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On Blow up at Space Infinity
for Semilinear Heat Equations

Yoshikazu Giga∗and Noriaki Umeda

Department of Mathematics
Hokkaido University

Sapporo, 060-0810 Japan

Abstract

A nonnegative blowing up solution of the semilinear heat equation
ut = ∆u + up with p > 1 is considered when initial data u0 satisfies

lim
|x|→∞

u0 = M > 0, u0 ≤ M and u0 6≡ M.

It is shown that the solution blows up only at space infinity and that
lim|x|→∞ u(x, t) is the solution of the ordinary differential equation
vt = vp with v(0) = M .

1 Introduction and main theorems

We are interested in solutions of semilinear heat equations which blow up at
space infinity.

We consider nonnegative solutions of the initial value problem for the
equation

{
ut = ∆u + up,
u(x, 0) = u0(x),

x ∈ Rn, t > 0,
x ∈ Rn,

(1)

where p > 1 and u0 is a nonnegative continuous function in Rn satisfying

lim
|x|→∞

u0 = M > 0, u0 ≤ M and u0 6≡ M. (2)

∗Present Address: Graduate School of Mathematics Sciences, University of Tokyo,
Komaba 3-8-1 Meguro, Tokyo 153-8914, Japan.
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Problem (1) has a unique, nonnegative and bounded solution at least locally
in time. However, the solution necessarily blows up in finite time ([10, The-
orem 3.2]). (The solution of (1) with initial value decaying slowly at space
infinity blows up surely, let alone the solution with initial value not decay-
ing.) For a given initial value u0 let T ∗ = T ∗(u0, p) be the maximal existence
time of the solution. If T ∗ = ∞, the solution exists globally in time. If
T ∗ < ∞, we say that the solution blows up in finite time. It is well known
that

lim sup
t→T ∗

‖u(t)‖∞ = ∞, (3)

where ‖u‖∞ denotes the L∞-norm of u in space variables.
In this paper, we are interested in behavior of a blowing up solution near

space infinity as well as location of blow up points defined below. A point
xBU ∈ Rn is called a blow up point if there exists a sequence {(xm, tm)}∞m=1

such that

tm ↑ T ∗, xm → xBU and u(xm, tm) →∞ as m →∞.

If there exists a sequence {(xm, tm)}∞m=1 such that

tm ↑ T ∗, |xm| → ∞ and u(xm, tm) →∞ as m →∞.

we say that the solution blows up at space infinity.
We consider the solution v(t) of an ordinary differential equation

{
vt = vp, t > 0,
v(0) = M.

(4)

An explicit form of the solution is

v(t) =
1

(p− 1)1/(p−1)(Tv − t)1/(p−1)
,

where Tv = T ∗(M, p) is the maximal existence time of the solution of (4) and
its explicit form is

Tv =
1

(p− 1)Mp−1
.

We are now in position to state our main results.

Theorem 1. Assume that p > 1. Let u0 be a nonnegative continuous
function satisfying (2). Then the solution u(x, t) of (1) blows up at Tv =
T ∗(M, p) and satisfies

lim
|x|→∞

u(x, t) = v(t).
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The convergence is uniform in an every compact subset of {t : 0 ≤ t < Tv}.
This result in particular implies that

sup
0<t<T ∗

(T ∗ − t)1/(p−1)‖u(t)‖∞ < ∞. (5)

Such a blow up rate estimate is known for subcritical p; see e.g. [4], [6],
[7] for general bounded initial data without assuming (2). The blow up
time T ∗(u0, p) may be larger than Tv with v(0) = ‖u0‖∞. However, for
supercritical p such a blow up rate estimate (5) may not hold in general; see
e.g. [1], [8]. If one considers only radial solution of (1) for supercritical p less
than 1 + 4/(n− 4− 2(n− 1)1/2) or n ≤ 10, then the estimate (5) holds [11].
We would like to emphasize that Theorem 1 requires no restriction on p.

Our second main result is on the location of blow up points.

Theorem 2. Assume the same hypotheses of Theorem 1. Then the
solution of (1) has no blow up points in Rn. (It blows up only at space
infinity.)

There are huge literature on location of blow up points since the work
of Weissler [15] and Friedman-McLeod [2]. (We do not intend to exhaust
references in this paper.) However, most of results consider either bounded
domains or solutions decaying at space infinity; such a solution does not
blowup at space infinity [5].

As far as the authors know, the only paper discussing blow up at space
infinity is the work of Lacey [9]. He considered the Dirichlet problem in a half
line. He studied various nonlinear terms and proved that a solution blows
up only at space infinity.

In particular, his result implies that the solution of





ut = uxx + up,
u(0, t) = 1,
u(x, 0) = u0(x) ≥ 1,

x > 0, t > 0,
t > 0,
x > 0

blows up only at space infinity, where u0 satisfies (2) with M > 1.
His method is based on construction of suitable subsolutions and superso-

lutions. However, the construction heavily depends on the Dirichlet condition
at x = 0 and does not apply to the Cauchy problem even for the case n = 1.

To prove Theorem 1 we shall estimate ‖u(t)‖∞ from above. The key
step is an estimate of lim inf |x|→∞ u(x, t) from below, where we first assume
∆u0 → 0 as |x| → ∞. A key observation is that the effect of ∆u is negligible
near the space infinity. The case of general initial data can be proved by a
comparison argument.
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To prove Theorem 2 we shall construct a supersolution ū so that
lim supt→Tv

ū(x, t)v(t) < 1.
For subcritical p (i.e., (n − 2)p < n + 2 or n ≤ 2) by [5] this estimate

implies that x is not a blow up point. The proof for the supercritical case is
more involved but can be done along the line of [5]. We reproduce some of
their arguments for the reader’s convenience.

This paper is organized as follows. In section 2 we prove Theorem 1.
The proof of Theorem 2 is given in section 3 at least for subcritical case.
In section 4 we extend removability results for blow up points developed by
[5]. In appendix we give a key estimate for removability results which is
essentially the same as in [5].

2 Behavior at space infinity

Our goal in this section is to prove Theorem 1. We begin by estimating
‖u(t)‖∞ from above.

Lemma 2.1. Let u be a solution of (1) in Rn × (0, T ∗). Then for each
t0 ∈ [0, T ∗) the estimate

‖u(·, t)‖∞ ≤ ‖u(·, t0)‖∞ +

∫ t

t0

‖u(·, s)‖p
∞ds

holds for all t ∈ [t0, T
∗), where T ∗ = T ∗(u0, p).

Proof. Since u is a solution of (1), it fulfills an integral equation of the
form

u(x, t) = (e(t−s)∆u(·, t0))(x) +

∫ t

t0

(e(t−s)∆u(·, s))(x)ds, (6)

where et∆ is the solution operator of the heat equation defined by

et∆f(x) = (4πt)−n/2

∫

Rn

e−|x−y|2/4tf(y)dy. (7)

Since ‖et∆f‖∞ ≤ ‖f‖∞, we observe that

‖u(·, t)‖∞ ≤ ‖u(·, t0)‖∞ +

∫ t

t0

‖up(·, s)‖∞ds.

Since ‖up‖∞ = ‖u‖p
∞, we obtain the desired inequality. 2

We shall discuss the estimate from below for lim inf |x|→∞ u(x, t) assuming
that u0 is C2-function and ∆u0 → 0 as |x| → ∞. For this purpose we first
study behaviour at space infinity for the heat equation.
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Lemma 2.2. Let ξ be a nonnegative continuous function in Rn satisfy-
ing

lim
|x|→∞

ξ(x) = 0. (8)

Then

lim
|x|→∞

(es∆ξ)(x) = 0 (9)

and the convergence is uniform in s ∈ [0, t] for every finite t > 0.
Proof. Since h(σ) = σne−σ2

is decreasing for large σ and limσ→∞ h(σ) = 0,
for ε > 0 there is a large R0 depending on t and ε such that

h

(
R√
4s

)
≤ h

(
R√
4t

)
<

επn/2

2n+1‖ξ‖∞ for s ∈ (0, t)

for R ≥ R0. We may assume that

ξ(x) <
ε

2
for |x| > R0 (10)

by taking R0 larger.
By this choice of R0 for |x| > 2R0 we observe that

es∆ξ(x) = (4πs)−n/2

∫

Rn

e−|x−y|2/4sξ(y)dy

= π−n/2

∫

Rn

e−|y|
2

ξ(x−
√

4sy)dy

= π−n/2

∫

|x−√4sy|<R0

+

∫

|x−√4sy|>R0

e−|y|
2

ξ(x−
√

4sy)dy

Here, consider the integration inside. Then we have

π−n/2

∫

|x−√4sy|<R0

e−|y|
2

ξ(x−
√

4sy)dy

< (4πs)−n/2

∫

|x−y|<R0

‖ξ‖∞e−R2
0/4sdy

≤ 2n‖ξ‖∞
πn/2

h(R0/
√

4s) <
ε

2

for all s ∈ [0, t]. On the other hand, we consider this outside, and we take

π−n/2

∫

|x−√4sy|>R0

e−|y|
2

ξ(x−
√

4sy)dy

< π−n/2

∫

|x−√4sy|>R0

ε

2
e−|y|

2

dy

≤ π−n/2

∫

Rn

ε

2
e−|y|

2

dy =
ε

2
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for all s ∈ [0, t]. We thus obtain

es∆ξ(x) <
ε

2
+

ε

2
= ε.

for all s ∈ [0, t]. Thus, we have proved that

sup
0≤s≤t

(es∆ξ)(x) → 0 as |x| → ∞. 2

Lemma 2.3. Let u be a solution of (1) in Rn × (0, T ∗). If u0 is C2-
function and lim|x|→∞ ∆u0 = 0, then

(
lim inf
|x|→∞

u(x, t)

)
−

(
lim inf
|x|→∞

u(x, t0)

)
≥

∫ t

t0

lim inf
|x|→∞

up(x, s)ds

for t > t0 satisfying t, t0 ∈ (0, T ∗).
Proof. Differentiate (1) with respect to x twice to get

(∆u)t = ∆(∆u) + pup−1∆u + p(p− 1)up−2|∇u|2
≥ ∆(∆u) + pup−1∆u.

Thus, we observe that (−∆u) satisfies

(−∆u)t ≤ ∆(−∆u) + pup−1(−∆u).

We consider the solution of
{

ft(x, t) = ∆f(x, t) + g(t)f(x, t),
f(x, 0) = f0(x),

x ∈ Rn, t > 0,
x ∈ Rn.

(11)

The solution of (11) is of the form

f(x, t) = et∆f0(x) exp

(∫ t

0

g(s)ds

)
. (12)

We consider the solution of
{

ηt(x, t) = ∆η(x, t) + pup−1η(x, t),
η(x, 0) = (−∆u0)+(x),

x ∈ Rn, t > 0,
x ∈ Rn.

(13)

where (u)+ = min{u, 0}. Comparing with (12), we see that the solution of
(13) is estimated by

0 ≤ η(x, t) ≤ (
et∆(−∆u0)+

)
(x) exp

(∫ t

0

p‖u(·, s)‖p−1
∞ ds

)
.
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From this estimate and comparison theorem it follows that

(−∆u)+(x, t) ≤ (
et∆(−∆u0)+

)
(x) exp

(∫ t

0

p‖u(·, s)‖p−1
∞ ds

)
. (14)

Since lim|x|→∞ ∆u0 = 0, applying Lemma 2.2 to (14) yields

lim sup
|x|→∞

(−∆u)+(x, t) = 0 (15)

for t ∈ [0, T ∗). This implies

lim inf
|x|→∞

∆u(x, t) ≥ 0. (16)

Integrating (1) with respect to t, we see that the solution u(x, t) of (1) satisfies

u(x, t)− u(x, t0) =

∫ t

t0

{∆u(x, s) + up(x, s)} ds (17)

for t ∈ (t0, T
∗). Then from (16) and (17), it follows that

lim inf
|x|→∞

{u(x, t)− u(x, t0)} ≥ lim inf
|x|→∞

∫ t

t0

up(x, s)ds.

For the function a(x, t), b(x, t) satisfying | lim inf |x|→∞ a(x, t)| < ∞ and
| lim inf |x|→∞ b(x, t)| < ∞, it is clear that

lim inf
|x|→∞

a(x, t) + lim inf
|x|→∞

b(x, t) ≤ lim inf
|x|→∞

(a(x, t) + b(x, t)).

Thus, if we set a(x, t) = u(x, t)−u(x, t0) and b(x, t) = u(x, t0), then we have

(
lim inf
|x|→∞

u(x, t)

)
−

(
lim inf
|x|→∞

u(x, t0)

)
≥ lim inf

|x|→∞
{u(x, t)− u(x, t0)} .

By this observation and Fatou’s lemma or

lim inf
|x|→∞

∫ t

t0

up(x, s)ds ≥
∫ t

t0

lim inf
|x|→∞

up(x, s)ds,

we now have
(

lim inf
|x|→∞

u(x, t)

)
−

(
lim inf
|x|→∞

u(x, t0)

)
≥

∫ t

t0

lim inf
|x|→∞

up(x, s)ds. 2
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Lemma 2.3 yields the estimate

lim inf
|x|→∞

u(x, t) ≥ v(t) for t ∈ [0, min{T ∗, Tv})

if we admit the next elementary lemma.
Lemma 2.4. Let v be the solution of (4) in [0, Tv). Let ṽ be a nonnegative

measurable function on [0, T0) with some T0 ∈ (0, Tv). Assume that ṽ satisfies

ṽ(t)− ṽ(t0) ≥ (≤)

∫ t

t0

ṽp(s)ds for t0, t ∈ [0, T0) with t0 ≤ t. (18)

Assume that ṽ(0) = M . Then

ṽ(t) ≥ (≤)v(t) for t ∈ [0, T0).

Proof. We shall only prove the case ṽ(t) − ṽ(t0) ≥
∫ t

t0
ṽp(s)ds since the

proof of the other case is parallel. Integrating the first formula of (4) from
t0 to t, we have

v(t)− v(t0) =

∫ t

t0

vp(s)ds (19)

for t0 ∈ [0, t]. Since ṽ(0) = v(0) = M , the estimate (18) together with (19)
yields

ṽ(t)− v(t) ≥
∫ t

0

(ṽp(s)− vp(s))ds.

By the mean value theorem we observe that

ṽ(t)− v(t) ≥
∫ t

0

c(s) (ṽ(s)− v(s)) ds,

where

c(s) =

∫ 1

0

p (θv(s) + (1− θ)ṽ(s))p−1 dθ.

We set ψε(t) = ṽ(t)− v(t) + ε with ε > 0, and observe that ψε(t) satisfies

ψε ≥
∫ t

0

c(s)ψε(s)ds + ε

(
1−

∫ t

0

c(s)ds

)
.

We set

t0 = sup

{
t > 0;

∫ t

0

c(s)ds <
1

2

}
.
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Then, for t ∈ [0, t0] we have

ψε(t) ≥
∫ t

0

c(s)ψε(s)ds +
ε

2
. (20)

We shall argue by contradiction to prove ψε(t) ≥ 0. Suppose that ψε(t) < 0
for some t ∈ [0, t0]. Then ψε(τ) = 0 for

τ = inf {t ∈ [0, t0]; ψε < 0} . (21)

This τ must be positive. Indeed, since ṽ is nondecreasing by (18) and v is
continuous, ψε(0) > ε implies τ > 0.

Since
∫ τ

0
c(s)ψε(s)ds ≥ 0 and (21) imply ψε(τ) ≤ 0, we get a contradiction.

We thus proved that

ψε(t) ≥ 0.

Since this holds for all ε > 0, we get ṽ(t) ≥ v(t) for t ∈ [0, t0]. (If ṽ(t) < v(t)
for some t, there exist ε > 0 such that ψε < 0 for such t.)

Next, since ṽ(t) ≥ v(t) for t ∈ [0, t0], we observe that

ψε ≥
∫ t

t1

c(s)ψε(s)ds + ε

(
1−

∫ t

t1

c(s)ds

)
.

We set

t1 = sup

{
t > t0;

∫ t

t0

c(s)ds <
1

2

}

and observe that

ψε ≥
∫ t

t0

c(s)ψε(s)ds +
ε

2
.

for t ∈ [t0, t1]. By the same argument one can prove ψε ≥ 0 for all ε > 0, and
ṽ(t) ≥ v(t) for t ∈ [t0, t1].

We repeat this argument and conclude that

ṽ(t) ≥ v(t)

for all t ∈ [0, Tv). By the same argument, we find if

ṽ(t)− ṽ(t0) ≤
∫ t

t0

ṽp(s)ds for t0, t ∈ [0, T0) with t0 ≤ t,
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then

ṽ(t) ≤ v(t) for t ∈ [0, T0). 2

Remark 2.5. In the proof of Lemma 2.4, we take ε so that ψε is strictly
large than ṽ(t) − v(t). If ε = 0, then τ may be zero; in this case the above
argument does not yield a contradiction.

Proof of Theorem 1. (The case lim|x|→∞ ∆u0 = 0) Assume that u0 is
C2-function and lim|x|→∞ ∆u0(x) = 0. By (4) we see that the solution v(t)
of (4) satisfies

v(t)− v(t0) =

∫ t

t0

{vp(s)} ds (22)

for t ∈ (t0, Tv) and t0 ∈ [0, Tv). This together with Lemmas 2.1 and 2.4 yields

‖u(·, t)‖∞ ≤ v(t) for t ∈ (0, Tv) and Tv ≤ T ∗.

Similarly, from Lemmas 2.3 and 2.4 it follows that

lim inf
|x|→∞

u(x, t) ≥ v(t) for t ∈ (0, T ∗) and Tv ≥ T ∗.

Since ‖u(·, t)‖∞ ≥ lim inf |x|→∞ u(x, t), we have Tv = T ∗ and

‖u(·, t)‖∞ = v(t) = lim
|x|→∞

u(x, t) for t ∈ (0, Tv). 2

We have proved Theorem 1 in the case lim|x|→∞ ∆u0(x) = 0. It remains
to prove Theorem 1 for general initial data.

Lemma 2.6. Let u0(x) satisfy (2). Then, there exist C2-functions
u0(x) and u0(x) satisfying





0 ≤ u0(x) ≤ u0(x) ≤ u0(x) ≤ M,
lim
|x|→∞

u0(x) = lim
|x|→∞

u0 = M,

u0 6≡ M and lim
|x|→∞

∆u0(x) = lim
|x|→∞

∆u0(x) = 0,

u0 is radial with respect to the origin.

(23)

Proof. Since u0(x) 6≡ M , we can easily find u0(x) satisfying above conditions.
It remains to construct u0(x).

We set η1(r) = infr≥|x| u0(x). Then η1(r) is an increasing function with
respect to r. We then set

η2(r) =

{
(r − [r])η1([r]− 1) + (1− r + [r])η1([r]− 2),
η1(0),

r ≥ 2,
0 ≤ r < 2,
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where [r] is the greatest integer not greater than r. If we set u0(x) = η2(|x|),
then it satisfies all desired properties except the last one. The function η2(r)
is a piecewise linear function of r and is not C2 so we shall modify its corners.

Let µn(r) be a polynomial of degree at most five satisfying

µn

(
n± 1

4

)
= η2

(
n± 1

4

)
,

dµn

dr

(
n± 1

4

)
=

dη2

dr

(
n± 1

4

)
and

d2µn

dr2

(
n± 1

4

)
= 0.

We set

η3(r) =





µn(r), n− 1

4
≤ r ≤ n +

1

4
(n ∈ N),

η2(r), 0 ≤ r <
3

4
, n +

1

4
< r < n +

3

4
(n ∈ N).

Then η3(r) is C2-function with respect to r for r ≥ 0.
We now set u0(x) = η3(|x|) and conclude that u0(x) is a C2 radial function

satisfying

lim
|x|→∞

∆u0(x) = 0

as well as other desired properties. 2

Completion of the proof of Theorem 1. For general u0 satisfying (2) we
apply Lemma 2.6 and construct u and u satisfying both (2) and (23) with
u0 ≤ u0 ≤ u0. Let u and u be solutions of (1) with initial value u0 and
u0, respectively. Then, by comparison theorem we have u(x, t) ≤ u(x, t) ≤
u(x, t) for (x, t) ∈ Rn × [0, Tv) and lim|x|→∞ u(x, t) = lim|x|→∞ u(x, t) =
v(t). Thus, we have proved lim|x|→∞ u(x, t) = v(t) for general initial data u0

satisfying (2). 2

Remark 2.7. (Generalization) Conclusion of Theorem 1 is still valid
even if one replaces up by a general term f(u) provided that

f ′ > 0 and

∫ ∞

1

ds

f(s)
< ∞.

3 No blow up point in Rn

We first show Theorem 2 for subcritical p, i.e., 1 < p < (n + 2)/(n − 2) or
n ≤ 2 since the supercritical case is more involved.

Proof of Theorem 2. Let v be the solution of (4). By Theorem 1 the
solution u of (1) blows up at Tv = T ∗(M, p) which is the blow up time of v.

11



We shall construct a supersolution of (1) which blows up only at space
infinity.

Let w be the solution of the heat equation

{
wt = ∆w,
w(x, 0) = u0(x)/M,

x ∈ Rn, t > 0,
x ∈ Rn.

Since u0(x)/M < 1 and u0 6≡ M , by the strong maximum principle (see [13]),
we see that w(x, t) < 1 for all x ∈ Rn, t ≥ 0.

We set ū = vw to observe that
{

ūt = ∆ū + vp−1ū,
ū(x, 0) = u0(x),

x ∈ Rn, t > 0,
x ∈ Rn.

Since w < 1 so that vp−1ū > vp−1wp−1ū = ūp, we conclude that ū is a
supersolution of (1). By comparison we see that u ≤ ū.

Since w < 1, we conclude that

lim sup
t→Tv

u(x, t)v−1 ≤ w(x, Tv) < 1 for all x ∈ Rn. (24)

For subcritical p, we just apply a criterion for a blow up point established
by Giga and Kohn [3, Corollary 4] to (24) and conclude that x ∈ Rn is not
a blow up point.

We shall discuss the case p ≥ (n + 2)/(n − 2) and n ≥ 3. By the
strong maximum principle [13], we see that u(x, t) < v(t) instantaneously
i.e., u(x, t0) < v(t0) for x ∈ Rn for any t0 ∈ (0, Tv).

For a ∈ Rn there exists a radially symmetric function ũ0 (with respect to
a) such that u(x, t0) ≤ ũ0(x) < v(t0) and lim|x|→∞ ∆ũ0 ≡ 0. We may assume
t0 = 0 by translation of time. It suffices to prove that the solution ũ of (1)
starting from ũ0 does not blow up in Rn since u ≤ ũ and the blow up time
of ũ equals that of v. We start from ũ0 with M = v(t0) and construct a
supersolution ū as before.

Thus, we may assume that u0 is radially symmetric with respect to a.
We construct a (radially symmetric) supersolution ū = vw as before. Fortu-
nately, we have a following criterion for blow up points even for supercritical
case at least for radial functions.

Proposition 3.1. Assume the same hypothesis of Theorem 1. Assume
that u is radially symmetric with respect to a ∈ Rn. If limt→Tv sup|x−a|≤δ

u(x, t)v−1(t) < 1 for δ > 0, then a is not a blow up point.

The proof of Theorem 2 is now complete by using Proposition 3.1, whose
proof is postponed in the next section.

12



4 A criterion for non blow up point

To prove Proposition 3.1 we recall similarity variables in [5]. We use a fun-
damental tool that the change of both dependent and independent variables
defined by

wa(y, s) = (T ∗ − t)αu(a + y
√

T ∗ − t, t), (25)

where

α =
1

p− 1
, s = − log(T ∗ − t), (26)

and a is a given point in Rn. One computes that w = wa solves a rescaled
parabolic equation in (y, s)

ws −∆w +
y · ∇w

2
+

w

p− 1
− wp = 0 (27)

and the blow up time T ∗ corresponds to s = ∞.
The solution

v(t) = αα 1

(T ∗ − t)α
,

is a supersolution of (4). By comparison with v we have

w(y, s) ≤ αα. (28)

By Theorem 1 we have

lim
|y|→∞

w(y, s) = αα. (29)

By [3, Proposition 1] the bound (28) implies that ∇w and ∆w are bounded
in Rn × (s0 + 1,∞), where s0 = − log Tv.

Lemma 4.1. Let wa be defined by (25). If wa is bounded in Rn ×
(− log Tv,∞) , and

lim sup
s→∞
|y|<C

wa(y, s) = 0 (30)

for each C > 0, then a is not a blowup point.
For subcritical p this Lemma 4.1 has been proved in [5, Theorem 4.2]

based on [5, Proposition 3.3 and Theorem 3.5] without assuming that wa

is bounded. We are able to remove the restriction p < (n + 2)/(n − 2) or

13



n ≤ 2 by the assumption that wa is bounded so that ∇wa is bounded by [3,
Proposition 1]. (We shall show this Lemma in detail in Appendix.)

We next prove that all nonnegative stationary solution of (27) satisfy-
ing (28) must be a constant at least when w is radial. In other words all
nonnegative selfsimilar solution bounded by spatially homogeneous blow up
solution must be spatially homogeneous when it is radial.

Lemma 4.2. Let ψ be a nonnegative solution of

∆ψ − y · ∇ψ

2
− ψ

p− 1
+ |ψ|p−1ψ = 0. (31)

If ψ is radial with respect to the origin and

0 ≤ ψ ≤
(

1

p− 1

) 1
p−1

(32)

for every x ∈ Rn, then

ψ(y) ≡ 0 or

(
1

p− 1

) 1
p−1

.

Proof. Let ψ be a radial solution of (31) so that it depends only on
r = |y|. We shall denote ψ as a function of r. Evidently, ψ satisfies

ψrr +

(
n− 1

r
− r

2

)
ψr = b(r) (33)

with

b(r) =
ψ

p− 1
− ψp.

By assumption (32) we obtain that

b(r) ≥ 0. (34)

If we set

φ(r) = ψr(r) exp

(∫ r

r0

(
n− 1

s
− s

2

)
ds

)
.

for r ≥ r0 > 0, then

φr(r) = b(r) exp

(∫ r

r0

(
n− 1

s
− s

2

)
ds

)
.

14



Thus, we have

ψr(r)− ψr(r0) = exp

(∫ r

r0

(
n− 1

s
− s

2

)
ds

)

×
∫ r

r0

b(s) exp

(∫ s

r0

(
n− 1

t
− t

2

)
dt

)
ds (35)

for r ≥ r0. But, since ψ is bounded by (32), the estimates (34) and (35)
imply that b(r) ≡ 0 for r ∈ (0,∞). This yields a contradiction.We thus
conclude that

ψr(r) ≡ 0 for r ∈ [0,∞)

i.e., ψ is constant. Thus we obtain

ψ = 0 or

(
1

p− 1

) 1
p−1

.2

Remark 4.3. It is known that all bounded solution of (32) must be a
constant if p ≤ (n + 2)/(n − 2) or n ≤ 2 (See [3]). For supercritical p there
may be non constant bounded solution as proved by Troy[14].

Proof of Proposition 3.1. Since u(x, t) ≤ v(x, t), we have wa ≤ αα. As
in [3, Proposition 4] we observe that wa(y, s + sk) → φ(y) locally uniformly
with some φ by taking a subsequence sk → ∞ and that this φ must be a
radial solution of (31) satisfying (32). From Lemma 4.2 it follows that φ ≡ 0
so that

lim
s→∞

sup
|y|<C

wa(y, s) = 0

for each C > 0. By Lemma 4.1 we see that a is not a blow up point for u.
2
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5 Appendix

In this section we give a detailed proof of Lemma 4.1 for the reader’s conve-
nience. Let E be an energy of the form

E[w] =

∫

Rn

{ |∇w|2
2

+
|w|2

2(p− 1)
− |w|p+1

p + 1

}
ρdy, (36)

where

ρ(y) = exp(−|y|2/4).

The next statement is well known [5, Proposition 3.3] if p is subcritical
without assuming a bound for w and ∇w. Let BR = BR(0) be a closed ball
of radius R centered at zero.

Proposition 5.1. Suppose that w solves (27) on BR(0) × (0, 1) and w
and ∇w are bounded. For any η > 0, there exist δ = δ(R, n, p, M ′, η) > 0
such that if

∫ 1

0

∫

BR

(|∇w|2 + |ws|2)dyds + sup
0<s<1

∫

BR

|w|2dy ≤ δ, (37)

then

|w| ≤ η uniformly on BR × (0, 1),

where M ′ denotes a bound for |∇w|.
Proof. The proof is essentially the same as for [5, Proposition 3.3] but we

give it for convenience. By the assumption we have

|w| ≤ M and |∇w| ≤ M ′. (38)

with some M > 0. Note that the L2 norm of w is small uniformly in time by
(37). We recall the interpolation inequality

‖f‖Cβ(B) ≤ C

{(∫

B

|∇f |q
)θ/q (∫

B

f 2

)(1−θ)/2

+

(∫

B

f 2

)1/2
}

, (39)

which holds for q > n and 0 < β < 1−(n/q) when θ ∈ (0, 1) is chosen so that
−β = (n− q)θ/q + 1

2
n(1− θ); see for example [12]. Applying this inequality

(39) to f = w(·, s) on B = BR together with (38), we conclude that

|w| ≤ C
{
(M ′)θδ(1−θ)/2 + δ1/2

}
in BR × (0, 1).
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Since this bound tends to zero as δ tends to zero, the proof is complete. 2

We now recall a criterion for non blow up points.
Lemma 5.2. ([5, Theorem 2.1 ].) There is a constant ε > 0 depending

only on p and n with the following property: for a point a ∈ Rn, t1 ∈ R+

and 0 < r ≤ 1,if u solves (1) on Qr = Br(a)× [t1 − r2, t1], and if

|u(x, t)| ≤ ε(t1 − t)−1/(p−1)

for all (x, t) ∈ Qr, then v does not blow up at (a, t1).
The next statement is essentially well known [5, Proposition 3.5] for a

sufficient condition yielding (37). In [5, Proposition 3.5] p is assumed to be
subcritical, while in the next lemma we do not impose any restriction on p;
however, we impose bounds for w and ∇w.

Lemma 5.3. Suppose that w solves (27) and w and ∇w are bounded.
There is a constant σ = σ(n, p) such that if E[wa](s1) < σ for some s1 > s0,
then a is not a blow up point of u. The value of σ depends only on n and p,
not on a.

Proof. The proof is essentially the same as in [5, Proposition 3.5] but we
give it for convenience. Fix a ∈ Rn and suppose that E[wa](s1) < σ ≤ 1.
Since the weighted energy E depends continuously on a (see [4, Lemma 2.3]),
there is a neighborhood N of a such that

E[wb](s1) < σ for all b ∈ N. (40)

Applying [5, Proposition 4.1], we have

∫ s+1

s

∫

B1(0)

(|wbs|2 + |∇wb|2) + sup
s≤r≤s+1

∫

B1(0)

|wb|2 ≤ C(n, p)σ1/p (41)

for every s > s1, where C(n, p) depends only on n and p, not on w or b. By
Proposition 5.1, for any η > 0, there exist σ1 = σ1(n, p, η) such that if (41)
with σ satisfying σ < σ1 holds, then

|wb(y, s)| ≤ η when b ∈ N, |y| < 1/4, s ≥ s1. (42)

Taking y = 0 in (42) and rewriting the result as a statement on u, we have

|u(b, t)| ≤ η(T ∗ − t)−α for b ∈ N, t1 < t < T ∗ (43)

with t1 = T ∗ − exp{−s1}. Now Lemma 5.2 (or [5, Theorem 2.1]) provides a
choice of η = η1(n, p) for which (43) rules out blowup points in N . Thus the
assertion of the theorem holds for any a provided that σ ≤ σ1(n, p, η1(n, p)).
2

17



Proof of Lemma 4.1. We shall prove that w = wa satisfies E[w](s) → 0
as s →∞. Since w, ∇w and ∆w are bounded by [3, Proposition 1], we have

|ws(y, s)| ≤ C(|y|+ 1) in W = Rn × (− log Tv + 1,∞) (44)

with some C > 0. Since ∇w is bounded, the estimate (44) yields
∫∫

W

(|ws|2 + |∇w|2) (
1 + |y|2) ρdyds < ∞. (45)

Since

2E[w](s) ≤
∫

Rn

(|∇w|2 + α|w|2) ρdy

by (36), and E[w](s) > 0 and (d/ds)E[w](s) ≤ 0 by [5, Proposition 2.1] and
[4, (2.25)], it suffices to show that

lim inf
s→∞

∫

Rn

(|∇w(x, s)|2 + α|w(x, s)|2) ρdy = 0. (46)

Our hypothesis (30) is equivalent to the statement that

w(y, s) → 0 as s →∞ uniformly for |y| ≤ C. (47)

for every C > 0. By parabolic regularity theory it follows from (45) and (47)
that

|∇w(y, s)| → 0 as s →∞ uniformly for |y| ≤ C. (48)

(see [4, Lemma 3.3].) By the dominant convergence theorem (47) and (48)
yield

lim
s→∞

∫

|y|≤C

(|∇w|2 + |w|2) ρdy = 0 (49)

for any C > 0. Since w(·, s) ∈ H1
loc(R

n) for any given s, [5, Lemma 4.1]
yields

∫

|y|>1

ρ|w|2dy ≤ C

{∫

|y|>1

ρ|y|2|∇w|2dy +

(∫

|y|=1

wdσ

)2
}

.

The integral over |y| = 1 tend to zero as s →∞, by (47), so we have

lim inf
s→∞

∫

|y|>1

(|w|2 + |∇w|2) ρdy (50)

≤ C lim inf
s→∞

∫

|y|>1

ρ|y|2|∇w|2dy = 0,
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by (45). Combining (49) and (50) yields (46). This now implies that
E[w](s) → 0 as s →∞.

We shall apply Lemma 5.3. Let σ be as in Lemma 5.3, and choose s1 for
which E[w](s1) < σ holds. If s1 = log(T − t1), then s1 is the “initial time in
similarity variables” of u1(x, t) = u(x, t− t1), which blows up at time T ∗− t1.
By Lemma 5.3, u1 does not blow up at a, and so neither does u. 2
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