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ON SOLUTIONS TO WALCHER’S EXTENDED HOLOMORPHIC
ANOMALY EQUATION

YUKIKO KONISHI AND SATOSHI MINABE

Abstract. We give a generalization of Yamaguchi–Yau’s result to Walcher’s extended

holomorphic anomaly equation.

1. Introduction

Let X be a nonsingular quintic hypersurface in CP
4. The case of the X and its mirror is

the most well-studied example of the mirror symmetry. After the construction of the mirror

family of Calabi–Yau threefolds [10], the genus zero Gromov–Witten (GW) potential of

X were computed via the Yukawa coupling of the mirror family [4]. The predicted mirror

formula was proved first by Givental [7].

For higher genera, Bershadsky–Cecotti–Ooguri–Vafa (BCOV) [2] has predicted that the

GW potential at genus g is obtained as a certain limit of the B-model closed topological

string amplitude F (g) of genus g 1. They have also proposed a partial differential equation

(PDE) for F (g), called the BCOV holomorphic anomaly equation, which determines F (g)

up to a holomorphic function. The prediction of BCOV for the genus one GW potential

was proved by Zinger [21].

Recently the open string analogue of the mirror symmetry has been developed by

Walcher [18] for the pair (X,L) of the quintic 3-fold X defined over R (called a real

quintic) and the set of real points L = X(R) which is a Lagrangian submanifold of X.

Open mirror symmetry gave the prediction for the generating function for the disc GW in-

variants of X with boundary in L and it was proved by Pandharipande–Solomon–Walcher

[16]. Then, Walcher [19] further proposed the open string analogue of BCOV, the ex-

tended holomorphic anomaly equation, which is a PDE for the B-model topological string

amplitude F (g,h) for world-sheets with g handles and h boundaries 2.

At present there are two ways to solve the BCOV holomorphic anomaly equation. The

one is to repeatedly use the identity called the special geometry relation, or equivalently

to draw Feynman diagrams associated to the perturbative expansion of a certain path

integral [2]. The other is to solve the system of PDE’s due to Yamaguchi–Yau [20]. They

showed that F (g) multiplied by (g − 1)-th powers of the Yukawa coupling, is a polynomial

2000 Mathematics Subject Classification. Primary 14J32; Secondary 14N35, 14J81.
1For genus g = 0, the third covariant derivative of F(0) is the Yukawa coupling, and for g = 1, it is

recently proved that F(1) is the Quillen’s norm function [6]. For genus g ≥ 2, the mathematical definition

of F(g) is yet to be known.
2There is also a proposal by Bonelli–Tanzini [3].
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2 YUKIKO KONISHI AND SATOSHI MINABE

in finite number of generators and rewrite the holomorphic anomaly equation as PDE’s

with respect to these generators. This result were then reformulated into a more useful

form by Hosono–Konishi [12, §3.4].
It is a natural problem to generalize these methods to Walcher’s extended holomor-

phic anomaly equation. The generalization of the Feynman rule method can be obtained

from the result of Cook–Ooguri–Yang [5]. The objective of this article is to generalize

Yamaguchi–Yau’s and Hosono–Konishi’s results to the extended holomorphic anomaly

equation. It gives more tractable method in computations than the one given by the

Feynman rule.

The organization of the paper is as follows. In Section 2, we recall the special Kähler

geometry of the B-model complex moduli space and Walcher’s extended holomorphic

anomaly equation. We also describe the Feynman rule. In Section 3, we rewrite the holo-

morphic anomaly equation as PDE’s (Theorem 13). In Section 4, we compute several BPS

numbers by fixing holomorphic ambiguities with certain assumptions. The assumptions in

this section are experimental in a sense. In appendices we include the Feynman diagrams

and the solution of the PDE’s for (g, h) = (0, 4).

After we finished writing this paper, we were informed that Alim–Länge [1] also obtained

a generalization of Yamaguchi–Yau’s result.

Acknowledgments. Y.K. thanks Shinobu Hosono for valuable discussions and helpful

comments. This work was initiated when S.M. was staying at Institut Mittag-Leffler

(Djursholm, Sweden). He would like to thank the institute for support. The authors are

also grateful to J.D. Länge and T. Okuda for informing them of the work of [1] at the

5th Simons Workshop on Mathematics and Physics held at Stony Brook. The work of

Y.K. is partly supported by JSPS Research Fellowships for Young Scientists. Research of

S.M. is supported in part by 21st Century COE Program at Department of Mathematics,

Hokkaido University.

2. Walcher’s extended holomorphic anomaly equation

2.1. Special Kähler geometry. Recall the mirror family of the quintic hypersurface

X ⊂ P
4 constructed in [10]. Let Wψ be the hypersurface in P

4 defined by

4∑
i=0

x5
i − 5ψ

4∏
i=0

xi = 0.

After taking the quotient by (Z/5Z)3 and a crepant resolution Yψ of Wψ/(Z/5Z)3, we

obtain a one-parameter family of Calabi–Yau threefolds π : Y → Mcpl := P
1 \ {0, 1

55 ,∞},
where a local coordinate z of Mcpl is given by z = (5ψ)−5.

Consider the variation of Hodge structure of weight three on the middle cohomology

groups H3(Yz, C). Let 0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = R3π∗C ⊗ OMcpl
be the Hodge

filtration and ∇ be the Gauss–Manin connection. The holomorphic line bundle L := F 3

over Mcpl is called the vacuum line bundle (the fiber of L at z is H3,0(Yz)). Let Ω(z) be
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a local holomorphic section trivializing L, i.e. a nowhere vanishing (3, 0)-form on Yz. The

Yukawa coupling Czzz is define by

Czzz :=
∫

Xz

Ω(z) ∧ (∇∂z)
3Ω(z),

which is a holomorphic section of Sym3(T ∗
Mcpl

)⊗ (L∗)2, where T ∗
Mcpl

denotes the holomor-

phic cotangent bundle of Mcpl. A suitable choice of Ω(z) gives ([4])

Czzz =
5

(1 − 55z)z3
.

It also gives the following Picard–Fuchs operator D which governs the periods of Ω(z) :

D = θ4
z − 5z(θz + 1)(θz + 2)(θz + 3)(θz + 4),

where θz = z d
dz .

Consider the pairing

(φ,ψ) :=
√
−1

∫
Yz

φ ∧ ψ, φ, ψ ∈ H3(Yz, C).

Then ( , ) induces a Hermitian metric on L. Let K(z, z̄) := − log(Ω(z),Ω(z)). This

defines a Kähler metric (the Weil-Peterson metric) Gzz̄ := ∂z∂z̄K on Mcpl. There is a

unique holomorphic Hermitian connection D on (TMcpl
)m ⊗ Ln whose (1, 0)-part Dz is

given by

Dz = ∂z + mΓz
zz + n(−∂zK) ,

where Γz
zz = Gzz̄∂zGzz̄. An important property of Gzz̄ is the following identity called the

special geometry relation [17]

(1) ∂z̄Γz
zz = 2Gzz̄ − CzzzCz̄z̄z̄e

2KGzz̄Gzz̄,

where Cz̄z̄z̄ := Czzz.

Now we introduce the open disk amplitude with two insertions 	zz, which is the open-

sector analogue of the Yukawa coupling. Let T be a holomorphic section of L∗ locally

given by

(2) T = 60 τ(z), τ(z) =
∞∑

n=0

(7
2 )5n

((3
2 )n)5

zn+ 1
2 .

Here (α)n is the Pochhammer symbol : (α)n := α(α + 1) · · · (α + n − 1) for n > 0 and

(α)0 := 1. T is a solution to

(3) DT =
60
24

√
z.

Following [19], we define a C∞–section 	zz of Sym2(T ∗
Mcpl

) ⊗ L∗ by

(4) 	zz = DzDzT − eKCzzz

Gzz̄
Dz̄T ,

where Dz̄ = ∂z̄ + ∂z̄K denotes the (0, 1)-part of D. By (1), it follows that 	zz satisfies

the equation

(5) ∂z̄	zz = −Czzze
KGzz̄	z̄z̄,
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where 	z̄z̄ := 	zz.

Remark 1. In [19], it is argued that T and 	zz should be written as

T (z) =
∫

Yz

Ω(z) ∧ ν̃(z), 	zz =
∫

Yz

Ω(z) ∧∇2ν̃(z),

where ν̃ is a C∞–section of the Hodge bundle F 0 which is the ‘real horizontal lift’ of a

certain Griffiths normal function ν associated to a family of homologically trivial 2-cycles
3. The normal function ν should be determined from the Lagrangian submanifold L ⊂ X

under the mirror symmetry with D-branes.

2.2. Extended holomorphic anomaly equation. Let F (g,h) be the B-model topolog-

ical string amplitude of genus g with h boundaries, and let

F (g,h)
0 := F (g,h), F (g,h)

n := DzF (g,h)
n−1 (n ≥ 1).

F (g,h)
n is a C∞–section of the line bundle (T ∗

Mcpl
)n ⊗ L2g−2+h. For (g, h) = (0, 0), (0, 1),

(6) F (0,0)
3 = Czzz, F (0,1)

2 = 	zz.

For (g, h) = (1, 0), (0, 2)4,

F (1,0)
1 =

1
2
∂z log

(
e(4− χ

12
)KGzz̄

−1(1 − 55z)−
1
6 z−1− c2·H

12

)
,

F (0,2)
1 = −	zz	z − 1

2
Czzz	z	z +

N

2
∂zK + f (0,2), f (0,2) =

75
2(1 − 55z)

,
(7)

where χ = −200, c2 · H = 50, N = 1 and 	z = − �zz

Czzz
(cf. §2.3).

As in [19], define

Czz
z̄ = Cz̄z̄z̄e

2KGzz̄
−2 , 	z

z̄ = 	z̄z̄e
KGzz̄

−1 .

Then Walcher’s extended holomorphic anomaly equation for (g, h) �= (0, 0), (1, 0), (0, 1), (0, 2)

is as follows.

∂z̄F (g,h) =
1
2
Czz

z̄

( ∑
g1,g2,h1,h2

F (g1,h1)
1 F (g2,h2)

1 + F (g−1,h)
2

)
−	z

z̄F
(g,h−1)
1 .(8)

In the RHS, the summation is over g1, h1, g2, h2 ≥ 0 satisfying g1 + g2 = g, h1 + h2 = h

and (g1, h1), (g2, h2) �= (0, 0), (0, 1). The second and the third terms in the RHS should be

set to zero if g = 0 and h = 0, respectively.

3By definition, ν is a holomorphic and horizontal section of the intermediate Jacobian fibration J 3 →
Mcpl of Y → Mcpl. See, e.g., [9, 11].

4F(1,0)
1 and F(0,2)

1 are solutions to the following (extended) holomorphic anomaly equations [2][19].

∂z̄F(1,0)
1 =

1

2
CzzzC

zz
z̄ −

“ χ

24
− 1

”
Gzz̄, ∂z̄F(0,2)

1 = −�zz�z
z̄ +

N

2
Gzz̄.
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2.3. Propagators and Terminators. We introduce the propagators Szz, Sz, S and the

terminators 	z,	 [2, 19]. By definition, they are solutions to

∂z̄S
zz = Czz

z̄ , ∂z̄S
z = SzzGzz̄, ∂z̄S = SzGzz̄,

∂z̄	z = 	z
z̄, ∂z̄	 = 	zGzz̄.

(9)

These equation can be solved by using (1) and (5). The solutions of the propagators are

[2, p.391].

Szz =
1

Czzz

(
2∂z log(eK |f |2) − ∂z log(vGzz̄)

)
,

Sz =
1

Czzz

(
(∂z log(eK |f |)2 − v−1∂zv∂z log(eK |f |2)

)
,

S =
(
Sz − 1

2
DzS

zz − 1
2
(Szz)2Czzz

)
∂z log(eK |f |2) +

1
2
DzS

z +
1
2
SzzSzCzzz .

(10)

Here f, v are holomorphic functions of z. We take f = z−
1
5 and v = dz

dψ (z = 1
55ψ5 ) so that

Szz, Sz, S do not diverge at z = ∞5. Solutions of the terminators are [19, (3.12)]

(11) 	z = −	zz

Czzz
, 	 = Dz	z.

2.4. Feynman Rule. We describe the Feynman rule which gives a solution to (8).

For non-negative integers g,h,m, and n, we define C̃
(g,h)
n:m recursively as follows.

C̃
(0,0)
0:m = C̃

(0,0)
1:m = C̃

(0,0)
2:m = 0,(12)

C̃
(0,1)
0:m = C̃

(0,1)
1:m = 0,(13)

C̃
(0,2)
0:1 = −N

2
,(14)

C̃
(1,0)
0:0 = 0, C̃

(1,0)
0:1 =

χ

24
− 1,(15)

C(g,h)
n = F (g,h)

n if 2g − 2 + h + n ≥ 1,(16)

C̃
(g,h)
n:0 = C(g,h)

n , if 2g − 2 + h + n ≥ 1,(17)

C̃
(g,h)
n:m+1 = (2g − 2 + h + n + m)C̃(g,h)

n:m .(18)

Definition 2. A Feynman diagram G is a finite labeled graph

G = (V ;Ein
0 , Ein

1 , Ein
2 , Eout

0 , Eout
1 ; j),

which consists of the following data.

(i) Each vertex v ∈ V is labeled by a pair of non-negative integers (gv, hv).

(ii) There are three kinds of inner edges Ein = Ein
0 � Ein

1 � Ein
2 and two kinds of outer

edges Eout = Eout
0 � Eout

1 . The end points of the edges are specified by the collection of

maps j = (jin
0 , jin

1 , jin
2 , jout

0 , jout
1 ) :

jin
0 : Ein

0 → (V × V )/σ, jin
1 : Ein

1 → V × V, jin
2 : Ein

2 → (V × V )/σ,

jout
0 : Eout

0 → V, jout
1 : Eout

0 → V,

where σ : V × V → V ×V is the involution interchanging the first and the second factors.

5If rewritten in the ψ-coordinate, (10) are the same as those used in [19, 3.11][20, (2.21)].
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In a more plain language, an edge of type Ein
i has both endpoints attached to vertices,

and an edge of type Eout
i has only one endpoint attached to a vertex. We represent edges

of types Ein
0 and Eout

0 by solid lines, edges of types Ein
2 and Eout

1 by dashed lines and an

edge of type Ein
1 by a half-solid, half-dashed line. See Fig. 1.

For a vertex v ∈ V , we set

Li,v = {e ∈ Ein
i | jin

i (e) = {v, v}}, Li =
⊔

v∈V Li,v, (i = 0, 2),

L1,v = {e ∈ Ein
1 | jin

1 (e) = (v, v)}.

In other words, Li,v is the number of self-loops attached to the vertex v whose edges are

of the type Ein
i . Define non-negative integers nin

v , nout
v , min

v and mout
v by

nin
v = #{e ∈ Ein

2 | v ∈ jin
2 (e)} + #{e ∈ Ein

1 | jin
1 (e) = (v, ∗)} + #L2,v + #L1,v,

min
v = #{e ∈ Ein

0 | v ∈ jin
0 (e)} + #{e ∈ Ein

1 | jin
1 (e) = (∗, v)} + #L0,v + #L1,v,

nout
v = #{e ∈ Eout

1 | v ∈ jout
1 (e)}, mout

v = #{e ∈ Eout
0 | v ∈ jout

0 (e)}.

The valence val(v) of v ∈ V is given by val(v) = nv + mv, where nv := nin
v + nout

v (the

number of solid lines attached to v), mv := min
v +mout

v (the number of dashed lines attached

to v). See Fig. 2.

Definition 3. (i) For a Feynman diagram G, define

(19) FG =
∏
v∈V

C̃(gv,hv)
nv:mv

·
∏

e∈Ein
0

(−2S) ·
∏

e∈Ein
1

(−Sz) ·
∏

e∈Ein
2

(−Szz) ·
∏

e∈Eout
0

∆ ·
∏

e∈Eout
1

∆z.

(ii) Let Aut(G) be the automorphism group of G. Define the group AG by

AG =
∏

e∈L0�L2

Z/2Z � Aut(G),

i.e. AG fits into the following exact sequence:

1 → (Z/2Z)#L0+#L2 → AG → Aut(G) → 1.

This means that each self-loop of type Ein
0 and Ein

2 contributes the factor 2 to #AG.

Definition 4. Let G(g, h) be the set of (isomorphism classes of) Feynman diagrams G

which satisfy the following conditions.

(i) G is connected.

(ii) For any v ∈ V , C̃
(gv,hv)
nv:mv �= 0.

(iii) G satisfies
∑

v∈V gv + #Ein − #V + 1 = g and
∑

v∈V hv + #Eout = h.

(iv) For any v ∈ V , val(v) > 0.

Note that the set G(g, h) is a finite set. Note also that the graph whose amplitude is

F (g,h), i.e. the graph with only one vertex with label (g, h) and without edges is not a

member of G(g, h) by (iv).
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(i)

e

�
v1

�
v2

= −2S

(ii)

e

�
v1

�
v2

= −Sz

(iii)

e

�
v1

�
v2

= −Szz

(iv)

e

�
v

� = ∆

(v)

e

�
v

� = ∆z

Figure 1. Three types of inner edges and propagators: (i) e ∈ Ein
0 ,

jin
0 (e) = {v1, v2}, (ii) e ∈ Ein

1 , jin
1 (e) = (v1, v2), (iii) e ∈ Ein

2 , jin
2 (e) =

{v1, v2}. Two types of outer edges and terminators: (iv) e ∈ Eout
0 ,

jout
0 (e) = v, (v) e ∈ Eout

1 , jout
1 (e) = v.

v

�
�

�
�

�
�

�

������

nout
v lines

�

������

�

�
�

�
�

�
�

nin
v lines

�
�

�
�

��
��

��

��
��

��

�
�

�
�

��

�

�

min
v lines

mout
v lines

= C̃
(gv,hv)
nv:mv

Figure 2. A vertex v labeled by (gv , hv) to which nv = nin
v + nout

v solid

lines and mv = min
v + mout

v dashed lines are attached and its value.

Define

(20) F (g,h)
FD := −

∑
G∈G(g,h)

1
#AG

FG.

The next result follows from [5].

Proposition 5. ∂z̄F (g,h)
FD = the RHS of (8).

Therefore, the general solution F (g,h) of Walcher’s holomorphic anomaly equation is of

the form

(21) F (g,h) = F (g,h)
FD + f (g,h),

where f (g,h) is the holomorphic ambiguity which can not be determined from the equation

(8).
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2.5. Holomorphic ambiguity. Recall that the holomorphic ambiguity f (g,0) (g ≥ 2) is

of the form [2][20, (2.30)]

f (g,0) =
a0 + a1z + · · · + a2g−1z

2g−1

(1 − 55z)2g−2
+

� 2g−2
5

�∑
i=0

zj

for the closed sector h = 0. Huang–Klemm–Quackenbush [13] determined the holomorphic

ambiguity up to g ≤ 51 by using the vanishing of the BPS numbers ng
d (cf. footnote 4),

the gap condition at the conifold point z = 1
55 and the regularity condition at the orbifold

point z = ∞.

For h > 0, we assume that F (g,h) has poles of order at most 2g − 2 + h at z = 1
55 and

also that the asymptotic behaviour at z = ∞ is F (g,h) ∼ z
2g−2+h

2 [19, §3.3]. Therefore we

put the following ansatz for f (g,h):

f (g,h) =
a0 + a1z + · · · + a3g−3+ 3h

2
z3g−3+ 3h

2

(1 − 55z)2g−2+h
(h even),

f (g,h) =

√
z(a0 + a1z + · · · + a3g−3+ 3h−1

2
z3g−3+ 3h−1

2 )

(1 − 55z)2g−2+h
(h odd).

(22)

3. Polynomiality and PDE’s for F (g,h)

In this section, we consider extending Yamaguchi–Yau’s and Hosono–Konishi’s results

[20, 12] to F (g,h).

3.1. The generators of polynomial ring. Let θz = z ∂
∂z .

We define

Ap =
θzGzz̄

Gzz̄
, Bp =

θze
−K

e−K
(p = 1, 2, . . .) ,

Qp = z
1
2 θzT (p = 0, 1, 2, . . .) ,

R1 = z
5
2
eKCzzz

Gzz̄
Dz̄T , R2 = z

7
2 eKCzzzT .

(23)

The generators Ap’s and Bp’s were defined in [20]. The new ingredients are Qp’s, R1

and R2 which are necessary for incorporating 	zz.

Consider the polynomial ring

(24) I = C(z)[A1, B1, B2, B3, Q0, Q1, Q2, Q3, R1, R2]

with coefficients in the field of rational functions C(z).

Lemma 6. 1. Ap ∈ I (p ≥ 2), Bp ∈ I (p ≥ 4), Qp ∈ I (p ≥ 4).

2. θzI ⊆ I
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Proof. First, notice that the logarithmic derivation θz acts as follows:

θzAp = Ap+1 − ApA1 , θzBp = Bp+1 − BpB1 ,

θzQp =
1
2
Qp + Qp+1 ,

θzR1 =
(5

2
− A1 − B1 +

θzCzzz

Czzz

)
R1 + R2,

θzR2 =
(7

2
− B1 +

θzCzzz

Czzz

)
R2 .

(25)

Next we show A2, B4, Q4 ∈ I. By the special geometry relation (1), we have

(26) A2 = −2A1B1 + 2B2
1 + 2B1 − 4B2 +

θz(zCzzz)
zCzzz

(1 + A1 + 2B1) + h(z) .

Here h(z) is determined by comparing the behaviour of the RHS and the LHS at z = 0:

h(z) =
1 − 3 · 54z

1 − 55z
.

Let us write the Picard–Fuchs operator as D =
∑4

p=0 Hp(z)θz
p where Hp(z) ∈ C[z]. Since

De−K = 0, B4 satisfies

(27) B4 = −
3∑

p=1

Hp(z)
H4(z)

Bp −
H0(z)
H4(z)

= 0 .

Moreover, since T satisfies (3),

(28) Q4 = −
3∑

p=0

Hp(z)
H4(z)

Qp +
60
24

z.

These together with (25) implies that I is closed with respect to the logarithmic deriva-

tion θz. Moreover, by applying θz recursively, we can show that Ap ∈ I (p ≥ 3), Bp ∈ I

(p ≥ 5), Qp ∈ I (p ≥ 5). �

3.2. Polynomiality. For simplicity, we will use the notation

(29) V1 = A1 + 2B1 + 1, V2 = B2 − B1V1

from here on.

Since Dz acts on (TMcpl
)m ⊗ Ln as

Dz =
1
z
(θz + mA1 + nB1) ,

we have the following

Lemma 7. Let f be a section of (TMcpl
)m ⊗Ln. Then Dzf ∈ I if f ∈ I and Dzf ∈

√
zI

if f ∈ √
zI.

Lemma 8. F (g,h)
n ∈ z

h
2 I.
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Proof. We prove the lemma by induction on (g, h).

For (g, h) = (0, 0), (1, 0), (0, 1), (0, 2), the lemma is true since

F (0,0)
3 = Czzz ∈ I,

F (1,0)
1 =

1
2z

[
− A1 −

62
3

B1 −
31
6

− 1
6

θz(1 − 55z)
(1 − 55z)

]
∈ I,

F (0,1)
2 = 	zz = z−

5
2 [Q2 − V1Q1 − V2Q0 − R1] ∈

√
z I,

F (0,2)
1 =

1	zz

2Czzz
− B1

2z
+ f (0,2) ∈ I.

(30)

For (g, h) �= (0, 0), (1, 0), (0, 1), (0, 2), assume that F (g′,h′)
n ∈ z

h
2 I holds for every (g′, h′) �=

(g, h) such that g′ ≤ g and h′ ≤ h. Consider the contribution FG from a Feynman diagram

G ∈ G(g, h) to F (g,h)
FD (19). The assumption of the induction implies that a vertex factor

satisfies C̃
(gv,hv)
nv;mv ∈ z

hv
2 I. As for edge factors, the followings hold. From (10),

Szz =
1

zCzzz

(
− A1 − 2B1 −

8
5

)
∈ I, Sz =

1
z2Czzz

(
B2 + 3B1 +

2
25

)
∈ I.(31)

By Lemma 7, S also satisfies S ∈ I. Similarly by (30) the terminators (11) satisfy

	z,	 ∈
√

zI.

Therefore, by the condition (iii) in Definition 4, we have FG ∈ z
h
2 I and thus F (g,h)

FD ∈ z
h
2 I.

As to the holomorphic ambiguity f (g,h), it satisfies f (g,h) ∈ z
h
2 C(z) ⊂ z

h
2 I by assumption

(22). Therefore F (g,h) ∈ I. For n ≥ 1, F (g,h)
n ∈ I by Lemma 7. �

Definition 9. Let g, h, n ≥ 0 be integers satisfying 2g − 2 + h + n > 0. We define

(32) P (g,h)
n = (z3Czzz)g+h−1z

h
2 F (g,h)

n , P (g,h) := P
(g,n)
0 .

For other values of (g, h, n), we set P
(g,h)
n = 0.

Lemma 8 implies that

P (g,h)
n ∈ I.

Remark 10. Let x = z3Czzz = 5
1−55z . Consider the graded ring

C[x,A1, B1, B2, B3, Q0, . . . , Q3, R1, R2],

where the grading is given by deg x = 1, deg A1 = 1, deg Bp = p (p = 1, 2, 3), deg Qp = p

(p = 0, 1, 2, 3), deg R1 = 2 and deg R2 = 3. Then P (g,h) belongs to this ring and its degree

is at most 3(g + h − 1).

3.3. Rewriting the extended holomorphic anomaly equation (8). There are rela-

tions among the ∂z̄-derivatives of the generators (23).
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Lemma 11.

∂z̄B2 = V1∂z̄B1 ,

∂z̄B3 = (A2 + 2A1 + 3B1 + 3B2 + 3A1B1 + 1)∂z̄B1

=
(
− V2 +

θz(z3Czzz)
z3Czzz

V1 + h(z) − 1
)
∂z̄B1

∂z̄Qp = 0 (p = 0, 1, 2, . . .) ,

∂z̄R2 = −R1∂z̄B1 .

(33)

Proof. The first and the second equations were obtained from (1) in [20]. The third is

trivial since Qp’s do not depend on z̄. The calculation of ∂z̄R2 is as follows.

∂z̄R2 = zα+1Czzz(∂z̄ T̄ + ∂z̄K · T̄ ) = zGzz̄R1 = −R1∂z̄B1

where we have used the identity Gzz̄ = ∂z∂z̄K(z, z̄) = −∂z̄B1/z. �

If one assumes that ∂z̄A1, ∂z̄B1, ∂z̄R1 are independent, the Walcher’s extended holo-

morphic equation (8) is rewritten as follows.

Lemma 12. The equation (8) is equivalent to the system of PDE’s:[
− R1

∂

∂R2
− 2

∂

∂A1
+

∂

∂B1
+ V1

∂

∂B2
(34)

+
(
− V2 +

θz(z3Czzz)
z3Czzz

V1 + h(z) − 1
) ∂

∂B3

]
P (g,h) = 0 ,

∂P (g,h)

∂A1
= −1

2

( ∑
g1+g2=g,
h1+h2=h

P
(g1,h1)
1 P

(g2,h2)
1 + P

(g−1,h)
2

)
+ (B1Q0 − Q1)P

(g,h−1)
1 ,(35)

∂P (g,h)

∂R1
= −P

(g,h−1)
1 .(36)

Here the summation in (35) runs over (g1, h1), (g2, h2) such that (gi, hi) �= (0, 0), (0, 1).

Proof. By (8), we have

∂z̄P
(g,h) =

1
2
∂z̄(zCzzzS

zz) ·
( ∑

g1+g2=g,
h1+h2=h

P
(g1,h1)
1 P

(g2,h2)
1 + P

(g−1,h)
2

)

− ∂z̄(z
5
2 Czzz	z) · P (g,h−1)

1 .

Note that, by (31)(33),

∂z̄(zCzzzS
zz) = −(∂z̄A1 + 2∂z̄B1),

∂z̄(z
5
2 Czzz	z) = −(∂z̄A1 + 2∂z̄B1)(−Q1 + B1Q0) + ∂z̄R1 .

On the other hand, by (33), ∂z̄ in the LHS is as follows :

∂z̄ = ∂z̄R1
∂

∂R1
+ ∂z̄A1

∂

∂A1
+ ∂z̄B1

[
− R1

∂

∂R2
+

∂

∂B1
+ V1

∂

∂B2

+
(
− V2 +

θz(z3Czzz)
z3Czzz

V1 + h(z) − 1
) ∂

∂B3

]
.
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Inserting these and comparing the coefficients of ∂z̄A1, ∂z̄B1, ∂z̄R1, one obtains Lemma

12.

�

To write the equations in a more useful form, we change the generators. We define

u = B1, v1 = V1 +
3
5
, v2 = V2 +

2
25

,

v3 = B3 − B1

(
− V2 +

θz(z3Czzz)
z3Czzz

V1 + h(z) − 1
)

+ s(z),

m1 =
2
25

Q0 +
3
5
Q1 + Q2 − R1,

m2 = Q0

(
s(z) − 2

25
θz(z3Czzz)

z3Czzz

)
+ Q1

(23
25

− h(z)
)
− Q2

θz(z3Czzz)
z3Czzz

+ Q3 − R2 − B1R1,

(37)

where

(38) s(z) =
12
25

− 1
5
h(z) +

3
25

θz(z3Czzz)
z3Czzz

.

Define the ring

J := C(z)[u, v1, v2, v3, Q0, Q1, Q2, Q3,m1,m2].

It is isomorphic to I since (37) is invertible. Notice that θz : J → J increases the degree

in u at most by 1.

Now we regard P (g,h) ∈ J . Then (34) implies P (g,h) is independent of u. In turn,

P
(g,h)
n ∈ J has degree at most n in u. Following [12, (3-4.c)], let us define u-independent

polynomials Y0, Y1,W0,W1,W2 ∈ J by

Y0 + u Y1 = P
(g,h−1)
1 ,

W0 + uW1 + u2W2 = (the RHS of (35)).
(39)

Then applying the change of generators (37) to the equations (34)(35)(36), we obtain

Theorem 13. The equation (8) is equivalent to the following system of PDE’s for P (g,h) ∈
J :

∂

∂u
P (g,h) = 0,

∂

∂m1
P (g,h) = Y0,

∂

∂m2
P (g,h) = Y1,

∂

∂v1
P (g,h) = W0,

∂

∂v2
P (g,h) = −W1 +

θz(z3Czzz)
z3Czzz

W2,
∂

∂v3
P (g,h) = −W2.

(40)

Let us comment on the constant of integration. Decompose P (g,h) as

P (g,h) = P̂ (g,h) + P (g,h)|v1,v2,v3,m1,m2=0

where P̂ (g,h) consists of terms of degree ≥ 1 with respect to at least one of v1, v2, v3,m1,m2.

The equations (40) can determine P̂ (g,h), but not the second term. The latter is a priori
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a polynomial in Q0, Q1, Q2, Q3 with C(z) coefficients. However, the choice of the new

generators (37) is “good” (cf. [12, (3-4.d)]) so that we have the following

Proposition 14.

P (g,h)|v1,v2,v3,m1,m2=0 = (z3Czzz)g+h−1z
h
2 f (g,h).

Proof. We have

Szz = − v1

zCzzz
, Sz =

uv1 + v2

z2Czzz
,

S =
1

z3C

[
− 1

2
u2v1 −

(
u +

55z

2(1 − 55z)

)
v2 +

v3

2

]
,

	z =
1

z
5
2 Czzz

(−m1 + Q1v1 + Q0v2),

	 =
1

z
7
2 Czzz

[
um1 − m2 − uQ0v1 − v2

(
uQ0 +

55z

1 − 55z
Q0 + Q1

)
+ Q0v3

]
.

Notice that every monomial term in the propagators Szz, Sz, S and the terminators 	z,	
contains at least one of v1, v2, v3,m1,m2. Therefore the Feynman diagram part F (g,h)

FD of

F (g,h) has degree at least one with respect to one of v1, v2, v3,m1,m2 by (19)(20). This

implies that the first term in the RHS of

P (g,h) = (z3Czzz)g+h−1z
h
2 F (g,h)

FD + (z3Czzz)g+h−1z
h
2 f (g,h)

vanishes as v1, v2, v3,m1,m2 go to zero. This proves the proposition. �

4. Fixing holomorphic ambiguity and n
(g,h)
d

Let ω0(z),ω1(z), ω2(z), ω3(z) be the following solutions to the Picard–Fuchs equation

Dω = 0 about z = 0.

ωi(z) = ∂i
ρ

( ∑
n≥0

(5ρ + 1)5n

(ρ + 1)n
5 zn+ρ

)∣∣∣∣∣
ρ=0

.

Let t = ω1(z)/ω0(z) be the mirror map and consider the inverse z = z(q) where q = et.

Explicitly, these are

ω0(z) = 1 + 120z + 113400z2 + · · · ,

ω1(z) = ω0(z) log z + 770z + 810225z2 + · · · ,

t = 770z + 717825z2 +
3225308000

3
z3 + · · · ,

z = q − 770q2 + 171525q3 + · · · .

Let

(41) F
(g,h)
A = lim

z̄→0
F (g,h)ω0(z)2g+h−2,
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for (g, h) satisfying 2g + h − 2 > 0 6. The limit z̄ → 0 in the RHS means

Gzz̄ → dt

dz
, eK → ω0(z), 	zz → DzDzT .

Define n
(g,h)
d for h > 0 7 by the formula [15] [14] [19, (3.22)]:

the terms in positive powers in q of
∞∑

g=0

gs
2g+h−2F

(g,h)
A

=
∞∑

g=0

∑
d

∑
k

n
(g,h)
d

1
k

(
2 sin

kgs

2

)2g+h−2
q

kd
2 .

(42)

Here the summation of k is over positive odd integers and that of d is over positive even

(resp. odd) integers when h is even (resp. odd).

Remark 15. It is expected that F
(g,h)
A is the A-model topological string amplitude of

genus g with h boundaries for the real quintic 3-fold (X,L), and that n
(g,h)
d be the BPS

invariants in the class d ∈ H2(X,L;Z). See [7, 21] for (g, h) = (0, 0), (1, 0) and [18, 16] for

(g, h) = (0, 1).

In order to fix the holomorphic ambiguity, we put the following assumptions.

(i) If h is even, the q-constant term in F
(g,h)
A vanishes except for (g, h) = (0, 2).

(ii) n
(g,h)
d = 0 for d ≤ d0 where d0 is the smallest number necessary to completely deter-

mine unknown parameters in f (g,h). For example, d0 = 3 for (g, h) = (0, 3), (1, 1),

d0 = 6 for (g, h) = (1, 2), (0, 4) and d0 = 9 for (g, h) = (1, 3), (0, 5).

The numbers n
(g,h)
d obtained under these assumptions are listed in Tables 1 and 2.

Remark 16. The boundary conditions proposed in [19] are the condition (i) and the con-

dition that

(43) n
(g,h)
d = 0 if n2g+h−1

d = 0.

These do not give enough equations to fix the unknown parameters of f (g,h), unless (g, h) =

(0, 1), (0, 2), (0, 3), (1, 1). For this reason we assumed (ii) instead of (43).

Remark 17. For the cases listed in Tables 1 and 2, n
(g,h)
d turn out to be integers. However,

for (g, h) = (0, 7), (1, 5), (2, 1), the holomorphic ambiguities determined by our assump-

tions do not give integral n
(g,h)
d ’s.

6For (g, h) = (0, 0), (1, 0), (0, 1), (0, 2), one should consider

∂n
t F

(g,h)
A =

“dz

dt

”n

lim
z̄→0

F(g,h)
n ω2g+h−2

0

where n = 3, 1, 2, 1, respectively.
7For h = 0, the BPS number ng

d is defined by [8]

∞X
g=0

gs
2g−2F

(g,0)
A =

∞X
g=0

X
d>0

X
k>0

ng
d

1

k

“
2 sin

kgs

2

”2g−2

qkd + polynomial in log q.
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d n
(0,4)
d

2 0

4 0

6 0

8 −307669500

10 −1290543544800

12 −4192442370526500

14 −11974312128284645400

16 −31709386561589633978460

18 −79870219101822591783739800

20 −194146223749422074623095454800

d n
(0,5)
d

1 0

3 0

5 0

7 0

9 0

11 −101052180000

13 −6448499064000

15 2809704427965432000

17 19034205058652662269000

19 85987169904148441092385200

d n
(0,6)
d

2 0

4 0

6 0

8 0

10 0

12 0

14 10969992383850000

16 88807052603386080000

18 453871851092663617206000

20 1856308715086126538509560000

Table 1. n
(g,h)
d for (g, h) = (0, 4), (0, 5), (0, 6)

Remark 18. As a final remark, let us comment on the expansion about the conifold point

z = 1
55 . By expanding F (0,4) about z = 1

55 , we see that there is no gap condition such as

the one found in [13, (1.2)]. On the other hand, if one imposes the gap condition to F (0,4)

instead of n
(0,4)
6 = 0, then the integrality of n

(0,4)
d ’s does not hold.

Appendix A. Examples of Feynman diagrams

Feynman diagrams for F (0,3)
FD and F (1,1)

FD have been given in eqs. (2.109) and (2.108) of

[19] respectively (#G(0, 3) = #G(1, 1) = 4). For (g, h) = (0, 4), we have #G(0, 4) = 19.

See Fig. 3. It is clear that the number of Feynman diagrams grows rapidly as g and h

increase. For example, one can check that #G(0, 5) = 83, #G(1, 2) = 29, #G(2, 1) = 97.



16 YUKIKO KONISHI AND SATOSHI MINABE

d n
(1,1)
d

1 0

3 0

5 −222535

7 −472460880

9 −970639017980

11 −1925950714205525

13 −3771152449472734885

15 −7341083828377813532445

17 −14254813486499789264497980

19 −27655486644196368361422400900

d n
(1,2)
d

2 0

4 0

6 0

8 −1798092240

10 −3910898328975

12 −3254492224834500

14 11749281716111889000

16 75858033724596666836250

18 284100639663878543462155290

20 881568399267730913608111758000

d n
(1,3)
d

1 0

3 0

5 0

7 0

9 0

11 59476704611850

13 376498723243912410

15 1597793312432171312570

17 5622302692504776557418000

19 17697465511801448466779111250

d n
(1,4)
d

2 0

4 0

6 0

8 0

10 0

12 0

14 −510835096894879500

16 −4625213168889849497100

18 −26075494174267321098602160

20 −116382815077174964736448167150

Table 2. n
(g,h)
d for (g, h) = (1, 1), (1, 2), (1, 3), (1, 4)

Appendix B. f (0,4)
and P (0,4)

f (0,4) =
2 − 20125 z + 70618750 z2 − 86493078125 z3

10000 (1 − 3125 z)2 .

P (0,4) =
z2 (−2 + 20125 z − 70618750 z2 + 86493078125 z3)

80 (−1 + 3125 z)5
− z (2 − 9500 z + 16015625 z2) m1

2

20 (−1 + 3125 z)3

+
(−9 + 12500 z) m1

4

120 (−1 + 3125 z)
+

75 z2 (−1 + 3145 z) m2

4 (−1 + 3125 z)3
+

m1
3 m2

6
+

5 z m2
2

4 (−1 + 3125 z)

+ m1 (
375 z3 (−3 + 3125 z)

2 (−1 + 3125 z)4
+

375 z2 m2

2 (−1 + 3125 z)2
) − Q1

4 v1
5

8
+ (

(−3 + 25000 z) Q0
4

40 (−1 + 3125 z)
− Q0

3 Q1

6
) v2

4

+ v1
4 (

m1 Q1
3

2
+

(−9 + 12500 z) Q1
4

120 (−1 + 3125 z)
− Q0 Q1

3 v2

2
) + (

25 z2

8 (−1 + 3125 z)2
− 75 z2 (−1 + 3145 z) Q0

4 (−1 + 3125 z)3

− 375 z2 m1 Q0

2 (−1 + 3125 z)2
− m1

3 Q0

6
− 5 z m2 Q0

2 (−1 + 3125 z)
)v3 +

5 z Q0
2 v3

2

4 (−1 + 3125 z)

+ v2
2 (

z (−1 + 4750 z + 119921875 z2) Q0
2

10 (−1 + 3125 z)3
+ m1 (

−5 z Q0

2 (−1 + 3125 z)
+

m2 Q0
2

2
)

− 8000 z2 Q0 Q1

(−1 + 3125 z)2
+

5 z Q1
2

4 (−1 + 3125 z)
+ m1

2 (
(−9 + 43750 z) Q0

2

20 (−1 + 3125 z)
− Q0 Q1

2
) − m1 Q0

3 v3

2
)
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− = +

+ 1
2 + + 1

2

+ 1
6 + 1

2

+ 1
24 + 1

6

+ 1
8 + 1

2 + 1
2 + 1

2

+ 1
2 + +

+ 1
2 + + 1

2

Figure 3. The elements G in G(0, 4) and the orders of AG. The vertices

are expressed as bordered Riemann surfaces to visualize the labeling.

+ v2
3 (

5 z Q0
2

4 (−1 + 3125 z)
− m2 Q0

3

6
+ m1 (

−((−9 + 59375 z) Q0
3)

30 (−1 + 3125 z)
+

Q0
2 Q1

2
) +

Q0
4 v3

6
)

+ v1
3 (

−375 z2 Q1
2

4 (−1 + 3125 z)2
− 3 m1

2 Q1
2

4
− (−9 + 12500 z) m1 Q1

3

30 (−1 + 3125 z)
− m2 Q1

3

6

+ (
3 m1 Q0 Q1

2

2
+

3 Q0 Q1
3

10
− Q1

4

6
) v2 − 3 Q0

2 Q1
2 v2

2

4
+

Q0 Q1
3 v3

6
)

+ v2 (
81875 z3

8 (−1 + 3125 z)3
− 236625 z3 Q0

4 (−1 + 3125 z)3
+ m1

2 (
5 z

4 (−1 + 3125 z)
− m2 Q0

2
)

+ m1
3
(
−3 Q0

10
+

Q1

6
) +

75 z2 (−1 + 3145 z) Q1

4 (−1 + 3125 z)3
+ m1 (

z (−1 + 1625 z) Q0

5 (−1 + 3125 z)2
+

375 z2 Q1

2 (−1 + 3125 z)2
)

+ m2 (
−8000 z2 Q0

(−1 + 3125 z)2
+

5 z Q1

2 (−1 + 3125 z)
) + (

8000 z2 Q0
2

(−1 + 3125 z)2
+

m1
2 Q0

2

2
− 5 z Q0 Q1

2 (−1 + 3125 z)
) v3)

+ v1 (
−140625 z4

8 (−1 + 3125 z)4
− m1

4

8
− 375 z3 (−3 + 3125 z) Q1

2 (−1 + 3125 z)4
+

z (2 − 9500 z + 16015625 z2) m1 Q1

10 (−1 + 3125 z)3

− (−9 + 12500 z) m1
3 Q1

30 (−1 + 3125 z)
− 375 z2 m2 Q1

2 (−1 + 3125 z)2
+ m1

2 (
−375 z2

4 (−1 + 3125 z)2
− m2 Q1

2
)

+ (
m1 Q0

3

2
+

(−9 + 59375 z) Q0
3 Q1

30 (−1 + 3125 z)
− Q0

2 Q1
2

2
) v2

3 − Q0
4 v2

4

8

+ (
375 z2 Q0 Q1

2 (−1 + 3125 z)2
+

m1
2 Q0 Q1

2
) v3 + v2 (

m1
3 Q0

2
− z (−1 + 1625 z) Q0 Q1

5 (−1 + 3125 z)2
− 375 z2 Q1

2

2 (−1 + 3125 z)2
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+ m1 (
375 z2 Q0

2 (−1 + 3125 z)2
− 5 z Q1

2 (−1 + 3125 z)
+ m2 Q0 Q1) + m1

2 (
9 Q0 Q1

10
− Q1

2

2
) − m1 Q0

2 Q1 v3)

+ v2
2 (

−375 z2 Q0
2

4 (−1 + 3125 z)2
− 3 m1

2 Q0
2

4
+

5 z Q0 Q1

2 (−1 + 3125 z)
− m2 Q0

2 Q1

2

+ m1 (
−((−9 + 43750 z) Q0

2 Q1)

10 (−1 + 3125 z)
+ Q0 Q1

2) +
Q0

3 Q1 v3

2
))

+ v1
2 (

m1
3 Q1

2
− z (2 − 9500 z + 16015625 z2) Q1

2

20 (−1 + 3125 z)3
+

(−9 + 12500 z) m1
2 Q1

2

20 (−1 + 3125 z)

+ m1 (
375 z2 Q1

2 (−1 + 3125 z)2
+

m2 Q1
2

2
) + (

3 m1 Q0
2 Q1

2
+

(−9 + 43750 z) Q0
2 Q1

2

20 (−1 + 3125 z)
− Q0 Q1

3

2
) v2

2

− Q0
3 Q1 v2

3

2
− m1 Q0 Q1

2 v3

2
+ v2 (

−375 z2 Q0 Q1

2 (−1 + 3125 z)2
− 3 m1

2 Q0 Q1

2
+

5 z Q1
2

4 (−1 + 3125 z)

− m2 Q0 Q1
2

2
+ m1 (

−9 Q0 Q1
2

10
+

Q1
3

2
) +

Q0
2 Q1

2 v3

2
)).
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