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Abstract

We study singularities of ruled surfaces in R3. The main result asserts that only cross-
caps appear as singularities for generic ruled surfaces. '

1 Introduction

The ruled surfaces in R® is a classical subject in differential geometry. It 'is, however, paid

attention in some areas again (i.e., Projective differential geometry [16], Computer aided design
{7,18] etc.) Generally ruled surfaces have singularities. Recently there appeared several articles
concerning on singularities of developable surfaces in R3 (cf., [3,8,9,10,11,12,14,15,17]). The
developable surface is a surface with the vanishing Gaussian curvature on the regular part and
it is also a ruled surface. In these articles classifications of singularities of developable surfaces
are given. Briefly speaking, the cuspidal edge, the cuspidal cross cap or the swallowtail appear

as singularities of developable surfaces in generic (cf., Fig. 1).

Fig. 1
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On the other hand, the Gaussian curvature of the regular part of a ruled surface is generally
nonpositive. So the developable surface is a member of the special class of ruled surfaces.
Therefore we have the following natural question:

Question. How are singularities of developable surfaces different from those of “general” ruled
surfaces?

In this paper we give a classification of singularities of general ruled surface. A ruled surface
in R? is (locally) the image of the map F(,5) : I x J — R® defined by Fi, 4 (¢, u) = v(t) +ué(2),
wherey: I — R3, 6§ : I — S? are smooth mappings and I, J are open intervals. We assume that
I is bounded. We call v a base curve and § a director curve. The straightlines u — ~y(t) +ud(t)
are called rulings.

In order to describe the main result in this paper we need some preparations. Let f; :
(Ny, z;) — (P, y;) (1 = 1,2) be C*® map germs. We say that f, g are A-equivalent if there
exist diffeomorphism germs ¢ : (Ny,z1) — (N2, z2) and ¢ : (P,y1) — (P, ys) such that
Yo fi = frod. Let C2(I,R3x.S?) be the space of smooth proper mappings (v,68) : I — R3x .52
equipped with Whitney C'*-topology, where I is an open interval. The following theorem is
the main result in this paper which gives a “generic” answer to the above question.

Theorem 1.1 There ezists an open dense subset O C Cye(I,R® x 5?) such that the germ of
the ruled surface Fi 5 at any point (to, uo) is an immersion germ or A-equivalent to the cross
cap for any (v,0) € O.

Here, the cross cap is the map germ defined by (1, 13) — (22, 22, 2125).

It is well known that any singular point for generic smooth mappings from a surface to
R?® is the cross cap (cf.,[1,5,13,19]). The set of ruled surfaces is a very small subset in the
space of all C*-mappings. The above theorem, however, asserts that the generic singularities
of ruled surfaces are the same as those of C®-mappings. We remark that the cross cap is
realized as a singularity of a ruled surface as follows: Consider curves y(¢t) = (t2,0,0) and

1 t
o(t) = {0, , , then F, 5(t,u) is the cross cap (cf., Fig. 2) which corresponds
() = (0. 7 s )» then Pyt b (cf, Fig. 2) p

to the normal form.




~ We can summarize the results of the above theorem as the following relations by referring
the previous results[3,10,11,12,15] :

{Singularities of generic developable surfaces} # {Singularities of generic ruled surfaces},

{Singularities of generic ruled surfaces} = {Singularities of generic C*°-mappings}.

One of the examples of ruled surfaces with cross caps is the Pliker’s conoid which is given by
¥(8) = (0,0,2cosfsinh) and 6(8) = (cosh,sin6,0) (0 < 8 < 27) (cf., Fig. 3).
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Fig. 3

We can also see a beautiful picture of the ruled surface at the home page of T. Banchoff[2].

In §2 we briefly review the classical theory of ruled surfaces. The idea of the proof of
Theorem 1.1 is that we may locally regard the ruled surface as a one-dimensional unfolding of
a map germ and apply the theory of unfoldings. In this case the parameter along rulings is
consider to be the unfolding parameter. In §3 we prepare the general theory of unfoldings. The
proof of Theorem 1.1 is given in §4.

This is the first paper of the authors joint project entitled “Geometry of ruled surfaces and
line congruences”.

All manifolds and maps considered here are of class C* unless otherwise stated.

2 Basic notions and a review of the classical theory

We now present basic concepts and properties of ruled surfaces in R®. The classical theory
has been given in [6]. However, these are not so popular now, so that we review the classical
framework. For the ruled surface F, ), if § is a constant vector v, then the ruled surface Fi, )
is a generalized cylinder. Therefore, the ruled surface Fi,)is said to be noncylindrical provided
' never vanishes. Thus the rulings are always changing directions on a noncylindrical ruled
surface. It is clear that the set O! consisting of noncylindrical ruled surfaces is an open and
dense subset in C32(I, R® x 5?). Then we have the following lemma (cf., [6] Lemmas 17.7,17.8).

Lemma 2.1 (1) Let F, 4 (t,u) be a noncylindrical ruled surface. Then there exists a smooth
curve o : I — R® such that Image Fi, 45 = Image Fi,5 and {0'(t),d(t)) = 0, where (,)



denotes the canonical inner product on R3. The curve o(t) is called the striction curve of
F('Yv‘s) (t’ u)' ’

(2) The striction curve of a noncylindrical ruled surface F(,s) vy does not depend on the
choice of the base curve 7.

We can specify the place where the singularities of the ruled surface are located.

Lemma 2.2 Let F,5 be a ruled surface with the striction curve o. If 2o = Fs 5 (to, uo) 45
a singular point of the ruled surface Fi,5 then uy = 0 (i.e., o € Imageo). Moreover, if
o’'(to) # 0, then the ruling through o(to) is tangent to o at to.

Proof. We can calculate the partial derivative of Fi, s as follows:

8F(0-’6)

228 (¢, u) = o' (t) +ud'(t), OFted) (4 = 5(1).

ou
Therefore we have

OF, (0,6) o oF, (0,6)

ot Ju (t’ U) ‘= Ul(t) X 5(t) + U5/(t) X 5(t)7

where X denotes the exterior product in R3. Since ||6(t)]] = 1/(6(t),d(¢)) = 1, we have
(0'(¢), 6(t)) = 0. By the condition that (o’(¢),d'(t)) = 0 and the above, there exists a smooth
function A(t) such that o’(t) x 6(t) = A(£)d'(¢). So we have

OFos  OF(op) 2 ) ) 2
=5 %3, twl® = [IX@)'(t) +ud'(t) x 5(t)||

MEPNOON + 2M(E)u(0'(2), &' () x 6(2)) + w?[18'(2) x 6()]*
(A®)* + w8 @1

Suppose that zo = F4.4)(to, uo) is a singular point of the ruled surface F,s), then

” aF(a,,s) o 0F5.9)
ot ou

(to, Uo) ” = (.

Since Fl,4) is noncylindrical, this means that ug = A(tg) = 0. O

By Lemmnia 2.2, the singularities of a ruled surface are located on the striction curve. If

t
5 \/11 t2, \/1’U,+ t2>’ then 'Yl(t) = (2t, 0, O) and

—t 1
d(t)=10, , . By definition, ~(t) is the striction curve of F, s (t,u
(t) < T +t2)3> y ~(t) (r.8) (1, ©)
and the singular point is (0,0, 0).

We also consider the following examples.

we consider the cross cap Fi,s(t,u) = <t2

Example 2.3 We now consider curves v : I — R® and § : I — S? given by ~(t) =
(0,0, f(t)) and 6(t) = (cost,sint,0). Then the ruled surface Fi,4)(t,u) = (ucost,usint, f(t))
is called a positive conoid. We can easily calculate that singularities of Fi,4)(t,u) is given by
u =0, f'(t) = 0 and the striction curve is y(t).



On the other hand, let g : (R%,0) — (R®,0) be a smooth map germ. It has been known
that the origin is the cross cap if and only if there exists a local chart (z1, z3) around the origin
such that the following conditions hold:

dg 09 .\ dg d%g d%g
Be; (0) # 0, B2, (0) = 0 and det (3561 (0), 92,02, (0), o2 (0) ) #0.

By a direct calculation, F{,4)(to, 0) is the cross cap if and only if f'(t,) = 0 and f”(to) # 0. The
above condition means that t, is a Morse singular point of f(¢) Moreover, it is well-known that
Morse functions are generic in the space of smooth functions. Therefore, this example certifies
the assertion of the main theorem. One of the examples of positive conoids with cross caps is
the Pliiker’s conoid which has been given in §1 (cf., Fig. 3).

Example 2.4 Consider the developable surface

2

with the cuspidal cross cap. If we slightly perturb it into the ruled surface

3 1
Flag(t,u) = (u —2t% — St 4 —t3u>

3 1
Fiyo(tu) = (u —2t% — 5t th+et? + —2-t3u> ,

we can easily show that the origin is the cross cap. The situation is depicted in Fig.4. The left
picture is Fiys)(t, u) and the right one is F% (¢, u).

Fig. 4

3 Unfoldings

For the proof of Theorem 1.1, we need to prepare and review the theory of one-dimensional
unfoldings of map germs. The definition of r-dimensional unfolding of fo : (R™,0) — (RP?,0)
(originally due to Thom) is a germ F : (R™ x R",0) — (R? x R",0) given by F(z,u) =
(f(z,u),u), where f(z,u) is a germ of r dimensional parameterized families of germs with
f(z,0) = fo(z). This definition depends on the coordinates of both of spaces (R™ x R",0) and
(RP x R",0). For our purpose, we need the coordinate free definition of unfoldings [4]. Let
f:(N,zo) — (P,yo) be a map-germ between manifolds. An unfolding of f is a triple (F, 4, j)
of map germs, where ¢ : (N,zo) — (N',2), j : (P,yo) — (P’,y}) are immersions and j is
transverse to F, such that FFoi=jo0 fand (¢, f) : {(z/,y) € N x P | F(2') = j(y)} — N is
a diffeomorphism germ. The dimension of (F,i,j) as an unfolding is dim N’ — dim N. We can
easily prove that the above two definitions are equivalent.
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Lemma 3.1 Let F : (R%0) — (R3,0) be a map germ with the components of the form
F:
F(t,u) = (Fi(t,u), Fx(t,u), F3(t,u)). Suppose that %;3—(0, 0) # 0. By the implicit function the-
orem, there exists a function germ g : (R,t) — (R,0) with F~1(0) = {(t,g(t)) | t €
(R,0)}. Let us consider immersion germs i : (R,0) — (R2,0) given by i(t) = (¢, g(t)),
j ¢ (R2,0) — (R,0) given by j(u1, 2) = (v2,92,0) and a map germ f : (R,0) —s (R?,0)
given by f(t) = (Fi(t, 9(t)), Fa(t, 9(¢))). Then the triple (F,4,7) is a one-dimensional unfolding
of f.
: o . OF3 . . .

Proof. 1t is clear that F oi = j o f. Since —5{[(0, 0) # 0, F is transverse to j. We can easily
show that

(G wy1,92) | F(tu) = 5y, 92)} = {(,9(2), Fit, 9(2)), Fa(t, 9(8)) [t € (R, 0)}.

Since (7'7 f) : (R7 O) - (Rz X Rza 0) is given by (Za f)(t) = (t7 g(t), Fl(t7g(t))7 F2(tv g(t))’ it maps
diffeomorphically on to the above set. This completes the proof. O

Since the cross cap is a stable singularity of map germs (R2,0) — (R3,0), we now discuss
the stability of unfoldings. Let &, be the local ring of function germs (R™,0) — R and the
unique maximal ideal is denoted by M,,. For a map germ f : (R",0) — (RP?,0), we say that
f is infinitesimally A-stable if the following equality holds:

e = (2L >€n )

oz, Oz,

where £(n,p) denotes the £,-module of map germs (R",0) — (R?,0) and f* : £(p,p) —
E(n,p) is the pull back map given by f*(h) = ho f. It has been known that an infinitesimally
A-stable map germ (R?,0) — (R®,0) is an immersion germ or the cross cap [1,5,13,19].

For map germs f,g : (R",0) — (RP?,0), we say that they are K-equivalent if there exists
a diffeomorphism germ ¢ : (R",0) — (R",0) such that f*(M,)E, = ¢* o g*(M,)E,. The
K-equivalence is a equivalence relation among map germs. Let J*(n,p) be the k-jet space of
map germ (R",0) — (R?,0). For any z = j*f(0) € J*(n,p), we denote that

K*(z) = {5*g(0) | g is K-equivalent to f}.

We call it a K¥-orbit since it is the orbit of a certain Lie group action. For any map germ f :
(R" xR",0) — (R?,0), we define a map germ j¥f : (R™ x R",0) — J*(n, p) by 5% f(z0, ue) =
5* fuo(w0), where fu(z) = f(z,u) and j* fu(20) = §*(fus(z + 20))(0). We have the following
Lemma (cf., [13]).

Lemma 3.2 Under the same notations as the above, j¥f is transverse to K*(5%£(0)) if and
only if

0 5} 8 0
E(n,p) = <—8£01—’ e, 5£—>£n + fE(Mp)E(n,p) + <a—1fl(x, 0),..., 5{;(3}, 0), ey, .. .,ep>R,

where e; (i =1,...p) is the canonical basis of R?.

The following lemma is implicitly well-known. However, we cannot find any context on
where the proof is explicitly written. So we give the proof here.
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Lemma 3.3 Let F : (R*R",0) — (R? x R",0) be an unfolding of fo of the form F(z,u) =
(f(z,u),w). If ¥ f is transverse to KF(j* fo(0)) for sufficiently large k, then F is infinitesimally
A-stable.

Proof. By Lemma 3.2 we may assume that

0 0 0 )
E(n,p) = <5£(11""’(9_£);> + fE(Mp)E(n,p) + <8—uf1(a:,0),.., 6f (z,0),e1,. »ep>R.

We can show that

E(n+r,p) < 0fo Ofo

Em—l,--~,'ax—n>gn+r+fo( pE(n+r,p)

of of
+ <a—ul(z,0),.. o (z,0), el,...,ep>gr+./\/lr8(n+r,p).

By the Malgrange preparation theorem (cf., [4,5,13]), we have

e<n+r,p>=<§£—j,...,§f§>g + F(Mp)E(n+ )

of - of
+ <E3—1_11—;(I, O)) ey 8’U,T (x) 0), €1y... ,ep>gr .

For any £ = (§,&) € E(n+rp+71)=E(n+7r,p) x E(n+r, ’r),.there exist Ay, 7; € Epqrand
Wi, &, such that

T

Z’\ O +me01+2uzaf° JrZQez

Therefore, we have

(61,0) = Z/\aF+im (f:,0) +Z/~"z +ZQ e;,0
= Z)\ oF -t ET:MaFT i (fi,0) + zp;(Ci — pi)(ei, 0).

Since ¢; —p; € &, Y 01 (G — ui)(ei, 0) € F*E(p+r,p+ r). This means that
(&,0) < OF OF OF oF

g F* )€ \ .
Oz’ Bz, Ouy’ ’3ur>sn+,+ Errptn)+ F(Mpr)é(ntrptr)

On the other hand, we have

r T

oF 0
0.6) =Yt~ &2 0
i=1 o=l ¢

By the same arguments those of the above, we have

(0,6) <8F OF OF oF

Or,’ "’ Oz, 8u1’”"3ur>en+, FEE@ )+ F My )E(mtrp 4 7).
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Hence, we have
P  \8zy Oz, Buy T O, Enir

+ F*€(p+nrp+r)+ F*(Mp)E(n+rp+r).
Applying the Malgrange preparation theorem once again, we have

OF OF OF oF .
En+rp+r)= <8x1""’c')xn’aul"“’au,»>gn+r+F Ep+r,p+r).

4 Generic classifications

In this section we give the proof of Theorem 1.1. Since the infinitesimally .A-stable map germ
(R2%,0) — (R3,0) is an immersion or the cross cap, we now prove that the germ of the ruled
surface F{, s at any point is infinitesimally .4-stable for generic (v, §).

On the other hand, by the calculation of the proof of Lemma 2.2, the singular point of
the ruled surface Fi,;s is given by the condition that rank (v/(t) + ud'(t),d(t)) < 2 and it is
equivalent to the condition that two vectors +'(t) + ud'(t), d(t) are parallel. Since §(¢) # 0,
rank (7'(t) + uwd'(t), 6(¢)) > 1.

We now regard the parameter u (i.e., the parameter along the ruling) of the ruled surface
as the parameter of a one-dimensional unfolding. For any (v,4) : I — R3 x §2 with §(¢) # 0,
we denote that v(t) = (M1(t), 12(2),vs(t)) and 6(¢) = (6:(t), 82(¢), 83(t)), then we have the
coordinate representation: :

Flys(t,u) = (71(t) + udi(t), v2(t) + uda(t), v3(t) + uds(2)).
For any fixed (to, uo) € I x J with d3(to) # 0, we define a non empty open subset Us in I by
Us = {t el | (53(t) # 0}

_7s(t) -

We define a function g3(t) by gs(t) = Yo for any t € Us, where yg = v3(tg) + uod(to).
d3(t)

Therefore, we have

Flys)(t,u) = 7(t) + gs(t)0(t) + (u — g3(2))é(¢) = v(T") + g5(T)8(T) + US(T)
for T =t, U = u — gs(t). We denote the above map as F(,5(T,U). By Lemma 3.1, the
map germ F, 5 (T,U) at (to,0) is a one-dimensional unfolding of 73 o Fi, 45 (T,0) = (m(T) +
93(T)01(T), v2(T) + 93(T")02(T)), where 73 : R® — R? is the canonical projection given by
#3(Y1, Y2, ¥3) = (¥1,¥2). The following lemma. is the basis for the proof of Theorem 1.1.

Lemma 4.1 Let W C J*(1.2) be a submanifold. For any fized map germ § : I — S? with
0'(t) # 0 and any fized point (to,up) € I x J with &3(te) # 0, the set

sTW,(tou0) = {77 | J¥#3 0 Fy ) is transverse to W at (to, uo)}

is a residual subset in C=(I,R3%) x {6}.

Here, we consider that C®(I,R? x $2) = C®(I,R3) x C*(I,S?) and relative topology on
C>=(I,R3) x {6}.



For the proof of Lemma 4.1, we need the following Thom’s fundamental transversality lemma
(cf., [5]) like as usual.

Lemma 4.2 Let X,B and Y be C°°-manifolds with W a submanifold of Y. Let j : B —
C=(X,Y’) be a mapping (not necessarily continuous) and define ® : X x B — Y by ®(z,b) =
J(0)(z). Assume that ® is smooth and transverse to W. Then the set

{6 € B | j(b) is transverse to W}

18 dense in B.

Proof of Lemma 4.1. Let {K;}%2, be the countable set of open covering of W such that each
closure Kj; is compact. We define the following set

sTW (t0,0), K = {,y | ]fﬁ3 o F(%(;) is transverse to W
with ]{cﬁ':; o F('y,é) (t07 U’O) € KJ } :

We now prove that sTw,(1,u0), k; 1s an open subset. For the purpose, we consider the following
mapping X
7¥ 1 C®(Us, R — C®(Us x J, J*(1,2))

defined by j*(7y) = j*#; o F(Wg). It is clear that the mapping 7* is continuous. We also define a
subset

Owxk, = {g € C®(Us x J,J¥(1,2)) | g is transverse to Wat (to, uo) with g(to, uo) € K;},

then it is open (cf., [5]). Since the restriction map resy, : C®(I,R®) — C®(Us3, R?) is
continuous, 3Tw,(to,u0).k; = (T€su;) ™" 0 (%) 71 (Owk;) is open. If we show that sTw,tou0)k; 18
dense subset in C*(I, R%) x {6}, then Ty, 1,uo) = (i=1 Tw,(to,uo) k; 18 & residual subset.

Since resy, is surjective, it is enough to show that

Tw(to,u0),K,Us = {’Y € O°(Us,R%) | jyits 0 Fiys) is  transverse to Wat (to, o)
with jffrg o F('y,é) (to, uo) € Rj} :

is a dense subset in C®°(Us, R3).

For any v € C*°(Us,R?) and p = (p1, p2) € P(1,2; k), we define a mapping fiyp) : Us xJ —
R? by

Forpy (tu) = (1) +pr(t) + g3(£)01(8) + udi(t), Y2(2) + p2(t) + ga(t)d2(t) + uba(t)),

where P(1,2;k) denote the space of the pair of polynomials (p;,p;) with degrees are at most
k without constant terms. We also define a mapping ® : Uz x J x P(1,2;k) — J*(1,2) by

®(t,u, (p1,2)) = 3% fiv) (6 u) = 5% fy,p),u(t), Where fiypu(t) = fiyp)(t, u). We may regard that
P(1,2; k) is Euclidian space RV.
It is easy to show that ® is a submersion , so that it is transverse to W. By Lemma, 4.2,

{p=(p1,p2) € P(1,2;k) | @, p,) is transverse to W at (to, ug) with Py, p,)(to, u0) € K;}

9



is dense in P(1,2,;k). Hence,v we can find (p1, p2)1, (P1,P2)2, (P1,P2)3, - - . in P(1,2; k) converging
to (0,0) so that ®, p,), is transverse to W on Kj. Since lim; .o (7 + ((p1,p2)5,0)) = ~ in
C®(Us, R*), Tw;(to,u0),K;,Us is dense in C®(Us, R3). d

We remark that ;Tw,(t,,u0) ( = 1,2) can also be defined for (to,uo) € I x J with §;(to) # 0
and the same assertion for ;T (4, ,) as the above holds.
Proof of Theorem 1.1. Let K; be the K-orbit with codimension ¢ in J*(1,2) for sufficiently
large k. We also denote that X(1,2) = ()., K; C J*(1,2). It has been known that %(1,2)
is a semi-algebraic subset in J*(1,2) with codimension greater than 2. Therefore we have the
canonical stratification {S;};",0f ¥(1,2) with codimS; > 2. For any (¢, uo) with &5(tg) # 0,
we denote that 3Tx(1.2),t0,u0) = [Niny T, (to,u0)- Since 3Tk, (to,u0) a0d 3T5(1,2),(to,u0) aT€ residual

2

subsets in Cgo(I,R? x 5?), 30,u0) = ﬂ 3Tk, (toruo) N T(1,2),(to,u0) 1S also a residual subset in
i=1
Cor(I,R® x 8%). By the remark after the proof of Lemma 4.1, jOyyu) (j = 1,2) are also
residual subsets in C52(I,R® x S2) respectively. Therefore, for any fixed (to, ug) € I x J, there
exists a residual subset Ottouo) € CR(I,R3 x 52) such that the map germ Fy, 5 at (to, uo) is an
infinitesimally .A-stable map germ for any (v,0) € O by Lemma 3.3. Since the infinitesimally
A-stable map germ R? — R3 is an immersion or the cross cap and the singularities of F, s are
located on the striction curve, there exists an open neighbourhood Uy, C I of ty such that Fly5) is
an immersion on Uy, x I — {(to, up)}. Since I is compact, we can extend (v, §) slightly on an open
interval I Z) I and there exist ﬁmtely many Uy, (i =1,...,£) such open subsets as the above
with I = (J;_, Uy,. Then O = ’_, O, u,) is a residual subset, of Cx(I,R?x 5?). 1t is clear that
the germ Fi, 5) at any point (¢,u) € I xJ is an immersion or the cross cap for any (v,4) € O. It is
easy to show that the mapping Fy : C*(I,R®x S§?) — C(Ix J, R?) defined by Fy(v, §) = Fiy4)
is continuous. Since the cross cap is the stable singularities of map germs (R?,0) — (R3,0),
the set S = {f € C°(I x J,R%) | f is an immersion or the cross cap at any point € I x J} is
an open subset. Therefore, O = F;"'(S) is an open subset of C2°(J,R? x S?). This completes
the proof of Theorem 1.1. O
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