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Abstract

We characterize the homogeneous weighted Herz sﬁét%wl, wp) and the
non-homogeneous weighted Herz spb(ée”(wl, W») using wavelets it€1(R") with
compact support. Applying the characterizations, we prove that the wavelet basis
forms an unconditional basis K P(wi, w2) and inKg P (wy, wy) .

Keywords and Phrases.wavelet, weighted Herz spac, weight, A; weight, un-
conditional basis.

1 Introduction

The wavelet characterizations of various function spaces are studied (cf. [HW, HWY, M,
W]). In this paper, we consider wavelet characterizations of the homogeneous weighted
Herz spacer{’p(wl, w,) and the non-homogeneous weighted Herz sp&afB(wi, wy).
Herrandez, Weiss and Yang used compactly supported wavel@$(Ri'), and estab-

lished the characterizations of non-weighted Herz spaces by means of a local version of
the discrete tent spaces at the origin ((HWY]). We follow fiatent way in order to ob-

tain the characterizations. Our method is due to the boundedness of sublinear operators on
weighted Herz spaces ([LY]), the duality ([HY]), and the result on density ([NTY]). As an
application of the wavelet characterizations, we also give a construction of unconditional
bases irKg P(wi, W,) and inKg P(wy, w,) using wavelets.

Let us explain the outline of this article. In Section 2, we explain wavelets briefly.
We define the homogeneous weighted Herz spgcw;, w,) and the non-homogeneous
weighted Herz spack, P(wi, w,) in Section 3. We define two classes of weightsand
A; in Section 4. Section 5 consists of some important lemmas. We show the wavelet
characterizations df(g’p(wl, W,) and Kf{’p(wl, W) in Section 6. Lastly, in Section 7, we
construct the unconditional based'ﬁﬁi’p(wl, W) and ian{’p(Wl, W) in terms of wavelets.

*2000 Mathematics Subject ClassificatioRrimary: 42C40; Secondary: 42B35; 42C15; 46B15.
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2 Izuki and Tachizawa

2 Wavelets

First let us recall the definition of wavelet ([M], [W]).

Definition 2.1 Let{y®:e=1,---,2" — 1} be a set of functions belong I3(R"). Define
U5 1= 222X - K) = 2R 2 — Ky, 2% = Kg) (X = (Xg, e, X)) € RT)
foreache = 1,---,2"-1, ] € Zandk = (ky,---,ky) € Z". The sequencg/® : e =
1,---,2" — 1} is a wavelet set ih//ik ce=1---,2"-1, j € Z, k € Z"} forms an
orthonormal basis irL?(R"). Then{ fkre=21--20-1 j € Z, ke Z"} is a wavelet
basis inL?(R") and eachy® is a wavelet.

We generally need suitable smoothness or decay on wavelets in order to obtain wavelet
characterizations of function spaces. In this paper, we use a wavelgt®sete =
1,---,2" — 1} satisfying that each wavelet is compactly supported an@{ik"). Ac-
tually there exists a wavelet spt® : e = 1,---,2" — 1} which consists of wavelets in
CY(R") with compact support. We can construct it by means of a multiresolution analysis
and tensor products ([Dal], [DaZ2], [M], [W]).

3 Weighted Herz spaces

We use the following notation to define weighted Herz spaces.

Notation 3.1

(a) ye denotes the characteristic function of a measurabl& seR".
(b)B :={xeR":|x <2'}andR := B, \ B_; forl € Z.

(c) We define the set of functioni§ };2, by xo := xg, andy; := yg if | > 1.

(d) For aw € L{ (R") and a compact sét c R", we writew(F) := fF w(X)dx.

Definition 3.2 Leta € R, 0 < p,g < oo, andw;, W, € L (R") such thatw;, w, > 0 a.e..

loc

(a) The homogeneous weighted Herz spléé’é‘(wl, W,) is defined by
K&P(wy W) = {f € LT (R"\ {0}, Wo(X)dX) : [|Fllgeoquyme < o).

where

(o)
I=—

||f|||'<g*p(w1,wz) = H{Wl(BI)Q/nHf)(RIHLq(WZ)} clliogz) °
(b) The non-homogeneous weighted Herz spéf®w;, w,) is defined by

KaP(we, wp) = {f e L

(Rn,Wz(X)dX) : ”f“Kg’p(Wl,Wz) < oo},

where

1l mgunane = [[{ BN Rl
andZ, := N U {0}.

Iz’



Wavelet characterizations of weighted Herz spaces 3

Remark 3.3 Let 0 < p < oo andwy, W, € LIOC(R”) such thatvy, w, > 0 a.e.. Then we see
that KpP(wa, wo) = KpP(wa, Wp) = LP(w,) and||f||K3,p(Wl,W2) = ||f||Kg‘p(Wl,W2) = |1 fllLows)-

4 A, weights andA; weights

Definition 4.1
(@)Letl < p < o, andw € L} (R") such thatw > 0 a.e. andw >®b ¢ LL (R"). The

class of weight#\, consists of allv satisfying

p-1
A = sup Zu@)| & [wer ety <o
B:pall |B] Bl
and eachw e Ap is anA, weight, wheré¢B| means the Lebesgue measur@of
(b) Letw € L (R") such thatw > 0 a.e.. The class of weights, consists of allw
satisfying

loc

Ai(W) := suplBlw(B) I 1||LW(B) <

and eachw € A; is anA; weight.

We have the inclusion relatiof, ¢ A for 1 < p < g < oo by Holder’s inequality.
In the case of k p < co, we also see that € A, if and only if WD e A,. In fact,
it clearly follows thatAy(w) = A, (W YP-D)P-1 Herep’ means the conjugate exponent
of p, i.e., p’ satisfies Ip + 1/p’ = 1. Additionally we describe some properties/Ayf
weight.

Lemma 4.2 ([Du]). Letl < p < o andw € A,. Then there exist three constants
C1,C, > 0and0 < ¢ < 1 depending only om, p, A,(w) such that for every balB c R"
and measurable sé& c B,

W(E) |E|
wE) = (IBI) 1)
and (B) Bl
W
wE) = (|E|)

Muckenhoupt proved the next weag, ) inequality for the Hardy-Littlewood max-
imal function M with respect tov(x)dx ([Mu]). Here we recall the definition of1. Let
f e LL.(R") andB(0,r) := {y € R" : |y| < r} for r > 0. The Hardy-Littlewood maximal
function of f is defined by

1
Mf(X) ;= su
00 := SUPEE N Joon

[f(x=y)dy (xeR").
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Lemma4.3 Letl < p < oo andw € A,. Then there exists a consta@, > Ay(w)™
depending only on and p such that for alll > 0 and f € LP(w),

APw((x € R": MT(X) > 4}) < CopAs(WII FllEp(- (2)
The estimate of the constant in Lemma 4.3 follows by [Du].

Remark 4.4
(a) Let 1< p < oo andw € A,,. Following [Du], the constant & 6 < 1 appearing in (1)
is determined as follows. Let®a< 1, and

Cr.pAp(W)
CnpAp(W) — (1 - a)P

O<e<log . (Iog(Ta_l))_l,

whereC,, > Ay(w)™* is the constant appearing in (2). Thén= /(¢ + 1) is the desired
constant. Let us give a concrete examplé.df we takea = 1/2 and

Ch.pAp(W)

A~z (02092

e =log

then we obtain

5 — log_CreAe) 272C, LA (W) \ T
(b) We introduce a special version of (1). Leklg < oo, 1 <t < gandw € A.. Denote
v:=w @D ands := (q-r)/(q- 1). Then there exists a constaht- 0 depending only
onn, g, r, Ay(w) andA,(w) such that for all, me Z with [ > m,

V(Br) <C(@)5‘

v(B) — "\ Bl ®)

Now we show (3) applying Lemma 4.2. Sineee A, there exists a consta@t > 0
depending only om, r, A;(w) such that

W(B) B\
W(By = (ﬂ) |

On the other hand, following &lder’s inequality anav € A;, we have that

1 1\

for any ballB. Namely it follows that

V(Bm) < Aq(W)l/(Q—1)|Bm|Q/(0I—1)W(Bm)—1/(Q—1) and V(B|) > |B||Q/(q_1)W(B|)_1/(q_1).
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Consequently we obtain

V(Bm) 1/(q-1) [ |Bml VED gy MY
V(B|) < AWy (|B||) (W(Bm))

(c)Let1l< p < oo andw € A,. From [Du, Corollary 7.6 (1)], we can take a constant
0 < v < p- 1 depending only om, p, A,(w) so thatw € A,_,. Following [Du], the
constanty is determined as follows. Let@a < 1, and

1B\’
< Aq(W)l/(q 1)C1/(q 1)( m) )

Cnp Ay (WY (p-1))
C:n,p’Ap’ (W—l/(p_l)) - (1 - )

0<é&<log (Iog(Z‘a ))

whereCpy > Ay (W YP-1)~1is a constant depending only arandp, and satisfies

PWYED((xeR": MF(X) > A)) < CopAy (WP~ 1))||f|||_p (D)
forall A > 0 andf € LP(w Y1), Now we takey := &(p — 1)/(€ + 1). Theny is the
desired constant.

(d)Let 1< p < oo, w € A, thenw ¥(P-D) e A, Lets be the constant appearing in (1),
and denote “= 6(p’ — 1). Then we obtainv-"-D € A, _; by Remark 4.4 (a) and (c).

5 Lemmas

To begin with, we introduce the known wavelet characterizations of the weidtfted
space. Lemaé-Rieusset gave characterizationsLéfw) with w € A, by compactly
supported and Blder continuous wavelets. Although he proved it in the case of one-
variable, it is true in the case of several-variables with obvious modifications. We need
further notation in order to describe his result. We define a dyadic cube

n

Q= [ |[27k. 270k + 1))

i=1

and denoteyj 1= 2I"2yq, for j € Z andk € Z". Given a wavelet sefy® : e =
1,---,2" - 1}, we use the following two square functions in order to obtain the wavelet
characterizations of function spaces:

M1 oo 1/2 -1
(S5 Sl vl anowi =[5 She o]

e=1 j=—oco kezZ" e=1 j=—oco kezZ"

Here< -,- > means the&?-inner product.
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Lemma5.1 (cf. [L]). Letl < p< oo,we Agand{y®:e=1---,2" -1} be a wavelet

set such that eaclht® is compactly supported and Holder continuous. Then there exist
constant®) < c,¢’,C,C’ < oo depending only on, p, Ay(w) and{y°}. such that for every

f e LP(w),

Cllifllegy < IV fllLogy < Cliflloy @nd  Clifllpgy < W fllowy < C I FllLpw) -

The wavelet characterizations stated later are generalizations of Lemma 5.1. We will
use Khintchine’s inequality described below (cf. [Z]) following the argument by Meyer

([M).

Lemma 5.2 Let Q be the product set—1,1}* and du(s) be the Bernoulli probability
measure o2 for & = {{e(1)} A : €(1) = £1} € Q, obtained by taking the product of the
measures on each factor which give a mas$/@fto each of the points1 andl. Then,
forall 1 < p < o, there exist two constan@< ¢ < C < oo depending only om such
that for all {a(2)},c € 1?(A),

C(Z |a(ﬂ)|2]1/2 < ( fg

AeN

Z a(D)e(A)

AeA

p 1/p 1/2
dﬂ(g)) sc[zmunz) .

AeA

We shall introduce further important lemmas. The following boundedness of sublinear
operators on weighted Herz spaces is proved by Lu, Yabuta and Yang ([LYY]).

Lemmab53Lletea e R,O<pP<oo,1<g<oo,1<0h <o00,1< <0 W e Ay,
W € Aq,, andT be a sublinear operator satisfying that for dlle L*(R") with compact
support andx ¢ suppf,

[f I
Tf(x)<C dy,
IT (Xl Xy
whereC > 0 is a constant independent bfand x. Suppose the followin@t) or (5):
n 1 1
Wi=Wy, 01 =0, and — — <a<n|———], 4
1 2, O = Q2 q (Q1 q) (4)
—@<a<£(1—%). 5)
0:9 01 q

Here o, is a constant in(1) for w,. If T is bounded on.%(w,), thenT is also bounded on
Kg (w1, wz) and onKg P(wy, wy).

Remark 5.4 We can take, € (0, 1) such that

Wa(Br) Bl
W(B) SC(|B.|) : ©)

for some constar® > 0 and for alll, m e Z with | > m. We remark that our condition (6)
is weaker than (1).
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Lu, Yabuta and Yang assumed the condition (4) or the following (7):

0<a<£(1—%), @)
Qu q
and gave the result above. Noting Lemma 4.2 and following their proof again, we can
modify (7) as (5). We also remark that the conditions (4) and (5) ensure the boundedness
for the vector-valued case ([TY]), although it seems that there is a mistake in the condition
of Tang and Yang’s result.

Next we introduce the result on density. Nakai, Tomita and Yabuta proved it by apply-
ing the preceding lemma ([NTY]). Although they give the general result on the weighted
Herz-Sobolev spaces, we have only to state the simple case.

LemmaS55Lleta e R,0<p<oo,1<g<oo,1<0g;<00,1<0 <0 W eA,and
W2 € Ag,. Supposd4) or (5) in Lemma 5.3. Then the set of all infinitelyfdrentiable
functions with compact support is densekifi®(wi, w,) and in Ka”p(wl, Ws).

Finally we state the duality of Herz spaces by Herdez and Yang ([HY]). They give
the result for non-weighted case. We obtain the following duality for the weighted case
by the same argument as their proof. Xétdenote the dual space of a Banach spéce

Lemma5.6 Leta e R,0< p< oo, 1<(q<oo,w €Ll (R") suchthatw, > 0a.e., and

loc
w; € L (R" such thatw, > 0 a.e. andw,” @ e LL (R"). Then it follows that

y * 7 —a,p —-1/(g-1
Kg’p(Wl,Wz) = quap (Wi, W, /@ ))

and

# —a,p’ -1/(g-1
K&P(wy, wp)* = K ™P (wy, w, V),

Herep meansoif 0 < p< 1.

6 Wavelet characterizations

Theorem6.1leta e R,1<g<00,1<Q; <00, 1<0p <0 W €Ay, W €A, and
{y¢:e=1---,2"-1} be a wavelet set such that eaghis compactly supported and in
CY(R"). Then the followingA) and(B) hold:

(A) LetO < p < oo and supposé4) or (5) in Lemma 5.3. Then there exist two constants
0 < C,C’ < oo such that for everyf € KgP(wy, w),

||V f”Kg’p(Wl,WZ) S C || f ||Kg’p(W1,W2) and ||W f”Kg’p(Wl,Wz) S C’ || f ||Kg'p(W1,W2) .

(B) Let1l < p < o and suppos€5) in Lemma 5.3. Then there exist two constants
0 < ¢,C < oo such that for everyf € KgP(wy, W),

C||f|||<g*’)(w1,wz) <|V f”Kg’p(wl,wz) and ¢ ||f||Kg.p(Wl’W2) <|W fllKg.p(Wl’Wz).



8 Izuki and Tachizawa

The same results g8 and(B) are also true fon'<g’p(w1, Wo).

Remark 6.2 Here we have to check that thé-inner productg< f,w‘ik >}k are well-
defined in Theorem 6.1. The non-homogeneous case is easy. In fa§; w1, w,) c

Lo (R", wo(x)dX) and Hblder's inequality, we can easily show that th&inner products
are well-defined. Next we consider the homogeneous case. Under the assumption (4) or
(5), Tomita proved thal(" P(wy, Wo) Lt (R") ([T, Proof of Theorem 2]). Thus we see
that the statement is also true for the homogeneous case.

Remark 6.3 Hernandez, Weiss and Yang gave the wavelet characterizations for non-
weighted Herz spaces with@ p < oo, 1 < g< oand 0< a < n(1-1/qg) by a
different method ([HWY]).

Proof of Theorem 6.1 It suffices to prove the theorem for the non-homogeneous case
because the homogeneous case follows by the essentially same proof.

We have only to estimat@V f|||<gvp(wl,w2)- The estimate o|I]Vf||Kg.p(W1,W2) is proved by
the same arguments below.

We prove (A) first. Let O< p < oo and suppose (4) or (5). It fices to show that the
operatolWV satisfies the conditions of Lemma 5.3. It obviously follows W&t sublinear.
We also see thaw is bounded or.%(w,) by Lemma 5.1. On the other hand, let

Q: {Sz{sike: 1,-.,,2n_1,J€Z,k€Zn}8ik:i1}

anddu(e) be the Bernoulli probability measure éh By Khintchine’s inequality, there
exists a constar®, > 0 depending only on such that for allf € LY(R") with compact
support ank ¢ suppf,

1/q
Wf(x)scl( [ |T8f(x)|Qdu(e>) ,

where

11 o
T.f = Z Z Zg(ja,k< 05> Xk

e=1 j=—oco kezn

From [Da2, Proof of Lemma 9.1.5], there exists a cons@nt 0 independent of, x
ande such that
O

ro [X =Y

W f(X) <CGC, f X |f(y3/:n

ThereforeW is bounded orKg (wy, wo) by Lemma 5.3, that is, (A) is proved.

T F(X)] < Cz

Hence we have that
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Next we show (B) applying a duality argument (cf. [HW, Chapter 6]). Letfh < oo
and suppose (5). Now we dendke:= (q— 0,)/(q—1), 72 := d2(qf — 1) andv := w; @,
Then it clearly follows thav € Ay. As mentioned in Remark 4.4 (d), we also see that ~
satisfiesy € Ay_;,. By Remark 4.4 (b), the constad satisfies that for all, m € Z with
| >m,

32
V(Br) _ C3(|B_m|) |
v(B) 1Bl

whereC; > 0 is a constant which depends only oy, 0z, Aq(W.) andAg,(W,). On the
other hand, we get

l<p,d <o and - n<—a<£(1—q_)’2). (8)

0.’ 01 q

By Lemma 5.6, it follows that for alf € Kg"(wi, wy),

[/ 109090 gl <1}
RN q

In addition, by Lemma 5.5 and the condition (8), we see &at(wi, W) N LA(R") is
dense inKgP(wy, w,), and thatKg,"’p’(wl, v) N L2(R") is dense irK;,"’p'(wl, v). Thus we
have only to show that

|| f ||Kg’p(W1,W2) = Sup{

f f(x)g(x)dxi < CIIW Fllkepwy.my)
Rn

for every f € KgqP(wi, w2) N L3(R") andg € K;f”p' (w1, V) N LA(R") with |9, e wy < L
o7 (s,

whereC > 0 is a constant independent bfandg. Because the wavelet ba$iﬁ:ik re=
1,---,2"-1, j € Z, ke Z" forms an orthonormal basis Ir?(R"), it follows that

[ 09090
21 -1 L
) fRZ Z Z < B> i Z Z Z <G Y5> ‘”ik(x)dx{

e=1 j=—oo kezZn e=1 j=—oo keZ"

M1
— € e
i IDIPIE R e e

e=1 j=—oco keZ"

1 o
- Z Z Z < fyf >< 9.8 > .fn)(j,k(x)zdx{

1 j=—oo kez" R

=
2"-1 o
< fRn Z Z Z ‘< f S > xik(¥)- < gﬁ >)(,-,k(x)‘ dx

e=1 j=—oco kezZ"
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Now we define

-1 oo 2
o= 315 Skeodouf]

e=1 j=—co kezZ"

ThenW is sublinear and bounded @ (v). Therefore by (8) and Lemma 5.3, there exists
a constanC, > 0 independent of andg such that

||Wd|K&,a’p,(W1,v) < C4||g||K(;,”vp’(WLV) < C4.

By the Cauchy-Schwarz inequality andlder’s inequality, we get

‘ fR n f(x)g(x)dxi < [ Wit Wepgdx

- i fE; W ()71 (w2(x) Y - Wgx)f1 (Xw(x) 9d X
=0 YR"

< Z (W f))?l”l_q(wz) ”(\TVQ))?I“Lq’(V)
1=0

= D Wa(B) " IW )llisguy - W(B) " (W]
1=0

<

[|W f||Kg,p(W1’W2) ||Wq|K_/"'p'(w1,v)
q
< ( :4 ”W f||Kg’p(W1,W2) '

Consequently we have proved the desired result. o

7 Unconditional bases

First we recall the definition of unconditional basis ([W]).

Definition 7.1 Let X be a Banach spacé be a countable index sefttn}mea € X and
{Xictkea C X*. {Xm, Xm}mea IS said to be an unconditional basis Kif the following three
conditions are satisfied:

(1) {Xm, Xm}mea iS @ biorthogonal system, i.€X(xm) = dmk. Heredmx means Kronecker’s
delta, that isgmm = L anddmyk = Oif m=# k.

(i1) spanXmimea is dense inX, wherespanxm}mea Mmeans the set of finite linear combina-
tions of elements ifXmn}mea.

< C||x||x for everyx € X and
X

PR

meB

(iii) There exists a constaft> 0 such that{

every finite subsdd c A.
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Remark 7.2 Let {Xn, Xn}mea D€ @an unconditional basis in a Banach spAc&Ve see that
the functionalgXjkea € X* are determined uniquely by the vectoxs}ma € X from two
conditions (i) and (ii) in Definition 7.1. Thus we often say ta} A IS an unconditional
basis inX.

Applying Theorem 6.1, we have the following result.

Theorem7.3Leta e R, 1 <g<o00,1<h <00,1<p<gl<p<oo,w €Ay,

W, € Ag,, and{y®:e=1---,2"- 1} be a wavelet set such that eaghis compactly
supported and irC}(R"). Supposg5) in Lemma 5.3. Then the _wavelet baaiqﬁk :

e=1---,2"-1, j € Z, k € Z"} forms an unconditional basis iKg’p(wl, W) and in
Kg’p(Wl,Wz)-

We need the next lemma in order to prove Theorem 7.3. The lemma is the dominated
convergence theorem for Banach function spaces with absolutely continuous norm ([BS,
Proposition 3.6 in Chapter 1]). Here a Banach function sp&ce said to be have an
absolutely continuous norif - || if lim ||fxg|| = O for all f € X and all sequences of

]—)00
measurable sef&;} " such that linE; = 0.

[ee)
j=1 j—o0

Lemma 7.4 Let (X || - ||) be a Banach function space with absolutely continuous norm,
feX and{f,-}‘j’il c X. Suppose thalim f; = f a.e. and there exists a positive function
|00

g € X such thatfj| < ga.e. forallj e N. Then we havcjﬁm”f,- - f|l=0.

Proof of Theorem 7.3 For convenience, we denote:= {1,---,2" - 1} x Z x Z", and
Taf = Z < £,y > ¢Sy for Ac A. We prove for the case &€ (Wi, Wy). It suffices
(ej,k)eA

to check the following two conditions:
(I) There exists a constafit > 0 such thatlTAf||Kg,p(Wl,W2) <C ||f||Kg~p(w1,w2) forall Ac A
and allf € KgP(wy, W).
(1) spanfys, : (e j.k) € A} is dense irkgP(wy, wp).

First we check (). By Theorem 6.1 and the orthonormality, it follows that for all
fe Kg’p(Wl,Wz),

||TAf ”Kg’p(Wl,Wz) < CO ”V(TAf)”Kg’p(Wl,wz) < CO ”V f”Kg’p(wl,wz) < COCl ” f ”Kg’p(Wl,Wz) > (9)

whereCy, C; > 0 are constants independentfofThis completes (I).
Next we check (ll). It sices to showA_Ij/r\nH — Tafllker@ymy = 0. We see that

V(f = Taf) < VI and IV fllcermmy < CollfllePam bY (9). BecauseKg " (wy, W,)
is a Banach function space with absolutely continuous normixerw, w,, Lemma 7.4
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givesAIirI\wHV(f - TAf)||Kg,p(W1,W2) = 0. On the other hand, (9) implig$ — TAfIIKg’p(Wl,WZ) <
CollV(f - TAf)HKg’p(wl,wz)- Namely we obtair/klimlf - TAf||Kg,p(Wl’W2) =0.

Consequently we have proved Theorem 7.3 for the cas€ 8w, w,). The same
proof is valid forKg P(wy, w2). O
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