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Blow-up at space infinity for nonlinear

heat equations

Yoshikazu Giga, Yukihiro Seki and Noriaki Umeda
Graduate School of Mathematical Sciences,

University of Tokyo,
3-8-1 Komaba, Meguro-ku Tokyo 153-8914, Japan

1 Introduction

This is a survey paper on blow-up phenemena at space infinity for nonlinear
heat equations. We are interested in a blow-up problem of the Cauchy
problem for nonlinear heat equations

{
ut = ∆u + f(u), x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN .
(1.1)

Here the nonlinear term f and initial data u0 are assumed to satisfy the
following conditions;

f is a locally Lipschitz continuous function in [0,∞) and

fulfills f(ξ) > 0 for ξ > 0 and
∫ ∞

1

dξ

f(ξ)
< ∞;

(A1)

u0 is a nonnegative bounded continuous function in RN . (A2)

The last condition of (A1) forces f to grow superlinearly at infinity.
A nonlinear evolution equation may have a unique local-in-time solution

in a suitable function space and it can be extend as a solution together
with evolution of time so long as it belongs to the function space. However,
in general, the Cauchy problem is not solvable globally in time; a solution
may blow up in finite time. That is, there may exist a finite time T < ∞
such that the solution ceases to exist in the function space at the time T .
This phenomenon is called blow-up in finite time and we call such a time T
blow-up time. The Cauchy problem (1.1) has a unique local-in-time solution
u = u(·, t) in L∞(RN ) for any nonnegative initial data u0 ∈ L∞(RN ).
However, it may blow up in finite time. For instance, if the initial data does
not decrease at space infinity, the solution of (1.1) does blow up in finite time.
We are interested in the blow-up times of solutions and detailed behavior
of solutions at the blow-up times. In particular, we discuss solutions which
blow up at space infinity as we will state later.
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2 Various Concepts

Let u be a blow-up solution to the problem (1.1) with initial data u0. The
notation ‖ · ‖∞ stands for usual sup norm in RN . By a blow-up time, we
mean

tb(u0) := sup{τ > 0 ; u(·, t) is bounded in RN ( i.e. ‖u(t)‖∞ < ∞)
for 0 < t < τ}.

If tb(u0) < ∞, the solution cannot live in L∞(RN ) beyond the time tb(u0).
Therefore it does hold that ‖u(t)‖∞ → ∞ as t ↗ tb(u0). A point in RN

where u is not locally bounded is called a blow-up point. The blow-up set
of u is defined as a set of all blow-up points. Many researchers have tried to
characterize blow-up sets. There is a huge literature on this topic. Notice
that a blow-up set may possibly be empty even if a finite time blow-up occurs.
We are just going to discuss such phenomena. We define blow-up at space
infinity as follows:

Definition 2.1. A solution u of (1.1) with blow-up time tb(u0) < ∞ is
said to blow up at space infinity if there exists a sequence {(xn, tn)} ⊂
RN × (0, tb(u0)) such that

|xn| → ∞, tn ↗ tb(u0) and u(xn, tn) →∞.

We define TM = tb(M) with M = ‖u0‖∞, which coincides with the blow-
up time of the solution vM (t) of the corresponding problem for ordinally
differential equation; {

v′ = f(v), t > 0,
v(0) = M.

(2.1)

It is easily seen that a unique solution to (2.1) exists and it is expressed as

vM (t) = G−1(TM − t) with G(v) =
∫ ∞

v

dξ

f(ξ)
, (2.2)

where G−1 is the inverse function of G. Clearly, TM = G(M). For example,
if f(u) = up, (p > 1) then vM (t) = κ(TM − t)−1/(p−1) with κ = (p− 1)−(p−1)

and TM = (p − 1)−1M−p+1 and if f(u) = eu, then vM (t) = − log(TM − t)
with TM = e−M . By the comparison principle, we have ‖u(·, t)‖∞ ≤ vM (t)
for any solution u to the problem (1.1). Thus, in general, tb(u0) ≥ TM .

Definition 2.2. Let u0 belong to L∞(RN ) and set M = ‖u0‖∞. A solution
u to the problem (1.1) with initial data u0 is said to blow up at minimal
blow-up time or the least (possible) blow-up time provided that tb(u0) = TM .

By definition and the strong maximum principle ([12]), one is able to show
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that a solution with minimal blow-up time necessarily blows up at space
infinity:

Theorem 2.3. Assume (A1) and (A2). Suppose that the solution u of (1.1)
with initial data u0 blows up at minimal blow-up time. Then

‖u(·, t)‖∞ = lim
R→∞

sup
|x|≥R

u(x, t) = vM (t) in [0, TM ).

Hence, in particular, the initial data u0 should satisfy

lim
R→∞

sup
|x|≥R

u0(x) = M. (2.3)

Moreover, the solution u blows up at space infinity. Namely, there exists a
sequence {(xn, tn)} ⊂ RN × (0, TM ) such that

|xn| → ∞, tn ↗ TM and u(xn, tn) →∞ as n →∞.

Corollary 2.4. Assume the same hypotheses with Theorem 2.3. Then
there exists a “direction” ψ ∈ SN−1, where SN−1 is (N − 1)-dimensional
unit sphere, such that

lim
k→∞

xn(k)

|xn(k)|
= ψ

for some subsequence {(xn(k), tn(k))} ⊂ {(xn, tn)}.

The proofs of these results are due to [14]. We give a sketch of the proofs
in the next section.

Remark 2.5. Condition (2.3) is not sufficient to raise a blow-up at space
infinity. We will introduce some necessary and sufficient conditions on initial
data for a solution to blow up at space infinity at minimal blow-up time.

Definition 2.6. Let u be a blow-up solution to the problem (1.1). A
“direction” ψ ∈ SN−1 is said to be a blow-up direction of u if there exists a
sequence {(xn, tn)} ⊂ RN × (0, tb(u0)) such that

|xn| → ∞,
xn

|xn| → ψ, tn ↗ tb(u0) and u(xn, tn) →∞ as n →∞.

If the solution has at least one blow-up direction, we say that directional
blow-up arises. Corollary 2.4 asserts that if the solution of (1.1) blows up at
minimal blow-up time, then directional blow-up does occur. If a direction
η ∈ SN−1 is not a blow-up direction, we call it non-blow-up direction. Our
interests are characterizing blow-up set and blow-up directions by behavior
of initial data.
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Blow-up problems for nonlinear parabolic equations have been studied
for a long time. However, many researchers consider the Cauchy problem
only with initial data which decay at space infinity or the Dirichlet problem
in a bounded domain. Blow-up at space infinity does not occur for such
problems. Only a few researchers studied blow-up at space infinity as far as
we know. Let us recall a few results concerning blow-up at space infinity.

The first result in this topic is due to Lacey [10]. He considered the
Cauchy-Dirichlet problem in one-dimensional half line;





ut = ∆u + f(u), in (0,∞)× (0, T ),
u(0, t) = 1, t ∈ (0, T ),
u(x, 0) = u0(x), in (0,∞)

(2.4)

and proved that the solution blows up only at space infinity.
Giga and Umeda [6] considered the Cauchy problem for equation (1.1)

with f(u) = up (p > 1) in higher dimension. Assuming lim|x|→∞ u0(x) =
‖u0‖∞ and u0 6≡ ‖u0‖∞, they proved that the solution blows up at minimal
blow-up time and blow-up occurs only at space infinity. They ([7, 8]) dealt
with the Cauchy problem (1.1) with general nonlinear term f satisfying
condition (GU). They weakened condition on initial data, which leads to a
refinement sufficient condition for blow-up at space infinity and discussed
directional blow-up. They characterized blow-up directions according to
the behavior of the mean value of u0 on ball. Although they also deals with
sign-changing solutions, we discuss only nonnegative solutions for simplicity.

Seki, Suzuki and Umeda [14] not only generalized the results of [7] to
degenerate quasilinear parabolic equations ut = ∆φ(u) + f(u) but also gave
necessary and sufficient conditions for a solution to blow up at minimal
blow-up time and conditions for a direction to be a blow-up direction. The
equation is a generalization of porus medium equation with reaction term;
ut = ∆um + f(u) with m ≥ 1. Moreover, the nonlinear term f can be taken
from very wide class of functions. For example, f(u) = (1+u){log(1+u)}β

with β > 2 is allowed in [14]. One of the author obtained the same results
for a quasilinear parabolic equation which is a generalization of fast diffusion
equation ut = ∆um + f(u) with 0 < m < 1 in [13], although the assumption
of f is a little stronger than [14].

This note is organized as follows. We introduce typical results in the
next section and show main ideas of their proofs in §4. In the final section
we show, as applications of their results, some examples of directional blow-
up, such as a solution which has a single blow-up direction and a solution
whose set of blow-up directions coincides with arbitrary given closed set in
SN−1. We also prove the solution does not blow up at minimal blow-up
time if the initial data is an almost periodic function.
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3 Typical results

We set ρ(x) = (
∫
RN e−|y|dy)−1e−|x|. The mean value function of u0 with

weight ρ is defined by

Aρ(x;u0) =
∫

RN
ρ(y − x)u0(y)dy,

which plays significant roles. For a direction ψ ∈ RN , we consider some
conditions on u0 for ψ to be a blow-up direction.

There exists a sequence {xn} ⊂ RN such that

|xn| → ∞,
xn

|xn| → ψ and Aρ(xn;u0) → ‖u0‖∞. (A3ψ)

Definition 3.1. Let u0 be a bounded continuous function in RN and set
M := ‖u0‖∞. A direction ψ ∈ SN−1 is said to be a direction of mean
convergence of u0 (to M) if condition (A3ψ) is satisfied for ψ.

Actually, condition (A3ψ) can be converted to the equivalent conditions not
invoking the weight ρ. Namely, there are some equivalent conditions for ψ
to be a direction of mean convergence of u0:

There exists a sequence {xn} ⊂ RN such that

|xn| → ∞,
xn

|xn| → ψ and u0(x + xn) → ‖u0‖∞ a.e. in RN as n →∞.

(A4ψ)
There exists a sequence {xn} ⊂ RN such that, for each R > 0,

|xn| → ∞,
xn

|xn| → ψ and
1

|BR|
∫

BR(xn)
u0(x)dx → ‖u0‖∞ as n →∞.

(A5ψ)
There exists a sequence {xn} ⊂ RN and a sequence {Rn} (Rn > 1, Rn →∞
as n →∞) such that

|xn| → ∞,
xn

|xn| → ψ and inf
r∈[1,Rn]

1
|Br|

∫

Br(xn)
u0(x)dx → ‖u0‖∞ as n →∞.

(A6ψ,{Rn})
Here and hereafter, BR(a) denotes a N -dimensional open ball with radius
R > 0 centered at a ∈ RN and BR = BR(0). We refer to [14, Appendix B]
for the proof of the equivalence.

Theorem 3.2. Assume (A1) and (A2). Let M = ‖u0‖∞ and let ψ ∈ SN−1

5



be a direction of mean convergence of u0. Then u blows up at minimal
blow-up time and ψ is a blow-up direction. Moreover, for each R > 0,

lim
n→∞ sup

x∈BR(xn)
|u(x, t)− vM (t)| = 0. (3.1)

The convergence is uniform on every compact subset of interval (0, TM ).

If we assume a certain growth condition on nonlinear term f , we are able
to show that the blow-up set is empty unless the initial data is constant,
and completely characterize blow-up directions (at minimal blow-up time)
by behavior of initial data. Moreover, we are able to obtain a necessary
and sufficient condition on initial data for a solution to blow up at minimal
blow-up time. The following condition is equivalent to the condition (B) in
[8]:

There exist constants ξ0 > 0 and p > 1 such that
f(ξ)
ξp

is nondecreasing for ξ ≥ ξ0.
(GU)

This condition means that f grows faster more than polynomial growth.
So far, the next condition is the weakest assumption to show these re-

sults, although it looks more complicated.

There exist Φ ∈ C2(0,∞), c > 0 and η1 ≥ 0 such that
Φ(η) > 0, Φ′(η) ≥ 0 and Φ′′(η) ≥ 0 for η ≥ η1;∫ ∞

1

dη

Φ(η)
< ∞;

f ′(η)Φ(η)− f(η)Φ′(η) ≥ cΦ(η)Φ′(η) for η ≥ η1.

(FM)

This kind of condition was originally introduced by Friedman and McLeod [5]
to show that, what is called, a single-point blow-up does occur for bell shaped
radially decreasing initial data u0 under the assumption ∆u0 + f(u0) ≥ 0
which guarantees that ut ≥ 0 and it has been re-formulated into weaker
version by Fujita and Chen [4] and Chen [1]. One can also find a quasilinear
version of this condition in Mochizuki and Suzuki [11].

Theorem 3.3. Assume (A1), (A2) and (GU) (or (FM)). Let u be a so-
lution of (1.1) with initial data u0 which has minimal blow-up time. Then
the following hold:

(i) If the initial data u0 is not a constant, then the solution u blows up

only at space infinity, that is, its blow-up set is empty.

(ii) A direction is a blow-up direction of u if and only if it is a direction of

mean convergence of u0.
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Combining Corollary 2.4 and Theorem 3.3, we obtain necessary and suffi-
cient conditions for a solution of (1.1) blows up at minimal blow-up time.

Theorem 3.4. Assume (A1), (A2) and (GU) (or (FM)). Suppose that
u0 6≡ 0. Then the solution u of (1.1) blows up at minimal blow-up time if
and only if the initial data u0 has at least one direction of mean convergence.

Corollary 3.5. Assume the same hypotheses with Theorem 3.4. Let u be
a solution of (1.1).Then u blows up at minimal blow-up time if and only if
one of the following two conditions for initial data u0 holds:

There exists a sequence {xn} ⊂ RN such that

|xn| → ∞ and u0(x + xn) → ‖u0‖∞ a.e. in RN as n →∞;
(3.2)

sup
x∈RN

Aρ(x;u0) = ‖u0‖∞. (3.3)

Remark 3.6. Giga and Umeda [7] first showed two sufficient conditions
on initial data for ψ ∈ SN−1 to be a blow-up direction or non-blow-up
direction, respectively and proved that every direction satisfies each of the
conditions by a supplementary argument. On the other hand, Seki, Suzuki
and Umeda [14] established the formulation of Theorem 3.3(ii) via entirely
different approach, adopting a regularizing argument (see Lemma 4.1.2). As
above mentioned, their assumption on initial data is equivalent to that of
Giga and Umeda [7]. Thus, one is also able to prove Theorem 3.3(ii) by
Giga and Umeda’s approach if one uses the regularizing argument.

4 Ideas of proofs

The proof of Theorem 2.3. The assertion is clear if u0(x) ≡ M = ‖u0‖∞.
Thus we may assume that u0(x) 6≡ M . Let u be a solution of (1.1) with
minimal blow-up time TM . Contrary to the conclusion, assume that there
were t1 ∈ [0, TM ) for which

lim
R→∞

sup
|x|≥R

u(x, t1) < vM (t1). (4.1)

If t1 6= 0, then we see L := supx∈RN u(x, t1) < vM (t1) in view of (4.1)
and the strong maximum principle ([12]). A comparison argument gives
u(x, t) ≤ vL(t−t1) in [t1, t1+TL), where vL is the solution of (2.2) with initial
data L replacing M and TL = tb(L). Then we see tb(u0) ≥ t1 + TL > TM ,
which contradicts the assumption that u blows up at minimal blow-up time
TM , that is, tb(u0) = TM .

As for the case t1 = 0, we take a radially symmetric, radially nonincreas-
ing and continuous function w0(x) in RN satisfying u0(x) ≤ w0(x) ≤ M in
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RN . Then the solution w of (1.1) with initial data w0 is radially symmet-
ric and radially nonincreasing, and blows up at minimal blow-up time TM .
Then we reach a contradiction in the same way as the case t1 > 0. 2

The proof of Theorem 3.2. Let u (or v) be a supersolution (or subsolution)
of (1.1) in RN × (0, TM ) satisfying u, v ≤ M in RN × [0, T ) for some M > 0.
Denote by K the Lipschitz constant of function f on [0,M ]. Then there is
an increasing function CK,M (t) such that for 0 < t < T ,

∫

RN
[v(x, t)− u(x, t)]+ρ(x)dx ≤ CK,M (t)

∫

RN
[v(x, 0)− u(x, 0)]+ρ(x)dx

([14, Appendix A]). For a sequence {xn} satisfying (A3ψ), we set un(x, t) :=
u(x + xn, t) and substitute u = un together with v = vM . Then we have
∫

RN
{vM (t)−un(x, t)}ρ(x)dx ≤ CK,M (t){M−Aρ(xn;u0)} → 0 as n →∞.

On the other hand, for each ε ∈ (0, TM ), we see that u(·, ε) ∈ BC1(RN ),
that is, u(·, ε) is bounded and continuous in RN up to the first derivative.
Thus,

{un} is uniformly bounded and equicontinuous in BR × [ε, TM − ε]

for every R > 0. Therefore, we are able to extract a subsequence {un′} such
that {un′} converges locally uniformly to some continuous function w by
virtue of Ascoli-Arzela theorem. Consequently, we obtain

∫

BR

|vM (t)− w(x, t)|ρ(x)dx = 0, t ∈ (0, TM ).

Namely, w = vM . Since the limit is independent of the choice of a sub-
sequence, we conclude un → vM . Thus, (3.1) holds and ψ is a blow-up
direction. 2

Remark 4.0.1. Theorem 3.3 can be proved even for degenerate quasilinear
parabolic equations of the form ut = ∆φ(u) + f(u) ([14]). For that case, we
employ the results on modulus of continuity due to DiBenedetto [3, Lemma
5.2] in order to get equicontinuity of {un}.

We present two different procedure to show Theorem 3.3. It is Theorem
3.3(i) that is basic result in both approaches. The first one is a semilin-
ear version of [14], which comes from the method originally introduced by
Friedman and McLeod [5] to show that a single-point blow-up does occur
for bell shaped radially decreasing initial data. This is valid for very wide
class of nonlinear term f , such as f(u) = (u + 1){log(u + 1)}β with β > 2.
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The second one relies on a certain non-blow-up criterion around a given
point. It was established by Giga and Kohn [9, Theorem 2.1] for differential
inequality ut − ∆u ≤ K(1 + |u|)p, (K > 0, p > 1). Our criterion is its
direct extension for equations of (1.1) with general nonlinear term f satis-
fying a certain growth condition. Although it does not allow so wide class
of nonlinear term as in the first one, this approach has superiority that it is
applicable even to general semilinear parabolic equation whose linear part
has variable coefficients and to vector valued equations.

4.1 The proof of Theorem 3.3 (Part 1)

By the strong maximum principle, we have u(x, t) < vM (t) in RN × (0, TM ).
Take t1 ∈ (0, TM ) and fix it. Let R be a positive number and let w0 ∈
C2(BR) be a radially symmetric and radially nondecreasing function satis-
fying u(x, t1) ≤ w0(x) ≤ vM (t1), w0(x) = vM (t1) for |x| = R and ∆w0 +
f(w0) ≥ 0 in BR. Denote by w the solution to the problem





wt = ∆w + f(w), in BR × (t1, TM ),
w = vM (t), on ∂BR × (t1, TM ),
w(x, t1) = w0(x), in BR.

(4.2)

Lemma 4.1.1. Assume (A1), (A2) and condition (FM). Then for any
compact subset Ω ⊂ BR,

sup
(x,t)∈Ω×(τ,TM )

w(x, t) < ∞.

Proof. We only use well-known technique which has been used in the study
of blow-up sets since it was developed by [5] to show a single-point blow-up
phenomenon. See [14, Proposition 2.6] for detail. 2

If Aρ(0;u(t1)) ≤ L for some L < M , there is a point z ∈ RN such that
u(z, t1) ≤ L′ for some L′ ∈ (L,M). We consider the solution w to the
problem (4.2) as a supersolution of (1.1). In order to construct a function
w0(x) as used in (4.2) independently of z, we make use of equicontinuity of
the solution u or a result on modulus of continuity ([3, Lemma 5.2]). As a
result, for any L′′ ∈ (L′,M) there exists r0 > 0 not depending on z such
that u(x, t1) ≤ L′′, for |x − z| < r0. Using Lemma 4.1.1 with sufficiently
large R > 0, we are able to show the following lemma:

Lemma 4.1.2. Assume (A1), (A2) and condition (FM). If Aρ(0;u0) ≤ L
for some L < M := ‖u0‖∞, then there exists a constant CM,L such that

u(0, t) ≤ CM,L for t ∈ (0, TM ).

The proof of Theorem 3.3. The statement of Theorem 3.3(i) is immediate

9



consequence of Lemma 4.1.1. Indeed, we are able to construct, locally in
RN , a supersolultion of (1.1) having no blow-up points, taking R > 0 large
enough. We shall prove (ii) of Theorem 3.3. We have only to show that if
u0 does not satisfy (A3ψ), then ψ cannot be a blow-up direction. Assume
that (A3ψ) does not hold for some ψ ∈ SN−1. Then there exists an open
neighborhood D of ψ such that

sup
x/|x|∈D

Aρ(x;u0) ≤ L < M.

For z ∈ RN such that z/|z| ∈ D, set uz(x, t) := u(x + z, t). Application of
Lemma 4.1.2 to uz implies

uz(0, t) = u(z, t) ≤ CM,L for t ∈ (0, TM ).

Since CM,L is independent of z, we see, with the aid of Lemma 4.1.2, that
ψ is a non-blow-up direction. 2

4.2 The proof of Theorem 3.3 (Part 2)

We first establish a criterion to see whether a point in RN is a non-blow-up
point. Its prototype is found in Giga and Kohn [9, Theorem 2.1].

Lemma 4.2.1. Assume (A1), (A2) and condition (GU). Let p be the
constant appearing in the condition (GU) and let a be a point in RN . Then
there exists a constant δ0 ∈ (0, 1] having the following property:
(i) Suppose that 1 < p ≤ 3. If for some δ ∈ (0, δ0), r > 0 and τ ∈ (0, TM ),

u(x, t) ≤ δvM (t), for (x, t) ∈ Br(a)× (τ, TM ), (4.3)

and u solves the equation (1.1) in Br(a)× (0, TM ), then u is locally bounded
around the point a at t = TM .
(ii) Suppose that p > 3. Then the statement of (i) holds true with δ0 = 1.

Remark 4.2.2. This result is stated in [7, Lemma 3.7]. However, there
is a flaw in their proof. Indeed, we have to divide the argument into three
cases according to the value of p, where p is the constant appearing in the
condition (GU). Unfortunately, the argument in [7, Lemma 3.7] works only
for the case 1 < p < 3. However, the proof is completed by reduction to the
case p ≥ 3. We take the opportunity to correct the proof.

The proof of Lemma 4.2.1. Translating the coordinates in space variables
and by scaling, we may assume, without loss of generality, that a = 0 and
r = 1. In the proof we denote by C a generic positive constant possibly
changing from line to line. Consider a cutoff function φ ∈ C∞

0 (B1) satisfying
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0 ≤ φ ≤ 1 and φ ≡ 1 on B1/2. The function w(t) = w(x, t) := φ(x)u(x, t)
satisfies equation

wt = ∆w − g(x, t) + φ(x)f(u), in B1 × (0, TM ),

where g(x, t) = 2∇ · (u∇φ) − u∆φ. Then the representation formula of
solutions gives us

w(t) = e(t−τ)∆w(τ) +
∫ t

τ
e(t−s)∆(−g(s) + φf(u(s)))ds,

where {et∆}t≥0 is the heat semigroup in B1 with Dirichlet boundary condi-
tion. Using the L∞-L∞ estimates, we have

‖e(t−s)∆g(s)‖L∞(B1) ≤ C(t− s)−1/2‖u(s)‖L∞(B1).

Thus we obtain

‖w(t)‖L∞(B1) ≤‖w(τ)‖L∞(B1) +
∫ t

τ
C(t− s)−1/2‖u(s)‖L∞(B1)ds

+
∫ t

τ
‖w(s)‖L∞(B1)

∥∥∥f(u(s))
u(s)

∥∥∥
L∞(B1)

ds. (4.4)

(In [7], estimating the integrand of the last term of (4.4) as (4.5) below,
they use the Gronwall type inequality ([9, Lemma 2.3]). However, since the
integrand of the middle term of (4.4) has a singularity, the assumption of
the lemma does not satisfied.)

By condition (GU) and (2.2), it is easily seen that vM (t) ≤ C(TM −
t)−1/(p−1). There are three cases to consider according to the value of p.
The first case is p > 3. The integrand of the second term is bounded by
C(t − s)−1/2(TM − s)−1/(p−1), so that its integral with respect to s over
interval [τ, t] is bounded by a constant when p > 3. Since ξ 7→ f(ξ)/ξ is
nondecreasing by condition (GU), it follows from assumption (4.3) that

∫ t

τ

∥∥∥f(u(s))
u(s)

∥∥∥
L∞(B1)

ds ≤ δp−1

∫ t

τ

f(vM (s))
vM (s)

ds. (4.5)

Therefore usual Gronwall’s inequality implies

‖w(t)‖L∞(B1) ≤ C exp
(∫ t

τ

∥∥∥f(u(s))
u(s)

∥∥∥
L∞(B1)

ds
)
≤ CvM (t)δp−1

.

Hence we obtain

u(x, t) ≤ CvM (t)δ in B1/2 × (τ, TM ). (4.6)

since φ ≡ 1 on B1/2. We repeat this manipulation again together with
φ ∈ C∞

0 (B1/2) satisfying 0 ≤ φ ≤ 1 and φ ≡ 1 on B1/4. Then we obtain

u(x, t) ≤ C + exp
(∫ t

τ

∥∥∥f(u(s))
u(s)

∥∥∥
L∞(B1/2)

ds
)

in B1/4 × (τ, TM ).
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On the other hand, it follows from condition (GU) that

f(ηξ) ≤ ηpf(ξ) for 0 < η < 1, ξ ≥ η−1ξ0. (4.7)

From (4.6) and (4.7), we see
∫ t

τ

∥∥∥f(u(s))
u(s)

∥∥∥
L∞(B1/2)

ds ≤
∫ t

τ

f(CvM (s)δ)
vM (s)δ

ds

≤ C

∫ t

τ
vM (s)p(δ−1)−δf(vM (s))ds = C

∫ vM (t)

vM (τ)
vp(δ−1)−δdv ≤ C(M, p, δ, τ).

Thus we have proved a local boundedness of u; u(x, t) ≤ C in B1/4×(τ, TM ).
The proof of the local boundedness is almost the same for the case p = 3

although it is more involved.
We shall consider the case 1 < p < 3. This case is more difficult to prove

than the case p ≥ 3. We shall return to the estimate (4.4). In this case, an
elementary calculation yields

∫ t

τ
(t− s)−1/2‖u(s)‖L∞(B1)ds ≤ C(N, p)δ(TM − t)1/2−1/(p−1)

≤ C(N, p)δ
∫ t

τ
(TM − σ)−1/2−1/(p−1)dσ

(see [9, Lemma 2.2] for detail). We write δ̃ = δp−1 for simplicity of notation.
Using the Gronwall type inequality ([9, Lemma 2.3]), we obtain

‖w(t)‖L∞(B1)

≤
[
‖w(τ)‖L∞(B1) + C(N, p)δ

∫ t

τ
(TM − σ)−1/2−1/(p−1)

× exp
(
−δ̃

∫ σ

τ

f(v(ξ))
v(ξ)

dξ
)
dσ

]
exp

{
δ̃

∫ t

τ

f(v(s))
v(s)

ds
}

≤C(M, N, p, τ)δ
[
v(τ) +

∫ t

τ
(TM − σ)−1/2−(1−δ̃)/(p−1)dσ

]
(TM − t)−δ̃/(p−1)

≤C(M, N, p, τ)(TM − t)1/2−1/(p−1)

provided that δ is chosen so that 1/2− (1− δ̃)/(p− 1) < 0. It follows that

u(x, t) ≤ C(M, N, p, τ)(TM − t)1/2−1/(p−1) in B1/2 × (τ, TM ).

We iterate this argument finitely many times. Take the smallest integer k
such that k > 1/(p− 1). After k steps later, we have

u(x, t) ≤ Ck(M, N, p, τ)(TM − t)−1/2(p−1) in B2−k × (τ, TM ),

and then u(x, t) ≤ Ck+1(M, N, p, τ)(TM − t)−δ̃/(p−1) in B2−k−1 × (τ, TM ).
We argue similarly to the case p ≥ 3, so that we get a bound; u(x, t) ≤ C

12



in B2−k−2 × (τ, TM ). 2

When u0 6≡ ‖u0‖∞, one is able to prove the existence of δ as in the condition
(4.3). The next lemma is reorganization of [7, Lemma 3.1, Lemma 3.4].

Lemma 4.2.3. Assume (A1) and (A2). Suppose that u0 6≡ ‖u0‖∞. Then
for any ε > 0, there exist η ∈ (0, 1) and τ ∈ (0, TM ) such that

u(x, t) ≤ εv(t) in Bη × (τ, TM ). (4.8)

Proof. Let û be a solution to the linear problem




ût = ∆û, in B1 × (0, TM ),
û = u(x, t), on ∂B1 × (0, TM ),
û(x, 0) = u0(x), in B1.

Then it is not difficult to show that the assertion (4.8) for û (see [7, lemma
3.2] for detail). Let t1 ∈ (0, TM ). We claim that there exists δ ∈ (0, 1) such
that

u(x, t) ≤ δvM (t) in B1 × (t1, TM ). (4.9)

Let w be the solution of the heat equation wt = ∆w in RN × (0,∞) with
initial data w(x, 0) = M−1u0(x). Applying the strong maximum principle
yields w < 1 in RN × (0,∞), so that there is δ ∈ (0, 1) such that w ≤ δ in
B1 × (t1, TM ]. We set ū := vMw and observe that it is a supersolution to
(1.1). Thus we see u ≤ ū ≤ δvM in B1×(t1, TM ) and the claim (4.9) follows.

Let G(x, y, t, s) be a fundamental solution of the heat equation for the
Dirichlet problem in B1. In view of positivity of G, there is a constant
c > 0 such that c ≤ ∫

B1
G(x, y, t, s)dy ≤ 1 for x ∈ Bη. Then if we choose t

sufficiently close to TM , we have

u− û =
∫ t

0

∫

B1

G(x, y, t, s)f(u(y, s))dyds

≤
∫ t1

0
f(v(s))ds

∫

B1

G(x, y, t, s)dy +
∫ t

t1

f(δv(s))ds

∫

B1

G(x, y, t, s)dy

≤ (δp + ε)
∫ t

t1

f(v(s))ds

∫

B1

G(x, y, t, s)dy ≤ (δp + ε)v(t) for x ∈ Bη.

Hence, choosing ε so small as to satisfy δp +2ε < δ, we get a better estimate:
u(x, t) ≤ (δp + 2ε)v(t) in Bη × (t1, TM ). Iterating this manipulation finitely
many times yields the assertion (4.8). 2

The proof of Theorem 3.3. We shall prove Theorem 3.3(i). Let a be a point
in RN . Take R > 0 sufficiently large so that a ∈ BR. It is proved that there
exists δ ∈ (0, 1) such that

u(x, t) ≤ δvM (t) in BR × (0, TM ). (4.10)
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in the same way to derive (4.9). Actually, it holds with any ε > 0 replacing
δ by Lemma 4.2.3. Therefore, we see that the solution u is locally bounded
around the point a at t = TM via Lemma 4.2.1.

Note that if u(z, t1) ≤ L′ < M for some t1 ∈ [0, TM ), L < L′ < M and
z ∈ RN , one is able to construct supersolution w independently of z as in
Part 1. The constant δ ∈ (0, 1) in (4.10) exsits independently of z. Then
the statement (ii) is obtained similarly to that of Part 1 since one is able
to show Lemma 4.1.2 under the assumptions (A1), (A2) and (GU) by using
Lemma 4.2.1 and Lemma 4.2.3 instead of Lemma 4.1.1. 2

5 Some examples

We shall demonstrate some examples of directional blow-up. Let u be a
solution to the Cauchy problem (1.1) which blows up at minimal blow-
up time. We denote by S(u0)(⊂ SN−1) the set of all blow-up directions.
It is a closed set in SN−1. Indeed, for any ϕ ∈ SN−1 \ S, there exist
a constant C > 0 and an open neighborhood D ⊂ SN−1 of ϕ such that
supx/|x|∈D u(x, t) ≤ C. It follows that there are no blow-up directions in D.
Thus SN−1 \ S(u0) is an open set in SN−1.

Example 1. (Single directional blow-up) We give an example of initial
datum such that S(u0) consists of a single direction. Let ψ ∈ SN−1 be a
direction and set D = {rψ ; r ≥ 0}. For a point x ∈ RN , take a point
px ∈ D such that dist{x,D} = |x − px|. Let P be a paraboloid defind by
P = {x ∈ RN ; |x−px| ≤

√
|px|} and let Q = {x ∈ RN ; |x−px| ≤ 2

√
|px|}.

We choose an initial datum u0 ∈ BC(RN ) so as to fulfill




u0(x) = M if x ∈ P, |x| ≥ 1;
0 ≤ u0(x) < M if x ∈ Q \ P ;
u0(x) = 0 if x 6∈ Q.

Let u be a solution of (1.1) with initial datum u0. Take a sequence xn = nψ
(n = 1, 2, ...). Clearly, the sequence {xn} satisfies condition (A3ψ), so that
ψ is a direction of mean convergence of u0. Thanks to Theorem 3.3, it is
a blow-up direction of u. Let ϕ 6= ψ be another direction. Then there are
an open neighborfood G of ϕ in SN−1 and a constant r0 > 0 such that
{x ∈ RN ; |x| ≥ r0, x/|x| ∈ G} ∩Q = ∅. It follows that

sup{u0(x) ; |x| ≥ r0, x/|x| ∈ G} ≤ L < M

for some L ∈ (0,M). Consequently, ϕ cannot be a direction of mean con-
vergence of u0 to M . From Theorem 3.3, we observe that this ϕ is not a
blow-up direction of u. Thus we obtain S(u0) = {ψ}.
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Example 2. (Directional blow-up for an arbitrary given closed set in SN−1)
Let S̃ be a closed subset in SN−1. We shall construct an initial datum u0

such that S(u0) coincides with S̃. We set

D = ∪r≥0rS̃ = ∪r≥0{x ∈ RN ; x = rψ, ψ ∈ S̃}.

For a point x ∈ RN , denote by px ∈ D a point in D such that the distance of
x and D is achieved; dist{x,D} = |x− px|. Let P = ∪{x ∈ RN ; |x− px| ≤√
|px|} and let Q = ∪{x ∈ RN ; |x − px| ≤ 2

√
|px|}, where the notation

“ ∪ ” runs for all such px. We define an initial datum u0 ∈ BC(RN ) so as
to fulfill 




u0(x) = M if x ∈ P, |x| ≥ 1;
0 ≤ u0(x) < M if x ∈ Q \ P ;
u0(x) = 0 if x 6∈ Q.

Then it is proved by the way similar to Example 1 that S(u0) = S̃.

Example 3. (No direction of mean convergence of almost periodic initial
data) Let us restrict ourselves to one-dimensional problem. It is easily see
that if the initial data is a non-constant periodic function, then it has no
direction of mean convergence, so that the corresponding solution does not
blow up at minimal blow-up time. In fact, this is also true for almost
periodic functions. Here a function F defined for −∞ < x < ∞ is called
almost periodic, if for any ε > 0 there exists a trigonometric polynomial
Tε(x) such that

|F (x)− Tε(x)| < ε, −∞ < x < +∞.

Proof. Let u0 be an almost periodic function in R which is not a constant
and let M be its maximum. Contrary to the conclusion, suppose that u0
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had a direction of mean convergence to M . Then there exists a sequence
{xn} ⊂ R such that u0(x+xn) → M a.e. in R as n →∞. From a character-
istic property of almost periodic functions, one can extract a subsequence,
which is also denoted by {xn}, such that the convergence u0(x+xn) → M is
uniform (see [2, Chapter 1]). Take a point y ∈ R such that m := u0(y) < M .
Define H := M − m and zn := y − xn. Then |u0(zn + xn) − M | = H for
all n. This means that there is no subsequence {xn′} ⊂ {xn} for which the
sequence u0(x + xn′) is uniformly convergent. This is a contradiction. 2
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