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Linear differential relations satisfied by Wirtinger integrals

Humihiko Watanabe

Dedicated to Professor Masaaki Yoshida on his sixtieth birthday.

Abstract. We will derive linear differential relations satisfied by Wirtinger integrals by exploiting
classical formulas of Jacobi’s theta functions, forgetting that Wirtinger integrals are related to Gauss
hypergeometric functions, although these linear differential relations are related to ones satisfied by

Gauss hypergeometric functions.

0. Introduction.

In our recent paper [3] we computed twisted homology and cohomology groups with
coeflicients in local systems associated to a power product of Jacobi’s four theta functions
(see also Theorems 1.1 and 1.2 below). This result naturally leads us to consider the
paring of non-vanishing homology and cohomology groups which is expressed as a definite
integral by the twisted de Rham theory. Such an integral is identical with the one
considered by Wirtinger [4]; we propose to call such an integral, including the original
one obtained by him, Wirtinger integral. As is seen in [4] (see also [2]), Wirtinger integrals
are the lifts of Gauss hypergeometric functions to the upper half plane. So one can expect
that Wirtinger integrals satisfy linear differential relations which come from ones satisfied
by Gauss hypergeometric differential equation. In this paper we will derive such linear
differential relations for Wirtinger integrals by exploiting classical formulas of Jacobi’s
theta functions, forgetting that Wirtinger integrals are related to Gauss hypergeometric
functions. Thus our method of derivation of the linear differential relations for Wirtinger
integrals developped in this paper, with our previous ones [2] and [3], is regarded to form
a part of the reconstruction of the theory of Gauss hypergeometric functions from the
viewpoint of the theory of Jacobi’s theta functions.

Acknowlegement. The author would like to thank Professor Y. Haraoka for illuminating
discussion.

1. Preliminaries and the main result.

In this paper we follow Chandrasekharan’s notation for theta functions ([1]). For 7 € C
with Im(7) > 0, we set I' =Z + Z7, D = {0, %, % 1'2"—7}, and M = C/I" — D. Let o, 83,7
be complex parameters. Throughout this paper we assume the following conditions for

a, B,
1 1 1 1 1 1 1
=/ -7 “Z, y—a¢ -2, v—B¢-Z, v—a—pB¢ -7, anda—f ¢ -7
« ¢ 2 I /8 ¢ 2 ) ,-Y ¢ 2 9 ry « ¢ 2 I 'Y ﬁ ¢ 2 I ’Y « B ¢ 2 ) and « B ¢ 2 )

where %Z denotes the group of integers and half integers. We set
T(u) = 0(u)?*01 (u)? =220 (u) 2P ~27+205 (u) =27, where 6;(u) means 0;(u, 7). We define
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a connection V by Vo = dp + w A ¢ for a differential form ¢, where d denotes the
exterior differential with respect to u, and w = d(logT(u)). Then we have VV = 0
and V(1) = w. Let £ and £ be the local systems on M defined by T'(u)~" and T'(u),
respectively: £ = CT(u)~! and £ = CT'(u). They are dual to each other. For a non-
negative integer k, let Cy (M, Ev) be the group of twisted k-chains with coefficients in £,
and let 9 be the boundary operator of the complex Cy(M, £). Let Q¥(M) be the vector
space of single-valued holomorphic k-forms on M. Then the connection V induces a
natural homomorphism V : Q¥(M) — QFF1(M). The following theorem is fundamental:

Stokes’ Theorem. For ¢ € Cy(M, L) and ¢ € Q1 (M), we have

/UT(u)~V<p:/80T(u)'go.

Let Z;, (M, £) be the group of twisted k-cycles with coefficients in £, and let By (M, £)
be the group of twisted k-boundaries with coefficients in £. We set
Hy(M, L) = Z,(M,L)/B(M, £): the k-th twisted homology group with coefficients in
L. Concerning the twisted homology groups, we have obtained in our paper [3] the
following:

Theorem 1.1. We have Hy(M, L) = Ho(M, L) = 0, H; (M, [:) >~ Ccy @ Cey @ Ces @
Ccy. Here ¢y, ¢, c3,cq4 denote the homology classes of the twisted cycles o1, 09, 03,04,
respectively, which are given by

= ! 1+ 0+ L 0

g1 = (1 o e47ria)(1 _ 6471’1;(77@4)) 2 ) 3 9 5 s
1 Lt 1 147 1

Oy = . i [ L

2Tl mR)(l—amomy "2 "2 2 2 )

1 T 14+7 7 147

73 T (1 — e 4miB) (1 — eAmi(B)) (2"’7 5 T 5T o —> )

1
04 = 1,0+, —1,0-),

(]_ _ 6727”"}/)(]_ _ e47r7la)(

where | and —[ are global cycles of C/I" defined by the curves I(s) = —F + s and
(—=0)(s) = =7 — s (0 < s < 1), respectively.

Let D be the effective divisor on C/I" given by D = 2[0] + [1] + [5] + [L5Z]. Let
Qp be the sheaf of meromorphic 1-forms on C/I" which are multiples of the divisor —D.
Let H¥(M, L) be the k-th twisted cohomology group with coefficients in £. Our result

concerning the twisted cohomology groups is as follows ([3]):
Theorem 1.2. We have H*(M, £) = H*(M, L) =0, H' (M, L) = H°(C/TI',Qp)/V(C) =
Clip1]@Clp2]BC[p3)®C[pa]. Here [p] denotes the image of an element ¢ of H*(C/I',Qp)

by the natural map H°(C/I',Qp) — H°(C/I,Qp)/V(C), and @1, p2, p3,ps are ele-
ments of H°(C/T',Qp) given by

92(71)2
L9 ()2

where 6; denotes the theta constant 6;(0).

01(u)b2(u)
6(u)03(u)

2 0(u)f3(u)
3 91 (u)é?g (u)

du, @3 = 7r9§ du, @4 =70 du,

Since Hy (M, L) and H L(M, L) are dual to each other, we have a natural nondegenerate
bilinear form H;(M, L) x H*(M, L) — C. For [0] € H1(M, L) and [¢] € H*(M, L) with



o € Zi(M,£) and ¢ € H°(C/I',Qp), let < [0],[¢] > be the image by this bilinear
form. By the standard procedure for regarding twisted cycles and cocycles as currents,
we obtain the expression < [0], [¢] >= [ T(u)p, which we call Wirtinger integral. Every
Wirtinger integral is a single-valued and holomorphic function of 7 on the upper half
plane H. We set fg'_ T(uw)p; = Iij (3,5 = 1,2,3,4). It is easy to see that, for a fixed j,
the four integrals I 1},]23',]33‘, 1,; are linearly independent over C, and that, for a fixed
i, Ij1, Lo, I;3, I;4 are linearly independent over C. As was shown by Wirtinger [4] (see
also [2]), these functions I;;’s are related to the Gauss hypergeometric function, which
we denote by F(«, 3,7, 2): in fact we have, for example,

'a)I'(y—a), +=2 atfyt1
In=——F—~——"A7 (1-XN "7 F(a,f+172),
o) = ’
4
where A\ denotes the lambda function: \ = 0—411. The other integrals I;; have analogous
3

expressions, too. The main result to be proved in this paper is as follows:

Theorem 1.3. The 16 functions I;; (4,7 = 1,2, 3,4) of the variable 7 satisfy the following
system of linear differential equations with coefficients invariant under the action of I"(2)
the principal congruence subgroup of level 2:

Iw L Liz I a1 a2 0 0 Ihw L Liz I

(1.1) b od Iy I Iz Da| _ |az a0 0| |[a1 Tz Iz I
' 03 dr |Is1 Is2 Isz Isa 0 0 bu bio| |Is1 Is2 Isz 34|’
Ing Iip Iyz Iag 0 0 bar boof [Isn laz Iuz las
where a;;’s and b;;’ are given by
u _a—ﬂ—lﬁJrv—l u _1-2a a _27—25—3%
11 — 9 eg 9 12 — 2 ) 21 — 9 9§7
. _B-a+l16f 1-—y b _(A+a-—9)(a+1) SO b
2 2 gi " 2 M 208 — ) 208 " 208
b, o Ata=—y+8-7 . _ af
12 = ;o bar = ;
f—a a—p
b _ale+B=29+2) y-—a-163 ~y-p-167
2 2o — B) 2 o 2 6L

The system (1.1) is splitted into the following two systems of differential equations:
L i 1y _ |@1 a1z Iy
703 dr |I2; a1 agz] |ly;

L’ i I3; _ bir bia| |13
703 dr |14 ba1  bao| [l45]’
which are equivalent to the Gauss hypergeometric differential equation. We prove The-

orem 1.3 in the next section by making use of classical formulas of theta functions,
forgetting that the integrals I;;’s are related to the Gauss hypergeometric function.

and

i d
Remark. Note that the differential operator e is invariant under the action of the
Qo 3 T

group I'(2). In fact we have WL%E =\ — 1)%



2. Proof of Theorem 1.3 : Derivation of differential relations.

To derive the 16 relations in (1.1), it suffices to prove the following

Proposition 2.1. The following formulas hold:
i 0

(2.1) WE(T(U)%) = an T (u)py + a1oT(u)ps mod BY(M, L);
3
)
(2.2) #E(T(u)g@) = an T (u)py + aseT(u)ps mod BY(M, L);
3
)
(2.3) #E(T(u)apg) = b T(u)gs + bioT(u)ps mod BL(M, L):
3
0
(2.4) #E(T(u)g@;) = bo1 T'(w)p3 + booT(u)pa  mod BY(M, L),
3

where B*(M, L) denotes the group of twisted 1-coboundaries with coefficients in L.

In fact, the 16 relations in (1.1) follows immediately if we integrate each of the four
relations in the proposition along suitable cycles.

Proof of Proposition 2.1. We prove the formula (2.3) only, since the other formulas are
proved similarly. We have

= i e (G550

Oo(u) O3 () Ouru) 0. (0)
WQ“*”(%( T~ o) ) (1~ 20) (é(u) ) )]T(“)*”B’

(2.5)

0 0
where 63, denotes %(O,T), and 601, (u) denotes @(U,T), etc. Since the four theta

or or
00 82 ©

functions 6(u) and 6;(u) satisfy the common partial differential equation 4mi—— 5 = Bu2
T u
(2.5) is turned to

9 [0 2y —2a—1 (0{(u) 65(u)
26 O e = [2 0, " dmi (%(u) )
' 28 —2a+2 (0)(u) 05(u) 1—2a (0§(u) 6"(u)
+ : - +— - T(u)ps,
4mi Oa(u)  O3(u) 4mi Os(u)  O(u)
% 8291' .
where 6} (u) denotes ?(u, 7). Now we note the following formulas: 64 (u)6;(u) —

0 (w)fa2(u) = m03(0' (u)03(u) + O5(w)0(w)), 05 (u)03(w) — 05 (u)02(u) = 703 (60" ()01 (u) +
01(w)0(u)), 0" (u)03(u) — 04 (u)0(u) = w030 (u)ba(u) + 05 (u)0:1(u)), where 0 (u) denotes

a—qj(u, 7). Applying these formulas to the right-hand side of (2.6), we have
9 _[o0sr 2y —2a—1 5 0(u)fs(u) (0'(w)  O5(u)
o (T(wes) =25 50w () T s(u)

26 —2a+2 5 0(w)b1(u) (0'(u) 0i(u)

27) T s \ o) T o)

j
1—2a 401(u)f2(u) (01(u)  04(u)
T TE o) \Ou(w) 92<u>)] Tlu)es.



Substituting the formulas:

5 0(u)fs(u) Or(w) _ 0'(w) 20 (w)bs3(u)

= Wt Y G T ) w0 8(u)s(u)

into the right-hand side of (2.7) and making some calculation, we have

5 0(u)0s(u)

01(u)02(u)

o O(u)bi(u) 501 (u)a(u)

% it ~ 2 i

y <9/(u) " 9'1(“)) 0()2* 10, ()220 105 (u) 26 =21 30, (u) 2P 1y

O(u) — 61(u)
720303 0(u)b2(u) 01 (u)302(u)
artsw L 2005, ()

9 937’ 9%
E(T(u)@s) :2gT(U)<P3 + 1 —(2y — 2a — 1)763

+ (28 —2a+2)7

(2.8)

+

= } T(u)du.

{(27 —2a—1)

Here we note the equality

5 O(u)03(u) g2 YW (w)
01 (u)f2(u) b 0y (u)03(u)

(29) " ~(1—20) 93%?( >)9?<( ” ()220 (u) 272010, ()220 () 20~

— %{e(u)Qa—lel (u)27—2a—192(u)2ﬂ—27+393(u)—2[3—1}.

{_(27—204 1)763 +(26-20+2)

Applying (2.9) to the right-hand side of (2.8), we have

S (T()gs) 2725 T(w)gs

S

93d [ 0’(u) 9’ (u)) e(u)2o¢—161(u)Z'y—Qa—192(u)25—2'y+393(u)—2B—1:|

0(u) " i(u)
(2.10) L% ( (w)?  0"(w) | 0i(u)? 93’(U))

0(uw)?  0u) ~ 0i(w)?  Oi(u)
(

><9( ) 91( )Q’Y 20— 19 ’U,)Qﬂ 2’Y+39 (u)_gﬁ_ldu
29204 9g - (U () B QM .
e G | TN
We note that

9/(u)2 B Q/I(U) - QL , al(u)

0(u)? O(u) dmi 0, +m 9293 Tk

0 (u)?  0Y(u) Oy ()

O ER A B A o

d |:<9/(U) + 01(“)) e(u)Zaflel(u)2772a7102(u)2,8727+303(u)72ﬁ71 c Bl(M, L)

5



Then the equality (2.10) is turned to

9 (P(uye =2 (99 - %) s
(2.11) 0293 {( )7;1 (( ))%3((13)
1(1)°0s(u) 1
+(1 - )9(11)36‘3()} T(u)du mod B*(M,L).

Substituting the equality

91(’(11)392(11) _ 9%01 (u)02(u)03(u) _ 0%91(u)92(u)
0(u)30s(u) 030(u)® 030(u)0s(w)

into the right-hand side of (2.11), we have

2w =2 (2= %) T
+(1 — a)%W — (1 — a)ggm T(u)du mod BI(M7 [/)

We need the following

Lemma 2.2. The following formulas hold:

0(u)o 1 — 11
(2.13) 01(8)023((13) du = 3 f aw—egwg + b 3 jl— W—a%gm mod B'(M, L);
Ot [ B B (a=9+D 03
(2.14) 0(u)3 T ll—amh363  (1-a)(B— ) nb363 s

@ _(;Ij_;;((g:;/;_ ) 71.992392 ¢4, mod BY(M, L).

Proof of Lemma 2.2. The formula (2.13) follows immediately from the equality

0(u)03(u) o 0(u)0(u) 901 (u)02(u)
=(28-2y+2)7 egm du— (28 — 2a)m 92md u+ 2am 93Wdu.
Now we see that
O2(u)*\ _ g2 91 (W0:2(w)bs(w) 02(u)? 201 ()03 (u)
V(@W ) =TT M P 06 ()
+(2a+262’y+2)w0§m232((>)2ﬂ QZW du
:(a_1)2w0§91(“)2?$)‘203( Vdu + (a4 B~ +1)2n 95%&&?@@
2 0 (U)s
2 G )



from which it follows immediately that

2010 (W)ls(u) | _a+B—7+1 560 (u)bs()
(2.15) 2 0(u)3 o 11—« 3 0(u)0y (u)
. B e 02 (u)? 1
- 0 du mod B (M, L).

1—a 20(u)f(u)fs(u)
Substituting the equality
0302(u)®  030>(u)03(u) 0701 (u)f2(u)

O(u)fy (u)03(u)  O(u)dy(u) 0(u)bs(u)
into the right-hand side of (2.15), we have
01 (u)Hg(u)Hg(u) du :Oé -7+ 1 9 92(u)93(u)
0(u)? T o1-—a 3 ou)oi(v)
B ot (w)0a(u)
TR

du

0
(2.16)

+ mod B'(M, L).

Now we have

w= (28 — 2y + 2)n62 7; (Ws(w) (25 — 20)r2 2200 (W) (Wos(W) 0y 26762 7‘2(“)92(“) du,
1

(u)f2(u) b O(u)0r (u) ()03 (u)
from which it follows immediately that
Oo(u)f3(w) B =+ 163 6(u)ds(u)

6 (u) T B 07 0y(u)fa(u) "

B 6301 (w)a(w)
B—abf 0(u)fs(u)
Substituting (2.17) into the right-hand side of (2.16), we have the desired equality (2.14),
which proves Lemma 2.2.

(2.17)

du mod BY(M, L).

Let us return to our proof of Proposition 2.1. Substituting the two equalities (2.13)
and (2.14) into the right-hand side of (2.12), we have the desired equality (2.3). Propo-
sition 2.1 is thereby proved.
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