

Spectral Area Estimates For Norms Of Commutators

By

Muneo Chō * And Takahiko Nakazi **

2000 Mathematics Subject Classification : Primary 47 A 20

Key words and phrases : subnormal, p-hyponormal, Putnam inequality

[∗] This research is partially supported by Grant-in-Aid Scientific Research No.17540139 ∗∗ This research is partially supported by Grant-in-Aid Scientific Research No.17540176

Abstract. Let A and B be commuting bounded linear operators on a Hilbert space. In this paper, we study spectral area estimates for norms of $A^*B - BA^*$ when A is subnormal or p-hyponormal.

§1. Introduction

Let H be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H} . If T is a hyponormal operator in $\mathcal{B}(\mathcal{H})$ then C.R.Putnam [7] proved that $\|T^*T - TT^* \| \leq$ $Area(\sigma(T))/\pi$ where $\sigma(T)$ is the spectrum of T. The second named author [5] has proved that if T is a hyponormal operator and K is in $\mathcal{B}(\mathcal{H})$ with $KT = TK$ then

$$
||T^*K - KT^*|| \le 2\{Area(\sigma(T))/\pi\}^{1/2}||K||.
$$

We don't know whether the constant 2 in the inequality is best possible for a hyponormal operator. In §2, we show that the constant is not best possible for a subnormal operator.

When T is a p-hyponormal operator in $\mathcal{B}(\mathcal{H})$, A.Uchiyama [10] generalized the Putnam inequality, that is,

$$
||T^*T - TT^*|| \le \phi\left(\frac{1}{p}\right) ||T||^{2(1-p)} {\text{Area}(\sigma(T))}/\pi
$$
^p.

This inequality gives the Putnam inequality when $p = 1$. In §3, we generalize the above inquality for the spectral area estimate of $||T^*K - KT^*||$ when $TK = KT$. H.Alexander [1] proved the following inequality for a uniform algebra A. If f is in A then

$$
dist(\bar{f}, A) \leq \{Area(\sigma(f))/\pi\}^{1/2}.
$$

The second named author [5] gave an operator version for the Alexander inequality. This was used in order to estimate $||T^*K - KT^*||$ when T is a hyponormal operator and $KT = TK$. We also give an Alexander inequality for a p-hyponormal and we use it to estimate $||T^*K - KT^*||.$

In §4, we try to estimate $||T^*K - KT^*||$ for arbitrary contraction. In §5, we show a few results about area estimates for p -quasihyponormal operators, restricted shifts and analytic Toeplitz operators.

For $0 < p \le 1$, T is said to be p-hyponormal if $(T^*T)^p - (TT^*)^p \ge 0$. A 1hyponormal operator is hyponormal. For an algebra \mathcal{A} in $\mathcal{B}(\mathcal{H})$, let lat A be the lattice of all A-invariant projections. For a compact subset X in \mathcal{C} , rat(X) denotes the set of all rational functions on X.

§2. Subnormal operator

In order to prove Theorem 1, we use the original Alexander inequality.

Theorem 1. Let T be a subnormal operator in $\mathcal{B}(\mathcal{H})$ and f a rational function on $\sigma(T)$ whose poles are not on it. Then

$$
||T^*f(T) - f(T)T^*|| \leq \{Area(\sigma(T))/\pi\}^{1/2} \{Area(\sigma(f(T)))/\pi\}^{1/2}.
$$

Proof. Suppose that $N \in \mathcal{B}(\mathcal{K})$ is a normal extension of $T \in \mathcal{B}(\mathcal{H})$ and P is an orthogonal projection from K to H. Then $T = PN | H$ and so

$$
T^*f(T) - f(T)T^*
$$

= $PN^*Pf(N)P - Pf(N)PN^*P$
= $PN^*f(N)P - Pf(N)PN^*P$
= $Pf(N)N^*P - Pf(N)PN^*P$
= $Pf(N)(1 - P)N^*P$
= $Pf(N)(1 - P) \cdot (1 - P)N^*P$

because $f(N)P = Pf(N)P$ and $f(N)N^* = N^*f(N)$.

Let F be a rational function in $rat(\sigma(T))$. Put $\mathcal{B}_F =$ the norm closure of ${g(F(N)) : g \in rat(\sigma(F(N))\}$ then P belongs to $lat\mathcal{B}_F$. Hence

$$
\| (1 - P)F(N)^* P \|
$$

\n
$$
\leq dist(F(N)^*, \mathcal{B}_F) \leq dist(\bar{z}, rat(\sigma(F(N))))
$$

\n
$$
\leq \{Area(\sigma(F(N))) / \pi \}^{1/2}
$$

by the Alexander's theorem [1]. Hence, applying F to $F = z$ or $F = f$

$$
|| T^* f(T) - f(T) T^* ||
$$

\n
$$
\leq || (1 - P) f(N)^* P || \cdot || (1 - P) N^* P ||
$$

\n
$$
\leq \{ \text{Area}(\sigma(f(N)))/\pi \}^{1/2} \{ \text{Area}(\sigma(N))/\pi \}^{1/2}
$$

\n
$$
\leq \{ \text{Area}(\sigma(f(T)))/\pi \}^{1/2} \{ \text{Area}(\sigma(T))/\pi \}^{1/2}.
$$

If T is a cyclic subnormal operator and $KT = TK$ then using a theorem of T.Yoshino [12] we can prove that

$$
||T^*K - KT^*|| \leq \{Area(\sigma(T))/\pi\}^{1/2} \{Area(\sigma(K))/\pi\}^{1/2}.
$$

The proof is almost same to one of Theorem 1.

§3. p-hyponormal

In order to prove Theorem 2, we use an operator version of the Alexander inequality for a p-hyponormal operator. Unfortunately Lemma 3 is not best possible for $p = 1$ (see [5]). Lemma 1 is due to W.Arveson [2, Lemma 2] and Lemma 2 is due to A.Uchiyama [11, Theorem 3].

We need the following notation to give Theorem 2 and Proposition 1. Let ϕ be a positive function on $(0, \infty)$ such that

$$
\phi(t) = \begin{cases} t & \text{if } t \text{ is an integer} \\ t+2 & \text{if } t \text{ is not an integer.} \end{cases}
$$

We write $\ell^2 \otimes \mathcal{H}$ for the Hilbert space direct sum $\mathcal{H} \oplus \mathcal{H} \oplus \cdots$, and $1 \otimes T$ denotes the operator $T \oplus T \oplus \cdots \in \mathcal{B}(\ell^2 \otimes \mathcal{H})$ for each operator $T \in \mathcal{B}(\mathcal{H})$.

Lemma 1. Let A be an arbitrary ultra-weakly closed subalgebra of $\mathcal{B}(\mathcal{H})$ containing 1, and let $T \in \mathcal{B}(\mathcal{H})$. Then

$$
dist(T, \mathcal{A}) = \sup \{ \|(1 - P)(1 \otimes T)P\| ; P \in lat(1 \otimes \mathcal{A}) \}.
$$

Lemma 2. If T is a p-hyponormal operator, then

$$
||T^*T - TT^*|| \le \phi\left(\frac{1}{p}\right) ||T||^{2(1-p)} {\text{Area}(\sigma(T))}/\pi
$$
^p.

Lemma 3. If T is a p-hyponormal operator then

$$
dist(T^*, \mathcal{A}) \le \sqrt{2\phi \left(\frac{1}{p}\right)} ||T||^{1-p} \{Area(\sigma(T))/\pi\}^{p/2}
$$

where A is the strong closure of $\{f(T) ; f \in rat(\sigma(T))\}$.

Proof. Let $S = 1 \otimes T$. Then S is p-hyponormal. In order to prove the lemma, by Lemma 1 it is enough to estimate sup $\{((1 - P)SP\)$; $P \in lat(1 \otimes \mathcal{A})\}$. If $P \in lat(1 \otimes \mathcal{A})$ then $SP = PSP$ and so

$$
||(1 - P)SP||2
$$

= $||PSS^*P - PSPS^*P||$
= $||PSS^*P - PS^*SP + PS^*SP - PSPS^*P||$
 $\leq ||P(S^*S - SS^*)P|| + ||(PSP)^*(PSP) - (PSP)(PSP)^*||$
 $\leq ||S^*S - SS^*|| + ||(PSP)^*(PSP) - (PSP)(PSP)^*||.$

By $[11, \text{Lemma } 4], PSP$ is p-hyponormal and so by Lemma 2 we have

$$
||PSS^*P - PSPS^*P||^2
$$

\n
$$
\leq \phi \left(\frac{1}{p}\right) ||T||^{2(1-p)} \{Area(\sigma(T))/\pi\}^p + \phi \left(\frac{1}{p}\right) ||PSP||^{2(1-p)} \{Area(\sigma(PSP))/\pi\}^p
$$

\n
$$
\leq 2\phi \left(\frac{1}{p}\right) ||T||^{2(1-p)} \{Area(\sigma(T))/\pi\}^p
$$

because $||PSP|| \le ||S|| = ||T||$ and $\sigma(PSP) \subset \sigma(S) = \sigma(T)$. By Lemma 1,

$$
dist(T^*, \mathcal{A}) \le \sqrt{2\phi \left(\frac{1}{p}\right)} ||T||^{1-p} \{Area(\sigma(T))/\pi\}^{p/2}.
$$

Theorem 2. If T is a p-hyponormal operator in $\mathcal{B}(\mathcal{H})$ and if K is in $\mathcal{B}(\mathcal{H})$ with $KT = TK$, then

$$
||T^*K - KT^*|| \leq 2\sqrt{2\phi \left(\frac{1}{p}\right)} ||T||^{1-p} \{Area(\sigma(T))/\pi\}^{p/2} ||K||.
$$

Proof. When A is the strong closure of $\{f(T) : f \in rat(\sigma(T))\}$, for any $A \in \mathcal{A}$

$$
||T^*K - KT^*|| = ||(T^* - A)K + AK - KT^*|| \le 2||T^* - A|| ||K||.
$$

Now Lemma 3 implies the theorem.

In Theorem 2, if $p = 1$, that is, T is hyponormal then $||T^*K - KT^*|| \le$ 2 √ In Theorem 2, if $p = 1$, that is, *T* is hyponormal then $||T K - K T|| \leq 2\{Area(\sigma(T))/2\}^{1/2} ||K||$. The constant $2\sqrt{2}$ is not best because the second author [5] proved that $||T^*K - KT^*|| \leq 2\{Area(\sigma(T))/2\}^{1/2}||K||$. If $p = \frac{1}{2}$ 2 , that is, T is semihyponormal then $||T^*K - KT^*|| \leq 4||T||^{1/2} \{Area(\sigma(T))/\pi\}^{1/4}||K||.$

§4. Norm estimates

In general, it is easy to see that $||T^*T - TT^*|| \le ||T||^2$. By Theorem 1, if T is subnormal and f is an analytic polynomial then

$$
||T^*f(T) - f(T)T^*|| \le ||T|| ||f(T)||.
$$

In this section, we will prove that $||T^*T^n - T^nT^*|| \le ||T||^{n+1}$ for arbitrary T in $\mathcal{B}(\mathcal{H})$.

Theorem 3. If T is a contraction on H and f is an analytic function on the closed unit disc \bar{D} then $\parallel T^*f(T) - f(T)T^* \parallel \leq$ sup z∈D $| f(z) |$.

Proof. By a theorem of Sz.-Nagy [6], there exists a unitary operator U on $\mathcal K$ such that K is a Hilbert space with $\mathcal{K} \supseteq \mathcal{H}$ and $T^n = PU^n \mid \mathcal{K}$ for $n \geq 0$ where F is an orthogonal projection from K to H. Then it is known that $U^*P = PU^*P$ and $f(T) = Pf(U) | H$. Hence

$$
T^*f(T) - f(T)T^*
$$

=
$$
PU^*Pf(U)P - Pf(U)PU^*P
$$

=
$$
PU^*Pf(U)P - Pf(U)U^*P
$$

=
$$
PU^*(I - P)f(U)P
$$

because $U^*P = PU^*P$ and $f(U)U^* = U^*f(U)$. Therefore

$$
\| T^* f(T) - f(T) T^* \|
$$

= \| PU^*(I - P) f(U) P \| \le \sup_{z \in D} | f(z) |.

Corollary 1. If T is in $\mathcal{B}(\mathcal{H})$ then for any $n \geq 1$ $\|T^*T^n - T^nT^*\| \leq \|T\|^{n+1}$. Proof. Put $A = T/||T||$ then A is a contraction and so by Theorem 2 $||A^*A^n - A^nA^*|| \leq 1$ and so $||T^*T^n - T^nT^*|| \leq ||T||^{n+1}$.

§5. Remarks

In this section, we give spectral area estimates for p -quasihyponomal operators, restricted shifts and analytic Toeplitz operators.

For $0 < p \leq 1$, T is said to be p-quasihyponormal if $T^*\{(T^*T)^p - (TT^*)^p\}T \geq 0$. A 1-quasihyponormal operator is called quasihyponormal.

Lemma 4. Let T be p-quasihyponormal and P be a projection such that $TP =$ PTP . Then PTP is also p-quasihyponormal.

Proof. Since T is p-quaihyponormal, $T^*(T^*T)^pT \geq T^*(TT^*)^pT$. Hence, we have

 $PT^{*}(T^{*}T)^{p}TP \geq PT^{*}(TT^{*})^{p}TP.$

Since by the Hansen's inequality [4]

$$
PT^*(T^*T)^pTP = (PTP)^*P(T^*T)^pP(PTP)
$$

\n
$$
\leq (PTP)^*(PT^*TP)^p(PTP)
$$

\n
$$
= (PTP)^*\{(PTP)^*(PTP)\}^p(PTP)
$$

and by $0 < p < 1$

$$
PT^*(TT^*)^pTP \ge (PT^*P)(TPT^*)^p(PTP)
$$

= $(PTP)^*\{(PTP)(PTP)^*\}^p(PTP),$

we have

$$
(PTP)^{*}\{(PTP)^{*}(PTP)\}p \geq (PTP)^{*}\{(PTP)(PTP)^{*}\}p(PTP).
$$

Hence, PTP is p-quasihyponormal.

Proposition 1. If T is a p-quasihyponormal operator in $\mathcal{B}(\mathcal{H})$ and if K is in $\mathcal{B}(\mathcal{H})$ with $KT = TK$, then

$$
||T^*K - KT^*|| \le 4\left[\phi\left(\frac{1}{p}\right)\right]^{1/4} ||T||^{1-p/2} \{Area(\sigma(T))/\pi\}^{p/4} ||K||.
$$

In particular, if T is quasihyponormal then

$$
||T^*K - KT^*|| \le 4||T||^{1/2} \{Area(\sigma(T))/\pi\}^{1/4} ||K||.
$$

Proof. We can prove it as in the proof of Theorem 2. By [11, Theorem 6], $||T^*T - TT^*|| \leq 2||T||^{2-p} \sqrt{\phi(\frac{1}{n})}$ $\frac{1}{p}\left\{Area(\sigma(T))/\pi\right\}^{p/2}$. Hence by Lemma 4

$$
dist(T^*,\mathcal{A}) \leq 2||T||^{1-\frac{p}{2}}\phi\left(\frac{1}{p}\right)^{\frac{1}{4}}\left\{Area(\sigma(T))/\pi\right\}^{p/4}.
$$

This implies the proposition.

Let H^2 and H^{∞} be the usual Hardy spaces on the unit circle and z the coordinate function. M denotes an invariant subspace of H^2 under the multiplication by z. By the well known Beurling theorem, $M = qH^2$ for some inner function. Suppose N is the orthogonal complement of M in H^2 . For a function ϕ in H^{∞} , S_{ϕ} is an operator on N such that $S_{\phi}f = P(\phi f)$ $(f \in N)$ where P is the orthogonal projection from H^2 to N. For a symbol ϕ in L^{∞} , T_{ϕ} denotes the usual Toeplitz operator on H^2 .

Proposition 2. Suppose $\Phi = q\bar{\phi}$ belongs to H^{∞} . Then (1) $\parallel S^*_{\phi}S_{\phi} - S_{\phi}S^*_{\phi} \parallel \leq Area(\overline{\Phi(D)})/\pi$; (2) $\| S_{\phi}^* S_{\phi}^n - S_{\phi}^n S_{\phi}^* \| \leq \{ Area(\overline{\Phi(D)}) / \pi \}^{n+1}$ for $n \geq 0$.

Proof. By a well known theorem of Sarason [8],

$$
\parallel S_{\phi} \parallel = \parallel \phi + q H^{\infty} \parallel = \parallel \bar{q} \phi + H^{\infty} \parallel = \parallel \bar{\Phi} + H^{\infty} \parallel.
$$

By Nehari's theorem [6], $\|\bar{\Phi} + H^{\infty}\| = \|H_{\bar{\Phi}}\|$ where $H_{\bar{\Phi}}$ denotes a Hankel operator from H^2 to $\bar{z}\bar{H}^2$. Since $||\bar{H}_{\bar{\Phi}}||^2 = ||T_{\Phi}^*T_{\Phi} - T_{\Phi}T_{\Phi}^*||$ where T_{Φ} denotes a Toeplitz operator on H^2 , by the Putnam inequality

$$
\|T_{\Phi}^*T_{\Phi}-T_{\Phi}T_{\Phi}^*\|\leq Area(\sigma(T_{\Phi}))/\pi=Area(\overline{\Phi(D)})/\pi.
$$

Now since $|| S_{\phi}^* S_{\phi} - S_{\phi} S_{\phi}^* || \le || S_{\phi} ||^2$, (1) follows. (2) is also clear by the proof above and Corollary 1.

Proposition 3. Suppose f and g are in H^{∞} . Then

$$
||T_f^*T_g - T_gT_f^*|| \leq \{Area(\overline{f(D)})/\pi\}^{1/2} \{Area(\overline{g(D)})/\pi\}^{1/2}
$$

Proof. It is easy to see that $T_f^*T_g - T_gT_f^* = H_{\bar{g}}^*H_{\bar{f}}$. Hence

$$
||T_f^*T_g - T_gT_f^*|| \le ||H_{\bar{g}}|| \cdot ||H_{\bar{f}}||.
$$

Since $H_f^*H_{\bar{f}} = T_f^*T_f - T_fT_f^*$, by the Putnam inequalty

$$
||T_f^*T_g - T_gT_f^*|| \leq \{Area(\overline{f(D)})/\pi\}^{1/2} \{Area(\overline{g(D)})/\pi\}^{1/2}.
$$

References

- 1. H. Alexander, Projections of polynomial hulls, J. Funct. Anal. 13(1973), 13-19.
- 2. W. Arveson, Interpolation problems in nest algebras, J. Funct. Amal. 20(1975), 208-233.
- 3. M. Ch \bar{o} and M. Itoh, Putnam inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123(1995), 2435-2440.
- 4. F. Hansen, An operator inequality, Math. Ann. 246(1980), 249-250.
- 5. T. Nakazi, Complete spectral area estimates and self-commutators, Michigan Math. J. 35(1988), 435-441.
- 6. Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65(1957), 153-162.
- 7. C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116(1970), 323-330.
- 8. D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127(1967), 179-203.
- 9. B. Sz.-Nagy and C. Foias, Harmonic Analysis Of Operators On Hilbert Space. American Elsevier, New York, 1970.
- 10. A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integr. Equ. Oper. Theory 33(1999), 221-230.
- 11. A. Uchiyama, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integr. Equ. Oper. Theory 34(1999), 91-106.
- 12. T. Yoshino, Subnormal operators with a cyclic vector, Tohoku Math. 21(1969), 47-55.

M. Chō Department of Mathematics Kanagawa University Japan chiyom01@kanagawa-u.ac.jp

T. Nakazi Department of Mathematics Faculty of Science Hokkaido University Sapporo 060-0810, Japan nakazi@math.sci.hokudai.ac.jp