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The lightlike flat geometry
on spacelike submanifolds

of codimension two in Minkowski space

Shyuichi IZUMIYA ∗and Maŕıa del Carmen ROMERO FUSTER †

April 1, 2006

Abstract

We introduce the notion of the lightcone Gauss-Kronecker curvature for a spacelike
submanifold of codimention two in Minkowski space which is a generalization of the or-
dinary notion of Gauss curvature of hypersurfaces in Euclidean space. In the local sense,
this curvature describes the contact of such submanifolds with lightlike hyperplanes. We
study geometric properties of such curvatures and show a Gauss-Bonnet type theorem.
As examples we have hypersurfaces in hyperbolic space, spacelike hypersurfaces in the
lightcone and spacelike hypersurfaces in de Sitter space.

1 Introduction

The study of the extrinsic differential geometry of submanifolds in Minkowski space has special
interest in Relativity Theory. In particular, lightlike hypersurfaces, which can be constructed
as ruled hypersurfaces over spacelike submanifolds of codimension 2, provide good models for
the study of different horizon types ([7] [35]). Singularity theory tools, as illustrated by several
papers appeared along the last two decades, have proven to be useful in the description, from
both the local and global viewpoint, of geometrical properties of submanifolds immersed in
different ambient spaces ([2, 3, 4, 5, 6, 8, 13, 32, 36, 37, 38, 39, 41, 46, 47, 48]). The natural
connection between Geometry and Singularities relies on the basic fact that the contacts of a
submanifold with the models (invariant through the action of a suitable transformation group)
of the ambient space can be described by means of the analysis of the singularities of appropriate
families of contact functions, or equivalently, of their associated Lagrangian and/or Legendrian
maps ([1], [40], [42]).

When working in Minkowski space, the properties associated to the contacts of a given sub-
manifold with lightlike hyperplanes have a special relevance. For instance, in the particular case
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of submanifolds contained in hyperbolic space they give rise to Horospherical geometry. More-
over, when restricted to submanifolds contained in spacelike hyperplanes we obtain Euclidean
geometry as a particular case.

With the aim of studying the extrinsic geometry of lightlike hypersurfaces in 4-dimensional
Minkowski space, M. Kossowski introduced ([30, 31]) a Gauss map on its associated spacelike
surface, obtaining in this way interesting conclusions on lightlike 3-manifolds which parallel
known results for surfaces in Euclidean space. The difficulties in generalizing this method
to more general spacetimes, induced the use of a singularity theory approach in [24]. As a
consequence, a local classification of lightlike hypersurfaces singularities in terms of algebraic
and differential geometric invariants were obtained. On the other hand, the application of
Singularity Theory techniques to the study of extrinsic geometry of submanifolds of Hyperbolic
and de Sitter space as well as the lightcone, considered as pseudospheres in Minkowski space,
has been carried out in several recent papers ([15], [16], [17], [20], [21], [22], [23], [25], [26],
[28, 29]).

These facts suggest the convenience of using the Singularity Theory viewpoint in order to
obtain global results on the lightlike extrinsic properties of codimenson 2 spacelike submanifolds
in Minkowski space. Some previous results for curves in 3-space have been obtained in [14],
whereas surfaces in 4-space have been considered in [18, 19]. In the present paper we pursue
this line and describe the Lorentz invariant geometric properties of spacelike submanifolds of
codimension two in Minkowski space concerning their contacts with lightlike hyperplanes. For
this purpose, we start studying some local properties of such submanifolds. Given such a
submanifold, we arbitrarily choose a future directed timelike normal vector field nT along it.
Once fixed nT , there are two possibilities for the choice of a normal frame class: future directed
frames (nT ,nS) and orientation reversing future directed frames (nT ,−nS). We can associate
to any one of these frames the notion of lightcone Gauss-Kronecker curvature K`(n

T ,±nS).
This depends on the particular choice of the frame (nT ,±nS), but it leads after normalization

to a normalized lightcone Gauss-Kronecker curvature K̃±
` which is independent of the choice of

the future directed normal frame (nT ,±nS). In order to investigate its associated geometrical
properties, we have chosen here the class of future directed frames, but it is clear that the
results for the orientation reversing choice would run in a parallel way. We also observe that
an initial choice of a past directed unit normal vector field −nT would lead to parallel results.
We analyze the geometric meaning of the normalized lightcone Gauss- Kronecker curvature
from the view point of Lagrangian and Legendrian singularity theory. Especially, we study the
characterizeation of flatness (i.e. K̃`(p) = 0). Where we have, by definition, that K̃`(p) = 0 if
and only if K`(n

T ,nS)(p) = 0, for any future directed frame (nT ,nS).

We also study global properties of spacelike submanifolds of codimension two and show a
Gauss-Bonnet type theorem on the normalized lightcone Gauss-Kronecker curvature for even
dimensional orientable spacelike submanifolds (cf., Theorem 6.5). This can be seen as a gener-
alization of the ordinary Gauss-Bonnet theorem for hypersurfaces in Euclidean space and the
horospherical Gauss-Bonnet type theorem for hypersurfaces in Hyperbolic space obtained in
[26]. Moreover, it induces as corollaries Gauss-Bonnet type theorems for spacelike hypersur-
faces in the lightcone [18] and de Sitter space. Since the normalized lightcone Gauss-Kronecker
curvature depends on the choice of the normal direction, we need to explicitly use the normal
vectors of the submanifold when dealing with global properties. Therefore, in order to define
the global lightcone Gauss-Kronecker curvature K̃` (cf., §6), we shall need to assume that the
submanifold M is orientable. We remark that although, unlike the euclidean case, the concept
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of Gauss-Kronecker curvature in Minkowski space does not belong to the intrinsic geometry, it
follows from the Gauss-Bonnet type theorem obtained here that the total normalized Gauss-
Kronecker curvature is a topological invariant for submanifolds of codimension 2 in Minkowski
space.

We include in §2 the basic notions in Minkowski space that shall be used throughout the
paper. In §3 we introduce the lightcone Gauss-Kronecker curvature and study its basic proper-
ties. The sections 4 and 5 are respectively devoted to the study of the lightcone Gauss map and
the lightcone pedal hypersurface. We prove in §6 the analogue of Gauss-Bonnet theorem for the
normalized lightcone Gauss-Kronecker curvature on submanifols immersed with codimension
2 in Minkowski space. We also obtain in this section some global results concerning curves
and surfaces immersed with codimension 2. We consider in §7 the particular case of spacelike
submanifolds of codimension 2 with flat normal bundle. As important examples of this class
we have the hypersurfaces of Euclidean space and Hyperbolic space (considered themselves as
hypersurfaces in Minkowski space) de Sitter space and the lightcone. Finally, we have included
two Appendices containing the basic definitions and results on Lagrangian and Legendrian
singularities that shall be used along the paper.

2 Basic facts and notations on Minkowski space

We introduce in this section some basic notions on Minkowski n + 1-space and spacelike sub-
manifolds of codimension two. For basic concepts and properties, see [44].

Let Rn+1 = {(x0, x1, . . . , xn) | xi ∈ R (i = 0, 1, . . . , n) } be an n + 1-dimensional cartesian
space. For any x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1, the pseudo scalar product of
x and y is defined by

〈x,y〉 = −x0y0 +
n∑

i=1

xiyi.

We call (Rn+1, 〈, 〉) Minkowski n + 1-space. We denote Rn+1
1 instead of (Rn+1, 〈, 〉). We say

that a non-zero vector x ∈ Rn+1
1 is spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or

〈x,x〉 < 0 respectively. The norm of the vector x ∈ Rn+1
1 is defined by ‖x‖ =

√
|〈x,x〉|. We

have the canonical projection π : Rn+1
1 −→ Rn defined by π(x0, x1, . . . , xn) = (x1, . . . , xn). Here

we identify {0} × Rn with Rn and it is considered as Euclidean n-space whose scalar product
is induced from the pseudo scalar product 〈, 〉. For a vector v ∈ Rn+1

1 and a real number c, we
define a hyperplane with pseudo normal v by

HP (v, c) = {x ∈ Rn+1
1 | 〈x,v〉 = c }.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is
timelike, spacelike or lightlike respectively.

We now define Hyperbolic n-space by

Hn
+(−1) = {x ∈ Rn+1

1 |〈x,x〉 = −1, x0 > 0}
and de Sitter n-space by

Sn
1 = {x ∈ Rn+1

1 |〈x,x〉 = 1 }.
We define

LC∗ = {x = (x0, x1, . . . , xn) ∈ Rn+1
1 |x0 6= 0, 〈x,x〉 = 0}

3



and we call it the (open) lightcone at the origin. Then we call the future lightcone to the subset

LC∗+ = {x ∈ LC∗ |x0 > 0, }

If x = (x0, x1, . . . , x2) is a non-zero lightlike vector, then x0 6= 0. Therefore we have

x̃ =

(
1,
x1

x0

, . . . ,
x2

x0

)
∈ Sn−1

+ = {x = (x0, x1, . . . , xn) | 〈x,x〉 = 0, x0 = 1}.

We call Sn−1
+ the lightcone (or, spacelike) unit n− 1-sphere.

For any x1,x2, . . . ,xn ∈ Rn+1
1 , we define a vector x1 ∧ x2 ∧ · · · ∧ xn by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

x1
0 x1

1 · · · x1
n

x2
0 x2

1 · · · x2
n

...
... · · · ...

xn
0 xn

1 · · · xn
n

∣∣∣∣∣∣∣∣∣∣∣

,

where e0, e1, . . . , en is the canonical basis of Rn+1
1 and xi = (xi

0, x
i
1, . . . , x

i
n). We can easily check

that
〈x,x1 ∧ x2 ∧ · · · ∧ xn〉 = det(x,x1, . . . ,xn),

so that x1 ∧ x2 ∧ · · · ∧ xn is pseudo orthogonal to any xi (i = 1, . . . , n).

3 Local differential geometry on spacelike submanifolds

of codimension two

We introduce in this section the basic geometrical tools for the study of spacelike submanifolds
of codimension two in Minkowski (n+ 1)-space. Let Rn+1

1 be an oriented and timelike oriented
space. We choose e0 = (1, 0, . . . , 0) as the future timelike vector field. We consider a spacelilke
embedding X : U −→ Rn+1

1 from an open subset U ⊂ Rn−1. We write M = X(U) and identify
M and U through the embedding X. We say that X is spacelike if Xui

i = 1, . . . , n − 1 are
always spacelike vectors. Therefore, the tangent space TpM of M is a spacelike subspace (i.e.,
consists of spacelike vectors) for any point p ∈M . In this case, the pseudo-normal space NpM is
a timelike plane (i.e., Lorentz plane) (cf.,[44]). We denote by N(M) the pseudo-normal bundle
over M. Since this is a trivial bundle, we can arbitrarily choose a future directed unit timelike
normal section nT (u) ∈ Np(M), where p = X(u). Here, we say that nT is future directed if
〈nT , e0〉 < 0. Therefore we can construct a spacelike unit normal section nS(u) ∈ Np(M) by

nS(u) =
nT (u) ∧Xu1(u) ∧ · · · ∧Xun−1(u)

‖nT (u) ∧Xu1(u) ∧ · · · ∧Xun−1(u)‖
,

and we have 〈nT ,nT 〉 = −1, 〈nT ,nS〉 = 0, 〈nS,nS〉 = 1. Although we could also choose
−nS(u) as a spacelike unit normal section with the above properties, we fix the direction
nS(u) throughout this paper. We call (nT ,nS) a future directed normal frame along M =
X(U). Clearly, the vector nT (u) ± nS(u) is lightlike. Here we choose nT + nS as a lightlike
normal vector field along M. Since {Xu1(u), . . . ,Xun−1(u)} is a basis of TpM, the system
{nT (u),nS(u),Xu1(u), . . . ,Xun−1(u)} provides a basis for TpRn+1

1 .
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Lemma 3.1 Given two future directed unit timelike normal sections nT (u), n̄T (u) ∈ Np(M),
the corresponding lightlike normal sections nT (u) + nS(u), n̄T (u) + n̄S(u) are parallel.

Proof. We consider the orientation and the timelike orientation on the normal space Np(M)
induced by the orientation and the timelike orientation of Rn+1

1 and {Xu1(u), . . . ,Xun−1(u)}.
By the construction, both the pseudo-orthogonal basis {nT (u),nS(u)} and {n̄T (u), n̄S(u)} of
Np(M) correspond to the same orientation and the same timelike orientation on Np(M). Since
both of nT (u) and n̄T (u) are future directed and nT (u) + nS(u), n̄T (u) + n̄S(u) are lightlike,
nT (u) + nS(u), n̄T (u) + n̄S(u) are parallel. 2

Under the identification of M and U through X, we have the linear mapping provided by
the derivative of the lightcone normal vector field nT + nS at each point p ∈M ,

dp(n
T + nS) : TpM −→ TpRn+1

1 = TpM ⊕Np(M).

Consider the orthogonal projections πt : TpM ⊕Np(M) → Tp(M) and πn : Tp(M)⊕Np(M) →
Np(M). We define

dp(n
T + nS)t = πt ◦ dp(n

T + nS)

and
dp(n

T + nS)n = πn ◦ dp(n
T + nS).

We respectively call the linear transformations Sp(n
T ,nS) = −dp(n

T +nS)t and dp(n
T +nS)n

of TpM , the (nT ,nS)-shape operator of M = X(U) at p = X(u) and the normal connection
with respect to (nT ,nS) of M = X(U) at p = X(u).

The eigenvalues of Sp(n
T ,nS), denoted by {κi(n

T ,nS)(p)}n−1
i=1 , are called the lightcone prin-

cipal curvatures with respect to (nT ,nS) at p. Then the lightcone Gauss-Kronecker curvature
with respect to (nT ,nS) at p = X(u) is defined as

K`(n
T ,nS)(p) = detSp(n

T ,nS).

We say that a point p = X(u) is a (nT ,nS)-umbilic point if all the principal curvatures coincide
at p and thus Sp(n

T ,nS) = κ(nT ,nS)(p)1Tp0M , for some function κ. We say that M = x(U) is
totally (nT ,nS)-umbilic if all points on M are (nT ,nS)-umbilic.

We deduce now the ligtcone Weingarten formula. Since Xui
(i = 1, . . . n− 1) are spacelike

vectors, we have a Riemannian metric (the hyperbolic first fundamental form ) on M = X(U)
defined by ds2 =

∑n−1
i=1 gijduiduj, where gij(u) = 〈Xui

(u),Xuj
(u)〉 for any u ∈ U. We also

have a lightcone second fundamental invariant with respect to the normal vector field (nT ,nS)
defined by hij(n

T ,nS)(u) = 〈−(nT + nS)ui
(u),Xuj

(u)〉 for any u ∈ U.
Proposition 3.2 Under the above notations, we have the following lightcone Weingarten for-
mula with respect to (nT ,nS) :

(a) (nT + nS)ui
= 〈nS,nT

ui
〉(nT + nS)−∑n−1

j=1 h
j
i (n

T ,nS)Xuj

(b) πt ◦ (nT + nS)ui
= −∑n−1

j=1 h
j
i (n

T ,nS)Xuj
.

Here
(
hj

i (n
T ,nS)

)
=

(
hik(n

T ,nS)
) (
gkj

)
and

(
gkj

)
= (gkj)

−1.

Proof. There exist real numbers λ, µ,Γj
i such that

(nT + nS)ui
= λnT + µnS +

s∑
j=1

Γj
iXuj

.
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Since 〈nT ,nT 〉 = −1, we have 〈nT
ui
,nT 〉 = 0. It follows from 〈nT ,nS〉 = 〈nT ,Xui

〉 =
〈nS,Xui

〉 = 0 that λ = −〈nS
ui
,nT 〉. By the similar reasons, µ = 〈nT

ui
,nS〉. It also follows

from 〈nT ,nS〉 = 0 that 〈nS
ui
,nT 〉 = −〈nT

ui
,nS〉. Since 〈λnT + µnS,Xuj

〉 = 0, we have

−hiβ(nT ,nS) =
n−1∑
α=1

Γα
i 〈Xuα ,Xuβ

〉 =
s∑

α=1

Γα
i gαβ.

Hence, we have

−hj
i (n

T ,nS) = −
n−1∑

β=1

hiβ(nT ,nS)gβj =
n−1∑

β=1

n−1∑
α=1

Γα
i gαβg

βj = Γj
i .

This completes the proof of the formula (a). The formula (b) follows from the formula (a). 2

As a corollary of the above proposition, we have an explicit expression of the lightcone
curvature in terms of the Riemannian metric and the lightcone second fundamental invariant.

Corollary 3.3 Under the same notations as in the above proposition, the lightcone Gauss-
Kronecker curvature with respect to (nT ,nS) is given by

K`(n
T ,nS) =

det
(
hij(n

T ,nS)
)

det (gαβ)
.

Proof. By the formula (b) in the previous proposition, the representation matrix of the lightcone
shape operator with respect to the basis {xu1 , . . . ,xun−1} is

(
hj

i (n
T ,nS)

)
=

(
hiβ(nT ,nS)

) (
gβj

)
.

It follows from this fact that

K`(n
T ,nS) = detSp(n

T ,nS) = det
(
hj

i (n
T ,nS)

)
= det

(
hiβ(nT ,nS)

) (
gβj

)
=

det
(
hij(n

T ,nS)
)

det (gαβ)
.

2

Since 〈−(nT + nS)(u),Xuj
(u)〉 = 0, we have hij(n

T ,nS)(u) = 〈nT (u) + nS(u),Xuiuj
(u)〉.

Therefore the lightcone second fundamental invariant at a point p0 = X(u0) depends only on
the values, nT (u0) + nS(u0) and Xuiuj

(u0), respectively assumed by the vector fields nT + nS

and Xuiuj
at the point p0. And thus, the lightcone curvature depends only on nT (u0)+nS(u0),

Xui
(u0) and Xuiuj

(u0) too, independently of the choice of the normal vector fields nT and nS.
We write K`(n

T
0 ,n

S
0 )(u0) as the lightcone curvature at p0 = x(u0) with respect to (nT

0 ,n
S
0 ) =

(nT (u0),n
S(u0)). We might also say that a point p0 = x(u0) is (nT

0 ,n
S
0 )-umbilic because the

lightcone (nT ,nS)-shape operator at p0 only depends on the normal vectors (nT
0 ,n

S
0 ).

Analogously, we say that a point p0 = X(u0) is a (nT
0 ,n

S
0 )-parabolic point of X : U −→

Rn+1
1 if K`(n

T
0 ,n

S
0 )(u0) = 0. And we say that a point p0 = X(u0) is a (nT

0 ,n
S
0 )-flat point if it

is an (nT
0 ,n

S
0 )-umbilic point and K`(n

T
0 ,n

S
0 )(u0) = 0.

4 The lightcone Gauss map

4.1 Lightcone height functions

For any spacelike embedding X : U −→ Rn+1
1 from an open subset U ⊂ Rn−1, we consider a

future directed unit timelike normal section nT (u) ∈ Np(M) and the corresponding spacelike
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unit normal section nS(u) ∈ Np(M) constructed in the previous section, where p = X(u). By
Lemma 3.1, if we choose another future directed unit timelike nomal section n̄T (u), then we

have ˜(nT + nS)(u) = ˜(n̄T + n̄S)(u) ∈ Sn−1
+ . Therefore we define the lightcone Gauss map of

M = X(U) as

L̃ : U −→ Sn−1
+

(u) 7−→ ˜(nT + nS)(u).

This induces a linear mapping dL̃p : TpM −→ TpRn+1
1 under the identification of U and M,

where p = X(u). We have the following proposition:

Proposition 4.1 Under the above notation, we have the following normalized lightcone Wein-
garten formula:

πt ◦ L̃ui
= −

n−1∑
j=1

1

`0(u)
hj

i (n
T ,nS)Xuj

,

where L(u) = (`0(u), `1(u), . . . , `n(u)).

Proof. By definition, we have `0L̃ = L. It follows that `0L̃ui
= Lui

−`0ui
L̃. Since L̃(u) ∈ Np(M)

and Lui
(u) ∈ TpM, we obtain

πt ◦ L̃ui
=

1

`0
Lui

.

By the lightcone Weingarten formula (Proposition 3.3, (b)), we get the desired normalized
lightcone Weingarten formula. 2

We call the linear transformation S̃p = −πt ◦ dL̃p the normalized lightcone shape operator

of M = X(U) at p. The eigenvalues {κ̃i(p)}n−1
i=1 of S̃p are called normalized lightcone principal

curvatures. By the above proposition, we have κ̃i(p) = (1/`0)κi(n
T ,nS)(p). The normalized

lightcone Gauss-kronecker curvature of M = X(U) is defined to be K̃`(u) = det S̃p. Then we
have the following relation between the normalized ligtcone Gauss-Kronecker curvarure and the
lightcone Gauss-Kronecker curvature:

K̃`(u) =

(
1

`0(u)

)n−1

K`(n
T ,nS)(u).

It is clear from the corresponding definitions that the lightcone Gauss map, the normalized
lightcone principal curvatures and the nomalized lightcone Gauss-Kronecker curvatures are
independent on the choice of of the normal frame (nT ,nS).

We say that a point u ∈ U or p = X(u) is a lightlike umbilical point if S̃p = κ̃(p)1TpM .
By the above proposition, p is a lightlike umbilic point if and only if it is a (nT ,nS)-umbilic
point for any (nT ,nS). We say that M = X(U) is totally lightlike umbilic if all points on
M are lightlike umbilic, as usual. We also say that p = X(u) is a lightlike parabolic point if

K̃`(u) = 0. Moreover, p is called a lightlike flat point if p is both lightlike umbilic and parabolic.
The spacelike submanifold M = X(U) is called totally lightlike flat provided every point of M
is lightlike flat.

We define the lightcone height functions family on M = X(U) as

H : U × Sn−1
+ −→ R

(u,v) 7−→ 〈X(u),v〉.

7



We denote the Hessian matrix of the lightcone height function hv0(u) = H(u,v0) at u0 as
Hess(hv0)(u0).

The following proposition provides a characterization of the lightlike parabolic and the
lightlike flat points in terms of lightcone height functions.

Proposition 4.2 Let H : U ×Sn−1
+ −→ R be a lightcone height function on M = X(U). Then

(1) ∂H/∂ui(u0,v0) = 0 (i = 1, . . . n − 1) if and only if v0 = L̃±(u0), where L±(u) =
nT (u)± nS(u).

Suppose that v0 = L̃(u0). Then

(2) p0 = X(u0) is a lightlike parabolic point if and only if det Hess(hv0)(u0) = 0.

(3) p0 = X(u0) is a lighlike flat point if and only if rank Hess(hv0)(u0) = 0.

Proof. (1) Since {nT ,nS,Xu1 , . . . ,Xun−1} is a basis of the vector space TpRn+1
1 where p = x(u),

there exist real numbers λ, µ, ξ1, . . . , ξn−1 such that v = λnT +µnS + ξ1Xu1 + · · ·+ ξn−1Xun−1 .
Since ∂H/∂ui(u,v) = 〈Xui

,v〉, we have 〈Xui
,v〉 =

∑n
j=1 ξj〈Xui

,Xui
〉. Since gij = 〈Xui

,Xui
〉

is positive definite, the condition ∂H/∂ui(u0,v0) = 0 is equivalent to v0 = λnT (u0) +µnS(u0).
Now, since 〈v0,v0〉 = 0, µ = ±λ and the fact that v0 ∈ Sn−1

+ implies that λ = 1.

By definition, we have

Hess(hv0)(u0) =
(
〈Xuiuj

(u0), L̃(u0)〉
)

=
(
−〈Xui

(u0), L̃uj
(u0)〉

)
.

Then, we get from the normalized lightcone Weingarten formula,

−〈xui
, L̃uj

〉 =
1

`0

n−1∑
α=1

hα
i (nT ,nS)〈Xuα ,Xuj

〉 =
1

`0

n−1∑
α=1

hα
i (nT ,nS)gαj =

1

`0
hij(n

T ,nS).

Therefore we have

K̃`(u0) =
det Hess(hv0)(u0)

det (gαβ(u0))
.

The assertion (2) follows from this formula. For the assertion (3), we observe that it follows
from the lightcone Weingarten formula that p = x(u0) is an umbilical point if and only if there
exists an orthogonal matrix A such that tA

(
hα

i (nT ,nS)
)
A = κp(n

T ,nS)I, where I represents
the identity matrix. Therefore, we have

(
hα

i (nT ,nS)
)

= Aκ(nT ,nS)(p)I tA = κ(nT ,nP )(p)I,

so that

Hess(hv0) =
1

`0

(
hij(n

T ,nS)
)

=
1

`0

(
hα

i (nT ,nS)
)
(gαj) =

1

`0
κ(nT ,nS)(p) (gij) .

And hence, p is a lightlike flat point if and only if rank Hess(hv0)(u0) = 0. 2

Corollary 4.3 For a point p0 = X(u0) ∈M, the following conditions are equivalent:

(1) The point p0 ∈ M is a (nT ,nS)-parabolic point (i.e., K`(n
T ,nS)(u0) = 0) for any future

directed normal frame (nT ,nS).

(2) The point p0 ∈M is a singular point of the lightcone Gauss map L̃.
(3) K̃`(p0) = 0.

(4) det Hess(hv0)(u0) = 0 for v0 = L̃(u0).
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Corollary 4.4 For a point p0 = X(u0) ∈M, the following conditions are equivalent:

(1) The point p0 ∈M is a (nT ,nS)-flat point for any future directed normal frame (nT ,nS).

(2) There exists a future directed normal frame (nT ,nS) such that the point p0 ∈ M is an
(nT ,nS)-flat point.

(3) The point p0 ∈M is a lightlike flat point.

We now arrive to the following characterization of lightlike flatness:

Proposition 4.5 For a spacelike embedding X : U −→ Rn+1
1 (where U ⊂ Rn−1), the following

conditions are equivalent:

(1) M is totally lightlike flat.

(2) The lightcone Gauss map L̃ is a constant map.

(3) There exists a lightlike vector v and a real number c such that M ⊂ HP (v, c).

Proof. Assume that M is totally lightlike flat. This means that hij(n
T ,nS)(u) = 0 at any

point u ∈ U for any future directed frame (nT ,nS). By Proposition 3.2, (a), we have

(nT + nS)ui
(u) = 〈nS(u),nT

ui
(u)〉(nT + nS)(u)

at any point u ∈ U. By the similar calculations as those in the proof for Proposition 4.1, we
have

˜(nT + nS)ui
=

(
1

nT
0 + nS

0

〈nS,nT
ui
〉 − (nT

0 + nS
0 )ui

)
˜(nT + nS),

where (nT + nS) = (nS
0 + nT

0 , . . . , n
S
n+1 + nT

n+1). If the left hand side of the above equality

is non-zero, then it is space like. Since ˜(nT + nS) is lightlike, we have ˜(nT + nS)ui
= 0 for

i = 1, . . . , n−1. Therefore the lightcone Gauss map L̃ = ˜(nT + nS) is constant. By Proposition
4.1, the condition (2) implies the condition (1).

Suppose that the lightcone Gauss map L̃(u) = v is constant. We consider a function
F : U −→ R defined by F (u) = 〈X(u),v〉. By definition, we have

∂F

∂ui

(u) = 〈Xui
(u),v〉 = 〈Xui

(u), L̃(u)〉 = 0,

for any i = 1, . . . , n− 1. Therefore, F (u) = 〈X(u),v〉 = c is constant. Since v is lightlike, M is
a subset of the lightlike hyperplane HP (v, c). This completes the proof that the condition (2)
implies the condition (3).

Suppose that M is a subset of a lightlike hyperplane H(v, c). For any point p = X(u) ∈M,
the tangent space of HP (v, c) can be identified with HP (v, 0). Since M ⊂ HP (v, c), TpM ⊂
HP (v, 0), so that Np(M)∩HP (v, 0) is a line generated by v. For any future directed timelike
unit normal vector field nT along M, there exists a light like vector v̄ such that v̄ is parallel to
v and v̄ − nT is a spacelike unit normal vector field along M. We write nS = v̄ − nT , so that

we have a future directed normal frame (nT ,nS) along M with ˜nT + nS(u) = ṽ. This means

that the corresponding lightcone Gauss map L̃ is constant. This completes the proof. 2

9



4.2 Contact viewpoint

We now interpret the results of Proposition 4.2 and Corollary 4.3 from another viewpoint.
We consider the relationship between the contact of submanifolds with foliations and the R+-
classification of functions. Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2, and
let gi : (Xi, x̄i) −→ (Rn, ȳi) be immersion germs and fi : (Rn, ȳi) −→ (R, 0) submersion germs.
For a submersion germ f : (Rn, 0) −→ (R, 0), we denote by Ff the regular foliation defined by
f ; i.e., Ff = {f−1(c)|c ∈ (R, 0)}. We say that the contact of X1 with the regular foliation Ff1

at ȳ1 is of the same type as the contact of X2 with the regular foliation Ff2 at ȳ2 if there is a
diffeomorphism germ Φ : (Rn, ȳ1) −→ (Rn, ȳ2) such that Φ(X1) = X2 and Φ(Y1(c)) = Y2(c),
where Yi(c) = f−1

i (c) for each c ∈ (R, 0). In this case we write K(X1,Ff1 ; ȳ1) = K(X2,Ff2 ; ȳ2).
It is clear that in the definition Rn could be replaced by any manifold. We apply Goryunov’s
method [10] for R+-equivalences among function germs.

Proposition 4.6 ([10, Appendix]) Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 =
dimX2 = n − 1 (i.e. hypersurface), gi : (Xi, x̄i) −→ (Rn, ȳi) be immersion germs and fi :
(Rn, ȳi) −→ (R, 0) be submersion germs. Then K(X1,Ff1 ; ȳ1) = K(X2,Ff2 ; ȳ2) if and only if
f1 ◦ g1 and f2 ◦ g2 are R+-equivalent (i.e., there exists a diffeomorphism germ φ : (X1, x̄1) −→
(X2, x̄2) such that (f2 ◦ g2) ◦ φ = f1 ◦ g1).

On the other hand, Golubitsky and Guillemin [9] have given an algebraic characterization
for the R+-equivalence among function germs. We denote C∞0 (X) is the set of function germs
(X, 0) −→ R. Let Jf be the Jacobian ideal in C∞0 (X) (i.e., Jf = 〈∂f/∂x1, . . . , ∂f/∂xn〉C∞0 (X)).
Let Rk(f) = C∞0 (X)/Jk

f and f̄ be the image of f in this local ring. We say that f satisfies the
Milnor Condition if dimRR1(f) <∞.

Proposition 4.7 ([9, Proposition 4.1]) Let f and g be germs of functions at 0 in X satisfying
the Milnor condition with df(0) = dg(0) = 0. Then f and g are R+-equivalent if

(1) The rank and signature of the Hessians Hess(f)(0) and Hess(g)(0) are equal, and

(2) There is an isomorphism γ : R2(f) −→ R2(g) such that γ(f̄) = ḡ.

For v0 = L̃(u0), we consider a function hv0 : Rn+1
1 −→ R defined by hv0(x) = 〈x,v0〉. It is

easy to show that hv0 is a submersion. Moreover we have hv0 ◦X(u) = H(u,v0). By Proposition
4.2, we have

∂hv0 ◦X

∂ui

(u0) =
∂H

∂ui

(u0,v0) = 0.

for i = 1, . . . , n− 1. This means that the lightlike hyperplane hv0

−1(c) = HP (v0, c) is tangent
to M = X(U) at p = X(u0), where c = 〈X(u0),v0〉. In this case, we call HP (v0, c) a tangent
lightlike hyperplane with the pseudo-normal v0. Since we have two lightlike directions in the
mormal plane, we have two tangent hyperplanes at each point p = X(u0) depending on the
direction of v0. Here, we choose one of them. Let ε be a sufficiently small positive real number.
For any t ∈ Iε = (c − ε, c + ε), we have a lightlike hyperplane HP (v0, t) = h−1

v0
(t). In this

case Fhv0
is a family of parallel lightlike hyperplanes around p = X(u0) such that h−1

v0
(c) is

the tangent lightlike hyperplane of M at p. Let X i : (U, ūi) −→ (Rn+1
1 ,X i(ūi)) (i = 1, 2) be

codimension two spacelike embedding germs, then we have hi,vi
(u) = hvi

◦ X i(u). Then we
have the following proposition as a corollary of Propositions 4.6 and 4.7.
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Proposition 4.8 Let X i : (U, ūi) −→ (Rn+1
1 ,X i(ūi)) (i = 1, 2) be codimension two spacelike

embedding germs such that hi,vi
satisfy the Milnor condition, where vi = L̃(ūi) are pseudo-

normals of the tangent lightlike hyperplane of X i respectively. Then the following conditions
are equivalent:

(1) K(X1(U),Fhv1
; X1(ū1)) = K(X2(U),Fhv2

; X2(ū2)).

(2) h1,v1 and h2,v2 are R+-equivalent.

(3) (a) The rank and signature of the Hess(h1,v1)(ū1) and Hess(h2,v2)(ū2) are equal,

(b) There is an isomorphism γ : R2(h1,v1) −→ R2(h2,v2) such that γ(h1,v1) = h2,v2 .

4.3 Lagrangian viewpoint

We now investigate the above arguments from the viewpoint of Lagrangian singularity theory.
Basic concepts and results in Lagrangian singularity theory are given in Appendix A (or referred
to [1, 50]). We now prove the following lemma that shall be very useful in §6. Consider the
canonical projection π : Rn+1

1 −→ Rn defined by π(x0, x1, . . . , xn) = (0, x1, . . . , xn).

Lemma 4.9 For any spacelike embedding X : U −→ Rn+1
1 (where U ⊂ Rn−1), the direction of

the vector field π ◦ L̃ is transversal to π ◦X(U) in Rn (i.e.,

〈π ◦ L̃(u)〉R + d(π ◦X)u(TuU) = TpRn

at any p = X(u) ∈M = X(U)).

Proof. Since L̃(u) is lightlike and Kerdπp is a timelike one-dimensional subspace of Rn+1
1 ,

L̃(u) /∈ Kerdπp. Then the fact that dXu(TuU) is spacelike implies that

〈π ◦ L̃(u),Kerdπp〉R + dXu(TuU) = TpRn+1
1

at any point p = X(u) ∈M = X(U).

Suppose that there exists a point u ∈ U such that the direction of the vector field π ◦ L̃(u)
is not transversal to π ◦X(U) in Rn at p = X(u). Since π ◦X(U) is codimension 1 in Rn, we

have π ◦ L̃(u) ∈ d(π ◦X)u(TuU). This means that

L̃(u) ∈ dXu(TuU) + Kerdπp.

Therefore the dimension of 〈π ◦ L̃(u),Kerdπp〉R + dXu(TuU) is at most n, which contradicts
the above mentioned equality. 2

We now have the following proposition.

Proposition 4.10 The lightcone height function H : U × Sn−1
+ −→ R of M = X(U) is a

Morse family of functions.

Proof. Given v = (1, v1, . . . , vn) ∈ Sn−1
+ , we may assume that v1 > 0, so that v1 =√

1− v2
2 − v2

3 − · · · v2
n. It follows that

H(u,v) = −x0(u) + x1(u)
√

1− v2
2 − v2

3 − · · · v2
n + x2(u)v2 + · · ·+ xn(u)vn,
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where X(u) = (x0(u), x1(u), . . . , xn(u)). We will show that the mapping

∆H =
(∂H
∂u1

, . . . ,
∂H

∂un−1

)

is non-singular at any point in C(H) = ∆H−1(0). The Jacobian matrix of ∆H is given as
follows:



〈Xu1u1 ,v〉 · · · 〈Xu1un−1 ,v〉 −x1u1

v2

v1

+ x2u1 · · · −x1u1

vn

v1

+ xnu1

...
...

...
...

...
...

〈Xun−1u1 ,v〉 · · · 〈Xun−1un−1 ,v〉 −x1un−1

v2

v1

+ x2un−1 · · · −x1un−1

vn

v1

+ xnun−1


 ,

where Xuiuj
= ∂2X/∂ui∂uj(u). We will show that the rank of the matrix

A =




−x1u1

v2

v1

+ x2u1 · · · −x1u1

vn

v1

+ xnu1

...
...

...

−x1un−1

v2

v1

+ x2un−1 · · · −x1un−1

vn

v1

+ xnun−1




is n− 1 at (u,v) ∈ C(H). Denote ai =




xiu1

...
xiun−1


 for i = 1, . . . , n.

So we have
A =

(−a1
v2

v1

+ a1, . . . ,−a1
vn

v1

+ an

)

and

detA =
v1

v1

det(a2, . . . ,an)− v2

v1

det(a1,a3, . . . ,an)− · · · − vn

v1

det(a2, . . . ,an−1,a1).

And it also follows that

detA =

〈(
v1

v1

, . . .
vn

v1

)
,Xu1 × · · · ×Xun−1

〉
,

where a1 × · · · × an−1 is the Euclidean exterior product in Rn.

Since X is a spacelike embedding, X = π ◦ X : U −→ Rn is an immersion, so that
Xu1×· · ·×Xun−1 6= 0. We may consider the case when v = L̃(u). By Lemma 4.9, the direction

of π(v) = π ◦ L̃(u) is transverse to the tangent space of π ◦X(U). Therefore detA 6= 0.

Similar calculations apply to any other local chart. 2

We can define a Lagrangian immersion germ whose generating family is the lightcone height
function M = X(U) by using the method of constructing the Lagrangian immersion germ from
a Morse family of functions (cf., Appendix A):

Consider a spacelike embedding X : U −→ Rn+1
1 of codimension two, X(u) = (x0(u), . . . , xn(u)).

For the lightcone sphere Sn−1
+ , we consider the local coordinates Ui = {v = (1, v1, . . . , vn) ∈

Sn−1
+ | vi 6= 0 }. Since T ∗Sn−1

+ |Ui is a trivial bundle, we define a map

Li(H) : C(H) −→ T ∗Sn−1
+ |Ui (i = 1, . . . , n)
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by

Li(H)(u,v) =
(
v, x1(u)− xi(u)

v1

vi

, . . . ,
̂

xi(u)− xi(u)
vi

vi

, . . . , xn(u)− xi(u)
vn

vi

)
,

where v = (1, v1, . . . , vn) ∈ Sn−1
+ and we denote by (x0, . . . , x̂i, . . . , xn) a point in n-dimensional

space with the i-th component xi removed. We can show that if Ui ∩ Uj 6= ∅ for i 6= j, then
Li(H) and Lj(H) are Lagrangian equivalent, where the Lagrangian equivalence is provided by
the Lagrangian lift of the local coordinate change of Sn−1

+ . Indeed, if we denote by ϕij : Ui −→
Uj; i < j, the local coordinate change of Sn−1

+ defined by

ϕij(1, v1, . . . , v̂i, . . . , vn) = (1, v1, . . . , vi =

√
1− v2

1 − · · · − v̂2
i − · · · − v2

n, . . . , v̂j, . . . , vn),

and by ϕ̃ij : T ∗Sn−1
+ −→ T ∗Sn−1

+ its Lagrangian lift, which is defined by ϕ̃ij(ξ) = (ϕ−1
ij∗)

∗ξ.
Then ϕ̃ij are symplectic diffeomorphism germs (c.f [1]). We also define diffeomorphism germs
σ̂ij : U×Ui → U×Uj by σ̂ij(u,v) = (u, ϕij(v)) and σij = σ̂ij|C(HS), then ϕ̃ij◦Li(H) = Lj(H)◦σij

and ϕij◦π = π◦ϕ̃ij. Therefore we get a global Lagrangian immersion, L(H) : C(H) −→ T ∗Sn−1
+ .

The following corollary of the above proposition follows immediately.

Corollary 4.11 Under the above notations, L(H) is a Lagrangian immersion such that the
lightcone height function H : U × Sn−1

+ −→ R of M = X(U) is a generating family of L(H).

Consequently, we get that the Lagrangian map of L(H) is the lightcone Gauss map of
M = X(U). We call L(H) the Lagrangian lift of the lightcone Gauss map of M = X(U). By
using this terminology, we can interpret the Proposition 4.8 from the viewpoint of Lagrangian
singularity theory.

Theorem 4.12 Let X i : (U, ūi) −→ (Rn+1
1 ,xi(ūi)) be submanifold germs of codimension two

such that the Lagrangian lift germs L(Hi) : (C(Hi), (ūi,vi)) −→ (T ∗Sn−1
+ , z̄i) of the lightcone

Gauss map germs L̃i are Lagrangian stable, where vi = L̃i(ūi). Then the following conditions
are equivalent:

(1) K(X1(U),Fhv1
; X(ū1)) = K(X2(U),Fhv2

; X(ū2)).

(2) h1,v1 and h2,v2 are R+-equivalent.

(3) H1 and H2 are P -R+-equivalent.

(4) L(H1) and L(H2) are Lagrangian equivalent.

(5) (a) The rank and signature of the Hess(h1,v1)(ū1) and Hess(h2,v2)(ū2) are equal,

(b) There is an isomorphism γ : R2(h1,v1) −→ R2(h2,v2) such that γ(h1,v1) = h2,v2 .

Proof. It has been shown in Proposition 4.8 that conditions (1) and (2) are equivalent. Since
the germs L(Hi) are Lagrangian stable, the germs Hi are R+-versal unfoldings of hi,vi

for
i = 1, 2, respectively. By the uniqueness theorem for R+-versal unfoldings of a function germ,
the condition (2) is equivalent to the condition (3). By Proposition A.2, the condition (3) is
equivalent to the condition (4). It also follows from Proposition A.2 that hi satisfies the Milnor
condition, for i = 1, 2. Therefore we can apply Proposition 4.8 to our situation, so that the
condition (2) is equivalent to the condition (5). 2

13



5 The lightcone pedal

In this section we associate to M = X(U) a singular hypersurface contained in the lightcone
LC∗ whose singularities correspond to those of the lightcone Gauss map of M. We define the
lightcone pedal of M = X(U) as the smooth mapping

LPM : U −→ LC∗

u 7−→ 〈X(u), L̃(u)〉L̃(u).

The image LPM(U) is called the lightcone pedal hypersurface of M = X(U). We also define a
family of function germs

H̃ : U × LC∗ −→ R
(u,v) 7−→ 〈X(u), ṽ〉 − v0,

where v = (v0, v1, . . . , vn). We call H̃ the extended lightcone height function of M = X(U).

Since ∂H̃/∂ui = ∂H/∂ui for i = 1, . . . , n − 1 and Hess(h̃v) = Hess(hv), we have the following
proposition as a corollary of Proposition 4.2.

Proposition 5.1 Let H̃ : U × LC∗ −→ R be the extended lightcone height function of M =
X(U). Then

(1) H̃(u,v) = ∂H̃∂ui(u0,v) = 0 (i = 1, . . . , n− 1) if and only if v = 〈X(u0), L̃±(u0)〉L̃±(u0).

Suppose that v0 = 〈X(u0), L̃(u0)〉L̃(u0). Then

(2) p0 = X(u0) is a lightlike parabolic point if and only if det Hess(h̃v0)(u0) = 0.

(3) p0 = X(u0) is a lightlike flat point if and only if rank Hess(h̃v0)(u0) = 0.

This proposition implies that the discriminant set of H̃ is

D eH = {v ∈ LC∗ | v = 〈X(u), L̃(u)〉L̃(u), u ∈ U } = LPM(U).

Moreover the set of the singular points of LPM is the parabolic set (i.e., the locus of K̃` = 0).

Proposition 5.2 The extended lightcone height function H̃ : U×LC∗ −→ R is a Morse family
of hypersurfaces.

Proof. In order to give a proof, we consider the canonical diffeomorphism

Φ : Sn−1
+ × (R \ {0}) −→ LC∗

(v, r) 7−→ rv.

By definition, we have H̃ ◦Φ(u,v, r) = 〈X(u),v〉−r. Therefore, we will show that the functions
family H : U × (Sn−1

+ × (R \ {0})) −→ R defined by H(u,v, r) = 〈X(u),v〉 − r is a Morse
family of hypersurfaces.

For any (v, r) = ((1, v1, . . . , vn), r) ∈ Sn−1
+ × (R\{0}), we might assume that v1 > 0, so that

v1 =
√

1− v2
2 − v2

3 − · · · v2
n. It follows that

H(u,v, r) = −x0(u) + x1(u)
√

1− v2
2 − v2

3 − · · · v2
n + x2(u)v2 + · · ·+ xn(u)vn − r,
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where X(u) = (x0(u), x1(u), . . . , xn(u)). We will show that the mapping

∆∗H =
(
H,

∂H

∂u1

, . . . ,
∂H

∂un−1

)
=

(
H,

∂H

∂u1

, . . . ,
∂H

∂un−1

)

is non-singular at any point in C∗(H) = ∆∗H
−1

(0). The Jacobian matrix of ∆∗H is given by




〈Xu1 ,v〉 · · · 〈Xun−1〉 −1 −x1
v2

v1

+ x2 · · · −x1
vn

v1

+ xn

〈Xu1u1 ,v〉 · · · 〈Xu1un−1 ,v〉 0 −x1u1

v2

v1

+ x2u1 · · · −x1u1

vn

v1

+ xnu1

...
...

...
...

...
...

...

〈Xun−1u1 ,v〉 · · · 〈Xun−1un−1 ,v〉 0 −x1un−1

v2

v1

+ x2un−1 · · · −x1un−1

vn

v1

+ xnun−1



,

where Xuiuj
= ∂2X/∂ui∂uj(u). We consider the matrix

A =




−x1u1

v2

v1

+ x2u1 · · · −x1u1

vn

v1

+ xnu1

...
...

...

−x1un−1

v2

v1

+ x2un−1 · · · −x1un−1

vn

v1

+ xnun−1


 .

Since A is the same matrix as in the proof of Proposition 4.10, we have detA 6= 0 at any point

of C∗(H) = ∆∗H
−1

(0). Therefore rank ∆∗H = n on C∗(H).

Similar calculations apply to the other local charts. 2

We can also define a Legendrian immersion germ whose generating family is the extended
height function on M = X(U) as follows (cf., Appendix B): For a point v = (v0, v1, . . . , vn) ∈
LC∗, we have the relation v0 = ±

√
v2

1 + · · ·+ v2
n, so that we adopt the coordinates (v1, · · · , vn)

of the manifold LC∗. We now consider the projective cotangent bundle π : PT ∗(LC∗) −→ LC∗

with the canonical contact structure. Since PT ∗(LC∗) ∼= LC∗ × P (Rn)∗ is a trivial bundle, we
define a map

L(H̃) : Σ∗(H̃) −→ PT ∗(LC∗)

by
L(H̃)(u,v) =

(
v, r, [v0x1(u)∓ v1x0(u) : · · · : v0xn(u)∓ vnx0(u)]

)
,

where v = (v0, v1, . . . , vn) = LPM(u) and we denote X(u) = (x0(u), x1(u), . . . , xn(u)). The

following corollary of the above proposition follows immediately from the definition of L(H̃).

Corollary 5.3 Under the above notations, L(H̃) is a Legendrian immersion whose generating

family is the extended lightcone height function H̃ : U × LC∗ −→ R of M = X(U).

Therefore, we have the Legendrian immersion L(H̃) whose wave front is the lightcone pedal

LPM(U) of M = X(U). We call L(H̃) the Legendrian lift of the lightcone pedal LPM(U) of
M = X(U).

In order to understand the geometric meaning of the singularities of the lightcone pedal, we
use the theory of contact developed by Montaldi [40, 42]. Let Xi, Yi (i = 1, 2) be submanifolds
of Rn with dimX1 = dimX2 and dimY1 = dimY2. We say that the contact of X1 and Y1
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at y1 is of the same type as the contact of X2 and Y2 at y2 if there is a diffeomorphism
germ Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2. In this case we write
K(X1, Y1; y1) = K(X2, Y2; y2). It is clear that in the definition Rn could be replaced by any
manifold. In his paper [40], Montaldi gives the following characterization of the notion of
contact by using the terminology of singularity theory:

Theorem 5.4 Let Xi, Yi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 and dimY1 =
dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→ (Rp, 0) be
submersion germs with (Yi, yi) = (f−1

i (0), yi). Then K(X1, Y1; y1) = K(X2, Y2; y2) if and only
if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

Consider the function h̃v : Rn+1
1 −→ R defined by h̃v(u) = 〈u, ṽ〉− v0. For any v̄ ∈ LC∗, we

have a lightlike hyperplane h−1
v̄ (0) = HP (v̄, v̄0). For any ū ∈ U, we consider the lightlike vector

v̄ = LPM(ū) and we have

hv̄ ◦X(ū) = H̃(ū, LPM(ū)) = 0.

By Proposition 5.1, we also have the equalities

∂hv̄ ◦X

∂ui

(ū) =
∂H̃

∂ui

(ū, LPM(ū)) = 0.

for i = 1, . . . , n − 1. This means that the lightlike hyperplane h−1
v̄ (0) = HP (v̄, v̄0) is tangent

to M = X(U) at p = X(ū). In this case, we call HP (v̄, v̄0) the tangent lightlike hyperplane
of M = X(U) at p = X(ū) (or, ū), which we write THP (X, ū). Then we have the following
simple lemma.

Lemma 5.5 Let X : U −→ Rn+1
1 be a spacelike submanifold with codimension two. Consider

two points u1, u2 ∈ U. Then LPM(u1) = LPM(u2) if and only if THP (X, u1) = THP (X, u2).

Eventually, we have tools for the study of the contact between spacelike hypersurfaces and
lightlike hyperplanes.

Let LPMi
: (U, ui) −→ (LC∗,vi) (i = 1, 2) be lightlike pedal germs of spacelike submanifold

germs X i : (U, ui) −→ Rn+1
1 with codimension two. We say that LPM1 and LPM2 are A-

equivalent if there exist diffeomorphism germs φ : (U, u1) −→ (U, u2) and Φ : (LC∗,v1) −→
(LC∗,v2) such that Φ ◦ LPM1 = LPM2 ◦ φ. If both the regular sets of LPMi

are dense in
(U, ui), it follows from Proposition B.2 that LPM1 and LPM2 are A-equivalent if and only if

the corresponding Legendrian immersion germs L(H̃1) : (U, u1) −→ PT ∗(LC∗) and L(H̃2) :
(U, u2) −→ PT ∗(LC∗) are Legendrian equivalent. This condition is also equivalent to the

condition that two generating families H̃1 and H̃2 are P -K-equivalent by Theorem B.3. Here,
H̃i : (U × LC∗, (ui,vi)) −→ R is the extended lightcone height function germ of X i.

On the other hand, if we denote h̃i,vi
(u) = H̃i(u,vi), then we have h̃i,vi

(u) = hvi
◦X i(u).

By Theorem 5.1, K(X1(U), THP (X1, u1),v1) = K(X2(U), THP (X2, u2),v2) if and only if

h̃1,v1 and h̃1,v2 are K-equivalent. Therefore, we can apply the arguments in the appendix to

our situation. We denote Q(X, ū) the local ring of the function germ h̃v̄ : (U, ū) −→ R, where
v̄ = LPM(ū). We remark that we can explicitly write the local ring as follows:

Qn+1(X, ū) =
C∞ū (U)

〈〈X(u), LPM(ū)〉 − 〈X(ū), LPM(ū)〉〉C∞̄u (U) + Mn+2
ū (U)

,

where C∞ū (U) is the local ring of function germs at ū with the unique maximal ideal Mū(U).
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Theorem 5.6 Let X i : (U, ui) −→ Rn+1
1 (i = 1, 2) be spacelike submanifold germs with codi-

mension two such that the corresponding Legendrian map germs π◦L(H̃i) : (U, ui) −→ (LC∗,vi)
are Legendrian stable. Then the following conditions are equivalent:

(1) Lightcone pedal germs LPM1 and LPM2 are A-equivalent.

(2) H̃1 and H̃2 are P -K- equivalent.

(3) h̃1,v1 and h̃1,v2 are K-equivalent.

(4) K(X1(U), THP (X1, u1),v1) = K(X2(U), THP (X2, u2),v2).

(5) Qn+1(X1, u1) and Qn+1(X2, u2) are isomorphic as R-algebras.

Proof. By the previous arguments (mainly from Theorem 5.1), it has been already shown
that conditions (3) and (4) are equivalent. The other assertions follow from Theorem 5.2 and
Proposition B.4. 2

6 The Gauss-Bonnet type theorem

In this section we give the definition of global lightcone Gauss- Kronecker curvatures and show
a lightcone Gauss-Bonnet type theorem. Let M be a closed orientable (n − 1)-dimensional
manifold and f : M −→ Rn+1

1 an embedding.

Since Rn+1
1 is time-oriented, we can globally choose future directions in the normal bundle

N(M) of f(M). Let nT : M −→ Hn(−1) be a timelike unit normal vector field along f(M)
which always direct to the future direction. We can construct the spacelike unit normal vector
field nS : M −→ Sn

1 by the method of §3. We now define the ligthtcone Gauss image in the
global

L : M −→ LC∗+
p 7−→ nT (p) + nS(p).

The global lightcone Gauss-Kronecker curvature function K` : M −→ R is then defined in
the usual way in terms of the global lightcone Gauss image L. We also define the lightcone
Gauss map in the global

L̃ : M −→ Sn−1
+

p 7−→ L̃(p).

We now define a global normalized lightcone Gauss-Kronecker curvature function K̃` : M −→ R
by

K̃`(p) =

(
1

`0(p)

)n−1

K`(p),

where L(p) = (`0(p), `1(p), . . . , `n(p)).

Proposition 6.1 Under the above notation, we have the following relation:

K̃`dvM = L̃∗dvSn−1
+

,

where dvM (respectively, dvSn−1
+

) is the volume form of M (respectively, Sn−1
+ ).

Proof. Firstly we assume that the hyperbolic Gauss map L̃ is nonsingular at a point p =
x(u0) ∈ M = x(U). In this case, there exists an open neighbourhood W ⊂ U around p such
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that L̃ : W −→ Sn−1
+ is an embedding. Therefore, L̃u1 , . . . , L̃un−1 is a basis of TzS

n−1
+ at any

point z ∈ V = L̃(W ). We denote by g̃ij the Riemannian metric on V and by gαβ the Riemannian

metric on W given by the restriction of the Minkowski metric. Since L = `0L̃, we obtain that
`0L̃ui

= Lui
− `0ui

L̃. By Proposition 3.2, (a), we have

g̃ij =
〈
L̃ui

, L̃uj

〉

=

(
1

`0

)2 〈
Lui

,Luj

〉

=

(
1

`0

)2
〈
〈nS

ui
,nT 〉L− −

n−1∑
α=1

hα
i (nT ,nS)Xuα , 〈nS

ui
,nT 〉L− −

n−1∑

β=1

hβ
i (nT ,nS)Xuβ

〉

=

(
1

`0

)2 ∑

α,β

hα
i (nT ,nS)hβ

j (nT ,nS)
〈
Xuα ,Xuβ

〉

=

(
1

`0

)2 ∑

α,β

hα
i (nT ,nS)hβ

j (nT ,nS)gαβ,

where we write L− = nT − nS. From the definition of K̃` and the proof of Corollary 3.3 it
follows that K̃` = (1/`0)

n−1det
(
hi

j(n
T ,nS)

)
, and thus

det (g̃ij) = K̃2
`det (gαβ) .

Let us denote by (ũ1, . . . , ũn−1) the local coordinates on V via the embedding L̃. This means
that

L̃∗(dũ1 ∧ · · · ∧ dũn−1) =

{
du1 ∧ · · · ∧ dun−1 if K̃`(u) > 0

−du1 ∧ · · · ∧ dun−1 if K̃`(u) < 0,

where (u1, . . . , un−1) is the canonical coordinate on W. Therefore we have

K̃`dvW = L̃∗dvV .

If p is a singular point of L̃, then the both hand sides are zero. This completes the proof. 2

We now start proving Theorem 1.1. Consider the (Euclidean) Gauss map

N : M −→ Sn−1

on π ◦ f(M).

The proof of the theorem requires the following key lemmas. The first one is nothing but a
global version of Lemma 4.9.

Lemma 6.2 Under the same notations as the above paragraph, the direction of the vector field
π ◦ L̃ is transversal to π ◦ f(M) in Rn (i.e.,

〈π ◦ L̃(p)〉R + d(π ◦ f)p(TpM) = TpRn

at any p ∈M).
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The proof is exactly the same as the proof of Lemma 4.9, so we omit it. As a consequence
of this lemma we have the following.

Lemma 6.3 Under the choice of a suitable direction of N, π ◦ L̃ and N are homotopic.

Proof. Since π ◦ L̃(p) /∈ d(π ◦ f)p(TpM) ⊂ Rn, 〈π ◦ L̃(p),N(p)〉 6= 0 at any p ∈ M. We choose

the direction of N such that makes 〈π ◦ L̃(p),N(p)〉 > 0.

We now construct a homotopy between π ◦ L̃ and N. Let

F : M × [0, 1] −→ Sn−1

be defined by

F (p, t) =
tN(p) + (1− t)π ◦ L̃(p)

‖tN(p) + (1− t)π ◦ L̃(p)‖
,

where ‖ · ‖ is the Euclidean norm.

If there exists t′ ∈ [0, 1] and p′ ∈M such that

t′N(p′) + (1− t′)π ◦ Ẽ(p′) = 0,

then we have N(p′) = −π ◦ Ẽ(p′). This contradicts to the assumption that 〈π ◦E(p),N(p)〉 > 0.

Therefore F is a continuous mapping satisfying F (p, 0) = π ◦ L̃(p) and F (p, 1) = N(p) for any
p ∈M. 2

Since the mapping degree is a homotopy invariant, we obtain the following corollary (cf.,
[11], Chapter 4, §9).

Corollary 6.4 Let M be a closed orientable, spacelike submanifold of codimension 2 in Rn+1
1 .

Suppose that n is odd, then we have

deg L̃ =
1

2
χ(M),

where deg L̃ is the mapping degree of L̃.

By the definition of the normalized lightcone Gauss-Kronecker curvature K̃`, we obtain:
∫

M

K̃`dvM =

∫

M

L̃∗dvSn−1
+

= deg (L̃)

∫

Sn−1
+

dvSn−1
+

= deg (L̃)γn−1.

Finally, we have the following lightcone Gauss-Bonnet type theorem as a consequence of
Corollary 6.4.

Theorem 6.5 Let M be a closed orientable, spacelike submanifold of codimension two in
Minkowski (n+ 1)-space Rn+1

1 . Suppose that n is odd , then

∫

M

K̃`dvM =
1

2
γn−1χ(M)

where χ(M) is the Euler characteristic of M, dvM is the volume form of M and the constant
γn−1 is the volume of the unit (n− 1)-sphere Sn−1.
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We remark that a similar result holds for the normalized lightlike Gauss-Kronecker curvature
induced by an orientation reversing future directed normal frame and thus the value of the total
lightlike Gauss-Kronecker curvature curvature is independent on the choice of the frame class.

We include next some further global results for the particular cases n = 2, 3.

a) Closed spacelike curves in R3
1.

By applying the above considerations to the particular case of a closed spacelike curve
γ : S1 → R3

1 we get a normalized lightlike curvature function κ̃` that measures the variation of
the lightlike normal planes along γ. Since the projection π : LC∗ → R2 is a diffeomorphism off
the origin, the winding numbers of γ and π ◦ γ are the same. Therefore we have the following
formula as a corollary of Lemma 6.3:

1

2π

∫

S1

κ̃`ds = W (γ),

where W (γ) denotes the winding number of γ.

b) Closed spacelike surfaces in R4
1.

Let M be a closed spacelike surface embedded in R4. Then the results obtained in §5,
together with standard multitransversality results imply the following:

Corollary 6.6 Let SEmb (M,R4
1) be the space of spacelike embeddings of a closed surface M

into R4
1 equipped with the Whitney C∞-topology. There exists an open dense subset O ⊂

SEmb (M,R4
1) such that for any X ∈ O, the following conditions hold:

(1) The lightlike parabolic set K̃−1
` (0) is a regular curve. We call such a curve the lightlike-

parabolic curve.

(2) The lightcone pedal surface LPM(M) is locally diffeomorphic to the cuspidal edge along
the lightlike-parabolic curve except at isolated swallowtail points.

(3) The swallowtail points of the lightcone pedal surface correspond to cusp points of the
lightcone Gauss map.

Here, the cuspidal edge is C = {(x1, x2, x3)|x1
2 = x2

3} and the swallowtail is SW =
{(x1, x2, x3)|x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} (cf., Fig.1).

cuspidaledge swallowtail
Fig. 1.
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Given X ∈ O, denote by T (X) the number of tritangent lightlike planes and by C(X) that
of cusp points of the lightcone Gauss map. Since the image of LPM can be seen as a wavefront
set, we obtain the following formula as a particular case of the relation obtained in in [12] for
wave fronts:

χ(LPM(M)) = χ(M) +
1

2
C(X) + T (X).

This together with Theorem 6.5 lead to the following:

Corollary 6.7 Given a generic embedding f : M → R4
1, the following relation holds:

1

2π

∫

M

K̃`daM = χ(LPM(M))− 1

2
C(X)− T (X).

where daM denotes the element of area in M .

We remark that we can also apply other formulae involving the number of swallowtails and
triple points on singular surfaces in a 3-manifolds (cf., [43, 45, 49]) to our situation in order to
get further relations among invariants of the lightlike differential geometry of spacelike surfaces
in Minkowski 4-space.

7 Spacelike submanifolds with a parallel normal frame

We consider in this section a special class of spacelike submanifolds of codimension two, de-
termined by those having a parallel lightlike normal frame, which contains several important
examples.

Let M = X(U) be a spacelike submanifold of Rn+1
1 of codimension two. Let n be a unit

normal vector field on M and denote its derivative by d(n) : TpM −→ TpRn+1
1 = TpM⊕Np(M).

As in §3, the compositions of d(n) with the orthogonal projections πt and πn, d(n)t = −πt◦d(n)
and d(n)n = −πn ◦ d(n) are respectively called n-shape operator and normal connection with
respect to n of M = X(U) at p = X(u). The vector field n is said to be parallel if d(n)n = 0.
On the other hand, we say that the point p is n-umbilic if d(n)t is a multiple of the identity
on TpM . In this case the corresponding scalar factor shall be called umbilic n-curvature.

Observe that given any lightlike normal vector n
¯

L(p) ∈ NpM , it is always possible to
find a unit normal timelike vector nT (p) and a unit normal spacelike vector nS(p), such that
nL(p) = nT (p) + nS(p) and 〈nT (p),nS(p)〉 = 0.

Lemma 7.1 The manifold M admits some parallel lightlike normal field if and only if it admits
some parallel normal field.

Proof. First of all observe that if n is a parallel normal field, then n has constant norm and
thus it is either lightlike, spacelike or timelike all over M . We only need to show that if M
admits some timelike or spacelike normal field, then it admits a lightlike one. In fact, suppose
that nT is a timelike normal field that we can take with norm −1 without loss of generality.
Take nS as in section 3. Then we have 〈nT ,nS〉 = 0. So 〈dnT ,nS〉 + 〈nT , dnS〉 = 0. But
since nT is parallel we have that 〈dnT ,nS〉 = 0. Therefore 〈nT , dnS〉 = 0, which implies that
nS, having constant norm (= 1) is also parallel. It is not difficult to see now that the lightlike
normal field n = nT + nS is also parallel. 2
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Lemma 7.2 The manifold M admits some parallel lightlike normal field if and only if it admits
a parallel normal frame (nT ,nS) made of a timelike and a spacelike vector fields.

Proof. We only need to show that if M admits a parallel lightlike normal field nL then it also
admits some parallel timelike normal field nT and spacelike normal field nS. In fact, as observed
above, we can choose nT and nS such that nL(p) = nT (p) + nS(p) and 〈nT (p),nS(p)〉 = 0,
〈nT (p),nT (p)〉 = −1 and 〈nS(p),nS(p)〉 = 1,∀p ∈M . Then it is not difficult to show that nT

and nS are both parallel. 2

We remind that in case that a submanifold M of a semi-riemannian manifold admits some
parallel normal frame, then M is said to have flat normal bundle.

The normal curvature of M at p is defined by

R⊥p : TpM × TpM ×NpM −→ NpM
(
X,Y,n

) 7−→ DX(DY n)−DY (DXn)−D[X,Y ]n.

where DXn denotes the normal component of the vector dn(X) ∈ TpIR
n+1
1 = TpM ⊕NpM . It

can be shown, as a consequence of the Ricci equation ([44], p. 125), that if p is an umbilic point
for some normal field n then R⊥p = 0. Moreover, it can also be shown that having vanishing
normal curvature on M is equivalent to having flat normal bundle. Therefore, it follows that
spacelike submanifolds that admit some umbilic field also admit some lightlike parallel field.
In what follows we consider the special case of submanifolds of codimension two that admit a
parallel umbilic normal field.

Proposition 7.3 Let n be an umbilic field with principal curvature κ defined on a 2-codimensional
submanifold M of Minkowski (n + 1)-space. If n is parallel then its curvature function κ is
constant. Moreover, if κ = 0 then M lies in a hyperplane.

Proof. Since n is parallel andM is totally n-umbilic , we have−nui
= κXui

for i = 1, . . . , n−1.
Therefore, we have −nuiuj

= κuj
Xui

+ κXuiuj
. Since nuiuj

= nujui
and κXuiuj

= κXujui
, we

have κuj
Xui

= κui
Xuj

. By definition {Xu1 , . . . ,Xun−1} is linearly independent, and thus κ is
constant.

Suppose that κ = 0. It follows that nui
= 0, so that n is a constant vector v. Since

n = v ∈ N(M), we have 〈Xui
,v〉 = 0. Therefore 〈X(u),v〉 = c, where c is a constant. This

means that M = X(U) ⊂ H(v, c). 2

As an immediate consequence of this and Proposition 4.5 we get the following.

Corollary 7.4 Let X : U −→ Rn+1
1 be a spacelike submanifold of codimension 2. Suppose that

M = X(U) is totally (nT ,nS)-umbilic and (nT ,nS) is a parallel frame. Then κp(n
T ,nS) is

constant = κ. Moreover, M is a subset of a lightlike hyperplane if and only if M is lightlike flat
(i.e., κ = 0)

It was shown in ([19], Theorem 4.3) that given a spacelike (n− 1)-submanifold M in Rn+1
1 ,

which is totally umbilic for some parallel normal field n with curvature κ, we have:

i) If n is timelike, then either M is contained in some hyperbolic n-space (if κ 6= 0), or M
lies in a spacelike hyperplane (κ = 0).
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ii) If n is spacelike, then either M is contained in some de Sitter n-space (if κ 6= 0), or M
lies in a timelike hyperplane (κ = 0).

iii) If n lightlike, then either M is contained in some light cone (if κ 6= 0), or M lies in a
lightlike hyperplane (κ = 0).

The converse assertions also hold:

i) If a spacelike (n−1)-submanifold M is contained in hyperbolic n-space, then the position
vector field X is a parallel timelike normal field along M which is umbilic with constant (non
vanishing) curvature on M .

ii) If a spacelike (n− 1)-submanifold M is contained in de Sitter n-space, then the position
vector field X is a parallel spacelike normal field along M which is umbilic with constant (non
vanishing) curvature on M .

iii) If a spacelike (n − 1)-submanifold M is contained in the lightcone of IRn+1
1 , then the

position vector field X is a parallel lightlike normal field alongM which is umbilic with constant
(non vanishing) curvature on M .

iv) If a spacelike (n − 1)-submanifold M is contained in a (spacelike, timelike or lightlike)
hyperplane of IRn+1

1 , then the normal vector v to the hyperplane determines a constant (time-
like, spacelike or lightlike) normal field along M which is umbilic with vanishing curvature on
M .

So, typical examples of submanifolds of codimension two in Rn+1
1 with a parallel normal

frame are furnished by all (n−1)-manifolds immersed in Hyperbolic n-space, de Sitter n-space,
n-dimensional lightcone and (spacelike, timelike or lightlike) hyperplanes of IRn+1

1 .

1) Hypersurfaces in Euclidean space

We consider n-dimensional Euclidean space Rn as a subspace given by the equation x0 = 0
in Rn+1

1 . Let X : U → Rn be a hypersurface in Rn. We can take the future directed timelike
constant normal vector field e0 = (1, 0, . . . , 0) along M = X(U). We also have the ordinary
unit Euclidean normal n along M in Rn. In this case n can be considered as the spacelike unit
normal along M in Rn+1

1 . We get in this way a future directed normal frame (e0,n) along M
in Rn+1. Since e0 is constant, we have d(e0 + n)u = dnu, and hence Sp(e0,n) is the ordinary
Euclidean Weingarten map Sp = −dn, where p = X(u). By definition, `0(u) = 1, therefore

K̃`(u) is the ordinary Gauss-Kronecker curvature K(u) = detSp. Since nui
is a tangent vector

of M at p, (e0,n) is a parallel lightlike normal frame of M.

2) Hypersurfaces in Hyperbolic space

Given a hypersurface X : U → Hn
+(−1), the position vector X defines a future directed

timelike normal vector field X along M = X(U). In [13], we have defined the de Sitter normal
vector field e : U −→ Sn

1 along M in exactly the same way as done here (§3) in order to
construct nS from nT . This leads to a future directed normal frame (X, e) along M in Rn+1.
We have also shown that eui

is a tangent vector of M at p = X(u) and thus d(X + e)u can be
considered as a linear transformation on TpM. The lightlike curvature function induced by the
frame (X, e) coincides with the horospherical Gauss-Kronecker curvature function introduced
in [26]. Therefore Theorem 6.5 provides a generalization of Theorem 1.1 of [26].

3) Spacelike hypersurfaces in de Sitter space

Given a spacelike hypersurface X : U → Sn
1 , the position vector X defines a spacelike

normal vector field X along M = X(U). We can thus take nS = X and obtain a future
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directed unit normal timelike vector nT , such that the normal frame (nT ,nS) is future directed
along M = X(U), as in §3. It follows that this is a parallel frame.

4) Spacelike hypersurfaces in the lightcone

In the case of a spacelike immersion X : U → LC∗+, we have that X is a parallel lightlike
pseudo-normal vector field along M = X(U). As pointed out before, there exists a parallel
frame (nT ,nS), such that X = nT + nS. Moreover, the associated lightcone Gauss-Kronecker
curvature K`(n

T ,nS) is a constant K. This induces a normalized lightcone Gauss-Kronecker

curvature given by K̃`(u) =
(

1
`0(u)

)n−1

K. By applying Theorem 6.5 to this particular case, we

get the following relation for closed hypersurfaces in the n-dimensional lightcone, with n odd:

∫

M

( 1

`0(u)

)n−1
dvM =

1

2K
γn−1χ(M).

We can also consider the lightlike normal field X` : U → LC∗ defined in [28]. This satisfies
〈X`,X〉 = −2 and 〈dX`,X〉 = 〈X`, dX〉 = 0, which implies that it is also a parallel normal
field along M = X(U). By applying the considerations made in §6 to its associated normalized
lightlike curvature function we can obtain Theorem 9.3 in [28] as a corollary of Theorem 6.5.

Appendix A. The theory of Lagrangian singularities

In this section we give a brief review on the theory of Lagrangian singularities contained in [1].
We consider the cotangent bundle π : T ∗Rr −→ Rr over Rr. Let (u, p) = (u1, . . . , ur, p1, . . . , pr)
be the canonical coordinate on T ∗Rr. Then the canonical symplectic structure on T ∗Rr is given
by the canonical two form ω =

∑r
i=1 dpi ∧ dui. Let i : L −→ T ∗Rr be an immersion. We say

that i is a Lagrangian immersion if dimL = r and i∗ω = 0. In this case the critical value of
π ◦ i is called the caustic of i : L −→ T ∗Rr and it is denoted by CL. The main result in the
theory of Lagrangian singularities is the description of Lagrangian immersion germs by means
of families of function germs. Let F : (Rn × Rr, (0,0)) −→ (R, 0) be an r-parameter unfolding
of function germs. We call

C(F ) =
{

(x, u) ∈ (Rn × Rr, (0,0))
∣∣∣ ∂F
∂x1

(x, u) = · · · = ∂F

∂xn

(x, u) = 0
}
,

the catastrophe set of F and

BF =
{
u ∈ (Rr, 0)

∣∣∣ there exsist (x, u) ∈ C(F ) such that rank
( ∂2F

∂xi∂xj

(x, u)
)
< n

}

the bifurcation set of F .

Let πr : (Rn × Rr, 0) −→ (Rr, 0) be the canonical projection, then we can easily show that
the bifurcation set of F is the critical value set of πr|C(F ). We say that F is a Morse family of
functions if the map germ

∆F =

(
∂F

∂u1

, . . . ,
∂F

∂ur

)
: (Rn × Rr, 0) −→ (Rr, 0)
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is non-singular, where (x, u) = (x1, . . . , xn, u1, . . . , ur) ∈ (Rn × Rr, 0). In this case we have a
smooth submanifold germ C(F ) ⊂ (Rn × Rr, 0) and a map germ L(F ) : (C(F ), 0) −→ T ∗Rr

defined by

L(F )(x, u) =

(
u,
∂F

∂u1

, . . . ,
∂F

∂ur

)
.

We can show that L(F ) is a Lagrangian immersion. Then we have the following fundamental
theorem ([1], page 300).

Proposition A.1 All Lagrangian submanifold germs in T ∗Rr can be constructed by the above
method.

Under the above notation, we call F a generating family of L(F ).

We define an equivalence relation among Lagrangian immersion germs. Let i : (L, x) −→
(T ∗Rr, p) and i′ : (L′, x′) −→ (T ∗Rr, p′) be Lagrangian immersion germs. Then we say that i
and i′ are Lagrangian equivalent if there exist a diffeomorphism germ σ : (L, x) −→ (L′, x′),
a symplectic diffeomorphism germ τ : (T ∗Rr, p) −→ (T ∗Rr, p′) and a diffeomorphism germ
τ̄ : (Rr, π(p)) −→ (Rr, π(p′)) such that τ ◦ i = i′ ◦ σ and π ◦ τ = τ̄ ◦ π, where π : (T ∗Rr, p) −→
(Rr, π(p)) denotes the canonical projection, and a symplectic diffeomorphism germ means a
diffeomorphism germ which preserves symplectic structure on T ∗Rr. In this case the caustic
CL is diffeomorphic to the caustic CL′ through the diffeomorphism germ τ̄ .

A Lagrangian immersion germ into T ∗Rr at a point is said to be Lagrangian stable if for every
map with the given germ there is a neighborhood in the space of Lagrangian immersions (in
the Whitney C∞-topology) and a neighborhood of the original point such that each Lagrangian
immersion belonging to the first neighborhood has in the second neighborhood a point at which
its germ is Lagrangian equivalent to the original germ.

We can interpret the Lagrangian equivalence in terms of generating families. Denote by Em

the local ring of function germs (Rm, 0) −→ R with the unique maximal ideal Mm = {h ∈
Em|h(0) = 0}. Let F,G : (Rn × Rr, 0) −→ (R, 0) be function germs. We say that F and G
are P -R+-equivalent if there exists a diffeomorphism germ Φ : (Rn ×Rr, 0) −→ (Rn ×Rr, 0) of
the form Φ(x, u) = (Φ1(x, u), φ(u)) and a function germ h : (Rr, 0) −→ R such that G(x, u) =
F (Φ(x, u)) + h(u). Given F1 ∈ Mn+r and F2 ∈ Mn′+r, we say that F1, F2 are stably P -R+

-equivalent if they become P -R+-equivalent after the addition of some new arguments yi to the
arguments xi and of some nondegenerate quadratic forms Qi in the new arguments yi to the
functions Fi (i.e., F1 +Q1 and F2 +Q2 are P -R+-equivalent).

Let F : (Rn × Rr, 0) −→ (R, 0) be a function germ. We say that F is an R+-versal
deformation of f = F |Rn×{0} if

En = Jf +

〈
∂F

∂u1

|Rn × {0}, . . . , ∂F
∂ur

|Rn × {0}
〉

R
+ 〈1〉R,

where

Jf =

〈
∂f

∂x1

, . . . ,
∂f

∂xn

〉

En

.

Theorem A.2 Let F1 ∈ Mn+r and F2 ∈ Mn′+r be Morse families of functions. Then we have
the following:
(1) L(F1) and L(F2) are Lagrangian equivalent if and only if F1, F2 are stably P -R+-equivalent.
(2) L(F ) is Lagrangian stable if and only if F is a R+- versal deformation of F |Rn × {0}.
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See ([1], page 304 and 325) for the proof of the above theorem. The following proposition de-
scribes the well-known relationship between bifurcation sets and equivalence among unfoldings
of function germs:

Proposition A.3 Let F,G : (Rn×Rr, 0) −→ (R, 0) be function germs. If F and G are P -R+-
equivalent then there exist a diffeomorphism germ φ : (Rr, 0) −→ (Rr, 0) such that φ(BF ) = BG

Appendix B. The theory of Legendrian singularities

We include here a quick survey on the Legendrian singularity theory mainly due to Arnol’d
and Zakalyukin [1, 50]. Most of the results quoted here are known at least implicitly. Let
π : PT ∗(M) −→ M be the projective cotangent bundle over an n-dimensional manifold M.
This fibration can be considered as a Legendrian fibration with the canonical contact structure
K on PT ∗(M). We now review geometric properties of this space. Consider the tangent bundle
τ : TPT ∗(M) → PT ∗(M) and the differential map dπ : TPT ∗(M) → N of π. For any
X ∈ TPT ∗(M), there exists an element α ∈ T ∗(M) such that τ(X) = [α]. For an element
V ∈ Tx(M), the property α(V ) = 0 does not depend on the choice of representative of the class
[α]. Thus we can define the canonical contact structure on PT ∗(M) by

K = {X ∈ TPT ∗(M)|τ(X)(dπ(X)) = 0}.

For a local coordinate neighborhood (U, (x1, . . . , xn)) onM, we have a trivialization PT ∗(U) ∼=
U × P (Rn−1)∗ and we call

((x1, . . . , xn), [ξ1 : · · · : ξn])

homogeneous coordinates, where [ξ1 : · · · : ξn] are homogeneous coordinates of the dual projec-
tive space P (Rn−1)∗.

It is easy to show that X ∈ K(x,[ξ]) if and only if
∑n

i=1 µiξi = 0, where dπ̃(X) =
∑n

i=1 µi
∂

∂xi
.

An immersion i : L → PT ∗(M) is said to be a Legendrian immersion if dimL = n and
diq(TqL) ⊂ Ki(q) for any q ∈ L. We also call the map π ◦ i the Legendrian map and the set
W (i) = imageπ ◦ i the wave front of i. Moreover, i (or, the image of i) is called the Legendrian
lift of W (i).

The main tool of the theory of Legendrian singularities is the notion of generating families.
Here we only consider local properites, we may assume that M = Rn. Let F : (Rk ×Rn,0) −→
(R,0) be a function germ. We say that F is a Morse family of hypersurfaces if the mapping

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn,0) −→ (R× Rk,0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn,0). In this case we have a
smooth (n− 1)-dimensional submanifold

C∗(F ) =

{
(q, x) ∈ (Rk × Rn,0) | F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}

and the map germ ΦF : (C∗(F ),0) −→ PT ∗Rn defined by

ΦF (q, x) =

(
x, [

∂F

∂x1

(q, x) : · · · : ∂F
∂xn

(q, x)]

)
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is a Legendrian immersion germ. Then we have the following fundamental theorem of Arnol’d-
Zakalyukin [1, 50].

Proposition B.1 All Legendrian submanifold germs in PT ∗Rn can be constructed by the above
method.

We call F a generating family of ΦF (C∗(F )). Therefore the wave front is

W (ΦF )=

{
x ∈ Rn |there exists q ∈ Rk such that F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
.

We denote DF = W (ΦF ) and call it the discriminant set of F.

We now introduce an equivalence relation among Legendrian immersion germs. Let i :
(L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian immersion germs. Then
we say that i and i′ are Legendrian equivalent if there exists a contact diffeomorphism germ
H : (PT ∗Rn, p) −→ (PT ∗Rn, p′) such that H preserves fibres of π and that H(L) = L′. A
Legendrian immersion germ i : (L.p) ⊂ PT ∗Rn (or, a Legendrian map π ◦ i) at a point is
said to be Legendrian stable if for every map with the given germ there is a neighborhood in
the space of Legendrian immersions (in the Whitney C∞ topology) and a neighborhood of the
original point such that each Legendrian immersion belonging to the first neighborhood has
in the second neighborhood a point at which its germ is Legendrian equivalent to the original
germ.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗Rn, p) is uniquely determined on the regular part
of the wave front W (i), we have the following simple but significant property of Legendrian
immersion germs:

Proposition B.2 Let i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian
immersion germs such that regular sets of π ◦ i, π ◦ i′ are dense respectively. Then i, i′ are
Legendrian equivalent if and only if wave front sets W (i),W (i′) are diffeomorphic as set germs.

This result has been firstly pointed out by Zakalyukin [51]. The assumption in the above
proposition is a generic condition for i, i′. Specially, if i, i′ are Legendrian stable, then these
satisfy the assumption.

The Legendrian equivalence can also be interpreted in terms of generating families. We
denote En the local ring of function germs (Rn,0) −→ R with the unique maximal ideal Mn =
{h ∈ En | h(0) = 0 }. Let F,G : (Rk ×Rn,0) −→ (R,0) be function germs. We say that F and
G are P -K-equivalent if there exists a diffeomorphism germ Ψ : (Rk×Rn,0) −→ (Rk×Rn,0) of
the form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk ×Rn,0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
.

Here Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra isomorphism defined by Ψ∗(h) = h ◦Ψ .

Let F : (Rk×R3,0) −→ (R,0) be a function germ. We say that F is a K-versal deformation
of f = F |Rk × {0} if

Ek = Te(K)(f) +

〈
∂F

∂x1

|Rk × {0}, . . . , ∂F
∂xn

|Rk × {0}
〉

R
,

where

Te(K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉

Ek

.
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(See [33].)

The main result in Arnol’d-Zakalyukin’s theory [1, 50] is the following:

Theorem B.3 Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families. Then

(1) ΦF and ΦG are Legendrian equivalent if and only if F, G are P -K-equivalent.

(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F | Rk × {0}.
Since F,G are function germs on the common space germ (Rk × Rn,0), we do no need the

notion of stably P -K-equivalences under this situation (cf., [1]). By the uniqueness result of
the K-versal deformation of a function germ, Proposition B.2 and Theorem B.3, we have the
following classification result of Legendrian stable germs. For any map germ f : (Rn,0) −→
(Rp,0), we define the local ring of f by Q(f) = En/f

∗(Mp)En.

Proposition B.4 Let F,G : (Rk×Rn,0) −→ (R, 0) be Morse families of hypersurfaces. Suppose
that ΦF ,ΦG are Legendrian stable. The the following conditions are equivalent.

(1) (W (ΦF ),0) and (W (ΦG),0) are diffeomorphic as germs.

(2) ΦF and ΦG are Legendrian equivalent.

(3) Q(f) and Q(g) are isomorphic as R-algebras, where f = F |Rk ×{0}, g = G|Rk ×{0}.
Proof. Since ΦF , ΦG are Legendrian stable, they satisfy the generic condition of Proposition
B.2, and hence the conditions (1) and (2) are equivalent. The condition (3) implies that f, g
are K-equivalent [33, 34]. By the uniqueness of the K-versal deformation of a function germ,
F, G are P -K-equivalent. This means that the condition (2) holds. By Theorem B.3, the
condition (2) implies the condition (3). 2

References

[1] V. I. Arnol’d, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps
vol. I. Birkhäuser (1986).
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