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Linear differential relations satisfied by Wirtinger integrals

Humihiko Watanabe

Dedicated to Professor Masaaki Yoshida on his sixtieth birthday.

Abstract. We will derive linear differential relations satisfied by Wirtinger integrals by exploiting

classical formulas of Jacobi’s theta functions, forgetting that Wirtinger integrals are related to Gauss

hypergeometric functions, although these linear differential relations are related to ones satisfied by

Gauss hypergeometric functions.

0. Introduction.

In our recent paper [3] we computed twisted homology and cohomology groups with
coefficients in local systems associated to a power product of Jacobi’s four theta functions
(see also Theorems 1.1 and 1.2 below). This result naturally leads us to consider the
paring of non-vanishing homology and cohomology groups which is expressed as a definite
integral by the twisted de Rham theory. Such an integral is identical with the one
considered by Wirtinger [4]; we propose to call such an integral, including the original
one obtained by him, Wirtinger integral. As is seen in [4] (see also [2]), Wirtinger integrals
are the lifts of Gauss hypergeometric functions to the upper half plane. So one can expect
that Wirtinger integrals satisfy linear differential relations which come from ones satisfied
by Gauss hypergeometric differential equation. In this paper we will derive such linear
differential relations for Wirtinger integrals by exploiting classical formulas of Jacobi’s
theta functions, forgetting that Wirtinger integrals are related to Gauss hypergeometric
functions. Thus our method of derivation of the linear differential relations for Wirtinger
integrals developped in this paper, with our previous ones [2] and [3], is regarded to form
a part of the reconstruction of the theory of Gauss hypergeometric functions from the
viewpoint of the theory of Jacobi’s theta functions.

Acknowlegement. The author would like to thank Professor Y. Haraoka for illuminating
discussion.

1. Preliminaries and the main result.

In this paper we follow Chandrasekharan’s notation for theta functions ([1]). For τ ∈ C
with Im(τ) > 0, we set Γ = Z+ Zτ , D = {0, 1

2 ,
τ
2 ,

1+τ
2 }, and M = C/Γ −D. Let α, β, γ

be complex parameters. Throughout this paper we assume the following conditions for
α, β, γ:

α /∈ 1

2
Z, β /∈ 1

2
Z, γ /∈ 1

2
Z, γ −α /∈ 1

2
Z, γ − β /∈ 1

2
Z, γ −α− β /∈ 1

2
Z, and α− β /∈ 1

2
Z,

where 1
2Z denotes the group of integers and half integers. We set

T (u) = θ(u)2αθ1(u)
2γ−2α−2θ2(u)

2β−2γ+2θ3(u)
−2β , where θi(u) means θi(u, τ). We define
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a connection ∇ by ∇φ = dφ + ω ∧ φ for a differential form φ, where d denotes the
exterior differential with respect to u, and ω = d(log T (u)). Then we have ∇∇ = 0
and ∇(1) = ω. Let L and Ľ be the local systems on M defined by T (u)−1 and T (u),
respectively: L = CT (u)−1 and Ľ = CT (u). They are dual to each other. For a non-
negative integer k, let Ck(M, Ľ) be the group of twisted k-chains with coefficients in Ľ,
and let ∂ be the boundary operator of the complex C•(M, Ľ). Let Ωk(M) be the vector
space of single-valued holomorphic k-forms on M . Then the connection ∇ induces a
natural homomorphism ∇ : Ωk(M) → Ωk+1(M). The following theorem is fundamental:

Stokes’ Theorem. For σ ∈ Ck(M, Ľ) and φ ∈ Ωk−1(M), we have∫
σ

T (u) · ∇φ =

∫
∂σ

T (u) · φ.

Let Zk(M, Ľ) be the group of twisted k-cycles with coefficients in Ľ, and let Bk(M, Ľ)
be the group of twisted k-boundaries with coefficients in Ľ. We set
Hk(M, Ľ) = Zk(M, Ľ)/Bk(M, Ľ): the k-th twisted homology group with coefficients in
Ľ. Concerning the twisted homology groups, we have obtained in our paper [3] the
following:

Theorem 1.1. We have H2(M, Ľ) = H0(M, Ľ) = 0, H1(M, Ľ) ∼= Cc1 ⊕ Cc2 ⊕ Cc3 ⊕
Cc4. Here c1, c2, c3, c4 denote the homology classes of the twisted cycles σ1, σ2, σ3, σ4,
respectively, which are given by

σ1 =
1

(1− e4πiα)(1− e4πi(γ−α))

(
1

2
+, 0+,

1

2
−, 0−

)
,

σ2 =
1

(1− e−4πiβ)(1− e4πi(γ−α))

(
1 + τ

2
+,

1

2
+,

1 + τ

2
−,

1

2
−
)
,

σ3 =
1

(1− e−4πiβ)(1− e4πi(β−γ))

(
τ

2
+,

1 + τ

2
+,

τ

2
−,

1 + τ

2
−
)
,

σ4 =
1

(1− e−2πiγ)(1− e4πiα)
(l, 0+,−l, 0−),

where l and −l are global cycles of C/Γ defined by the curves l(s) = − τ
4 + s and

(−l)(s) = − τ
4 − s (0 ≤ s ≤ 1), respectively.

Let D be the effective divisor on C/Γ given by D = 2[0] + [ 12 ] + [ τ2 ] + [ 1+τ
2 ]. Let

ΩD be the sheaf of meromorphic 1-forms on C/Γ which are multiples of the divisor −D.
Let Hk(M,L) be the k-th twisted cohomology group with coefficients in L. Our result
concerning the twisted cohomology groups is as follows ([3]):

Theorem 1.2. We haveH0(M,L) = H2(M,L) = 0, H1(M,L) ∼= H0(C/Γ,ΩD)/∇(C) =
C[φ1]⊕C[φ2]⊕C[φ3]⊕C[φ4]. Here [φ] denotes the image of an element φ ofH0(C/Γ,ΩD)
by the natural map H0(C/Γ,ΩD) → H0(C/Γ,ΩD)/∇(C), and φ1, φ2, φ3, φ4 are ele-
ments of H0(C/Γ,ΩD) given by

φ1 = πθ23du, φ2 = πθ21
θ2(u)

2

θ(u)2
du, φ3 = πθ23

θ1(u)θ2(u)

θ(u)θ3(u)
du, φ4 = πθ23

θ(u)θ3(u)

θ1(u)θ2(u)
du,

where θi denotes the theta constant θi(0).

SinceH1(M, Ľ) andH1(M,L) are dual to each other, we have a natural nondegenerate
bilinear form H1(M, Ľ)×H1(M,L) → C. For [σ] ∈ H1(M, Ľ) and [φ] ∈ H1(M,L) with
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σ ∈ Z1(M, Ľ) and φ ∈ H0(C/Γ,ΩD), let < [σ], [φ] > be the image by this bilinear
form. By the standard procedure for regarding twisted cycles and cocycles as currents,
we obtain the expression < [σ], [φ] >=

∫
σ
T (u)φ, which we call Wirtinger integral. Every

Wirtinger integral is a single-valued and holomorphic function of τ on the upper half
plane H. We set

∫
σj

T (u)φi = Iij (i, j = 1, 2, 3, 4). It is easy to see that, for a fixed j,

the four integrals I1j , I2j , I3j , I4j are linearly independent over C, and that, for a fixed
i, Ii1, Ii2, Ii3, Ii4 are linearly independent over C. As was shown by Wirtinger [4] (see
also [2]), these functions Iij ’s are related to the Gauss hypergeometric function, which
we denote by F (α, β, γ, z): in fact we have, for example,

I31 =
Γ (α)Γ (γ − α)

2Γ (γ)
λ

γ−1
2 (1− λ)

α+β−γ+1
2 F (α, β + 1, γ, λ) ,

where λ denotes the lambda function: λ =
θ41
θ43

. The other integrals Iij have analogous

expressions, too. The main result to be proved in this paper is as follows:

Theorem 1.3. The 16 functions Iij (i, j = 1, 2, 3, 4) of the variable τ satisfy the following
system of linear differential equations with coefficients invariant under the action of Γ (2)
the principal congruence subgroup of level 2:

(1.1)
i

πθ43

d

dτ


I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44

 =


a11 a12 0 0
a21 a22 0 0
0 0 b11 b12
0 0 b21 b22



I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44

 ,

where aij ’s and bij ’ are given by

a11 =
α− β − 1

2

θ41
θ43

+
γ − 1

2
, a12 =

1− 2α

2
, a21 =

2γ − 2β − 3

2

θ41
θ43

,

a22 =
β − α+ 1

2

θ41
θ43

+
1− γ

2
, b11 =

(1 + α− γ)(α+ 1)

2(β − α)
+

β

2

θ41
θ43

+
α

2

θ42
θ43

,

b12 =
(1 + α− γ)(1 + β − γ)

β − α
, b21 =

αβ

α− β
,

b22 =
α(α+ β − 2γ + 2)

2(α− β)
+

γ − α− 1

2

θ42
θ43

+
γ − β − 1

2

θ41
θ43

.

The system (1.1) is splitted into the following two systems of differential equations:

i

πθ43

d

dτ

[
I1j
I2j

]
=

[
a11 a12
a21 a22

] [
I1j
I2j

]
and

i

πθ43

d

dτ

[
I3j
I4j

]
=

[
b11 b12
b21 b22

] [
I3j
I4j

]
,

which are equivalent to the Gauss hypergeometric differential equation. We prove The-
orem 1.3 in the next section by making use of classical formulas of theta functions,
forgetting that the integrals Iij ’s are related to the Gauss hypergeometric function.

Remark. Note that the differential operator
i

πθ43

d

dτ
is invariant under the action of the

group Γ (2). In fact we have
i

πθ43

d

dτ
= λ(λ− 1)

d

dλ
.
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2. Proof of Theorem 1.3 : Derivation of differential relations.

To derive the 16 relations in (1.1), it suffices to prove the following

Proposition 2.1. The following formulas hold:

i

πθ43

∂

∂τ
(T (u)φ1) ≡ a11T (u)φ1 + a12T (u)φ2 mod B1(M,L);(2.1)

i

πθ43

∂

∂τ
(T (u)φ2) ≡ a21T (u)φ1 + a22T (u)φ2 mod B1(M,L);(2.2)

i

πθ43

∂

∂τ
(T (u)φ3) ≡ b11T (u)φ3 + b12T (u)φ4 mod B1(M,L);(2.3)

i

πθ43

∂

∂τ
(T (u)φ4) ≡ b21T (u)φ3 + b22T (u)φ4 mod B1(M,L),(2.4)

where B1(M,L) denotes the group of twisted 1-coboundaries with coefficients in L.

In fact, the 16 relations in (1.1) follows immediately if we integrate each of the four
relations in the proposition along suitable cycles.

Proof of Proposition 2.1. We prove the formula (2.3) only, since the other formulas are
proved similarly. We have

∂

∂τ
(T (u)φ3) =

[
2
θ3τ
θ3

+ (2γ − 2α− 1)

(
θ1τ (u)

θ1(u)
− θ2τ (u)

θ2(u)

)
+ (2β − 2α+ 2)

(
θ2τ (u)

θ2(u)
− θ3τ (u)

θ3(u)

)
+ (1− 2α)

(
θ3τ (u)

θ3(u)
− θτ (u)

θ(u)

)]
T (u)φ3,

(2.5)

where θ3τ denotes
∂θ3
∂τ

(0, τ), and θ1τ (u) denotes
∂θ1
∂τ

(u, τ), etc. Since the four theta

functions θ(u) and θi(u) satisfy the common partial differential equation 4πi
∂Θ

∂τ
=

∂2Θ

∂u2
,

(2.5) is turned to

∂

∂τ
(T (u)φ3) =

[
2
θ3τ
θ3

+
2γ − 2α− 1

4πi

(
θ′′1 (u)

θ1(u)
− θ′′2 (u)

θ2(u)

)
+

2β − 2α+ 2

4πi

(
θ′′2 (u)

θ2(u)
− θ′′3 (u)

θ3(u)

)
+

1− 2α

4πi

(
θ′′3 (u)

θ3(u)
− θ′′(u)

θ(u)

)]
T (u)φ3,

(2.6)

where θ′′i (u) denotes
∂2θi
∂u2

(u, τ). Now we note the following formulas: θ′′2 (u)θ1(u) −
θ′′1 (u)θ2(u) = πθ23(θ

′(u)θ3(u) + θ′3(u)θ(u)), θ
′′
2 (u)θ3(u) − θ′′3 (u)θ2(u) = πθ21(θ

′(u)θ1(u) +
θ′1(u)θ(u)), θ

′′(u)θ3(u)− θ′′3 (u)θ(u) = πθ23(θ
′
1(u)θ2(u) + θ′2(u)θ1(u)), where θ′i(u) denotes

∂θi
∂u

(u, τ). Applying these formulas to the right-hand side of (2.6), we have

∂

∂τ
(T (u)φ3) =

[
2
θ3τ
θ3

− 2γ − 2α− 1

4i
θ23

θ(u)θ3(u)

θ1(u)θ2(u)

(
θ′(u)

θ(u)
+

θ′3(u)

θ3(u)

)
+

2β − 2α+ 2

4i
θ21

θ(u)θ1(u)

θ2(u)θ3(u)

(
θ′(u)

θ(u)
+

θ′1(u)

θ1(u)

)
− 1− 2α

4i
θ23

θ1(u)θ2(u)

θ(u)θ3(u)

(
θ′1(u)

θ1(u)
+

θ′2(u)

θ2(u)

)]
T (u)φ3.

(2.7)
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Substituting the formulas:

θ′3(u)

θ3(u)
=

θ′1(u)

θ1(u)
+ πθ22

θ(u)θ2(u)

θ1(u)θ3(u)
and

θ′2(u)

θ2(u)
=

θ′(u)

θ(u)
− πθ22

θ1(u)θ3(u)

θ(u)θ2(u)

into the right-hand side of (2.7) and making some calculation, we have

∂

∂τ
(T (u)φ3) =2

θ3τ
θ3

T (u)φ3 +
θ23
4i

[
−(2γ − 2α− 1)πθ23

θ(u)θ3(u)

θ1(u)θ2(u)

+ (2β − 2α+ 2)πθ21
θ(u)θ1(u)

θ2(u)θ3(u)
− (1− 2α)πθ23

θ1(u)θ2(u)

θ(u)θ3(u)

]
×
(
θ′(u)

θ(u)
+

θ′1(u)

θ1(u)

)
θ(u)2α−1θ1(u)

2γ−2α−1θ2(u)
2β−2γ+3θ3(u)

−2β−1du

+
π2θ22θ

4
3

4i

[
−(2γ − 2α− 1)

θ(u)θ2(u)

θ1(u)θ3(u)
+ (1− 2α)

θ1(u)
3θ2(u)

θ(u)3θ3(u)

]
T (u)du.

(2.8)

Here we note the equality[
−(2γ − 2α− 1)πθ23

θ(u)θ3(u)

θ1(u)θ2(u)
+ (2β − 2α+ 2)πθ21

θ(u)θ1(u)

θ2(u)θ3(u)

−(1− 2α)πθ23
θ1(u)θ2(u)

θ(u)θ3(u)

]
θ(u)2α−1θ1(u)

2γ−2α−1θ2(u)
2β−2γ+3θ3(u)

−2β−1

=
d

du
{θ(u)2α−1θ1(u)

2γ−2α−1θ2(u)
2β−2γ+3θ3(u)

−2β−1}.

(2.9)

Applying (2.9) to the right-hand side of (2.8), we have

∂

∂τ
(T (u)φ3) =2

θ3τ
θ3

T (u)φ3

+
θ23
4i

d

[(
θ′(u)

θ(u)
+

θ′1(u)

θ1(u)

)
θ(u)2α−1θ1(u)

2γ−2α−1θ2(u)
2β−2γ+3θ3(u)

−2β−1

]
+

θ23
4i

(
θ′(u)2

θ(u)2
− θ′′(u)

θ(u)
+

θ′1(u)
2

θ1(u)2
− θ′′1 (u)

θ1(u)

)
× θ(u)2α−1θ1(u)

2γ−2α−1θ2(u)
2β−2γ+3θ3(u)

−2β−1du

+
π2θ22θ

4
3

4i

[
−(2γ − 2α− 1)

θ(u)θ2(u)

θ1(u)θ3(u)
+ (1− 2α)

θ1(u)
3θ2(u)

θ(u)3θ3(u)

]
T (u)du.

(2.10)

We note that

θ′(u)2

θ(u)2
− θ′′(u)

θ(u)
= −4πi

θ1τ
θ1

+ π2θ22θ
2
3

θ1(u)
2

θ(u)2
,

θ′1(u)
2

θ1(u)2
− θ′′1 (u)

θ1(u)
= −4πi

θ1τ
θ1

+ π2θ22θ
2
3

θ(u)2

θ1(u)2
,

and

d

[(
θ′(u)

θ(u)
+

θ′1(u)

θ1(u)

)
θ(u)2α−1θ1(u)

2γ−2α−1θ2(u)
2β−2γ+3θ3(u)

−2β−1

]
∈ B1(M,L).
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Then the equality (2.10) is turned to

∂

∂τ
(T (u)φ3) ≡2

(
θ3τ
θ3

− θ1τ
θ1

)
T (u)φ3

+
π2θ22θ

4
3

2i

[
(1 + α− γ)

θ(u)θ2(u)

θ1(u)θ3(u)

+(1− α)
θ1(u)

3θ2(u)

θ(u)3θ3(u)

]
T (u)du mod B1(M,L).

(2.11)

Substituting the equality

θ1(u)
3θ2(u)

θ(u)3θ3(u)
=

θ21θ1(u)θ2(u)θ3(u)

θ23θ(u)
3

− θ22θ1(u)θ2(u)

θ23θ(u)θ3(u)

into the right-hand side of (2.11), we have

∂

∂τ
(T (u)φ3) ≡2

(
θ3τ
θ3

− θ1τ
θ1

)
T (u)φ3

+
π2θ22θ

4
3

2i

[
(1 + α− γ)

θ(u)θ2(u)

θ1(u)θ3(u)

+(1− α)
θ21
θ23

θ1(u)θ2(u)θ3(u)

θ(u)3
− (1− α)

θ22
θ23

θ1(u)θ2(u)

θ(u)θ3(u)

]
T (u)du mod B1(M,L).

(2.12)

We need the following

Lemma 2.2. The following formulas hold:

(2.13)
θ(u)θ2(u)

θ1(u)θ3(u)
du ≡ α

β − α

1

πθ22
φ3 +

β − γ + 1

β − α

1

πθ22
φ4 mod B1(M,L);

θ1(u)θ2(u)θ3(u)

θ(u)3
du ≡

[
β

1− α

θ21
πθ22θ

2
3

+
(α− γ + 1)β

(1− α)(β − α)

θ23
πθ21θ

2
2

]
φ3

+
(α− γ + 1)(β − γ + 1)

(1− α)(β − α)

θ23
πθ21θ

2
2

φ4 mod B1(M,L).
(2.14)

Proof of Lemma 2.2. The formula (2.13) follows immediately from the equality

ω = (2β − 2γ + 2)πθ23
θ(u)θ3(u)

θ1(u)θ2(u)
du− (2β − 2α)πθ22

θ(u)θ2(u)

θ1(u)θ3(u)
du+ 2απθ23

θ1(u)θ2(u)

θ(u)θ3(u)
du.

Now we see that

∇
(
θ2(u)

2

θ(u)2

)
=− 2πθ22

θ1(u)θ2(u)θ3(u)

θ(u)3
du+

θ2(u)
2

θ(u)2

[
2απθ22

θ1(u)θ3(u)

θ(u)θ2(u)

+(2α+ 2β − 2γ + 2)πθ23
θ(u)θ3(u)

θ1(u)θ2(u)
− 2βπθ22

θ(u)θ2(u)

θ1(u)θ3(u)

]
du

=(α− 1)2πθ22
θ1(u)θ2(u)θ3(u)

θ(u)3
du+ (α+ β − γ + 1)2πθ23

θ2(u)θ3(u)

θ(u)θ1(u)
du

− 2βπθ22
θ2(u)

3

θ(u)θ1(u)θ3(u)
du,
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from which it follows immediately that

θ22
θ1(u)θ2(u)θ3(u)

θ(u)3
du ≡α+ β − γ + 1

1− α
θ23

θ2(u)θ3(u)

θ(u)θ1(u)
du

− β

1− α
θ22

θ2(u)
3

θ(u)θ1(u)θ3(u)
du mod B1(M,L).

(2.15)

Substituting the equality

θ22θ2(u)
3

θ(u)θ1(u)θ3(u)
=

θ23θ2(u)θ3(u)

θ(u)θ1(u)
− θ21θ1(u)θ2(u)

θ(u)θ3(u)

into the right-hand side of (2.15), we have

θ22
θ1(u)θ2(u)θ3(u)

θ(u)3
du ≡α− γ + 1

1− α
θ23

θ2(u)θ3(u)

θ(u)θ1(u)
du

+
β

1− α
θ21

θ1(u)θ2(u)

θ(u)θ3(u)
du mod B1(M,L).

(2.16)

Now we have

ω = (2β − 2γ + 2)πθ23
θ(u)θ3(u)

θ1(u)θ2(u)
du− (2β − 2α)πθ21

θ2(u)θ3(u)

θ(u)θ1(u)
du+ 2βπθ23

θ1(u)θ2(u)

θ(u)θ3(u)
du,

from which it follows immediately that

θ2(u)θ3(u)

θ(u)θ1(u)
du ≡β − γ + 1

β − α

θ23
θ21

θ(u)θ3(u)

θ1(u)θ2(u)
du

+
β

β − α

θ23
θ21

θ1(u)θ2(u)

θ(u)θ3(u)
du mod B1(M,L).

(2.17)

Substituting (2.17) into the right-hand side of (2.16), we have the desired equality (2.14),
which proves Lemma 2.2.

Let us return to our proof of Proposition 2.1. Substituting the two equalities (2.13)
and (2.14) into the right-hand side of (2.12), we have the desired equality (2.3). Propo-
sition 2.1 is thereby proved.
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