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KEIJI IZUCHI, TAKAHIKO NAKAZI, and MICHIO SETO

ABSTRACT. For every invariant subspace M in the Hardy
spaces H?(I'?), let V, and V,, be mulitplication operators on
M. Then it is known that the condition V,V; = V;V, on M
holds if and only if M is a Beurling type invariant subspace.
For a backward shift invariant subspace N in H*(I'?), two
operators S, and S, on N are defined by S, = Py L, Py and
Sw = Py Ly Py, where Py is the orthogonal projection from
L?(T'?) onto N. It is given a characterization of N satisfying
S5y =555, on N.

KeEYwoORDSs: Backward shift invariant subspaces, the Hardy
space in the bidisc

MSC(2000): Primary 47A15, 32A35; Secondary 47B35.

1. INTRODUCTION

Let I'? be the 2-dimensional unit torus. We denote by (z,w) = (e, ¢')
the variables in I' =T, x I',,. Let L? = L*(I'?) be the usual Lebesgue
space on I'? with the norm || f|l2 = (f., | f(€”, €*)|?d8d¢/(27)?)"/2. The
space L? is a Hilbert space with the usual inner product. For f € L2,
the Fourier coefficients are given by

fnym) = [ f(e? e ™e™ ™ dodp/(2m)? = (f, 2" w™).
T2

Let H* = H%(I'?) be the Hardy space on I'?, that is,
H?>={felL* fin,m)=0if n<0orm<0}
For f € H?, we can write f as
o oo
[ = Z ®a; ;jz'w’, where Z la; ;|* < 0.
1,70 1,j=0

Let P be the orthogonal projection from L? onto H2 TFor a closed
subspace M of L?, we denote by P, the orthogonal projection from
1



2

L? onto M. For a function ¢ € L™, let Lyf = 4 f for f € L?. The
Toeplitz operator T, on H? is defined by T, f = PLyf for f € H%
It is well known that T = T5. It holds that T7.T,,m = T,mT}. for
n,m > 1. A function f € H? is called to be inner if |f] = 1 on I
almost everywhere. A closed subspace M of H? is called invariant if
zM C M and wM C M. In one variable case, an invariant subspace
M of H*(T') has a form M = gH?*(T), where ¢ is inner. This is the
well known Beurling theorem [2]. In two variable case, the structure of
invariant subspaces of H? is complicated, see [1, 9, 11].

Let M be an invariant subspace of H?. Then T}(H? & M) C
(H*© M) and T} (H*& M) C (H?* © M). We call a closed subspace

w

N of H? to be backward shift invariant if 7N C N and TN C N.
If N is a backward shift invariant subspace of H?, then H? & N is
invariant. There are studies of backward shift invariant subspaces of
the unit circle ', see [3, 12].

Let M be an invariant subspace of H? and ¢ € L. Let Vj, be the
operator on M defined by Vi, = PyLg|pr. Then V, =T, and V) = 1%
on M. In [8], Mandrekar proved that V,V} = ViV, on M holds if and
only if M is Beurling type, that is, M = ¢H? for some inner function
q, see also [4, 9, 10].

In this paper, we study a similar type problem on a backward shift
invariant subspace N of H?. For ¢ € L™, put

Sw = PNL/L/;|N on N.

Then we have S), = Sz and ST =T on N. Our purpose is to charac-
terize backwad shift invariant subspaces N which satisfiy the condition
S.Sk = SiS, on N. Recently, this problem is studied in [5, 6]. Our
theorem in this paper is the following complete characterization.

THEOREM 2.1. Let N be a backward shift invariant subspace of
H? and N # H?. Then S,S; = S:S, on N holds if and only if N has
one of the following forms;
() N = H? 0 g1 ()12,
(ii) N = H? & g2 (w)H?,
(iii) N = (H?*6 q(2)H*) N (H? 6 q(w)H?),
where q1(z) and gz(w) are one variable inner functions.

In Section 2, we prove our theorem as a continuation of the study
of [6]. In Section 3, we study the above problem from another view
point.

Let H?(T',) and H?*(T',) be the Hardy spaces on the unit circle
[ in variables z and w, respectively. We think that H?(T',) C H?
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and H*(T',) C H% 1In [6], if S,S; = S:S, and N # H?, then cither
(H? © N)n H?*(T',) # {0} or (H2 o N) N H*(T,) # {O} holds. We
prove the following.

THEOREM 3.1. Let N be a backward shift invariant subspace of H?

and M = H*6 N. Suppose that MNH*(T',) # {0}. Put MNH*(T,) =

@ (2)H*(T,), where q,(2) is an inner function. Put M = M O q,(z)H?.
Then the following conditions are equivalent.

(i) 5.5% = S5,

(i) T2 © M.

(iif) Either M = {0} or M = q(w)(H? © q.(2)H?) holds for some
inner function qa(w) € H*(T,).

(iv) Either M = q1(2)H? or M = q,(2)H? + q2(w) H? holds.

Theorem 3.1 follows from Theorem 2.1 without so difficulty. We
also give a proof of Theorem 3.1 without using Theorem 2.1. Since
Theorem 2.1 follows from Theorem 3.1, this means that we give two
different type proofs of Theorem 2.1. In the forthcoming paper [7] V\e
study backward shift invariant subspaces N satisfving S,S; # S

and 5,25} = 5552 In [7], both ideas will be used effectively.

’ll]

2. PROOF OF THEOREM 2.1

To prove our theorem, we need some lemmas. The following two lem-
mas are proved in [6].

LEMMA 2.2. Let N be a backward shift invariant subspace of H?
and M = H?> O N. Then the following conditions are equivalent.

(i) 525, = 55,5
(i) SuS7 = 57S5u.
(i) (M e:zM)se (MnH*T,)) C (MnH?*
(iv) MewM)s (MnH*T,)) C (MnH

[,)) & wh.
I'w)) ®zM.

LEMMA 2.3. Let N be a backward shift invariant subspace of H?
such that N # H?. Let M = H*© N. If S,S = S:S, holds, then
either M 0 H*(T,) # {0} or M N H*(T,) # {O} holds.

LEMMA 2.4. Let q1(2) and q2(w) be one variable inner functions.
Then M = q,(2)H? + ¢(w)H? is an invariant subspace of H>.



Proof. We need to prove that M is closed. Since
H2 O go(w)H? =" 02/ (H* (L) © qa(w) HA(T)),
=0

H? & go(w)H? is z-invariant. Then ¢ (2)(H? © q2(w)H?) L go(w)H?
and

M = q(2)H? + q(w)H?
= a(2)((H? © () H?) @ g(w) H?) + qa(w) H?

= (a(2)(H? © ga(w) H?)) @ ga(w) HE.
Hence M is closed. [

Proof of Theorem 2.1. Put M = H>© N. Then M is an invariant
subspace. Suppose that (i) holds. Then M = ¢,(z)H?, so that M &
wM = q(2)H?*(T,) and M N H*(T,) = q(2)H?*(T,). Hence (M ©
wM) & (M N H*T,)) = {0}. By Lemma 2.2, 5,5 = S*S, holds.
Similarly if (ii) holds, then S,S} = S .S..

Suppose that (iii) holds. By Lemma 2.4, we have M = q,(2)H? +
g2(w)H?. Then we have

(2.1) q1(2), g2(w) € M.

If either ¢;(z) or go(z) is constant, then we have M = H? so that
N = {0}. In this case, trivially S,5; = S&S, holds. Hence we may
assume that both of ¢;(z) and ¢s(w) are not constant functions. We
have M N H*(T,) = q1(2)H*(L,), M N H*(T',,) = q2(w)H?*(T',,), and

(2.2) M © zM C qi(2)H*(Ty) + qo(w)H*(T,).
By Lemma 2.2, it is sufficient to prove
(2.3) (MO zM) O g(w)H?*(Ty) C qi(2)H*(T,) ® wM.
Let
(2.4) fe(MozM)O q(w)H*(T).
Then by (2.2),
(2.5) f=q)h(w) + @@w)hs(w), hi(w),hs(w) € H*(Ty,).
By (2.4), f L zM. Since qa(w)hyo(w) L zM, we have

¢ (z)hy(w) L Z((Jl (2)H* + Qz(w)HQ).

Since q;(2)hi(w) L zq,(2)H?, we have q;(2)h,(w) L zgo(w)H?. Since
¢1(z) is not constant, ¢(z) L 2" for some n > 1. Since q(2)h;(w) L
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2"qy(w)H 2(Fw), we get hy(w) L qz(u)HQ(Fw). Hence q(2)hi(w) L

g2 (w)H?*(Ty,). By (2.4), f L go(w)H?*(Ty). Therefore by (2.5), g2(w)ha(w) L
q2(w)H*(Ty). Thus we get ho(w) = 0. Let hy(w) = hy(0) + wh! (w),
where 1 (w) € H*(T',). By (2.1), q1(2)h} (w) € M. Hence we get

[ = (11(2) 1(w)
= h(0)g 1(2) + qa(2)whi (w)
€ q(2)H*(I,) & wM.
Thus (2.3) holds. Therefore S.S;, = S .S, holds.

Next, we prove the converse assertion. We may assume that N #
{0}. Suppose that S,S; = SiS,. By Lemma 2.3, we may further
assume that M N H*(I',) # {0} holds. In this case, we shall prove
that N has the form either (ii) or (iii). Similarly, it M N H?*(T',) # {0}

holds, then we can prove that N has the form either (i) or (iii).
By the Beurling theorem [2],

(2.6) M N H?(Dy) = go(w)H?(I'y),
where ¢o(w) is an inner function. By Lemma 2.2,

(M e 2M) 6 g(w)H*(T,,) C (M NH*T,)) & wM.

Put

(2.7) Ko = (M S 2M) O qo(w)H?*(Ty,).
Then

(2.8) Ko C (M H*T,))®wM

and

(2.9) Ko 1 (2M & (w)HA(T)).

We have

(2.10) (W) H? = go(w)H*(Ty) ® 2qo(w)H?.

By (2.6), we have q3(w) € M. Then zqo(w)H?* C zM. Hence by (2.9)
and (2.10),

(2.11) Ko L qo(w)H?.

We also have

(2.12) G(w)H? = i © gy (w)H?* (L),



Then
M = ) @d(Mo M)
§=0
= Y o (KO ® ¢ (w)HQ(Fw)> by (2.7)
J=0
= (Z@zjqz w ) (Z@,a]K(J)
— pw)H e <Z@ZJKO) by (2.12).
Hence
(2.13) M = go(w)H? @ (Z O7Ky ).

Since (2.8) holds, it occurs one of the following three cases;

Ky ={0}, Ko CwM, and Ky ¢ wM

Case 1. Ky = {0}.

In this case, by (2.13) it holds that M = ¢qy(w)H?. Therefore
N=H?6 M = H*S g,(w)H?. Hence (ii) holds.

Case 2. Ky C wM.

In this case, we shall prove that Ky = {0}. Let F € Ky. By our
assumption of Case 2,

(2.14) F=uwf [feM.
We shall prove that

(2.15) f € Ko.

We have

<f, q(w)H? ® Z @2-7K0> = <wf, 11}((12(11;)1{2 D Z @z-7K0>>

i=1 7=1

_ <F,Z(§:@zﬂ'—lwf(o)> by (2.11) and (2.14)
j=1

= 0.



The last equation follows from the facts

z(}j@ﬁ*wKQ<:ww,Fe}g,amikbizM:

J=1

Then by (2.13), we have (2.15). Hence F € ()~ w" K holds, so that
F=0.

Case 3. Ky ¢ wM.

In this case, by (2.8) it holds that M N H*(T,) # {0}. By the
Beurling theorem,

(2.16) M N H*(T,) = q(2)H*(T,), where ¢(z) is inner.

By (2.8) again, Ky C ¢;(2)H*(T,) ® wM holds. Let G € Ky. Then
G = q1(2)hg(2) ® why, where ho(z) € H*(L',) and hy € M. We have

(217) G = ho(0)q1 (2) ® 2q1(2)ha(2) @ why for some hy(z) € H(T,).

By (2.16), we have ¢,(z) € M. Hence zqi(z)h2(z) € zM. Then by
(2.9), G L zq1(2)h2(2) holds. Therefore by (2.17), zq1(2)h2(2) = 0, so
that G = ho(0)q1(2) ® wh; holds. Thus we get

(2.18) G = apq1(2) ®why, hy € M.
Here we shall prove that
(2.19) hi € K.

Since go(w) € M, M = qa(w)H?* & (M © g2(w)H?). Put hy = bl @ h}j €
g (w)H?* ® (M 6 qy(w)H?). Then we have G = ayq(z) ® wh! & whi.
Since wh) € ¢(w)H?, by (2.11) wh| L Ky holds. Since G € K, we
have b} = 0. Thus we get

(2.20) hy L qo(w)H?.

We have
(2.21) a(z) L w(Z@zjKo>.
=

Since w(} 72, @27 Ky) C 2M, G € Ky, and Ko L 2M, we have

(2.22) Giu(ii@ﬂKQ.

j=1
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Then we have

<h17 j;@zj[(0> — <wh17 w(ZEszKo>>

j=1

= <G — ale(Z),uJ(i@zjKo>> by (2.18)

=0 by (2.21) and (2.22).

Hence hy L 3277, @27 Ky. Therefore by (2.13) and (2.20), we get (2.19).
Applying (2.18) and (2.19) infinitely many times, we have

G = Z ®a;q (2)w’ = q (z)(Z@awﬂ) € q1(2)H*(Ty,).
=0 =0
Hence Ky C ¢1(z)H?*(T',), so that

Z@Zj[(o C ql(Z)HQ.

=0
Therefore by (2.13), M C q,(z) H? + q2(w) H?. By (2.6) and (2.16), we
have q(z), g2(w) € M. Then ¢, (2)H? + q2(w)H? C M. Thus we get
M = ¢ (2)H*+q(w)H?. Hence N = (H*©q¢,(2)H*)N(H*S q2(w) H?).
U

COROLLARY 2.5. Let N be a backward shift invariant subspace of
H? and N # H*. Let M = H*© N. Then S,Si = SiS, holds if and
only if M has one of the following forms;
(i) M = q(2)H?,
(i) M = go(w)H?,
(ii) M = q1(z)H?* 4 q2(w) H?,

where q(z) and qo(w) are one variable inner functions.

3. ANOTHER PROOF OF THEOREM 2.1

Let N be a backward shift invariant subspace of H? and M = H?*O N.
Then M is an invariant subspace. Let ¢;(z) be an inner function in
H?(T,). In this section, we assume that

(3.1) q(z)H* C M and MnNH*T,) =q(z)H*(T,).
Then ¢,(z)H* C M. Put
(3.2) M= Mo q(z)H.



Then
(3.3) H?o q(z)H* =M o N

and M is w-invariant. The following is the main theorem in this section.

THEOREM 3.1. Let N be a backward shift invariant subspace of H?
and M = H*©N. Suppose that MNH*(T,) # {0}. Put MNH*(T,) =
@ (2)H*(L,), where q(2) is an inner function. Put M = M & q,(z)H?.
Then the following conditions are equivalent.

(i) S.9F = SkS,.
(i) T*M c M.
(ili) Either M = {0} or M = g(w)(H? © qi(2)H?) holds for some

inner function qy(w) € H*(T,).

(iv) Either M = q(2)H? or M = ¢,(2)H* + q2(w)H? holds.

To prove our theorem, we need to study the properties of M.

LEMMA 3.2. Let f € M. Then we have the following.
(i) T f € ]\N{ if and only if € U”LM‘ )
(i) Trf L M if and only if f € M & whl.

Proof. (i) Suppose that T f € M. Put

(3.4) f=> @uwfi(z), fi(z)eHT.).
§=0
Then
(3.5) > ow ! fi(z) € M.
j=1

Since w]\? C M, it holds that Yoo @l fi(2) € M. By (3.4), we have
fo(2) € M. Then by (3.1),

folz) € M H*(I',) € MnH*T,) = q.(2) H¥(I,).
Then by (3.2), fo(2) L M. Thus we get fo(z) = 0. Hence, by (3.4) and
(3.5), f € wM holds. The converse is trivial.

(ii) follows from the fact that, T f L M if and only if f L wM.
[

We denote by P, the orthogonal projection from H? onto H? ©
q1(z)H?. Then we have a Toeplitz type operator Q, on H? & ¢,(z) H?
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such that
(3.6) Q. H*ocq()H*> f - P.(T,f) € H ©q(2)H*

Since zM C M, by (3.2), it holds that Q.M C M. By (3.3), Q. has
the following matrix form;

¢ PoT.ly M
(3.7) Q. = ( 0 MSZ > on H*ocqu()H*=| &
? N

Since H? © ¢;(z) H? is backward shift invariant, it holds that T*(H?* ©
q1(z)H?) C H? © q(2)H?. Since T;N C N, the operator T on H> ©
q1(2)H? has the following matrix form;

_— * 0 2 2 _
(38) T;= ( PyT:|, S ) R
Put

LEMMA 3.3. We have the following.
(i) TrQ. = Q. T} on H* & qi(2)H?.
(ii) TwQ. = Q.T, on H? O q,(z)H?.
Proof. Let f € H* 6 q.(z)H?. Put
(3.10) 2f=hofc(H Oqz)H?) ©q(z)H"
Then Q. f = fi. Hence T7:Q.f = T: fi. On the other hand, by (3.10)
we have
A =Tyzf =Tu i + T, fo
Since Trq(2)H? C q(2)H?, it holds that T f, € ¢ (2)H?. Since
T:f1 € H*© qi(z)H?, by the above we have Q, T f = T= f,. Thus we
get T0Q), = Q. T.
Since T,,(H?*©q,(2)H?) C H?*6©q,(z)H?, similarly we have T,,Q, =
Qsz on HQ o (I'l(Z)HQ' u

LEMMA 3.4. S.S;, = S;S, holds if and only if BA = 0.

Proof. By Lemma 3.3(1), T:Q, = Q.T; on H* © q,(z)H?. Then
by (3.7) and (3.8), we have BA+ S S, = S,S}. Then S,S = S5, if
and only if BA =0. I
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THEOREM 3.5. Let N be a backward shift invariant subspace of
H? and M = H* & N. Suppose that M N H*(T,) # {0}. Put M N
H*(I',) = qi(2)H*(L,), where qi(z) is a one variable inner function.
Put M = M & q,(2)H?. Then the following conditions are equivalent.
(1) SNZS:/ - S:J'NZ' ~ ~
(i) Me{feM;T;fe M} CwM.
(ii) T:M C M.
Proof. (i) < (ii) By Lemma 3.4, condition (i) is equivalent to
BA =0. By (3.3), (3.9), and Lemma 3.2(i), we have that
ker B={f € M;T:fec M}=wM.
We denote by [ran A] the closed range of A. Let A = PyT, Py on
M & N. Then we have [ran A] = [ran A,]|. Since A} = PyT} Py, we
have ) )
kerAj=Na&{fecMT,fecM}
Then
ran A] = [ran A{] = (M @ N) S ker Al = Mo {f e M;T:f e M}.
Therefore it holds that BA = 0 if and only if
Mo{feMT/feM}CwM.
Thus we get (i) < (ii).
(i) = (iii) Suppose that
(3.11) Mo{feMT fecM}ycCwM.
Since {f € M; T:f € M} is a closed subspace, by (3.11) we have
(3.12) MowM C{fcMT:fecM}.

Since wM C M, we have

(3.13) M =Y euw (M e w).
7=0

To prove (iii), let f € M. Then by (3.13),
f= ij gj, Wwhere g; € M e whM.
=0
Since TrT,, = T,,TF on H? by (3.12) we have

T3 =Y wiTly € AL

§=0
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(iil) = (ii) is trivial. O
For a one variable inner function ¢(z), put ¢*(z) = z(¢(z) — ¢(0)).

LEMMA 3.6. Let ¢1(z) and q2(z) be inner functions. Then we have

the following.

(i) T7q1(2) = g7 (2 ) and q;(z) L qi(z)H?*(T).

(i) Ifq(2)H*(T.) G q2(2)H?(L.), then the smallest closed T} -invariant
subspace of H*(T',) containing qz(2)H*(T',) © q1(2)H*(T",) equals
to H*(I',) & 1 () H*(L,).

(i) The closed subspace generated by T:™q}(z),n =0,1,2,..., equals
to H*(T',) © ¢ (2) H*(T,).

Proof. (i) Trivially T7q,(z) = ¢;(z) holds. For h € H?*(T',), we
have

(g1 (2), a(2)h) = (T7q1(2), (2)h) = (@1(2), zq1(2)h) = (1, zh) = 0.

Thus we get (i).
(ii) Let L be the smallest backward shift invariant subspace of
H?*(T',) containing ¢,(2)H*(T',) © q:(2)H*(T,). Then L C H*T,) ©
(Z)HQ( .). Let f € HQ(F )© q1(2)H?(T,) such that f L L. Since
H?(T,) © L is invariant, 2¥f | L for k > 0. Hence
KL g(z)HAT.) © qi(2)H*(I',) for every k > 0.
Since ¢»(2)H*(T',) C L®q:(2)H*(T',), we have f | go(2)H*(T',). Hence
A (qg(z)HZ(Fz) S/ (]1(2)H2(FZ)> for every k£ > 0.

Since q2(2)H*(T,) © q:(2)H*(T,) # {0}, we have f = 0. Thus we get
L =H*T,)oq(z)HXT,).

(iii) Let E be the closed subspace generated by T;"¢;(z),n > 0.
By (i), E C HXT,)© q.(2)H*(T',) and F is a backward shift invariant
subspace of H?(I',). Then H*(I',) © E = ¢3(2)H?*(I',) for some inner
function ¢3(z) and ¢,(2)H*(I',) C q3(z)H*(I',). When ¢,(2)H*(I',) =
q3(2)H?*(T',), our assertion holds.

Suppose that ¢ (z) H*(I'.) G ¢3(2) H*(I'.). Put q4(z) = q1(2)/g3(2).
Then ¢4(z) is a nonconstant inner function, and ¢{(z) = ¢3(2)qi(2) +
G1(0)g3(2). We have gj(z) # 0, so that gs(2)q;(z) £ qs3(2)H*(I';). By
(), 45(2) L gs(=) H(T.). Hence gi(2) £ qs(:)H*(T.). Since g}(z) € E,
E [ q3(2)H?(T,). This is a contradiction. Hence we get our assertion.
U
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Proof of Theorem 3.1. First, we shall prove our theorem using
Corollary 2.5 and Theorem 3.5.

(i) < (ii) follows from Theorem 3.5.

(i) = (iv) follows from Corollary 2.5.

(iv) & (ili) If M = ¢1(2)H?, then M = {0}. Suppose that M =
q1(2)H? + q2(w)H?. Then

M= q()H + g(w) (g () H? @ (H? O q(2) 1))
= q(2)H* + @(w)(H* © q(2)H?).
Since H? & ¢ (2)H?* is w-invariant, we have
M = qi(2) I @ q2(w)(H* © @1 (2) H?).

Thus we get M = go(w)(H? © ¢ (2)H?).
The converse assertion is not difficult to prove.
(iii) = (ii) is not difficult to prove.

Here we give another proof of (ii) = (iii) without using Corollary
2.5. We may assume that M # {0}. By condition (i), we have T; M C
M. Then T} M L N, so that M | zN. Hence by (3.3) and (3.6),

(3.14) Q.N C N.

Since M # {0} and wM C M, Mo wM + {0} holds. Let f €
M ©wM. Then by (3.3) and Lemma 3.2(ii), we have T f € N. Hence
THTrf = T:T5f € N. Since T:M C M, T*f € M holds. Hence by
Lemma 3.2(i1) again, T f € M © wM holds. Thus we get

(3.15) T (M o wM) C Mo wh.

By (3.2), we have f € M and 2f = f, + fo € M @ q,(2)H?. Then by
(3.6), we have Q,f = f; € M. Since T%f € N, by (3.14) and Lemma
3.3(1) we have T2 Q. f = Q.15 f € N. Then by (3.3) and Lemma 3.2(ii),
Q,f € M & wM holds. Thus we get

(3.16) Q.(M S wM) c MSwM.
We define the operator W, on M to q;(z)H? by

(3.17) W, = Pl = T, - Q..

Then by Lemma 3.3(ii),

(3.18) W.T, = T,W, on M.

Then wW,M = W,(wM) C W, M. Hence we get

(3.19) wW,M C W, M,
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where W, M is the norm closure of the space W, M. Since M L ¢ (z)H?,
zM 1 2q1(z)H? holds. Then by (3.17), we obtain

W.M C qi(2)H? © 2q1(2)H? = g1 (2) H*(I',,).

Hence g, (z)W,M < H?*(I',), so that by (3.19) and the Beurling theo-
rem,
(3.20) 0, (2)W.M = go(w) H(T,)

for some inner function g(w).

Let f € MowM and g € M. Since Q.M C M, by Lemma 3.3(ii)
we have Q,wM C wM. Then by (3.16), Q.f L Q,wg holds. Since
zf L zwg, by (3.17) we have

0= (2f, 2wg) = (Quf & W.f, Qung & Wawg) = (W.f, W.wg).
Then W,(M © wM) L W,(wh). Hence by (3.18), we get

WMo wM) L wW,M.
Therefore by (3.20), we obtain

W.(M e wM) C W,M o wW,M = [1(2)g(w)],

(
where [¢1(2)g2(w)] is the linear span of a function g (2)ga(w). If W (\[@
wM) = {0}, by (3.16) and (3.17) it holds that 2(MowM) C Mowl.
Then z“(M o w M) C Mo wM for every _positive integer n. Since
M & wM # {0}, we have that 2"(M © wM) [ ¢ (2)H? for some n.
These contradict with (3.2). Thus there exists fo in M ©wM such that

(3.21) W, fo = aqi(z)g2(w) and a # 0.
Since 2z fy = Q. fo + W, fo, we have
fo = T;Q:fo +T;W. fo
= T7Q.fo + aqi(z)g(w) by (3.21) and Lemma 3.6(1).

Hence by (3.15) and (3.16), it holds that ¢*(2)ge(w) € M SwM ,n > 0.
By Lemma 3.6(iii), we obtain

(3.22) go (w) (HQ(FZ) o ql(z)HQ(Fz)) C Mo wh.
We shall prove that

(3.23) Mow M—@(u)(fl T.) O q(z )H‘Z(Fz))_

Let

(3.24) Fe (M owl) o gw) <H2(Fz) o ql(z)HQ(Fz)> .
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Let 4, be nonnegative integers. Since go(w)(H?(T',) © q1(2)H?(T,)) is
invariant for the operator 77,

T:i<(12(w)<H2(Fz) @(JI(Z)HZ(D)» = QZ(?I)(H () ©al )HQ(FZ)>'

Since M ©wM L w"(M & wM) for every positive integer n, by (3.22)
and (3.24) we have

MFLT% (W @m)HWwD

and

FiWﬁ( @2 @m)W@D)
Hence
(3.25) w F L Zgy(w <H2 ) © q1(2)H*(T, ))
and
(3.26) F 1L 7w gy(w <H YO qu(2)HA (T, ))

Since qo(w)(H*(T,) & qi(2)H*(T,)) is invariant for the operator
Q,, similarly we have

(3.27) wF | Q; (q2(w) (HZ(FZ) © (]1(2)H2(F2))>
and

(3.28) F1luw@Q! <q2(u)) (HQ(FZ) o ql(z)HQ(Tz)>>.
By (3.6),

Q. (@(w) (HAT)0q () HAT.) ) ) = Po(2'(w) (HAT)S0) (=) HA(T) ) ).
Since M L ¢ (2)H? and w/F € M, by (3.27) and (3.28) we have

(3.29) W F L 2igy(w) (H (T) O q(z )H?(rz))
and
(3.30) F L 2wigy(w) (HQ(FZ) o ql(z)HZ(Fz)>.

Since M # {0}, by (3.2) ¢i(z) is not constant. Hence H?*(I',) &
q1(2)H*(T',) # {0}. Therefore by (3.25), (3.26), (3.29), and (3.30),
we get F'= 0. Thus we get (3.23).

By (3.23), we obtain

1= @u (11 € wil) = go(w)(H & 0, (2)H?).

=0
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The following is interesting enough in its own right.

COROLLARY 3.7. Let ¢1(z) be a nonconstant inner function. Let
L be a closed subspace of H? & q1(2)H? and L # {0}. Suppose that
wL C L, QL CL, and Q5L C L. Then there exists an inner function
@2(w) such that L = gx(w)(H* © q(2)H?).

Proof. We note that Q7 = T on H> © ¢1(2)H?. Put M = L &
q1(z)H?. Then by our assumption, M is an invariant subspace and
q(2)H*(T',) € M N H*T,). Put M N H*T,) = q3(2)H*(T",), where
q3(2) is inner. Then ¢ (2)H?*(T,) C ¢3(z)H*(T,).

Suppose that q;(2)H*(T,) # q3(2)H*(T',). Let L; be the small-
est closed subspace of H*(T,) © ¢1(2)H?(T',) containing q3(z) H*(T,) ©
q1(2)H*(T,) such that TXL, C L;. By Lemma 3.6(ii), L, = H*(T',) ©
q1(z)H*(T,). Since M N H*(T,) = g3(2)H?(T,),

Q’%('Z>H2(Fz) © (h(Z)HQ(Fz) C L.
Since T;L = ;L C L, we have L; C L. Hence we have

H>*Oq(2)H? = Z@wj[,l CLCHOq(2)H.
7=0
Therefore L = H? & ¢q(2)H?. Thus we get our assertion.
Suppose that ¢ (2)H*(T',) = ¢3(2)H*(T,). We have L = M &
q1(2)H?. By our assumption, T*L = Q%L C L. Then by Theorem 3.1,
we have L = ¢(w)(H? 6 ¢1(2) H?) for an inner function go(w). [J
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