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Wavelet characterizations of weighted Herz spaces∗

Mitsuo Izuki and Kazuya Tachizawa

January 29, 2007

Abstract

We characterize the homogeneous weighted Herz spaceK̇α,p
q (w1,w2) and the

non-homogeneous weighted Herz spaceKα,p
q (w1,w2) using wavelets inC1(Rn) with

compact support. Applying the characterizations, we prove that the wavelet basis
forms an unconditional basis iṅKα,p

q (w1,w2) and inKα,p
q (w1,w2) .

Keywords and Phrases.wavelet, weighted Herz space,Ap weight,A1 weight, un-
conditional basis.

1 Introduction

The wavelet characterizations of various function spaces are studied (cf. [HW, HWY, M,
W]). In this paper, we consider wavelet characterizations of the homogeneous weighted
Herz spaceK̇α,p

q (w1,w2) and the non-homogeneous weighted Herz spaceKα,p
q (w1,w2).

Herńandez, Weiss and Yang used compactly supported wavelets inC1(Rn), and estab-
lished the characterizations of non-weighted Herz spaces by means of a local version of
the discrete tent spaces at the origin ([HWY]). We follow a different way in order to ob-
tain the characterizations. Our method is due to the boundedness of sublinear operators on
weighted Herz spaces ([LY]), the duality ([HY]), and the result on density ([NTY]). As an
application of the wavelet characterizations, we also give a construction of unconditional
bases inK̇α,p

q (w1,w2) and inKα,p
q (w1,w2) using wavelets.

Let us explain the outline of this article. In Section 2, we explain wavelets briefly.
We define the homogeneous weighted Herz spaceK̇α,p

q (w1,w2) and the non-homogeneous
weighted Herz spaceKα,p

q (w1,w2) in Section 3. We define two classes of weightsAp and
A1 in Section 4. Section 5 consists of some important lemmas. We show the wavelet
characterizations oḟKα,p

q (w1,w2) andKα,p
q (w1,w2) in Section 6. Lastly, in Section 7, we

construct the unconditional bases inK̇α,p
q (w1,w2) and inKα,p

q (w1,w2) in terms of wavelets.

∗2000 Mathematics Subject Classification: Primary: 42C40; Secondary: 42B35; 42C15; 46B15.
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2 Wavelets

First let us recall the definition of wavelet ([M], [W]).

Definition 2.1 Let {ψe : e= 1, · · · ,2n − 1} be a set of functions belong toL2(Rn). Define

ψe
j,k(x) := 2jn/2ψe(2j x− k) = 2jn/2ψe(2j x1 − k1, · · · , 2j xn − kn) (x = (x1, · · · , xn) ∈ Rn)

for eache = 1, · · · ,2n − 1, j ∈ Z and k = (k1, · · · , kn) ∈ Zn. The sequence{ψe : e =
1, · · · ,2n − 1} is a wavelet set if{ψe

j,k : e = 1, · · · ,2n − 1, j ∈ Z, k ∈ Zn} forms an
orthonormal basis inL2(Rn). Then{ψe

j,k : e = 1, · · · ,2n − 1, j ∈ Z, k ∈ Zn} is a wavelet
basis inL2(Rn) and eachψe is a wavelet.

We generally need suitable smoothness or decay on wavelets in order to obtain wavelet
characterizations of function spaces. In this paper, we use a wavelet set{ψe : e =
1, · · · ,2n − 1} satisfying that each wavelet is compactly supported and inC1(Rn). Ac-
tually there exists a wavelet set{ψe : e = 1, · · · ,2n − 1} which consists of wavelets in
C1(Rn) with compact support. We can construct it by means of a multiresolution analysis
and tensor products ([Da1], [Da2], [M], [W]).

3 Weighted Herz spaces

We use the following notation to define weighted Herz spaces.

Notation 3.1
(a)χE denotes the characteristic function of a measurable setE ⊂ Rn.
(b) Bl := {x ∈ Rn : |x| ≤ 2l} andRl := Bl \ Bl−1 for l ∈ Z.
(c) We define the set of functions{χ̃l}∞l=0 by χ̃0 := χB0 andχ̃l := χRl if l ≥ 1.
(d) For aw ∈ L1

loc(R
n) and a compact setF ⊂ Rn, we writew(F) :=

∫
F

w(x)dx.

Definition 3.2 Letα ∈ R, 0 < p,q ≤ ∞, andw1,w2 ∈ L1
loc(R

n) such thatw1,w2 > 0 a.e..
(a)The homogeneous weighted Herz spaceK̇α,p

q (w1,w2) is defined by

K̇α,p
q (w1,w2) := { f ∈ Lq

loc(R
n \ {0} , w2(x)dx) : ∥ f ∥K̇α,p

q (w1,w2) < ∞},
where

∥ f ∥K̇α,p
q (w1,w2) :=

∥∥∥∥{w1(Bl)
α/n∥ fχRl∥Lq(w2)

}∞
l=−∞

∥∥∥∥
lp(Z)

.

(b) The non-homogeneous weighted Herz spaceKα,p
q (w1,w2) is defined by

Kα,p
q (w1,w2) := { f ∈ Lq

loc(R
n,w2(x)dx) : ∥ f ∥Kα,p

q (w1,w2) < ∞},
where

∥ f ∥Kα,p
q (w1,w2) :=

∥∥∥∥{w1(Bl)
α/n∥ f χ̃l∥Lq(w2)

}∞
l=0

∥∥∥∥
lp(Z+)

,

andZ+ := N ∪ {0}.
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Remark 3.3 Let 0< p ≤ ∞ andw1,w2 ∈ L1
loc(R

n) such thatw1,w2 > 0 a.e.. Then we see
that K̇0,p

p (w1,w2) = K0,p
p (w1,w2) = Lp(w2) and∥ f ∥K̇0,p

p (w1,w2) = ∥ f ∥K0,p
p (w1,w2) = ∥ f ∥Lp(w2).

4 Ap weights andA1 weights

Definition 4.1
(a) Let 1 < p < ∞, andw ∈ L1

loc(R
n) such thatw > 0 a.e. andw−1/(p−1) ∈ L1

loc(R
n). The

class of weightsAp consists of allw satisfying

Ap(w) := sup
B:ball

1
|B|w(B)

(
1
|B|

∫
B

w(y)−1/(p−1)dy

)p−1

< ∞,

and eachw ∈ Ap is anAp weight, where|B|means the Lebesgue measure ofB.
(b) Let w ∈ L1

loc(R
n) such thatw > 0 a.e.. The class of weightsA1 consists of allw

satisfying

A1(w) := sup
B:ball

1
|B|w(B)

∥∥∥w−1
∥∥∥

L∞(B)
< ∞,

and eachw ∈ A1 is anA1 weight.

We have the inclusion relationAp ⊂ Aq for 1 ≤ p ≤ q < ∞ by Hölder’s inequality.
In the case of 1< p < ∞, we also see thatw ∈ Ap if and only if w−1/(p−1) ∈ Ap′. In fact,
it clearly follows thatAp(w) = Ap′(w−1/(p−1))p−1. Herep′ means the conjugate exponent
of p, i.e., p′ satisfies 1/p + 1/p′ = 1. Additionally we describe some properties ofAp

weight.

Lemma 4.2 ([Du]). Let 1 ≤ p < ∞ and w ∈ Ap. Then there exist three constants
C1,C2 > 0 and0 < δ < 1 depending only onn, p, Ap(w) such that for every ballB ⊂ Rn

and measurable setE ⊂ B,

w(E)
w(B)

≤ C1

(
|E|
|B|

)δ
(1)

and
w(B)
w(E)

≤ C2

(
|B|
|E|

)p

.

Muckenhoupt proved the next weak (p, p) inequality for the Hardy-Littlewood max-
imal functionM with respect tow(x)dx ([Mu]). Here we recall the definition ofM. Let
f ∈ L1

loc(R
n) andB(0, r) := {y ∈ Rn : |y| < r} for r > 0. The Hardy-Littlewood maximal

function of f is defined by

M f (x) := sup
r>0

1
|B(0, r)|

∫
B(0,r)
| f (x− y)|dy (x ∈ Rn).
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Lemma 4.3 Let 1 ≤ p < ∞ and w ∈ Ap. Then there exists a constantCn,p ≥ Ap(w)−1

depending only onn and p such that for allλ > 0 and f ∈ Lp(w),

λpw ({x ∈ Rn : M f (x) > λ}) ≤ Cn,pAp(w)∥ f ∥pLp(w). (2)

The estimate of the constant in Lemma 4.3 follows by [Du].

Remark 4.4
(a) Let 1≤ p < ∞ andw ∈ Ap. Following [Du], the constant 0< δ < 1 appearing in (1)
is determined as follows. Let 0< a < 1, and

0 < ε < log
Cn,pAp(w)

Cn,pAp(w) − (1− a)p
·
(
log(2na−1)

)−1
,

whereCn,p ≥ Ap(w)−1 is the constant appearing in (2). Thenδ := ε/(ε + 1) is the desired
constant. Let us give a concrete example ofδ. If we takea = 1/2 and

ε = log
Cn,pAp(w)

Cn,pAp(w) − 2−p
· ((n+ 2)log2

)−1 ,

then we obtain

δ = log
Cn,pAp(w)

Cn,pAp(w) − 2−p

(
log

2n+2Cn,pAp(w)

Cn,pAp(w) − 2−p

)−1

.

(b) We introduce a special version of (1). Let 1< q < ∞, 1 ≤ r ≤ q andw ∈ Ar . Denote
v := w−1/(q−1) andδ̃ := (q− r)/(q− 1). Then there exists a constantC > 0 depending only
onn, q, r, Aq(w) andAr(w) such that for alll,m ∈ Z with l ≥ m,

v(Bm)
v(Bl)

≤ C

(
|Bm|
|Bl |

)δ̃
. (3)

Now we show (3) applying Lemma 4.2. Sincew ∈ Ar , there exists a constantC2 > 0
depending only onn, r, Ar(w) such that

w(Bl)
w(Bm)

≤ C2

(
|Bl |
|Bm|

)r

.

On the other hand, following Ḧolder’s inequality andw ∈ Aq, we have that

1 ≤ 1
|B|w(B)

(
1
|B|v(B)

)q−1

≤ Aq(w)

for any ballB. Namely it follows that

v(Bm) ≤ Aq(w)1/(q−1)|Bm|q/(q−1)w(Bm)−1/(q−1) and v(Bl) ≥ |Bl |q/(q−1)w(Bl)
−1/(q−1).
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Consequently we obtain

v(Bm)
v(Bl)

≤ Aq(w)1/(q−1)

(
|Bm|
|Bl |

)q/(q−1) ( w(Bl)
w(Bm)

)1/(q−1)

≤ Aq(w)1/(q−1)C1/(q−1)
2

(
|Bm|
|Bl |

)δ̃
.

(c) Let 1 < p < ∞ andw ∈ Ap. From [Du, Corollary 7.6 (1)], we can take a constant
0 < γ < p − 1 depending only onn, p, Ap(w) so thatw ∈ Ap−γ. Following [Du], the
constantγ is determined as follows. Let 0< a < 1, and

0 < ε̃ < log
Cn,p′Ap′(w−1/(p−1))

Cn,p′Ap′(w−1/(p−1)) − (1− a)p′
·
(
log(2na−1)

)−1
,

whereCn,p′ ≥ Ap′(w−1/(p−1))−1 is a constant depending only onn andp, and satisfies

λp′w−1/(p−1) ({x ∈ Rn : M f (x) > λ}) ≤ Cn,p′Ap′(w
−1/(p−1))∥ f ∥p

′

Lp′ (w−1/(p−1))

for all λ > 0 and f ∈ Lp′(w−1/(p−1)). Now we takeγ := ε̃(p − 1)/(ε̃ + 1). Thenγ is the
desired constant.
(d) Let 1< p < ∞, w ∈ Ap, thenw−1/(p−1) ∈ Ap′. Let δ be the constant appearing in (1),
and denote ˜γ := δ(p′ − 1). Then we obtainw−1/(p−1) ∈ Ap′−γ̃ by Remark 4.4 (a) and (c).

5 Lemmas

To begin with, we introduce the known wavelet characterizations of the weightedLp

space. Lemarié-Rieusset gave characterizations ofLp(w) with w ∈ Ap by compactly
supported and Ḧolder continuous wavelets. Although he proved it in the case of one-
variable, it is true in the case of several-variables with obvious modifications. We need
further notation in order to describe his result. We define a dyadic cube

Qj,k :=
n∏

i=1

[
2− jki ,2

− j(ki + 1)
)

and denoteχ j,k := 2jn/2χQ j,k for j ∈ Z and k ∈ Zn. Given a wavelet set{ψe : e =
1, · · · ,2n − 1}, we use the following two square functions in order to obtain the wavelet
characterizations of function spaces:

V f :=

2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

∣∣∣< f , ψe
j,k > ψ

e
j,k

∣∣∣2
1/2

andW f :=

2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

∣∣∣< f , ψe
j,k > χ j,k

∣∣∣2
1/2

.

Here< ·, · > means theL2-inner product.
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Lemma 5.1 (cf. [L]) . Let 1 < p < ∞, w ∈ Ap and {ψe : e = 1, · · · ,2n − 1} be a wavelet
set such that eachψe is compactly supported and Hölder continuous. Then there exist
constants0 < c, c′,C,C′ < ∞ depending only onn, p, Ap(w) and{ψe}e such that for every
f ∈ Lp(w),

c∥ f ∥Lp(w) ≤ ∥V f∥Lp(w) ≤ C ∥ f ∥Lp(w) and c′ ∥ f ∥Lp(w) ≤ ∥W f∥Lp(w) ≤ C′ ∥ f ∥Lp(w) .

The wavelet characterizations stated later are generalizations of Lemma 5.1. We will
use Khintchine’s inequality described below (cf. [Z]) following the argument by Meyer
([M]).

Lemma 5.2 Let Ω be the product set{−1,1}Λ and dµ(ε) be the Bernoulli probability
measure onΩ for ε =

{{ε(λ)}λ∈Λ : ε(λ) = ±1
} ∈ Ω, obtained by taking the product of the

measures on each factor which give a mass of1/2 to each of the points−1 and1. Then,
for all 1 < p < ∞, there exist two constants0 < c ≤ C < ∞ depending only onp such
that for all {α(λ)}λ∈Λ ⊂ l2(Λ),

c

∑
λ∈Λ
|α(λ)|2

1/2

≤
∫
Ω

∣∣∣∣∣∣∣∑
λ∈Λ

α(λ)ε(λ)

∣∣∣∣∣∣∣
p

dµ(ε)

1/p

≤ C

∑
λ∈Λ
|α(λ)|2

1/2

.

We shall introduce further important lemmas. The following boundedness of sublinear
operators on weighted Herz spaces is proved by Lu, Yabuta and Yang ([LYY]).

Lemma 5.3 Let α ∈ R, 0 < p ≤ ∞, 1 < q < ∞, 1 ≤ q1 < ∞, 1 ≤ q2 ≤ q, w1 ∈ Aq1,
w2 ∈ Aq2, andT be a sublinear operator satisfying that for allf ∈ L1(Rn) with compact
support andx < suppf ,

|T f(x)| ≤ C
∫
Rn

| f (y)|
|x− y|ndy,

whereC > 0 is a constant independent off andx. Suppose the following(4) or (5):

w1 = w2, q1 = q2, and − n
q
< α < n

(
1
q1
− 1

q

)
, (4)

−δ2n
q1q

< α <
n
q1

(
1− q2

q

)
. (5)

Hereδ2 is a constant in(1) for w2. If T is bounded onLq(w2), thenT is also bounded on
K̇α,p

q (w1,w2) and onKα,p
q (w1,w2).

Remark 5.4 We can takeδ2 ∈ (0,1) such that

w2(Bm)
w2(Bl)

≤ C

(
|Bm|
|Bl |

)δ2

, (6)

for some constantC > 0 and for alll,m ∈ Z with l ≥ m. We remark that our condition (6)
is weaker than (1).
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Lu, Yabuta and Yang assumed the condition (4) or the following (7):

0 < α <
n
q1

(
1− q2

q

)
, (7)

and gave the result above. Noting Lemma 4.2 and following their proof again, we can
modify (7) as (5). We also remark that the conditions (4) and (5) ensure the boundedness
for the vector-valued case ([TY]), although it seems that there is a mistake in the condition
of Tang and Yang’s result.

Next we introduce the result on density. Nakai, Tomita and Yabuta proved it by apply-
ing the preceding lemma ([NTY]). Although they give the general result on the weighted
Herz-Sobolev spaces, we have only to state the simple case.

Lemma 5.5 Letα ∈ R, 0 < p < ∞, 1 < q < ∞, 1 ≤ q1 < ∞, 1 ≤ q2 ≤ q, w1 ∈ Aq1 and
w2 ∈ Aq2. Suppose(4) or (5) in Lemma 5.3. Then the set of all infinitely differentiable
functions with compact support is dense inK̇α,p

q (w1,w2) and inKα,p
q (w1,w2).

Finally we state the duality of Herz spaces by Hernández and Yang ([HY]). They give
the result for non-weighted case. We obtain the following duality for the weighted case
by the same argument as their proof. LetX∗ denote the dual space of a Banach spaceX.

Lemma 5.6 Letα ∈ R, 0 < p < ∞, 1 < q < ∞, w1 ∈ L1
loc(R

n) such thatw1 > 0 a.e., and
w2 ∈ L1

loc(R
n) such thatw2 > 0 a.e. andw−1/(q−1)

2 ∈ L1
loc(R

n). Then it follows that

K̇α,p
q (w1,w2)

∗ = K̇−α,p
′

q′ (w1,w
−1/(q−1)
2 )

and
Kα,p

q (w1,w2)
∗ = K−α,p

′

q′ (w1,w
−1/(q−1)
2 ).

Here p′ means∞ if 0 < p ≤ 1.

6 Wavelet characterizations

Theorem 6.1 Letα ∈ R, 1 < q < ∞, 1 ≤ q1 < ∞, 1 ≤ q2 ≤ q, w1 ∈ Aq1, w2 ∈ Aq2, and
{ψe : e = 1, · · · ,2n − 1} be a wavelet set such that eachψe is compactly supported and in
C1(Rn). Then the following(A) and(B) hold:
(A) Let 0 < p ≤ ∞ and suppose(4) or (5) in Lemma 5.3. Then there exist two constants
0 < C,C′ < ∞ such that for everyf ∈ Kα,p

q (w1,w2),

∥V f∥Kα,p
q (w1,w2) ≤ C ∥ f ∥Kα,p

q (w1,w2) and ∥W f∥Kα,p
q (w1,w2) ≤ C′ ∥ f ∥Kα,p

q (w1,w2) .

(B) Let 1 < p < ∞ and suppose(5) in Lemma 5.3. Then there exist two constants
0 < c, c′ < ∞ such that for everyf ∈ Kα,p

q (w1,w2),

c∥ f ∥Kα,p
q (w1,w2) ≤ ∥V f∥Kα,p

q (w1,w2) and c′ ∥ f ∥Kα,p
q (w1,w2) ≤ ∥W f∥Kα,p

q (w1,w2) .
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The same results as(A) and(B) are also true forK̇α,p
q (w1,w2).

Remark 6.2 Here we have to check that theL2-inner products{< f , ψe
j,k >} j,k are well-

defined in Theorem 6.1. The non-homogeneous case is easy. In fact, byKα,p
q (w1,w2) ⊂

Lq
loc(R

n,w2(x)dx) and Ḧolder’s inequality, we can easily show that theL2-inner products
are well-defined. Next we consider the homogeneous case. Under the assumption (4) or
(5), Tomita proved thaṫKα,p

q (w1,w2) ⊂ L1
loc(R

n) ([T, Proof of Theorem 2]). Thus we see
that the statement is also true for the homogeneous case.

Remark 6.3 Herńandez, Weiss and Yang gave the wavelet characterizations for non-
weighted Herz spaces with 0< p < ∞, 1 < q < ∞ and 0 < α < n(1 − 1/q) by a
different method ([HWY]).

Proof of Theorem 6.1 It suffices to prove the theorem for the non-homogeneous case
because the homogeneous case follows by the essentially same proof.

We have only to estimate∥W f∥Kα,p
q (w1,w2). The estimate of∥V f∥Kα,p

q (w1,w2) is proved by
the same arguments below.

We prove (A) first. Let 0< p ≤ ∞ and suppose (4) or (5). It suffices to show that the
operatorW satisfies the conditions of Lemma 5.3. It obviously follows thatW is sublinear.
We also see thatW is bounded onLq(w2) by Lemma 5.1. On the other hand, let

Ω :=
{
ε = {εe

j,k : e= 1, · · · ,2n − 1, j ∈ Z, k ∈ Zn} : εe
j,k = ±1

}
anddµ(ε) be the Bernoulli probability measure onΩ. By Khintchine’s inequality, there
exists a constantC1 > 0 depending only onq such that for allf ∈ L1(Rn) with compact
support andx < suppf ,

W f(x) ≤ C1

(∫
Ω

|Tε f (x)|q dµ(ε)

)1/q

,

where

Tε f :=
2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

εe
j,k < f , ψe

j,k > χ j,k.

From [Da2, Proof of Lemma 9.1.5], there exists a constantC2 > 0 independent off , x
andε such that

|Tε f (x)| ≤ C2

∫
Rn

| f (y)|
|x− y|ndy.

Hence we have that

W f(x) ≤ C1C2

∫
Rn

| f (y)|
|x− y|ndy.

ThereforeW is bounded onKα,p
q (w1,w2) by Lemma 5.3, that is, (A) is proved.
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Next we show (B) applying a duality argument (cf. [HW, Chapter 6]). Let 1< p < ∞
and suppose (5). Now we denoteδ̃2 := (q−q2)/(q−1), γ̃2 := δ2(q′ −1) andv := w−1/(q−1)

2 .
Then it clearly follows thatv ∈ Aq′. As mentioned in Remark 4.4 (d), we also see that ˜γ2

satisfiesv ∈ Aq′−γ̃2. By Remark 4.4 (b), the constantδ̃2 satisfies that for alll,m ∈ Z with
l ≥ m,

v(Bm)
v(Bl)

≤ C3

(
|Bm|
|Bl |

)δ̃2

,

whereC3 > 0 is a constant which depends only onn, q, q2, Aq(w2) andAq2(w2). On the
other hand, we get

1 < p′, q′ < ∞ and − δ̃2n
q1q′

< −α < n
q1

(
1− q′ − γ̃2

q′

)
. (8)

By Lemma 5.6, it follows that for allf ∈ Kα,p
q (w1,w2),

∥ f ∥Kα,p
q (w1,w2) = sup

{∣∣∣∣∣∫
Rn

f (x)g(x)dx
∣∣∣∣∣ : ∥g∥K−α,p′

q′ (w1,v) ≤ 1

}
.

In addition, by Lemma 5.5 and the condition (8), we see thatKα,p
q (w1,w2) ∩ L2(Rn) is

dense inKα,p
q (w1,w2), and thatK−α,p

′

q′ (w1, v) ∩ L2(Rn) is dense inK−α,p
′

q′ (w1, v). Thus we
have only to show that ∣∣∣∣∣∫

Rn
f (x)g(x)dx

∣∣∣∣∣ ≤ C ∥W f∥Kα,p
q (w1,w2)

for every f ∈ Kα,p
q (w1,w2) ∩ L2(Rn) andg ∈ K−α,p

′

q′ (w1, v) ∩ L2(Rn) with ∥g∥K−α,p′
q′ (w1,v) ≤ 1,

whereC > 0 is a constant independent off andg. Because the wavelet basis{ψe
j,k : e =

1, · · · ,2n − 1, j ∈ Z, k ∈ Zn} forms an orthonormal basis inL2(Rn), it follows that∣∣∣∣∣∫
Rn

f (x)g(x)dx
∣∣∣∣∣

=

∣∣∣∣∣∣∣
∫
Rn

2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

< f , ψe
j,k > ψ

e
j,k(x) ·

2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

< g, ψe
j,k > ψ

e
j,k(x)dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

< f , ψe
j,k >< g, ψe

j,k >

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

< f , ψe
j,k >< g, ψe

j,k > ·
∫
Rn

χ j,k(x)2dx

∣∣∣∣∣∣∣
≤

∫
Rn

2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

∣∣∣∣< f , ψe
j,k > χ j,k(x)· < g, ψe

j,k > χ j,k(x)
∣∣∣∣ dx.
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Now we define

W̃g :=

2n−1∑
e=1

∞∑
j=−∞

∑
k∈Zn

∣∣∣∣< g, ψe
j,k > χ j,k

∣∣∣∣2
1/2

.

ThenW̃ is sublinear and bounded onLq′(v). Therefore by (8) and Lemma 5.3, there exists
a constantC4 > 0 independent off andg such that∥∥∥W̃g

∥∥∥
K−α,p

′
q′ (w1,v)

≤ C4∥g∥K−α,p′
q′ (w1,v) ≤ C4.

By the Cauchy-Schwarz inequality and Hölder’s inequality, we get∣∣∣∣∣∫
Rn

f (x)g(x)dx
∣∣∣∣∣ ≤ ∫

Rn

W f(x) · W̃g(x)dx

=

∞∑
l=0

∫
Rn

W f(x)χ̃l(x)w2(x)1/q · W̃g(x)χ̃l(x)w2(x)−1/qdx

≤
∞∑

l=0

∥(W f)χ̃l∥Lq(w2)

∥∥∥(W̃g)χ̃l

∥∥∥
Lq′ (v)

=

∞∑
l=0

w1(Bl)
α/n ∥(W f)χ̃l∥Lq(w2) · w1(Bl)

−α/n
∥∥∥(W̃g)χ̃l

∥∥∥
Lq′ (v)

≤ ∥W f∥Kα,p
q (w1,w2)

∥∥∥W̃g
∥∥∥

K−α,p
′

q′ (w1,v)

≤ C4 ∥W f∥Kα,p
q (w1,w2) .

Consequently we have proved the desired result. �

7 Unconditional bases

First we recall the definition of unconditional basis ([W]).

Definition 7.1 Let X be a Banach space,A be a countable index set,{xm}m∈A ⊂ X and
{x̃k}k∈A ⊂ X∗. {xm, x̃m}m∈A is said to be an unconditional basis inX if the following three
conditions are satisfied:
(i) {xm, x̃m}m∈A is a biorthogonal system, i.e.,x̃k(xm) = δm,k. Hereδm,k means Kronecker’s
delta, that is,δm,m = 1 andδm,k = 0 if m, k.
(ii) span{xm}m∈A is dense inX, wherespan{xm}m∈A means the set of finite linear combina-
tions of elements in{xm}m∈A.

(iii) There exists a constantC > 0 such that

∥∥∥∥∥∥∥∑m∈B x̃m(x)xm

∥∥∥∥∥∥∥
X

≤ C∥x∥X for everyx ∈ X and

every finite subsetB ⊂ A.
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Remark 7.2 Let {xm, x̃m}m∈A be an unconditional basis in a Banach spaceX. We see that
the functionals{x̃k}k∈A ⊂ X∗ are determined uniquely by the vectors{xm}m∈A ⊂ X from two
conditions (i) and (ii) in Definition 7.1. Thus we often say that{xm}m∈A is an unconditional
basis inX.

Applying Theorem 6.1, we have the following result.

Theorem 7.3 Let α ∈ R, 1 < q < ∞, 1 ≤ q1 < ∞, 1 ≤ q2 ≤ q, 1 < p < ∞, w1 ∈ Aq1,
w2 ∈ Aq2, and {ψe : e = 1, · · · ,2n − 1} be a wavelet set such that eachψe is compactly
supported and inC1(Rn). Suppose(5) in Lemma 5.3. Then the wavelet basis{ψe

j,k :
e = 1, · · · ,2n − 1, j ∈ Z, k ∈ Zn} forms an unconditional basis iṅKα,p

q (w1,w2) and in
Kα,p

q (w1,w2).

We need the next lemma in order to prove Theorem 7.3. The lemma is the dominated
convergence theorem for Banach function spaces with absolutely continuous norm ([BS,
Proposition 3.6 in Chapter 1]). Here a Banach function spaceX is said to be have an
absolutely continuous norm∥ · ∥ if lim

j→∞

∥∥∥ fχE j

∥∥∥ = 0 for all f ∈ X and all sequences of

measurable sets
{
E j

}∞
j=1

such that lim
j→∞

E j = ∅.

Lemma 7.4 Let (X, ∥ · ∥) be a Banach function space with absolutely continuous norm,
f ∈ X and { f j}∞j=1 ⊂ X. Suppose thatlim

j→∞
f j = f a.e. and there exists a positive function

g ∈ X such that| f j | ≤ g a.e. for all j ∈ N. Then we havelim
j→∞
∥ f j − f ∥ = 0.

Proof of Theorem 7.3 For convenience, we denoteΛ := {1, · · · , 2n − 1} × Z × Zn, and
TA f :=

∑
(e, j,k)∈A

< f , ψe
j,k > ψ

e
j,k for A ⊂ Λ. We prove for the case ofKα,p

q (w1,w2). It suffices

to check the following two conditions:
(I) There exists a constantC > 0 such that∥TA f ∥Kα,p

q (w1,w2) ≤ C ∥ f ∥Kα,p
q (w1,w2) for all A ⊂ Λ

and all f ∈ Kα,p
q (w1,w2).

(II) span
{
ψe

j,k : (e, j, k) ∈ Λ
}

is dense inKα,p
q (w1,w2).

First we check (I). By Theorem 6.1 and the orthonormality, it follows that for all
f ∈ Kα,p

q (w1,w2),

∥TA f ∥Kα,p
q (w1,w2) ≤ C0 ∥V(TA f )∥Kα,p

q (w1,w2) ≤ C0 ∥V f∥Kα,p
q (w1,w2) ≤ C0C1 ∥ f ∥Kα,p

q (w1,w2) , (9)

whereC0,C1 > 0 are constants independent off . This completes (I).
Next we check (II). It suffices to show lim

A→Λ
∥ f − TA f ∥Kα,p

q (w1,w2) = 0. We see that

V( f − TA f ) ≤ V f and ∥V f∥Kα,p
q (w1,w2) ≤ C1 ∥ f ∥Kα,p

q (w1,w2) by (9). BecauseKα,p
q (w1,w2)

is a Banach function space with absolutely continuous norm∥ · ∥Kα,p
q (w1,w2), Lemma 7.4
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gives lim
A→Λ
∥V( f − TA f )∥Kα,p

q (w1,w2) = 0. On the other hand, (9) implies∥ f − TA f ∥Kα,p
q (w1,w2) ≤

C0 ∥V( f − TA f )∥Kα,p
q (w1,w2). Namely we obtain lim

A→Λ
∥ f − TA f ∥Kα,p

q (w1,w2) = 0.

Consequently we have proved Theorem 7.3 for the case ofKα,p
q (w1,w2). The same

proof is valid forK̇α,p
q (w1,w2). �
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[HW] E. Herńandez and G. Weiss, A First Course on Wavelets, CRC Press, Boca
Raton, FL., 1996.

[HWY] E. Hernández, G. Weiss and D. Yang,Theϕ-transform and wavelet char-
acterizations of Herz-type spaces, Collect. Math.47 (1996), 285-320.
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