 = Q0P2m4
0, f7 = Q0P2m3

0s2, f8 = Q0P2m2
0s4, f9 = Q0P2m0s6, f10 = Q0P2s8,

f11 = Q0Q1m3
0, f12 = Q0Q1m2

0s2, f13 = Q0Q1m0s4, f14 = Q0Q1s6, f15 = Q0Q2m3
0,

f16 = Q0Q2m2
0s2, f17 = Q0Q2m0s4, f18 = Q0Q2s6, f19 = det(T)P1m5

0, f20 = det(T)P1m4
0s2,

f21 = det(T)P1m3
0s4, f22 = det(T)P1m2

0s6, f23 = det(T)P1m0s8, f24 = det(T)P1s10, ,

f25 = det(T)P2m5
0, f26 = det(T)P2m4

0s2, f27 = det(T)P2m3
0s4, f28 = det(T)P2m2

0s6,

f29 = det(T)P2m0s8, f30 = det(T)P2s10, f31 = det(T)Q1m4
0, f32 = det(T)Q1m3

0s2,

f33 = det(T)Q1m2
0s4, f34 = det(T)Q1m0s6, f35 = det(T)Q1s8, f36 = det(T)Q2m4

0,

f37 = det(T)Q2m3
0s2, f38 = det(T)Q2m2

0s4, f39 = det(T)Q2m0s6, f40 = det(T)Q2s8,

f41 = det(T)2Q0m4
0, f42 = det(T)2Q0m3

0s2, f43 = det(T)2Q0m2
0s4, f44 = det(T)2Q0m0s6,

f45 = det(T)2Q0s8, f46 = det(T)3m5
0, f47 = det(T)3m4

0s2, f48 = det(T)3m3
0s4,

f49 = det(T)3m2
0s6, f50 = det(T)3m0s8, f51 = det(T)3s10.

For ν = 1, 3 put

Φk−ν,(k,10) = φk−ν,(k,10)

(
∂

∂Z
,U

) ∣∣∣∣
Z12=O2

.
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Then by a more elaborate calculation than that in the previous section, we can
show the following.

Proposition 8.1. Assume that k ≥ 4, and let l = k−1 or k−3. Define a polynomial
Pl,(k,10)(X1, X2) by

Pl,(k,10)(X1, X2) = φl,(k,10)

((
X1

tX1 X1
tX2

X2
tX1 X2

tX2

)
, U

)
for X1, X2 ∈ M2,2l(C). Then Pl,(k,10)(X1, X2) is a polynomial mapping from M2,2l(C)×
M2,2l(C) to V

(10)
2,1 ⊗ V

(10)
2,2 , and satisfies the conditions D-1∼D-3 stated above for

the representation τ2;k−l,10.

We can calculate cl,(k,10) similarly as before and we have

ck−1,(k,10) = −
23

10!
× 1

(k − 2)(k + 4)5(k)10

ck−3,(k,10) = −
2

10!
× 1

(2k − 9)(2k + 15)(k − 4)3(k + 4)5(k)10

Thus similarly to Proposition 7.6 we have

Proposition 8.2. Assume that k ≥ 4, and let l = k − 1 or k − 3. Then we have

Dl,(k,10) = cl,(k,10)Φl,(k,10)

with a non-zero rational number cl,(k,10), and in particular cl,(k,10) is a p-unit for
a prime number p > 2k + 15.

Now for l = k−1, k−3, put Gl,(k,10)(Z1, Z2) = Φl,(k,10)

(
E4,l

((
Z1 O

O Z2

)))
.

Then, similarly to Section 7, Gk,l,m(Z1, Z2) can be written as

Gl.(k,10)(Z1, Z2) =
∑
A,B

εl,(k,10)(A1, A2;U) exp(2πitr(A1Z1 + A2Z2)),

where

εl,(k,10)(A1, A2;U) =
∑

R∈M2(Z)

c4,l

((
A1 R/2

tR/2 A2

))

×φl,(k,10)

((
A1 R/2

tR/2 A2

)
, U

)
.

Then similarly to Theorem 7.8, we have

Theorem 8.3. Let the notation be as in Theorem 7.9. Then

ε8,(11,10)(A2, 12; U) = 61498907532000u1u2(u2
1−u2

2)(2u1+u2)(u1+2u2)(u2
1+u1u2+u2

2)2

⊗u3u4(u4
3 − u4

4)(5u4
3 − 8u2

3u2
4 + 5u4

4),

and

ε10,(11,10)(A2, 12;U) = −276449241600u1u2(u2
1−u2

2)(2u1+u2)(u1+2u2)(u2
1+u1u2+u2

2)2

⊗u3u4(u4
3 − u4

4)(5u4
3 − 8u2

3u2
4 + 5u4

4).
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Note that dimS11,10(Γ2) = 1. Fix a Hecke eigenform G of S11,10(Γ2). Then by
Propositions 7.1 and 7.4, for l = 8, 10, we have

Gl,(11,10)(Z1, Z2) = c−1
l,(11,10)Λ(G, l − 2,St)(G(−Z1) ⊗ F(Z2)).

Thus we have

Corollary 8.4.

Λ(G, 6,St) = 61498907532000 c8,(11,10) and Λ(G, 8,St) = −276449241600 c10,(11,10).

Note that

61498907532000/276449241600 = 2−4 · 5 · 7−1 · 172 · 37 · 61 · 97 · 12697−1.

Thus we have

Theorem 8.5. With the above notation,

ord97(Λ(G, 6,St)/Λ(G, 8, St)) = 1.

Corollary 8.6.
ord97(π6L(G, 6, St)/L(G, 8, St)) = 1.
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[FvdG] C. Faber, G. van der Geer, Sur la cohomologie des systèmes locaux sur les espaces de
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