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Abstract

We study analytic smoothing effects for solutions to the Cauchy
problem for the Schrodinger equation with interaction described by
the integral of the intensity with respect to one direction in two space
dimensions. The only assumption on the Cauchy data is the weight
condition of exponential type and no regularity assumption is imposed.

1 Introduction

We study the nonlinear Schrodinger equation

i0pu + %Au = f(u), (1.1)
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where u is a complex-valued function of time and space variables denoted
respectively by ¢ € R and (x,y) € R?, 9, = 9/0t, /\ is the Laplacian in R?
and f(u) is the nonlinear interaction given by

O Y R0 T ) PR R
with A € C. The equation (1.1) with integral type nonlinearity (1.2) appears
as a model of propagation of laser beams under the influence of a steady
transverse wind along the z-axis [1,3,36] and as a special case of the Davey-
Stewartson system where the velocity potential is independent of y-variable
2,5,6,9,13,14,18,24,31].

In spite of a large literature on the nonlinear Schrodinger equations (see
for instance [4] and references therein), there are not many papers on the
equation (1.1) with nonlinearity of integral type [1,3,21,33,36]. The exis-
tence and uniqueness of global solutions to the Cauchy problem for (1.1) is
proved in the usual Sobolev spaces H™(R?) with integers m > 1 [3] and in
the Lebesgue spaces L?(R?) [21,33]. The existence of modified wave oper-
ators is proved on a dense set of small and sufficiently regular asymptotic
states [21]. Smoothing properties and large time asymptotics are studied in
[33] (see also [10,12,15,18,20,22-25]). The purpose of this paper is to describe
analytic smoothing properties of solutions to the Cauchy problem for (1.1) in
terms of the generators of Galilei and pseudo-conformal transformations. We
follow the method of Hayashi and coauthors ([10-25], especially [16,17,22,23])
basically, while a systematic use of Strichartz estimates and a couple of ob-
servations on the weight condition of exponential type are new ingredients
in this paper.

To state our results precisely, we introduce the following.

Notation. LPLI = LP(R,; L(R,)) with norm

LP = [P(R?) = LPLE. U(t) = exp (i(t/2)A) denotes the free Schrédinger
group acting on functions on R?. M (t) denotes the modulation operator real-
ized as the multiplication by exp (i(z* + y?)/(2t)) - for ¢ # 0. The generators
of Galilei transformations are denoted by J = (J,, J,)) = (x+1it0,, y+it0,) =
(x,y) + itV. The generator of pseudo-conformal transformations is denoted

u; LALA|| = |[lJu; L2 5 L2 || -
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by K = 2% +y?+2it+2itxd, +2ityd, +2it*0, = J*+2t°L, where L = i0,+3A.
The operators J are represented as

while K satisfies the following useful identity
K — 2it = 2itM (t)PM (—t),

where P = x0, + y0, + t0;. Let X be a Banach space of functions of
(t,(z,y)) € R x R? or of (z,y) € R? and let A be an operator on X. Then
for a > 0 the space G*(A4; X) is defined at least formally by

a a an n
G(A;X) = {f EX|fGAX)) =) A X| < oo}-
n>0
Similarly, for operators A = (A, As) of two components, we define
alel o ra
G'(AX) =1 feX;[If;GY(AX)| = ZF AT A f; Xl < 00 o,
a>0

where we have used the standard multi-index notation with a = (ay, az). For
simplicity, we write G*(A, B; X) = G*(B; G*(A; X)). For T > 0 we define

Xi = G*(Js,0); L2(0,T; L) N L¥(0,T; L, L7)),
Y7 = G((0,J,); L*(0,T: L*) N L¥(0, T; L, L7)),
Zg = G*(J;L=(0,T; L*) N L¥(0,T; L, L2)),

Wi = G(J,K;L>(0,T; L*) N L¥(0,T; L, L2)).

We state the main result in this paper.
Theorem 1 Let a > 0. Then:

(1) For any p > 0 there exists T > 0 independent of a with the following
properties:

(a) For any ¢ € G*((x,0); L?) with ||¢; G*((x,0); L] < p
(1.1) has a unique solution u € X§.
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(b) For any ¢ € G*((0,y); L?) with ||¢; G*((0,y); L*)|| < p
(1.1) has a unique solution u € Y}.

(c) For any ¢ € G*((x,y); L*) with ||¢; G*((z,y); L*)]| < p
(1.1) has a unique solution u € Z§.

(2) For any p > 0 there exists T' > 0 depending on a and p such that
for any ¢ € G*((w,y), x* +y* L?) with ||¢; G*((w,y),2* + y* L) < p
(1.1) has a unique solution u € W

Remark 1 Theorem 1 is regarded as an infinite version of Theorem 2 of
[33]. The conclusion holds when the time interval is replaced by [—T,0].

Remark 2 Functions in the space G*(J; L>(0, T; L?)) [resp. G*((J,,0); L>°(0,T; L?)),
G*((0,J,); L>=(0,T; L*))] are analytic in (z,y) [resp. z, y| for each t # 0 [22,

23]. Functions in the space G*(J, K; L°°(0,T; L?)) are analytic in (¢, (z,y))

with ¢ # 0 [17]. In those respects, Theorem 1 describes analytic smoothing
properties of solutions. We note that no regularity assumption is imposed

on the Cauchy data.

The following proposition describes norm in the spaces G*((z,y); L?) and
G*((z,y),z* + y* L?) in terms of weights of exponential type.

Proposition 1 For any € > 0 there exists C. > 0 such that the following
estimates hold:

et Whgs L2 < flos G (e ): 7]

< CE||6(a+€)(|$|+|y\)¢;L2H’ (1.3)
6“<x2+y2)¢;L2H < o G((w, ), 2” + v L?)|

< O ||e@t@ g, 12 (1.4)

Moreover, the second inequality in (1.3) is optimal in the sense that the

estimate
| e g 12

¢; G ((z,y),2* + 9% L?)|| < C

(1.5)
fails to hold.

Remark 3 The first part of Proposition 1, including (1.3) and (1.4), is a
special case of Proposition 2 in Section 4 below.
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In [17], Hayashi and Kato proved analyticity in space-time with ¢ # 0 of
solutions for the nonlinear Schrodinger equations

1
i@tu + §AU = )\|u|2pu

in R x R" with A € C and nonnegative integer p under the assumption on
the Cauchy data ¢ such that el*’¢ € HI+! for n > 1, where [r] is the
integer part of » > 0. The above assumption is relaxed as e'l"2¢ e H™,
where m = 0 if (n,p) = (1,1) and m = 1 if n = 2 or (n,p) = (3,1) (see
[17]). In view of (1.4) the assumption ¢ € G*((x,y), z* + y*; L?) is satisfied
if e(@t)@ ) e 2 which corresponds tom = 0 < a < a+¢e = 1 in the
last assumption in n = 2.

We refer the reader to [7,8,11,19,20,28,29,30] for analyticity of solutions to
other nonlinear evolution equations and to [32,34,35,37] for analytic smooth-
ing effects for linear dispersive equations.

We prove Theorem 1 in Section 3 by a contraction argument. Basic es-
timates for the proof of Theorem 1 are summarized in Section 2. We prove
Proposition 1 in Section 4 in a general setting.

2 Preliminaries

In this section we collect some basic estimates for the free Schrodinger group
U(t) and the nonlinearity f(u) of integral type.

Lemma 1 (Hayashi-Ozawa[21]) U(t) satisfies the following estimates:
(1) For any (q,r) with0 <2/q=1/2—1/r <1/2
|U()¢; LUR; Ly L2)|| < C ||; L7 -

(2) Forany (g;,r;) with0 <2/q; =1/2—1/r; <1/2, j = 1,2, the operator
G defined by

t
(Gu)(t) = / Ut —t)u(t")dt
0
satisfies the estimate

Gu; L%(0,T; L2 L?)

)

|Gus (0,13 Ly 12| < €|

where C'is independent of T'> 0 and p’ is the dual exponent to p defined
by 1/p+1/p' =1.



Proof. See [21,33]. O

Lemma 2 (Hayashi-K.Kato[17]) Let 1 < ¢, < oo and let p € R. Then for
any a, T >0 and p € C with amT < 1, m = Max(|u|/2,1) + 1 the following
inequality holds:

alp|T

GYUK +i(p—2)t LX) < (14—
1767+ ity - D+ X)) < (1 220

) 15 GHE + i(p — 2 X))

where X = L9(0,T; L, L2) or G*(J; L4(0, T; L, L2)).

Proof. We argue as in [17]. By the commutation relation

[ut, K +i(p — 2)t] = —% (ut)?,
we have
(K +i(p — 2)t + pt)’
-y (1) [lﬁwzm) (K +ilp — 2)0)
::EK +i(p —ont))’. (2.1)

We note that ||tf; X|| < T'||f; X||. By (2.1), we obtain
!|f;G“(K+i( = 2)t + pt; X

= l' HK+2p 2)t + ut) fXH
I=

< iijﬁ( )[ﬁ(lul+2j) 7|k + it — 200 £ x|
+ Hffca(K +i(p—2)t5 X)]
00 l
< Zzaa ol [,j,r_[ il +29) | (@T)*[|(K -+ i(p = 20" 1 x|

1=0 k=1
+1f; GHK +i(p— 2)t; X))

S T el 20 + 1

k=1 T j=0

1f; G*(K +i(p — 2)t; X)|| .




The lemma then follows by the following inequalities:

k—1

k—1
1 : |14 —2>
— +2j) = 2+ =
1 | [ (Il +25) |u|j|:|1( ]
Tl i =2
| (2+Max< 5 ,O)) = |p|mFL

Jj=0
J=1

IN

O

3
Lemma 3 Let (q;,75), j = 0,1,2,3, satisfy 1 < q;,r; < 00, 1/qo = > 1/q;,
j=1

3
1/rg = Zl/rj. Then:
j=1

(1) For any a,T >0

w/‘w%w%wwﬂW@mwwnW@w

< [T s G (e, 0); L9 (1; L L2))] (2.2)

j=1

%[_%%m%wm%mu@xwuwwaw

3
< [ llesGuc. 4); Loz Ly L2) || (2.3)

j=1

m/‘%%mdwmwwamwmw@ﬂ

, (2.4)

3
< [T s Go(J; L (I3 Ly L2))

J=1

where I = [0,T].



(2) For any a,T > 0 with 2aT < 1

/ Vo3 (t, 2, y)da's G*(J, K — 2it; L(I; LZ,“Li))H

v
1 3
< o7 ]1:[1 [0y G(J, K — 2it; LY (I; LY L2))|| . (2.5)

where I = [0,T].
ix?

Proof. We define sz = M_ ", M, = M,(t) = exp( 57

J. = M, (itd,) M, we obtain
(d’l/ ¢2¢3d$) = M, (itd,)’ <1Z1 /9” 1/;2de/>

= M (Zt 8l1/11 / QﬂngdZE + Z ll'l ‘aill/J / 77b21/}3

). By the relation

l1+12=l
12>1
, i
= M,(it) Z e %‘a;wl/ 2]y - OFahda’
li+l2+i3=l L2l
_ l'( k1 ko ks
— Z k1'k2lk|Jx¢/ JE2apy JiBapsda’. (2.6)

l1+l2+Hl3=

We estimate (2.6) by the Holder inequalities in space-time as

i (wl / %%dx') L(1; L0 L2)

<y H—HJ’WJ,L%[UJL?)H

k1+ko+ks=l j=1 j



This implies

1

on [ s 6, 0) 1 L;OL?C))H

oo 3
<> Y glmwsep)

=0 ki+ko+ks=l j=1 J:

VAN

T lles: G (s 0); L0 (1; Lip 12))]|

j=1

This proves (2.2). By a similar calculation, we obtain (2.3). Similarly, (2.4)
follows from a two dimensional generalization of (2.6).
To prove (2.5), by using

P/:Ofdx’ = / (P +1) fdo,

—00

Pavtin = X (5 ) Py

J=0

we compute
Jo (K — 2it)! (@m / ’ %%dx’)
= (2at)l*H Mo P! (&1 / ’ &Qﬁdx’)

(1"
_ -\ |+ o
=@M Y

5I+BII+B///:
J1+j2+73=l
x
.aﬂ/pjlwl / 35"Pj2¢2 99" (P + 1)7 4fyda’
—0oQ
alll(—1)18"1
- o PN PN e tA wel/A Walill |
BI+B//+BW:Q jl'jQ‘ji‘]'B 6 ﬁ .
J1+je+js=l

JP (K = 2it)™ oy / (K — 2it)24hy - TP (K — 2it)isepgda’.



In the same way as above, we estimate

/ Votgda’; GU(J, K — 2it; L (I; L;OLi))H

Jo

2
[ s: G*(J, K L(L; L L2)|| T |3 G*(J, K = 2it; L9 (1; L7 L2))
j=1

from which we obtain (2.5) by Lemma 2. O

3 Proof of Theorem 1

We solve the integral equation

u(t) =U(t)p — z/o Ut —t") f(u(t'))dt (3.1)

by a contraction argument on X%, Y&, Z% and W&. Let ¢ € G*((x,0); L?)
with ||¢; G%((x,0); L?)|| < p. For R > 0 we define

X7(R) ={ue Xp; |lu; Xz|| < R},
where

Jlu; X7 | = Max (

((J2,0); L0, T5 L?))|| , |Jus G*((Ja, 0); L¥(0, T Ly L2))]]) -
For u € X% we define (®(u)) (¢) as the RHS of (3.1). We have
(JL@(w)) (t) = U(t)z'p — z/o Ut —1t) (JLf(w) ()at. (3.2)

Applying Lemma 1 to the RHS of (3.2) and using the Holder inequality in
time, we obtain

Max (|| JL®(u); L*(0,T; L?) H (u); L3(0, T Ly L2)||)
< CH:c¢,L2H+C||Jl ) L 50,75 Ly L2) H
< Clla'e; 12| + CT'? HJZ w)); LY0,T; LyL2)|| - (3.3)
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Multiplying both sides of (3.3) by a'/l!, making a summation on [ and ap-
plying Lemma 3, we obtain

1@ (u); Xl < |65 G*((x,0); L%)]|
+ CT"? ||lu; G*((J, 0); L¥(0,T5 Ly L2))

((J2,0); L=(0,T; L?))|| -
In the same way as above, for u,v € X%(R), ®(u) satisfies
|®(u); XF| < Cp+CT'’R?,
1@(u) = @(v); X7 < CTY2R?|ju—v; X7

For p > 0 let R and T satisfy R > 2Cp, T' < 1/(4C*R*). Then ®(u) has a
unique fixed point in X4(R). This proves Part (1). Parts (2) and (3) follow
in the same way.

For Part (4) we write, with u € W

(JUK'®(w)) (1) = U™y (a® +y)'¢
t
i / Ut — ) (J(K +4it) f(w) (#)dt".
0
In the same way as above, we have
1 (w); Wil
< Cll¢; G(z,y),2* + v L?)|
+CTY? || f(u); GU(J, K + 4it; L*(0,T; L, L2))|| - (3.4)
By Lemmas 2 and 3, the last norm on the RHS of (3.4) is estimated as
| f(u); G*(J, K + 4it; L*(0,T; L, L2))||

< T\\f ); G4(J, K — 2it; L*(0, T3 Ly L2)) |
1 1

- G? —_ 9t I8 L7472\ (|2
S /a1 = aar 1M G K — 2 L0 TS L))

Nlw G(J, K = 2it; L=(0,T5 L?))|| . (3.5)
By (3.4) and (3.5), we have for u € WE(R)

CT1/2R3

[®C): Wil < Cr+ A5 myar) (1 = 2a1)

11



Similarly, for u,v € W(R)

CTV2R?
O(u) — d(v); W < — W
H (u) (U)ﬂWT” — (1—(5/2)CLT)(1—26LT) Hu U7WT“
1 1
Fi let d T satist; > 2 T < Max(—, ——=). Then ¢
or p > 0let R and T satisfy R > 2Cp, T < ax(5a, 64C'R4) en ®(u)
has a unique fixed point in W4 (R). O

4 Proof of Proposition 1

First, we prove the last part of the proposition. The LHS of (1.5) is estimated
as

¢ G*((z,y), 2% + y*; L?)||

al Tt i1k 2 2\ 2
= > SR ||z ly[" (2* + y*)'¢; L?|
gk4>0 7T
al T Gk o2 2\1 2
> | TR |z [y (=" +y7) ¢ L
k>0 YT

2 2
el Hlyl+a4y%) 4. 2

Therefore (1.5) fails to hold for ¢ = e~eeltlyl+2*+v%)

From now on we consider functions in R". We use the standard multi-
index notation.

Proposition 2 Let n and [ be positive integers and let a > 0. Let w =
(wy,...,wy) be functions of x € R™. Then the following inequalities hold.

12



(fjoe) e

o
< 3 s 2|

aeZl
a>0
l
< Gy (H(Ha!wj!)”?e“'w]") ¢; L*(R™)|[, (4.1)
j=1

1/2
2k) 1
where Cp = <Z (2F) ) with ki = Max(k, 1).

2 () Iy

Remark 4 To derive (1.3) from (4.1), we put | = 2, wy(x,y) = x, we(z,y) =
y. To derive (1.4) from (4.1), we put | = 3, wi(z,y) = z, wa(x,y) = v,
ws(z,y) = 22 + %

Proof of Proposition 2

The first inequality of (4.1) is proved by the Maclaurin expansion of e”
and the triangle inequality.

The second inequality of (4.1) is proved as follows. By the Wallis formula

@k 1 1 1
2%k(EN2 ) /7 kT2

we see that the series

S (26)! 1
L PR(RI) ks

converges to a finite value C3. By Schwarz’ inequality, this yields the follow-
ing estimate:

13



|ot]
> w2

«

1/2
(2ar)!
= (Z 2 ((an))(an) <az>+>
1/2
a)! ool 1l - o o 12
. <Z (o) (2 (iél)+22|a a’ le ¢; L°(R )H )

1/2
- 06<Z — <2aw)2a¢,¢> , (42)

- (an)s (o)

where (-, -) is the scalar product in L?(R"). Since

k=0 ’

the RHS of (4.2) is dominated by

QCLU)]‘ : 1/2 2 n
H 1+ 5 sinh 2aw; ¢; L*(R")

Using 1 < (1 + £sinh2¢) < (1 + |¢])e?é]] we have the second inequality of
(4.1). O
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