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Abstract. Suppose that T} is a Toeplitz operator with a symbol ¢ on the Hardy
space H? on the bidisc. Let N be a backward shift invariant subspace of H?, that is, N
is an invariant subspace under T} and T;:. Let P be the orthogonal projection from H?
onto N. For ¢ in H*, put Sy = PT4|N. In this paper, we give a characterization of a
backward shift invariant subspace which satisfies 5,5, = S;,5..

§1. Introduction

Let T2 be the torus that is the Cartesian product of two unit circles T in C. Let
p =1 or p = co. The usual Lebesgue spaces, with respect to the Haar measure m on T2,
are denoted by LP = LP(T?), and H? = HP(T?) is the space of all f in L? whose Fourier
coefficients

~

7,0 = [, 1z, w)2atdm(z, )

T
are 0 as soon as at least one component of (7, ¢) is negative. Then H? is called the Hardy
space. As T? = (2,T) x (w,T), H?(2,T) and HP(w,T) denote the one variable Hardy
spaces.

Let Py be the orthogonal projection from L? onto H?. For ¢ in L*, the Toeplitz
operator T} is defined by

Tysf = Pua(of) (f € H?).

A closed subspace N of H? is said to be backward shift invariant if
T;NCN and T,N C N.

A closed subspace M of H? is said to be shift invariant if T,M C M and T,M C M.
The orthogonal complement of N is shift invariant. Let Py and P, be the orthogonal
projections from H? onto N and M, respectively. For ¢ in H*, put

S¢ = PNT¢PN|N and V¢ = PMT¢PM|M

It is known in [2] that V,V;} = VV, if and only if M = gH? for some inner function ¢
in H*°. In this paper, we are interested in backward shift invariant subspaces N which
satisfy S,S% = SiS,. Let M = H* © N. We will write P = Py and Q = I — Py, where
I is the identity operator on H?2. In this paper, we also study two operators

A=QT,P and B= PT:Q.

In §2, we show that AB|M = VV, — V,V.* and BA|N = S,S; — S&S,. Then AB =0
is equivalent to V,V: = V*V,, and BA = 0 is equivalent to S,S; = S:S,. Moreover we
determine backward shift invariant subspaces satisfying A = 0 or B = 0. In §3, we give
a characterization of backward shift invariant subspaces satisfying BA = 0, equivalently



S.Sy = SiS,. And we give simple sufficient conditions to be 5,5} = S;.5,. In §4, we
give a conjecture, that is, the sufficient condition is also necessary one.

Throughout this paper, for a subset H of H?, [H], denotes the closed linear span
of H and [H]| the linear span of H.

§2. Invariant subspace with A =0 or B=0

Let N be a backward shift invariant subspace and M be the orthogonal comple-
ment of N in H?. Put P = Py and Q = I — Py, then Q is the orthogonal projection
from H? onto M.

Lemma 2.1.

(1) AB = QT QT,Q — QT.QT:Q and so AB|M =V}V, - V,V.
(2) BA= PT,PT:P — PTPT,P and so BA|[N =S,5 —S:S,
(8) kerA={feN:T,fe N}d M.

(4) kerB={fe M :T:fc M}a®dN.

Proof. (1) Since T,Q = QT,Q and T,T,, =TT,

AB = QT.PT:Q
= QT.T,Q - QT.QT,Q
= QT,QT.Q — QT.QT,Q.

(2) Since T3P = PT*P and T:T, = T, T,

BA = PT:QT,P
= PT*T,P — PT*PT,P
— PT,PT:P — PT:PT,P.

The properties (3) and (4) are clear.

Theorem 2.2.

(1) A =0 if and only if N = H?> or N = H? © qH? where q is a one variable
inner function with ¢ = q(w).

(2) B =0 if and only if M = [0] or M = gH? where q is a one variable inner
Junction with g = q(z).

(3) A= B =0 if and only if N = [0] or N = H?.

Proof. (2) follows from (1). We will show (1). We have H> = N & M and
T.M C M. Suppose A = 0. By Lemma 2.1 (3), T,N C N. Put Ny = No T,N and



My=MoT,M. Then

H* =Y @ (No® Mp)2"=> @ H*(w,T)z"
n=0 n=0

because zH? = zN @ zM and so Ny ® My = H*(w, T). By Lemma 2.1 (1), VV, =V, V.
and so VV,, = V,,Vf because AB = 0. Hence V,,(ker V) C ker V; and ker V; = M,.
Therefore by a theorem of Beurling [1], if My # [0], My = ¢H*(w,T) and q is a one
variable inner function with ¢ = g(w). Hence M = ¢H? and so N = H? © qH? 1If
My = [0], then M = [0], and so N = H?.

§3. Invariant subspace with AB=0or BA=10

Suppose that N is a backward shift invariant subspace and M = H? © N. By
Lemma 2.1, AB =0 if and only if V)V, = V, V%, and BA = 0 if and only if S,S; = S;.S,.
Hence we know (see [2[,[3],[4]) that AB = 0 if and only if M = qH? for some inner
function ¢. In this section, we study N when BA = 0, that is, 5,5}, = S;5,.

Lemma 3.1.

[ran Al, = {M © zM} o {H*(w,T) N M}

and
ker B = {H*(2,T)N M} ® wM & N.

Proof. Since (T%f, g9) = (f,wyg) if f,g € H?,
{(feM; T:feMy=Mn{H*0wN}={H*(2,T)N M} ® wM,

because H? © wN = (H? © wH?) ® w(H?*© N) and N = H?> © M. Hence by Lemma,
2.1 (4),kerB={feM; Tif € M}®N = {H?(2,T) N M} & wM & N. By the same
argument, ker A* = {H*(w,T) " M} ® 2zM & N and so

[ran Al, = H?O ker A*
= {Mo::M}o {H*(w,T)N M}.

Lemma 3.2.

(1) A=0 if and only if M = {H*(w, T)N M} ® zM.

(2) B =0 if and only if M = {H*(2, )N M} & wM.

(3) BA=0if and only if {H*(2, T)NM}dwM D {MOzM}o{H*(w,T)NM}.

Proof. These follow from Lemma 3.1.



For a subset H of H?, let Hy = Y z'w/H for k > 0.
itj—k

Theorem 3.3. Let N be a backward shift invariant subspace of H? and M its
orthogonal complement. Suppose N # H?2.
k-1
(1) 8,85 = S5S, if and only if M = H + M, and if and only if M =Y _H;+ M,
50
for any k > 1, where H = Hy = H*(2,T)N M + H*(w,T)N M. If S,S} = S:S,, then
H #[0].
(2) When M N H*(2,T) = [0] or M N H*(w,T) = [0], S,S; =SS, if and only
if M = qH? + My, for any k > 1 where q is a one variable inner function such that
M N H?*(2,T) =qH*(2,T) or M H*(w,T) = q¢H?*(w,T).
(3) When M N H?*(z,T) # [0] and MO H?*(w,T) # [0], S,S% = S&S, if and only
if M = qH? + g H?* + My, for any k > 1 where g1 = q1(2) and g¢o = g2(w) are one variable
inner functions such that M N H*(2,T) = qH?*(2,T) and M N H*(w,T) = goH*(w, T).
Proof. (1) Since S,S;, = S5, is equivalent to BA =0, S,S;, = S5, if and only
k-1
if M = H+ M, by Lemma 3.2 (3). It is easy to see that M = H + M; = ZHJ- + M, for
=0
any k > 1. If H = [0], then M = M} and hence M = [0]. This contradicts N # H?.
(2) We may assume that M N H*(2,T) = [0] and M N H*(w,T) # [0]. By a
theorem of Beurling [1], M N H?*(w,T) = qH*(w, T) for some one variable inner function
q = q(w). By (1), 5,8 = S5, if and only if M = gH?*(w,T) + M, if and only if
k-1

M = qz ® H*(w,T)2’ + M, for any k > 1. This is equivalent to M = qH? + M for any
=0

k > 1. For, M), D ¢z*H?.

(3) By a theorem of Beurling, M N H*(2,T) = ¢t H*(2,T) and M N H*(w,T) =
g2 H?*(w,T) where ¢1 = q1(2) and ¢z = ¢a(w) are one variable inner functions. By (1),
S,Sk =S8xS, if and only if M = q;H?(2,T) + q2H*(w,T) + My if and only if

k—1 k-1
M=q ) ®H(z,T)w +¢ ) &H (w,T)2 + M
J=0 j=0

for any k > 1. This is equivalent to M = ¢ H? + g.H? + M, for any k¥ > 1. For,
M, O quw*H? + g2 H?.

Corollary 3.4.

(1) AB=BA=0ifand only if A=0 or B=0.

(2) If N = H?> © ¢H? and q 1s an inner function and S,S;, = S:S,, then q is a
one variable.

Proof. (1) If AB = BA = 0, then by Lemma 2.1 (1) V}V, = V,V.* and so
M = gH? for some inner function ¢ (see [2], [4]). On the other hand, by Theorem 3.3 (1),
MNH?(2,T) # [0] or MN H*(w, T) # [0] because S,S;, = SiS,. Hence g is one variable.
By Theorem 2.2, A=0or B =0.



(2) is clear by (1).

Corollary 3.5. Let N be a backward shift invariant subspace and N # H?2.

(1) If S, S} = S:S,, then N C H*© qH? for some one variable inner function q.

(2) If N = H> © gH? for some one variable inner function g, then S,S% = S&S,.

Proof. (1) By Theorem 3.3, if S, Sk = S5, then M D gH? for some one variable
inner function q. Hence N C H? © gH?. (2) is clear by Theorem 3.3 (3).

Corollary 3.6. Suppose that A # 0 and B # 0.

(1) If 5,8} = SS,, then N C (H?*© ¢ H?) N (H? © o H?) where q; = q1(z) and
g2 = qo(w) are one variable inner functions.

(2) If N = (H*© qH?) N (H*> © qoH?) where 1 = ¢1(2) and g = q2(w) are one
variable inner functions, then S,S;, = S;S,.

Proof. By Theorem 2.2, we can prove (1) as in the proof of Corollary 3.5 (1). (2)
Since i H?+go H? = [qu, g+ (1 HY +qo17), M = [qu, go]+ (2 M +wM) = g1 H?+q, H*+ M
for any £ > 1. It is easy to see that M N H?(2,T) = qH*(2,T) and M N H*(w,T) =
q2H?(w, T). Hence by Theorem 3.3 (3) S,Si = Sk S,.

§4. Conjecture

By Corollary 3.5 (2) and Corollary 3.6, if N = H?, N = H? & qH? for some one
variable inner function q or N = (H? © ¢ H?) N (H? & ¢u H?) for some one variable inner
functions ¢; = ¢1(2) and ¢ = ga(w), then S,S; = S:S,. Because of Theorem 3.3, we
have the following conjecture. In this section, we study this conjecture.

Conjecture. If S,S = SS,, then N = H?, N = H? © ¢H? for some one
variable inner function ¢ or N = (H? © ¢1H?) N (H? © ¢, H?), where ¢; = ¢:1(2) and
g2 = ¢o(w) are one variable inner functions.

Proposition 4.1. If M = q H?*+q,H?+ My, for any k > 1, where MNH?*(2,T) =
qH?(2,T) and MNH*(w,T) = qoH?*(w, T), then M = ¢ (H>Ow*H?)+qo(H?Ow* H?) +
wkM for any k > 1. The converse is also true.

Proof. Since wM 2 gwH?(w,T), by Lemma 3.2 (3) and Theorem 3.3 (3),
g H*(2,T) ® wM D Ky & qowH*(w, T),

where M © 2M = K, ® goH*(w,T). Thus

@ H*(2,T) ® wM 2> &{K>; ® gowH*(w,T)}2.
=0



Since

M=% oMM =3 o{K, ® g (w,T)}#,
=0 =0

we have
qH*(2,T) + ¢ H*(2,T) + wM D M.

Hence M = ¢ H?(2,T) + ¢H?*(2,T) + wM. This leads our assertion.

Corollary 4.2. If M = qH?+ My, for any k > 1 where MNH?*(2,T) = qH?*(2,T)
and M N H*(w,T) = [0], then M = qH>.

Proof. By Proposition 4.1 and its proof, M = q(H? © wFH?) + wFM for any
k > 1. This implies that M = gH?, because q(H? © w*H?) is orthogonal to w*M.

It is not difficult to prove that ¢ H? + goH? is closed when ¢; = ¢;(2) and
g2 = gz(w) are one variable. Hence our conjecture is equivalent to the following one. If
S,S: = S5:S,, then M = [0], M = qH? or M = ¢qH? + quH?. Even if N is of finite
dimension, S,S} # S5, may happen. In fact, N = {1, 2, w} is such an example.
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