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The Null Condition and Global Existence
of Solutions to Systems of Wave Equations

with Different Speeds

Rentaro Agemi and Kazuyoshi Yokoyama,
Department of Mathematics, Hokkaido University,
Sapporo 060, Japan

Abstract

In this paper, we consider the initial value problems to systems of quasilinear wave
equations with different speeds in two space dimensions. Applying John-Shatah obser-
vations to our problem, we introduce the null condition for the system with different
speeds. Moreover, we prove a global existence theorem for a class satisfying the null

condition.

1 Introduction.

We shall start this paper with the description of John-Shatah observations on the null
condition. We consider the scalar quasilinear wave equations with quadratic nonlinearity in
three space dimensions. Introducing the space-time gradient of unknown, one can find that
components of the gradient satisfy some hyperbolic system of first order. The plane wave so-
lutions of this system satisfy hyperbolic systems of first order in one space dimension. Making

use of the results in F. John[3], F. John and J. Shatah have proved in F. John(5] the following



remarkable fact: The requirement that no plane wave solution of this system is genuinely
nonlinear leads to a class of equations which satisfy the null condition (S. Klainerman[9)).

We apply John-Shatah observations to a system of quasilinear wave equations with
different speeds in two space dimensions. We consider the system with unknown vector
u(t,z) = '(ul(t,z),...,u™(t, z)) in the form

m 2

(1.1) Ol —2Au =3 N CP(0u)0.0pu! (i=1,...,m),
i=10,8=0

where Ou stands for space-time gradient of u, i.e.

ou = (8u',...,0u™),

(12) ' aui = t(aoui, alui’ aQui)a
0 0 0
O = —, O = —, Oy = ——
07 5t T Bx,” 2T Oz
and the ¢; (1t = 1,...,m) are positive constants different from each other. We assume that

Cf‘jﬂ are C®-functions of their arguments which vanish at du = 0 of second order. Set
v = Ou. Then one can find from (1.1) and (1.2) that the vector v satisfies the system of first

order which is hyperbolic near v = 0:
(1.3) > a%(v)d.v = 0.

For the concrete expression of a®(v) see section 2. We next consider the plane wave solutions

w of the system (1.3):
2
(1.4) o(t,z) = w(t,s), s = Gz
=1

where ¢ = ({1,{2) € R? and ¢ # 0. Then one can find from (1.3) and (1.4) that the vector

w satisfies the system in one space dimension:
2 .
(1.5) a(w)dw + >, Gia*(w)dsw = 0.
i=1
We take the initial values for the solutions w of (1.5) in the form

(1.6) w(0, 5) = ep(s),

2



where ¢ has compactl support and ¢ is small positive constant.

Since the system (1.1) has the cubic nonlinearity, the system (1.5) is not genuinely non-
linear. Thus it is natural to require that the lifespan T} of solutions to (1.5) and (1.6) is at
least of order ¢~ for any . Making use of the results in Li Ta-tsien, Kong De-xing and Zhou

Yi[12], we shall prove in section 2 that the requirement above is equivalent to the following

fact: it holds that

(1.7) i o°C X XXX ( )
. . B IXEXIXE=0 (i=1,...,m
,B,7,6=0 8(0,u)0(05u*) | 5yg s

for any real vector X! = (X§, X, X3) satisfying
(1.8) (X5)* = QZ X;)* =0.

Thus we can interpret this as the null condltlon for the system (1.1) with different speeds.
If

2 af
(1.9) O Ci

~0 t=1,...,m
a(a’ru ) (a5u) Hu=0 aaﬁa776=0,172
then the null condition (1.7) is automatically satisfied. The main aim of this paper is to

prove the global existence of solution to (1.1) with small data under the assumption (1.9).
It is still open whether the null condition (1.7) guarantees the global existence of solution to
(1.1).

The null condition for the nonlinear elastic wave equation is more complicated comparing
with (1.7). T. Sideris has studied in [13] a class satisfying the null condition.

In section 3, we introduce some notations and in section 4 we state the mvain result.
In section 5, using the representation of solution to (1.1) in Kovalyov[10], we estimate the
first order derivatives of solution. Finally we prove the main results in section 7 using the

estimates and energy inequalities in section 6.

2 The null condition.

In this section we introduce the null condition for the system (1.1) with different speeds

stated in Introduction.



We consider the system in the form
m 2
(2.1) Z > af; 3u)8 9wl =0 (i=1,...,m),
i=1e,8=0
where Ou stands for space-time gradient of

ou = t(aul, N 6um),
Ou' = Y(8ou’, O1u', Bout),
0 3} 0

60=E,31=6—xl,32=6—u-

We assume that

a‘?jﬂ ‘l]a’ 13 (0) - 1

(2.2) aif(0) = —c}6ij6ap for (o, B) # (0,0),
' ¢i>0,¢#c; for i1#7]

and ad(du) — 1, a“ﬂ (Ou) + c26;;6ap vanish at du = 0 at least of second order, that is,

a®(du) = 1+ 0(|6ul?)

(2.3)
afjﬂ(au) = —c26;;645 + O(|0u|?)
near du = 0.
Set
= tol,..., o™
(2.4 V=W
vt o= Huh,vi,vh), vl = Ouu'.

Then we find from (2.1) and (2.4) that the vector v satisfies a system of first order which is

hyperbolic near v = 0:
2

(2.5) > a*(v)0ev =0

a=0

Here the 3m x 3m matrices a® are defined by

(2.6) et =(4%ij=1,...,m),



where

(2.7) A% = & AL = =6y

ij

20,,2]Q a¥} o

ij 15
2
A5 = 0

—6j 0

We next consider the plane wave solution v(¢, ) of the equation(2.5):
2
(2.8) - vt z) = wlt,s), s =) G,
i=1

where ¢ = ((1,¢) € R? and ¢ # 0. Then we find from (2.5) and (2.8) that the vector w

satisfies a system in one space dimension.

(2.9) dw + a(w)f,w =0
where \
(2.10) a(w) = a®(w)™ ; Ga'(w).

We take the initial values for the solution w of (2.9) in the form
(2.11) . w(0, 5) = ep(s),

where ¢ has compact support and € > 0.
We shall seek the eigenvalues A = A(w) of the matrix a(w) and the corresponding eigen-

vector £ = £(w). By the definition, ) satisfies an equation

(2.12) det (,\a"(w) - i:lgiai(w)> = 0.

We can verify by induction that
2
(2.13) det (Aao(’w) - Z(,-a’(w)) = A"det(p;; : 4,5 =1,...,m)
i=1

5



where

(214) Dij = 00/\2 2 Z a;; Clc + Z CkCl-

k=1
Therefore we find from (2.2), (2.3), (2.12), (2.13) and (2.14) that the eigenvalues A¥(0)(i =

1,...,m) of the matrix a(0), aside from the trivial multiple eigenvalue A = 0, become
- (2.15) | AH(0) = Heaild], ¢ = (G + )
According to (2.4) we arrange the components of a vector £ € R3™ as follows:

(2.16) € = Y&, M),
& = Y&, 8,8).

Then we find from (2.2), (2.3), (2.7) and (2.12) that the eigenvector £(0) corresponding to
A#(0) becomes

= %0,0,0) f EX)
(2.17) (&5( ) (0,0,0) for j#:q
( ) = YF1,G/aldl G/eld])
and the eigenvectors ¢; (¢ = 1,...,m) corresponding to the trivial eigenvalue 0 become

(gi)j = t(OaOaO) for .7?57’,
&Y = 40,6, —G)-

Since ££(0),& (i = 1,...,m) are linearly independent, we see that the system (2.9) is hyper-
bolic near w = 0.

We now require that a solution w(t,s) to the initial value problem (2.9), (2.11) has a
lifespan T, which is at least of order ¢ =2 for any ¢ € R2. This requirement is equivalent to

the following facts[12]:

m 2 AN RY
(2.18) > 2 Ewi (&50) =0
j=1a=0 War | =0
and
82)\;'E NNV IRy S - )
(2.19) ];1 aﬂz W - (6,- (0))a (E,- (O))/6 =0 for :=1,...,mand { € R"




Set

P(A) =det(p;j(X) : 4,7 =1,...,m).

Differentiating the equations

(2.20) P(Mw)=0 (i=1,...,m)

in a variable w/ and evaluating the results at w = 0, we get

6)\?5
2¢i| ¢ (e = ) == =0
14 awja w=0
which implies
ONF
2.21 - =0
(2.21) oull.

for all 4, 7, . Therefore it follows from (2.2), (2.3), (2.14) and (2.21) that the condition (2.18)
holds trivially and

(pu (A% ))

(2.22) 5

=0

w=0

for all 4, j,k,1, . Next differentiating twice the equations (2.20) in variables w’, and w’g and

evaluating the results at w = 0, we get

& (pa(NP))
2.23 -2 TT(2 = ) L)) | g
(229 Pt T - o) B
) I# B lw=0
for all 4, j, k, ., . By the definition (2.14) of p;;()), we have
92 (pu(\FE 2y 2,00

(2.24) M 2)\;'#(0) O—’k + )\;:*:(0)2 ._?__.

dwiOwp et dwdOws owl awﬂ

2 azo _ dal
—2)E(0 21 ,’16’5 Cz + Z wLouk G-
w=0

Then it follows from (2.15),(2.17), (2.23) and (2.24) that

9%a 75

_ Faild] 2
2 Z o, 8

~,6=0

82)\:I:

2.25
( ) Bw 6wﬂ

(&), (g0),

Blw=0



Therefore we find from (2.17) and (2.25) that the condition (2.19) is equivalent to

L O] o (200 (20N (££0)) =
(2.26) ﬁZM AR (&), (), (). (),

fori=1,...,m and ¢ € R2. By the definition (2.17) of (¢£(0))?, we have

(227) {(&* 0)), } = 3 ) {(5i (0), }

for all ¢ € R2.

Consequently we have proved the following

Proposition 2.1 The lifespan T, of a unique solution w(t,s) of the initial value problem

(2.9), (2.11) is at least of order €3 for any { € R? if and only if it holds that

(2.28) Z X XpXiX5=0 (i=1,...,m)

w=0

for all real vector X* = (Xé,X{,X;) satisfying
2
(2.29) (Xo)? =i (X)) =
i=1
Setting

C¥(3u) = 1—a2®(ou),
CeP(Ou) = —c6ijbap — aif (Ou) (a,B) #(0,0),

we see that the null condition (1.7), (1.8) follows from Proposition 2.1.

3 Notations.

To begin with, we introduce some notations that are used throughout the paper.

Partial derivatives are denoted by

80=3t=—



We also use the angular derivative:
Q =120, — 220;.
We set
D = (D1, Ds,Ds3) = (01,02, Q)
and define
| DA = DMDDEs |A| = AL + Ay + As,
where A = (A;, As, A3) is a multi-index.
Let u = (u',...,u™) be an unknown vector and set
(3.1) wi(t,r) = (r+ D)V2 7t 47 + 1)(|r — cit| + 1)/2

for 0 < v < 1/2. Then we define, for a non-negative integer %,

Pu(t,) = 3.3 |0ai(t, )

i=1 a=0

Pu)e = Y33 sup

|A|<k i=1 a=0 T€R?

9u()le = |z|j izo [D*0.uit, )
IDDILE

|A|<k i=1 a=0 z€R?

DAaaui(t, x)‘
(3.2)

L2(R2)

[Ou(t)],

wi(t, |)DA0uui(t, 7).

Moreover, we define

| |0ule(t) = sup [Du(s)lk,
(3.3) 0<s<t
[Ou], (t) = sup [Du(s)];.

0<s<t
In what follows, M denotes various constant depending on F;, f*, ¢* and c;.

4 Statement of the Main Result.

The initial value problem to be considered is
{ O2ut — c?Au' = F,-(au, 0%u) in [0,00) x R?

(4.1) . o .
u'(0,-) = eft, Ou'(0,-) =eg' in R?

(1=1,...,m)

9



where ¢; are positive constants and ¢ > 0 is small parameter. Moreover, f' and g* are C*°-
functions with compact support. We describe some assumptions on the initial value problem
(4.1) and state the main theorem.
First, we assume that F; are of first degree with respect to the second derivatives of u:
m 2
(4.2) Fi(0u,0u) =Y 3" C5f(0u)0.05u’ + Ei(Ou).
j=la,p=0

 Here, C3’ and E; are C*-functions of du in {|8u| < 1} that satisfy

(4.3) cf=ci=c5f

ji

(4.4)

C(0u)| < M|oup,

(4.5) |E:(0u)| < M|0ul®.

Assuming (4.2)-(4.5), M. Kovalyov[10] proved the almost global existence of the solution to
(4.1).

Second, we assume the null condition (1.9) for different speeds introduced in Introduction:

(4.6) c#c for 1#j
2o -
(@7) 8.C” . ~0 i=1,...,m .
0(0,u')0(05u') 5,0 o,B,7,6=0,1,2

The condition for E; are
O3E;
0(0aut)0(0gut)0(Oyut)

in accordance with (4.7).

(4.8)

—0 t=1,...,m
8u=0— a,ﬁ,'y’=0,1,2

Theorem Let us assume (4.2)-(4.8). Then there exists a positive constant ¢y depending
on given functions such that the initial value problem (4.1) has a unique C*°- solution in
[0,00) x R? for all ¢ with 0 < € < €.

M. Kovalyov showed in [11] that the theorem holds when ij‘-ﬂ =0and E; (1 =1,...,m)

~0 ,7=1,....m
au=0 a’ﬁ,7=0,172

10

satisfy the condition
03E;
0(0,u?)0(0gul )O(0,u?)




instead of (4.8).

5 Estimate of the First Derivatives of the Solutions to

Initial Value Problems.

The aim of this section is to estimate the first derivatives of the solution to the initial

value problem:

(5.1) { Ofu—Au=F(t,z) in [0,T)xR?

u(0,-) = u(0,-) =0 in R?2
Here, F is a C* function in [0,T) x R2. For this purpose, we use the representation formula

of the solution to (5.1) which has proved by M. Kovalyov[10]:

Proposition 5.1 Letu € C*([0,T) x R?) be the solution of the initial value problem (5.1).

Then, u has the following representation:

u(t,z) = %//Irdrds /_i K1F(s,re‘/“_1(9+’/’))dw

+ix(t— a) // rdrds " KlF(s,re‘/“_l("+¢))d¢
D" —_

2m
where
z = (acosf,asing) = aeV~1?
21 02 (t_g)2
@ = ATCCOS — +r—(t-s) for (s,r)e D’
2ar
1

{(t — 5)? — a? = r2 4+ 2ar cosy}1/2

B 1 (s>0)
x(s) = {0 (s <0)

Moreover, the domains D' and D" are defined as follows.

D' = {(s,r)|0<s<t, r<r<r}
D' = {(3,7‘)|0<s<t—a,0<7’<r1} for t>a
0 ' for t<a

11



where

(5.2) ' mn=la—t+s|, m=a+t-s.

Next, we derive representation formulae for the first derivatives of the solution of the

initial value problem (5.1) from Proposition 5.1. In order to present the formulae, we set

6 = min{l/2,a}
(5.3) . a=|z
6 = min{1/2,(t —a)/2} (=D

and split the domains D' and D" as follows:

D' = blueU white

blue={(s,r) € D' |ri<r<r+6 or p,—6<r<ry}
‘ {D’\blue for 6=1/2
white =

for 6=a
D" = black U red

black = {(s,r) e D"|ri—6<r<r or 0<r <8}
D"\ black for 6=1/2

red = .
0 for 6=(t—a)/2

We set

Lyue(F)(t,z) = //bl rdrds /So K1F(s,re\/:1("+¢))dz/;
ue 2 ,
Luhite(F)(t,2) = // rdrds [* Ky F(s,re¥=10+9)dy
white —p
Iblack(F)(t7 ‘T) = /-/l . rdrds " I{lF(S, rev —1(0+1/)))d,¢,
blac —

Lea(F)(t,z) = // drdrds. :r I<1F(s,r¢\/:_1(9+¢))d¢

Then, by Proposition 5.1, d,u (4 = 0,1,2) is represented as
1
(5.4) Ouu = o {Dtue(0uF) + X(@ = 1/2)Luhite(8uF)

+X(t = ) lotack(8,F) + x(t — @ = 1) ;ea(9uF)}.

12



Following [10], we change the variable of integration from % to 7 by the map ¥ = ¥, where

= arccos[l + P7 — 1],
a® + 12— (t — 5)2
2ar ’

Then we have the following

- Proposition 5.2

: 1
Lonite(0,F)(t,2) = > {//8(white) da_/o rKsa;, (0 + \pj)nap(s,re\/?f(owj))dT

jva=0

1
_// i, 708 /0 Vo{rKoa2 (6 + )} F(s, reV =10\ gr
white
1
— [[ rdrds [ Kaa2(0 + 0;)QF)(s,reV OO0, Wydr |
white 0

" K V=I(0+)
+ //white drds /—ao Kya, (0 + ¥)(QF)(s,re Ydy
1 . v
Ired(auF)(t,-T) = Z()/A(red) rdo [_r R’laﬁ,(a + lb)naF(S,T'e‘/:r(a'H/’))dq/)

B i // ddT’ds /7r VQ{T‘K’l}aZ‘(H + ¢)F(s, 7’6‘/_—1(0+¢))d¢

a=0 —

+// drds " Kia2(6 4+ $)(QUF)(s, re’ IOy

where

_— 1

2 T Garrd—n@+ Pr—n}i2
0 (k=0) 0 (k=0)

0»2(9) = ‘52; a,l,(a) =4 cosf (p=1) , @3(9)= —sinf (p=1) ,
sinf (p=2) cosf (u=2)
o _ { 9, (a=0)
0, (a=1)



il = Y(ng,n1) is the unit outer normal vector field on d(white) U d(red), and do is the line

element on (white) U 0(red).

M. Kovalyov used these formulae in his work[10], but he has omitted the terms containing

the first derivatives of ¥; in the above formulae. So we show the proof for completeness.

Proof. We denote F(s,revV=1¢) = G(s,r,6). Then,

| V=16 SN a’,(6)
(BuF)(s,meV ™) = > a3(0)(VaG)(s,7,0) + +—(8G)(s,T,6).

a=0 r

Therefore,

1

Iwhite(aﬂF) = Z //h TdeS /i Kla::(e + w)(vaG)(S, r,e + ,(l))dw
a=0 white -
+ [ drds [ i K1a%(0 + $)(86G)(5,7,6 + ) d.

Changing variable from % to 7 by the map 1 = ¥, we have
(5.5) | //white rdrds /j; K050 + $)(VoG)(s, 7,0 + ¢)dy
- JK;O / /w _rdrds /0 ' Ka®(0 + U,)(VaG)(s,7,0 + T;)dr.
Notice that

(5.6)  (VoG)(s,7,0+ ;) =V {G(s,7,0 +T;)} — (0sG)(s,7,60 + ¥;)VT;.

Substituting (5.6) into (5.5) and integrating by parts give

1 1
(5.7) Lohiwe(0uF) = 5 { //a oy /0 -1 K>a%{(0 +05)naG(s,,0 + U;)dr

ja=0

1
~[[drds [ Va{rKaag 0+ 9,)}Gls, 0+ ¥)dr
1
B //white TdT‘ds/O KQaﬁ(a + U;)(06G)(s, 7,0 + \Ilj)va\I’jd'r}

+//,,,h,.te drds /_ i K1(8 + $)(9G)(s,7,0 + ¥)do.

14



Similarly,

Lea(8,F) = Z// rdrds/ K162(6 + $)(VaG)(s, 7,0 + 1)dpp

a=0

+ / / drds / K102(60 + $)(85G) (5,7, 6 + ¥)dp
(5.8) - Z / /a ™ / a%(0 + P)naG(s, 1,0 + ¥)dy

-y J[ drds [ ValrKi}az(o +v)G(s,r,0 +w)dy

a=0 -

4[] drds [ a6 + 9)@0G)(s,m,0 -+ w)d

Thus we get the representation formula from (5.7) and (5.8).

The following proposition is used to estimate the terms appearing in Proposition 5.2.
This was shown in M. Kovalyov([10], except the estimates containing the derivatives of .

For the sake of completeness, we give the proof of all.

Proposition 5.3
I. Let (s,r) € D'. Then the following estimates hold:

L 1 M ar
/‘wlﬂldw = 2/0 Hodr < s log |24 1St - s =)
.. M
(i) T (ar)2(r+s+a—1t)
M(a+r)

' 1
. <
(iii) /0 K5 {]0,%| +10,¥|} dr < {ar(r2 = T%)(r% —12)}1/2

II. Let (s,r) € D". Then the following estimates hold:

M ar

log |2+ T M )
M

IR R

Proof. The following identity can be easily verified by simple computation.

O [ Kb < s

(i1) /_7r {10.K1| + |0-K1|} dy < e

(r+r2)(r+a—t+s),1_P= (ro—r)(t—s—a+r)

(59) I+F= 2ar 2ar

15



I-(i). Changing variable by the map ¢ = U, we have

© 1
f Kidp = 2 / Kydr
—p

21/2

(5.10) = oy / (r(1 = 7)(2 + Pr ~ 1)} "Y2dr.

First, we notice that in the domain D',
|P| <1
2+Pr—r=(P+1)74+2(1—-7)22(1—=71) for 7>0.

Thus, splitting the interval of integration into two pieces, we have

1/2 12
(5.11) | =)@+ Pr—n)y s < 22 [ 1-1/2gr =,
0

1;2{7(1 —r)(2+ Pr— 1)} 2dr
< 21/? /;2{(1 — )24 Pr—1)}"V2dr
<212 /1 0-{~2(1 - 7)"/2}2 + Pr — 7)™ 2dr
= 242201 / (1= 7)Y2(2 + Pr - r)™dr
§2+(1—P)/0 (2 + Pr—7)"Ydr
(5.12) < Mlog [2 + ﬁl_—ﬁ]

Since P +1 > 1/2 for t — s < a, the estimate I-(i) follows from (5.10)-(5.12) and (5.9).
I-(ii). Since

9.k = —(t — s)71/?
*22 7 (2ar)3/2(1 — 1)1/2(2 + Pr — 7)3/2
N 1 T1/2 1 P
Ol == K= R R = 7122 + Pr = 1) G-%)

then we have

1
[ 10.a] + 0, Kl yar

1 ¢t — 1 1/2
(5.13) < l/ Kodr + era’”/ .
2r Jo o (

d
(2ar)3/2 1= )22+ Pr—r1)2"

16



By I-(i), we have

Ma(ar)™*log2 + (1 + P)7Y]

IA

L 1 kod
3 by
(5.14) < Ma(ar)32(1 4+ P)™L.

On the other hand, since

7172

1
/o (=722 + Pr—r)P

1
dr < /0 (1 =7)"Y2(2 4+ Pr — 7)"324r,

we have by the method from which (5.12) was derived,

7i/2 3 1

1
AT < e —
/0 (1—1)1/2(2+ Pr —1)3/2 =

1
(5.15) 2121+ P

Therefore it follows from (5.13), (5.14) and (5.15) that

Mit—-—s+a+r) 1
(ar)3/? 1+ P
M
(ar)2(r+s4+a—t)

IN

1
/0 {18, K| + |0, K>} dr

I-(iii). We can easily verify that

P 1 T1/2
ot = (7 - E) {(L=P)(2+ Pr—T1)}12
t—s T1/2

WY = =P+ P

We use the same method as we used in I-(i) and obtain

1
/0 K2{|0,9| + |0, 9|}dr
1 P

a T

1 { + t— s} 1 /1 dr
"~ (2ar)12 ar J (1=P)/2Jo (1 -7)1/2(2+ Pr—1)
M a+r 1

= @) ar {A-P1+ PP

Thus we get the estimate I-(iii).

17



II-(i). In the domain D", P < —1 and ¢t — s > a + r. Therefore,

. ~ 2 " a
o Kdy = {(t — )% — a2 — r2}1/2 /0 (1= P~'cosy)!/?

9 3r/4 dip x dy

1 <
(5 6) S {(t _ 8)2 — a2 — T2}1/2 {/0 (1 - 2—1/2)1/2 + _/',;7(/4 (1 — P-1lcos ¢)1/2}
Further,

/vr dip ~ /w/4 dop
3r/a (1 — P-lcos®)l/2 — Jo (14 P-lcost)l/2

/4 d’l/)
/0 {1 —costp+ (14 P~1)cosyp}1/?

I

IA

/4 d’lp
_ ./o {21292 4 (1 + P-1)2-1/2}1/2
< M{l-log(l1+ P71)}

(5.17) M{1+log (1 _‘1_}13)}

From (5.17), (5.9) and
(t =) 6 = r* = ~2arP > ar(1 ~ P) = 5(r + 1)(r =7),

we get IT-(i).
I1-(ii). We can easily see that

0.1 = ((t - 5)% — a2 i;23+ 2ar cos 9)3/2
oKy = ((t—s)2 - 22_—1020_?_7’&2&7" cos 1))3/2
Thus,
_’;{|asK1| +|0:-Kil}dy < 2(t ) _7; (=) — a2 _d;p? + 2ar cos )3/2
(5.18) = (_42(27._;)33/2 /0” 1- P—Cfd::os EE

We get by the same way as the proof of II-(i) that

s d¢ < /47r/3 dw +/'w/4 dlﬁ
I A= Plcosg)i? = Jo [—o-BpR T Jy T2+ (1+ P12}

P
< -
- M<1+1+P)
P

M—-.

(5.19) —

IA

18



Therefore it follows from (5.18) and (5.19) that

[ Ao+ oKy < S
M(t-s) -1
@RI P ETT P
M

(i =) (@) (L = PP

~ and we get the estimate TT-(ii). 1

Now we can show the estimates for the first derivatives of the solution to the initial value

problem (5.1).

Proposition 5.4 Letu € C*([0,T) x R?) be the solution of the initial value problem (5.1).
And let w(s,r) be a positive function that satisfies

(620)(i) k—-1<r<k+l= %w(s,k) < w(s,r) < Muw(s, k)

(k=1,2,---; M is independent of s,k,r)
L

1 1 1
21 v =M {2 (r+s +11)(|T TS+ D) T s DEE( )5

+(r+s-’;—1)1"'€(|7"—s|+1)1‘€
(ci#1(i=1,2---,L), 0<y<1/2, 0<e<1)

Then the following estimate holds:

M
du(t < |- DDAF(s, -
l U( ,.’L‘)| = (|.’L‘| + 1)1/2_7(‘$| +t+ 1)7(”1.| — tl + 1)1/2 {|A|ZS3OS<1.1931‘ lw(s | D (3 )”0
(5.22) + > sup ”w(5,| - |)DA6,F (s, )”0} :
,‘Als20<8<t

Proof. By (5.4) and Proposition 5.2, we have

|Ou(t, z)| < { sup sup ]a:|1/2w(t, |z])|F(t, z)| + Os<u;<)t suli)2 ]xll/zw(t, |z])|OF(t,z)]
8 z€

0<s<tzeR?
(5.23) + sup sup |z ?w(t, |x|)|QF(t,m)|} {n+--+L+0+---+1/
0<s<t zcR?

19



where I! (i =1,...,5) and I!' (i=1,...,4) are defined as follows.
P12

- drd /
Il -/Aluew S ’f’) ras K dl/)
F1/2
I = / / o / Kodr
S(white) w S 7‘)
I —
L = //whne r1/2w (s r)drds/ Kadr

l —
I4 B /[uhzte 'U) dT'dS/ {Ia KZ' + |6 RQI}dT
1/
, —
I = //white w(s,r)drds/ K5{|6,%| + |0.-¥|}dT

P72
I = //b drds |’ K Wdy

lack W(S,T)

) 1/2

I = / / _K d

2 dred) 'LU S ’I") ¢
"o

I3 - /-/'red 7"1/210(5, T') drds -7 K1d¢

1/2 .
"o T i
= //redw(s,r)d’"ds /_W{lasml + |0, K |}y

Here, I! (i = 1,...,5) are integrals that are related to the domain D', and I! (i =1,...,4)

to the domain D”. We show in the following that

M
: . < =1,...
(5 24) Iz p— (a+ 1)1/2_7(a+t+ 1)7(101 _ t| + 1)1/2 (’L 1, ,5)?
M
2 I < =1,...,4
(5 5) - [} —_— (a+1)1/2_7(a+t+1)7(la_t|+1)1/2 (Z 1, ] ),
where a = |z|. By Lemma 6 in [10], it holds that
(5.26) j2]1£(@)lw(s, l])* < M 3 (s, |- NDAFIG

|Al<2
for f € Cg°(R?). Then we get the estimate (5.22) from (5.23), (5.24), (5.25) and (5.26).

First, we prove (5.24). To prove this, we introduce some notations. Set
{(s,m) = &ls,r)+ &a(s,7),
L

&(s,m) > 1 n 1
o S(r+s+D)(r—cs|+1)  (r+s+ 1)@+
1

(r+ s+ Dte(jr —s| +1)1-¢

52(377')

20



Then by the assumption (5.21) on w(s,r),

1
. < .
(5.27) o) S M¢(s,r)
Moreover, set
n(s,r) = m(s,r)+m(s,r),
(s,r) = EL: L + !
e i tst 1 (r—cs|+1) | (r+s+ 1)+ 1127
(5,7) = =
2 (r + 5+ 1)+<(|r — o] + 1)1’
where
(5.28) 0<A<min{y,1/2=19}, A=1/2—~v =X\

Since r + s > |a —t| for (s,7) € D', we have

(5.29) &(s,r) < Ta=1 4{\/{[)1/2+7+f\ ni(s,7) (1=1,2)
(5.30) ! M

— <
w(s,r) = (Ia—t|+1)1/2+7+,\77(3’7")

for (s,7) € D'. But in the estimate of I] and I}, &(s,) is treated in another way.
(i) Estimate of I}
By Proposition 5.3.1.(1),

M 1 ar
. ' < —s— .
G3) - L<p //blue T o8 l2 R o e PUEE a)} drds

Therefore it follows from (5.31) and (5.20) that
M t ds r1+é ar
32) I < i [ g2 t—s—a)|d
(532) b= a1/2{ o w(s,r1) Jm og[ + (r—rl)(r+r2)X( 5 a)] "

Ly o=}

Let us consider the integrals of log[2 + ar/(r — r1)(r +72) - x(t —s—a)]. For 0 < s<t—a

and 73 — § < 1 < 19, it follows from (5.2) and (5.3) that

r—r1>re—6—11=2a—6>a.

21



Then we have

(5.33) log [2 +

(r— Tlc)LZT + 7‘2)] < log [2 i

For0<s<t—aandr <r<ry+96, wehave

" e |2 ar ir < [Tiogle+ ——]d
/rl °8 +(r—r1)(r+r2) To= /7'1 og[ +r—r1] r

) [{log(?)é +r1) — log 6} + % log(1 + 36/r1)]
< 6log(3/2+t—a)+ 62271 +6

] < log 3.

rT—"T"

(5.34) < M8 1og[2 4 |a —t|].

Therefore it follows from (5.32), (5.33) and (5.34) that

Mél
(5.35) I < 55 log[2 + |a — 1] {/0 w(s T1) / w(s 7”2)}
We next show
i ds M
. v < - = *

We use (5.30) for 1/w(s,rs) and obtain

‘ : M t
< -
o w(s,r2) = (ja—t|+ 1)1/2+7+A/0 n(s,r2)ds

(5.37)

Moreover,

t
/0 n(s,r2)ds

M/ { + ! R }ds
(lra — c,sl + 1)1+’\ (|ra — s| + 1)1+:\ (re + 1)1+:\
(5.38) <M/ { ! + = I -}dng.

S (I — sl + 1)1 (Jra = s+ 1)1+ (o] + 1)1

Therefore, from (5.37) and (5.38) we ¢ have (5.36) for 1 = 2. The treatment for ¢ = 1 is slightly
different. We remark that |r; — s| = |a—¢| for (¢ —a)4+ < s < t by the definition (5.2), where
z, = max{0,z}. Then we see from (5.28) that

1
(Ia — t| + 1)1/2+'y+/\(7-1 + s+ 1)1+mm{e /\}

(5.39) &(s,r1) <

22



for (t — a); < s < t. Therefore it follows (5.27), (5.29) and (5.39) that

_ ds M : (t-a)s
< .
/o w(s,r1) ~ (Ja—t|+1)/2+r+A {/0 m(s,r1)ds +/0 no(s,r1)ds

t ds
* lt—a)+ (ri+s+ 1)1+min{€’:\}}
M
(la —t| + 1)1/247+2°

Combining (5.35) and (5.36), we have

, MEY2
hS e e Rt el
M
(@t D7a— ]+ 177

M

(5.40) @+ 1)1 (a+t+1)(ja—t] + 1)172

Here we use the fact that

a+t+1
(a+1)(|la—1t|+1)

(5.41) <4 for a,t>0.

(ii) Estimate of I
By Proposition 5.3.1.(1),

M 1 ar
42 L ] log |2 t — s - a)| do.
(542) 2= 172 JJa(white) w(s, ) o8 [ + (r—r)(r+ rg)X( s—a)| do

Let 0< s <t—a and (s,7) € white. Then

ar T r+1/2
< < < - .
(r—ri)(r+r) “r—ri = 1/2 <2At-—a+1/2)
So we have
(5.43) al (t—s—a)<22+]a—t)

(r—mry)(rs + r)X
for (s,7) € white. Hence from (5.42) and (5.43) we get

do
w(s,r)

M
!
(5.44) I, < 272 log[2 +|a — ] //amm’w)
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We have already computed the integral of 1/w(s,r) in the estimate of I{, except the one on
{0} x (jla —t| + é,a +t — 6). Applying (5.30) for s = 0, we have

a+t—§ d
(5.45) /I r M

< .
a=tj+s w(0,7) = (Ja = t] + 1)1/2+r+A
Therefore it follows from (5.44), (5.36) and (5.45) that

M
!
(5.46) L < a72(Ja — ¢] + 1)1/2

log[2 + |a — ).

Since a > 6 = 1/2 when the domain white is not empty, we have (5.24) for ¢ = 2 by the way
from which (5.40) was derived.

(iii) Estimate of I

By Proposition 5.3.1.(1),

M 1 ar
. Il < — —_— —85— .
640 LS ] et 8 [“ (TG “)] drds

Further, by (5.30) and (5.43),

M n(s r)
4 r < +la — — Zdrds.
(5. 8) I; < a1/2(|a tl 1)1/2+7+A log[2 | tl]//hite - rds

Since r > § = 1/2 in the domain white, we have

(5.49) nsr) o M{ZL: _ !

: S+ D7 — ol + )7

1 1
+ = + T 3
| o G |
for (s,r) € white. Concerning the right-hand side of (5.49), the integral of the first and the
third term are shown to be bounded by a constand M in the same way as (5.38). As for the

second term, we see that

// drds < /
white (7 + 1)24% = " (r + 1)2+,\

< / ds <M
1+ XxJo (rp 4 1)1+
Therefore it follows from (5.49) and (5.50) that

(5.51) //ﬂ}hite n(s,r) drds < M.

r

(5.50)
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Hence from (5.48) and (5.51) we have (5.24) for ¢ = 3.
(iv) Estimate of I}
By Proposition 5.3.1.(ii),

M 1
52 r<__ﬁ drds.
(5:52) 1= a2 Jwhite w(s,r)(r + s +a—1) ras
Applying (5.30) to the right-hand side of (5.52), we obtain
| M n(s,r)
. I, < /I ") drds.
(5:53) 4= aP2(a =t + D72 Juhier+s ta—to

Since r +s+a—t > 6 =1/2 in the domain white, we have

(s,7) M ZL: 1
resta—t T r+sta—t+1 |5 (r+s+1M2(|r — |+ 1)1H2

1 1
+ = — + . -
(r+s+1)M2(r + )2 7 (r4 5+ 1)M2(|r — s| + 1)1+,\/2}
for (s,r) € white. Hence we find by the change of variables (o, 8) = (s +r,s — r) that

(5.54) ﬂ' &) grgs < M.
whzteT‘+S+a—t

Therefore from (5.53), (5.54) and (5.41) we obtain (5.24) for i = 4.
(v) Estimate of I}
By Proposition 5.3.1.(iii),

(5:35) < an //wime w(s,r){(r2 — r16;(+ T—- r2)}1/2 drds.

We notice that for (s,7) € white,

rTe+r2>a,ro+r >T]
r4+ri2a, r+r>r for v 2> (re—r)/2;

ro—r>a,ro—r2>1r for r<(ro—r)/2.

Hence we have

a+r 1 L
(5.56) (=g = pe = 2 { =2 {r=r)(rs - r)}l/z}
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for (s,r) € white. Therefore it follows from (5.55), (5.27) and (5.56) that

(5.57) IL < 7 //whm s T){ T {(7’—7‘1)(1'2 _T)}l/Q}drds.

We show in the following that

1 M ‘
(5.58) S e € g —ayadrds < (e
We use (5.29) for £(s,r) and obtain
(5.59) //wm . &1(s, 7“) 2)1/2drds

1
STe—1+ 1)1/2+v+A //whm 1)z =y drds:
Since r + (s +a—t) > 6 =1/2 for (s,r) € white, we have

P < o (s,7)
(r2—rp)2 = (7‘+s+a—t~+1)1/2(7~_3_a+t+1)1/2771 ’

A

M XL: 1
r+s+a—t+1 (r+s+ 1)?\/2(1T — ¢8|+ 1)1+Z\/2

1
+ _ .
(r+s+ DM2(r+ 1)1+'\/2}

+ M EL: L
r—s—a+t+1F (r—s|+1)V2(|r - cis| + 1)1+3/2

1
+ = =
(Ir = sl +1)*2(r + 1)1“/2}

for (s,r) € white. Hence by the change of variables (a,8) = (s + r,s — ) we have

. m(s,r)
(5.60) /[ e 7 —drds < M.

Therefore it follows from (5.59) and (5.60) that

(5.61) //w _aen) o M

hite (12 — 1200 S (o = 4] + 1)/2Frn

On the other hand, we see that, for (s,r) € white,

&(s,T)

2 - )7
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M
S tsta—ti ) Pr—s—atit )P [{1 = x(Ir = s| = la ~ tl/D)}ea(s, 7)
+x(Ir — 5| = la — |/2)é(s, )]
< M 1 .
“(la—t|+ DV (r+s+a—t+1)1/2

1 1 ,
. § + —
{(T + s+ 1)1/2+A+€(|T —_ sl + l)l—e | (’I' —s—a+t+ 1)1/2(7. +s+ 1)1+mm{e,A}}
< M 1 .
~ (la=t|+ D)Vt (r+s+a—t+1)1/2

1
. {(T +s+ 1)1/2+5‘/2(|r — 5| + 1)1+X/2
+ 1
(r—s—a+t+1)V2(|r—s| + 1)1/2+min{e,:\}/2(r +5+ 1)1/2+min{e,:\}/2 )

Here, we have used that ¢ — a > 0 on the support of 1 — x(|r — s| — |a — t|/2). Therefore it

follows that
M

(5.62) /- 7~2—r2)1/2d7"d35 (o= + DUz

Combining (5.61) and (5.62), we obtain (5.58). To estimate the second term in the right
hand side of (5.57), we note that

1 1
{(r = r1)(ra —1)}1/2 = {(a+t—s—r+1)(r+s+a—t+1)}1/2

1
+{(a+t—s—r+1)(r—s—a+t+1)}1/2'

(5.63)

Using (5.29) for the first term of (5.63) and the method above for the second term of (5.63),

we get

(s,7) . M
. < .
(5 64) //whzte T' - Tl re — r)}1/2d’rd5 - (|0, - tl + 1)1/2+7+A

Therefore from (5.57), (5.58) and (5.64) we obtain (5.24) for ¢ = 5. Consequently, we have
proved (5.24). '

Next, we prove (5.25). £(s,r) and n(s,r) are used again, but we do not consider & (s,r)
and &(s,r) separately. Since t > a when D" is not empty, r1 =t —a —s.

(vi) Estimate of I}
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By Proposition 5.3.IL.(i),

1/2 ar

log |2 + drds.
& , (ry —7)(r + 12)

(565) L'<M ./black w(s, r){(r + r1)(re = r)}1/2

In the domain D", we use the following facts:

1 M
R (D e Rl (e R

1
W) S Jaf+1
(5.68) ro—r>2%+6 for r<r -8,
ar <
(ri=r)(r+mr) ~ 1 —1

(5.67)

)1/2+7+A77(s,7‘) for r+s>(t—a)/2,

(5.69) < M{(t—a)x(2r—r)+1} for r<r —é.

It follows from (5.66)-(5.69) and (5.3) that

i < //
'Il — {(t — a) a_l_-t }1/2 black S :r)drds

rds<(t— n)/2

r1/2
5.70 + // 8,7)————=drds
N e e Ty R S e
M
_..I... .
(o=t + )77
rl/2 [ ar
. S, T log {2 + drds.
s 2 e e e e
Moreover,
1/2 é .
(5.71) - // back . _drds < M/ &(s O)ds/ ri2dr < M,
r+ss(l!‘:—a)/2 w(s r) 0
I o
n(s,r)——5drds
(t~ a)/2<,:'l+ms:‘ét a— 1/2 (T+7’1)1/2

t—a 1/2
<M/ 1+T11/2d dr

t—a 1 L 1 1 1
<M/ - + = + = > ds
e e P e R e R

(5.72) <M

because A + 2y > 1/2 by (5.28).
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It remains to estimate the third term of the right-hand side of (5.70). We show that

(5.73) ~LJMHHWMW—HW2

M
S mlog[2+t—a],

1/2 ar

m—ﬂu+mJ”

log [2 +

from which we obtain

rl/2 ar
// black n(s, T){(r Fr1)(re —r)}172 log [2 + CEDE 7'2)] drds

t—a—8<r+s
i—a ™ ri/2 ar
< M/ s,T ds/ } - log |2 4+ - dr
o o) (a-ba (T r1)(ra — 1)} 12 © [ (ro—r)(r + 7‘2)}

M

To prove (5.73), we consider the following two cases separately: (a) 1 <aand (b)0<a < 1.
(a) 1<a

Since ro — 17 > ro — 73 > a+ 1, we have

/rl T1/2 | 0 ar 4
N o + r
(ri=8)s {(r +11)(re — 7)}1/2 g[ (r1 —7")(7“+7‘2)]
1 T r
< . aN1/9 .
= lax D)2 /ﬁ_slog [2+ — r} dr

Hence by the way from which we derive (5.34), we have (5.73) for a > 1.
(b)0<a<1
Since log[2 + ar/(r; — r)(r +r9)] < 1+ a'/2/(r; — r)}/2 and ry — r > 2a, we have

- /2 ar
/(n—é)+ {(r+r)(ra —r)}172 og {2 BCEna 7‘2)} i

1 1 1
< d
= Jr-é {(7‘2 —r)l/2 + (r1 — r)1/2} r
< 462 < 2/2.

Thus we obtain (5.73) for 0 < a < 1.
Therefore it follows from (5.70)-(5.72) and (5.74) that

< Mé M
= -+ 017 " Gt 120 (a— g+ DD

"
Il
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M

1 -
+(a F1)72(ja — ¢] + 1)1720 og[2 +t - d]
. M s M
= (t=a+ D)2t +a+1)12  (a+1)Y2(|a -t + 1)1/
M .

(5.75)

< .
= (a+ D)2 1(a+t+1)(|a—t|+1)1/2
(vii) Estimate of I}

By Proposition 5.3.IL.(i),

)< M// : i log |2 + il do
S Y Joreay w(s, I (r +r)ra — P2 8 1T =) r+r)|
Moreover, by (5.66)-(5.69), we have

B < [ v ot
2 = {(a+t+1)t—a+1)}1/2 s(red) qp(s,T)

s4r<(t— a)/2

M /2
(5.76) +(a+1)1/2(|a—t|+1)1/2+7+'\ log[2+t—-a]// I (O e T

s+r2>(t—a)/2

Here we notice that (t — a)/2 > é = 1/2 when the domain red is not empty. We further see
that
r1/2
(5‘77) //s+rag((r:fl)/z Mda <M
Y
(5.78) L n(s,r)mda <M.

Hence from (5.76), (5.77) and (5.78) we obtain (5.25) for i = 2.
(viii) Estimate of I3
By Proposition 5.3.1L(i),

" i ar
s M//red s, ) {(r + (s ] [2 HCEDICETS

Further, by (5.66)-(5.69), we have

] drds.

I < I/ ——_drd
3= {(t——a+1) (a+t+1)Y2J0J, et r1/2w (s,7) e
M

n(s,7)
@+ 1)V%(|a — ] + 1)I/ZHrs log[2 +t — af // red p12(p 4 r1)1/2drds.

str>(t—a)/2

(5.79)  +
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Since r > 6 = 1/2 in the domain red, we have
1

M¢(s,r)

L 1 1
< M :
< M P e T TR

1
T - o 1)5/4}
 for (s,7) € red. Therefore it follows that

1
(580) // red mdrds S M.

s+r<(i—a)/2

Moreover,
nsr) 1(s,7)
ri2(r + )2 = (r 4+ 1)Y2(r 4+ + 1)1/2

IA

L
1
M 3 3
1

+ - = .
(7" —s+t—a+ 1)1/2(|T' — S| + 1)1/2+mm{7—)\,/\/2}(r + 1)1+A/2

1
L e e

for (s,r) € red. Therefore it follows that
(5.81) / / e m%drds < M.
Hence from (5.79), (5.80) and (5.81) we obtain (5.25) for ¢ = 3.

(ix) Estimate of I}

By Proposition 5.3.IL.(ii),

F1/2
1< M//red w(s,r)(ry —r){(r +r1)(r2 — r)}l/erds'

Further, by (5.66), (5.67) and (5.68) we have

/2
I’ < // drds
T {t-a+ 1) a+t+ P2 I, et w(s,r)(r—T)
7,.1 2
5.82 + / / 5T drds.
(5.82) (a+ 1)Y2(la - t| + DA el .,m ( 1 —r)(r+r1)!/2
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Both r'/2 /w(s,r)(ry — ) and n(s,r)r/2/(ry — r)(r + 1)!/? are bounded by n(s,r)/(r; —r).
And since r;y —r > §=1 /2 in the domain red, we have

/ nsr)dd

red Ty —T
1 .
< M//
red Ty — T + 1 (r + 5+ 1)M2(Jr — ¢is] + 1)1+V/2

(r + s+ 1)'\/2(7‘ + 1)1+3/2
1
+ . . drd
(r+s+1)"/2(|r—s|+1)1+’\/2} e
(5.83) < M.

Therefore from (5.82) and (5.83) we have (5.25) for ¢ = 4. Consequently we have proved the

estimate. )

6 Energy Estimates.
In this section we prove

Proposition 6.1 Letu = (ul,...,u™) € C*([0,T) x R%;,R™) be a solution of the following
system of wave equations with u(0,-) € C(R%;R™).

m 2

(6.1) Ou' —ctAu' =3 Caﬁ (0u)0,0pu? + E;(u)
) j=l ,3=0
Here, C,]ﬁ,E (1,7 = 1,2,...,m; o, = 0,1,2) are C*®-functions in { |0u| < 1}, which

satisfy the conditions (4.3)-(4.8).

Moreover we assume that

(6.2)

< —mm{l, i, 2} for |0u| <6
and that there exists a positive number Ty such that

(63) [6u]0(T1) <1 and |8u|0(T1) < 6.
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Then,we have the following energy estimates for 0 <t < Ty:
(64)  [1ou(®) Ik < My {ll 6(0) II%

+/0 s+1 _l_min{1/3’27}[3“(3)]% || Ou(s) ”(2N+1)(N+5) ds} )
(65) N ou®) B < M| 8u(0) [} (¢ +1)Mv@HO?,

Proof. Since Q commutes 82 — c?A,

(6.6) 02D — 2ADA "= Z DA {C“" au)aaaﬂuf} +DAE,-(éu).
i=1a,=0
We set
clc] ap;&” -°‘-ﬂ (otherwise)
(6.8) wh = fj [DA{C"" Ou)dadpu’ } — caﬁ (0u)0.0 D v/ | + DAE;(0u).

Then from (6.6), (6.7) and (6.8) we have
m 2
(6.9) Z 3 aff(0u)d, 6,3'D w = wh
ﬂ:

Multiplying both side of (6.9) by 8;DAu’ and using (4.3), we get

m 2
> Y [0 {203 (0u)a, D! - 85D} — 8, {aff ()0, DAY - 95D 40’ }]
i,j=1a,3=0

(6.10) Z 20, D4’ - w'

Z Z {6:C3f (0u)0a DA’ - 85D — 20.C5f (0u)d: D’ - J5D*u’ }

1,7=1 af=0

Integrating (6.10) over [0,t] x R2, we have
Jop*uo], - Jor*u)],

(6.11) = / ds / / [Zwtpfiuz wy + Z {@caﬂ Bu)8, DA’ - B DA

1,j=1 a,8=0

- ZOQC?J-E((?U)&DAU" - 0D }] dz,
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where

(6.12) |oD4u(t)|

l]_

//R Z{ 0 (9u)8,DAu’ - 8, DAl (¢, z)
2

-5 akl ou)d, DAu’ - 81'DAuJ(t x)}d

, k=1
Notice that by (6.2) and (6.7) we have

Lloprucs], < Jomsacol, < e fooeuc,
Therefore it follows that

(613) |optace); < b (Joprut@)]; + 10+ 72)

where

JP = i/tds// 0D - wiy| de
P / ds [[|ocsf (ou)||op*

1,j=1a,5=0

B'DAuj. dz

We first prove the estimate (6.4). Since |fu(s)|o < 1, then by the assumption (4.4)-(4.8),

we get
| B|+3 m ] )
(614)  |[PPCflou)| < Mp Y X S i 1] [DPe0uH|,
=2 j1yf1=1|By|,....| Bi|<1 B k=1
. |Aj+4 m 1 )
(6.15) IDAE(ou)| < MadY, ¥ S Biges [ DM 0.
1=3 j1,esdi=1 A1y Al <JA| k=1

Here we set

1= 6ijy 6ij5 6135 (1=13)
Bisjowit =
1 1> 4).

Since > 1/2™ from (6.2), we can solve the following simultaneous linear

det (a?}’(au))z;:l

equation with respect to 92u’

m

Za (0u)d?uwi = Ei(0u) =Y. Y. aif(0u)Bufpu’ (i=1,2,...,m).

j= 7=1(,B8)#(0,0)
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Moreover, by (4.4), (4.5), (6.2) and Cramer’s formula, we see
-1
(6.16) Ol = — {det ( (au)) el } c?Au' + higher order terms.

Therefore it follows from (6.8), (6.14), (6.15) and (6.16) that

m |A|+5 m

CROVIESTA S 3D s ) 05[], TL[A0u|[Dow] s

i=1 1=3 ji,....ii=1|A1],.. ,|A1I<IAI

| Next, we consider J,(‘l). By (4.4) and (4.7),

|ocs (ou)| < M Z 8w |Out| |07 .

k=1

Therefore it follows from (6.16) that

Z/ ds// St |0u*| [On0 | [oD A

i gk d=1 h=1

+/0 ds //R2 |6u|-3‘8DAu'2 d:c}. :

Hence we find from (6.17) and (6.18) that

6.18) JP < M{

DA | d |

|Al+5 m

619) JP+IP <M, S S 8o J,/ ds //R H "DAkau“

=3 Jjo,.-ji=1|Aq|,. ’IAI|<|AH'1

By Holder’s inequality,

//R2 IQ) ‘DA’“(?uj"(s,:&)‘ dz

E *(s,°) [poui(s, ) L*(R?)
L?(R?)
= Y
< Hnwn (5.]-]
k=0 Loo(Rz)
-1
o . .
ALl s, DDA0uin(s, )| P20 (5, )]y
k=0 LZ(RZ)
-1
—(1-1)/1
(6.20) < “ijf (s, |-
k=0 L(R2)
-1/t (g A Ar g, d
HI ) DA Jud* (s, ) LR D oul!(s, ) .
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Without loss of generality we may suppose that jo = j; = jo does not hold for I
Therefore, it follows from (3.1) that

= —(=-1)/I
H wjk (sal * I)

k=0

(6.21)

< M(3+ 1)—1—min{1/3,27}'
L>o(R2?)

In order to estimate (6.20), we need Gagliardo-Nirenberg inequality:

- Lemma 6.1 Let f € CP(R?), |A] =i < k. Then,

i/k
—i/k
DA fllrerix) < MA”f”Leo(/X) (Z ID? f L'(X)) :
|B<k

where
X=R?’or{z|zeR:n<|z|<n+1} (n=0,1,2,...).

For the proof, see [6], Appendix.
Since

(6.22) !

M
forn <r <n++1, we find from Lemma 6.1 that

w;(s,n) < wi(s,r) < Mw;(s,n)

2!
L2l (R2)

<M Z w;, (s,n)2=D ”DAkau“

Jtws,(s, | - YD DA (s, )

LA ({n<|z|<n+1})

- 2(1-1)
<My Z wjk(s’n)2([ 1)”3““( )”L°°({n<|:c|<n+1})

n=0
2
. DEuir(s, -
(IBI;”AH” ) Lz({"S'z’S"“}))
(6.23) < My [0u(s)g" | Bu(s)][} 4,

Therefore, from (6.3), (6.19)-(6.23) and (6.13), we get (6.4).

Next, we prove (6.5). For the proof, we use the following two lemmas:

Lemma 6.2 Let f,g € C°(R?). Then,

|DA(f9) - £D*4||, < MU FLillglliai- + lglol 1l 1a1).
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Lemma 6.3 Let f = (f1,...,f;) € C(R%4R™) and let w = w(f) be a C™-function that

satisfies

w(H)l < M|5]%.

Then

(6.24) ID4(w o )llzomey < MIF|Simn ID? fll e (me).
| |BI<IA]

See [6], Appendix for the proof of Lemma 6.2, and [10], Proposition A2 for Lemma 6.3.

By these lemmas,

Wa

(6.25) |

ey S MO alu() 004
Therefore from (6.18) and (6.25) we get
(6.26) IO+ 39 < My [ 10u(s)lol0u(s)]s0u(s)]Fyds.
Further, it follows from (6.13) and (6.26) that

3w < My {10uOIR + [ 16u(s)lolou(s)l0u(s) s
Hence by Gronwall’s lemma we find
(6.27) |0u(t) I < MIOu(O) exp (My [ 10u(s)lolou(s)ads)
Since

[0u(s)lol0u(s)li < Mn(s +1)7 [Ou(s)}},

we obtain (6.5) from (6.27). 1

7 Proof of the Theorem.

Making use of the method in [1] and [5], we find that a solution u(¢,z) to (4.1) is unique
and u(t, ) (¢ > 0) has compact support. The local existence theorem of a solution to (4.1)

has proved in [4] and [7].

37



Let u(t, z) be a C®-solution to (4.1) in [0,T') x R% We write u as
(71) U = Ug + U1,

where ug is the solution of the initial value problem

A2ul — c2Aul, =0
(7.2) { t Y0 1 0

UB(O, ) = &jf,', 6{&6(0’ ) = £g; ('l =1, 2,... ,m)’

and u, is the solution of the initial value problem

(7.3) { i — 2Auj = Fy(du, 0u)

ui(0,) = 0ui(0,-)=0 (¢:=1,2,...,m).
In [2], R. Glassey has proved by the method in W. von Wahl [14] that

Me '
{(|z} + eit + D)(ll2] = eit] + D}/
Here M depends on L'-norm of f;, 8f; and g;.
We set

(7.4) luo(t, )] <

1 1 1
wi(s,T) ; (r+s+1)(|r —cjs| +1) + (r + s+ 1)H27(r + 1)1-2
1
s T DB — s + 12

Then ; satisfies (5.20) and (5.21). By Proposition 5.4, we get

m

(75)  [Bu(t)y < My {2 3 sup|

i=1 |A]<N+3 0<e<t

’17)1‘(5, | ’ I)DAFi(au’ 62'“')(3’ )

L2 (R2)

Lz(Rz)} )

Since [Ou(t)]o is continuous, we can take for 0 < e <e; a positive number 7 such that the

+ i > sup ”11},-(5,| - )8 DAFi(8u, 8%u)(s, )

i=1 |A|<N+2 0<e<t

condition (6.3) holds, provided €; is small enough. We suppose 0 < & < &1 and set

Ty = sup{T} | (6.3) holds.}.
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Let 0 < t < T in the following. In particular, |0ulo(t) < 1. Then by (6.16), we have

|Al+6 m !
(7.6) | DAFi(0u, 0%)| < Ma Y > g 1] [DH0uH|,
1=3 ji,eji=1 |Az1<1AI42 k=1
(h=1,2,...,1)
: |Al+8 . m { )
(7.7) DA F(0u, %) < Ma Y S Y b [T [D0uH.
I=8 jiyfi=1 |A4l<]Al+2 k=1

(h=1,2,...,0)

" Hence from (7.5), (7.6) and (7.7) we get

(78) [Oul(t)]N
N+10 m

<My 3, > Y Sy Sup

lj
'J)i(S,I . I) H DA"a'U,j"(S, )

1=3 j1,.,01=1 |AjISN+4 k=1 L2(R2)
(h=1,2,..,0)
We notice that
1 < M
(wjlezwj3)2/3(s,r) - ’LD,-(S,’I‘),
provided j; = j» = j3 = ¢ does not hold. Thus we get
(79) 5i;j1---j,wz' S_ J\l('u}j1 e wj,)(l-l)/l.

By (7.9) and Holder’s inequality,

! l
Sigoiy | Wi(s, | - |) T DA*0u*(s,-) < M| T wiD(s, |- )DA*Buir(s, )
. k=1 L2(R2) k=1 L2(R2)
I
=D/ 1 INDAR A, k(.
(7.10) < M}g”wjk (s, |- D *out*(s, ) L?(R?)

Hence by (7.8), (7.10) and (6.23) we have
(1) Our(B) < My sup [9u(s)BIOu(s) .,
where N; = (N 4 10)(N + 4). Therefore it follows from (7.1), (7.4) and (7.11) that

(712) Oul < M {2+ sup [Ou(sEOu(E) v}
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By Proposition 6.1,
(7.13)  ||ou(s)|%, < My {1 + [Ou)2(s) /OS(T + 1)—1—min{1/3,2v}||3U(T)||(2N1+1)(N1+5)dT},
(7.14)  0u(n)lvy+nyvias) S M(r + 1)VNEHRD,
We fix the constant My in (7.12), (7.13) and (7.14) so that
My > max{8,2/ min{1/3,27},(2/6:)"/%}.
We take ¢ to be
0 < &0 < min{1/4M3,¢,}.
Moreover, we suppose that €q is small enough to define the following Ty for 0 < € < €q:
Ty = sup {t | [Ouln(t) < 46MN}.
Suppose that 0 <t < Tp. Then,
[Bu(t)]p < 4eMy < 1/ME < 1/2
|ou(t)|o < 1/M% < 6 /2.
Therefore Ty < T. Thenfor0 <e<epand 0 <t < To,
[0ult(t) < (4eMy)* < 1/M,
(7.15) —min{1/3,27} + My[0u)3(r) < —min{1/3,27}/2.
Here from (7.13), (7.14) and (7.15) we get

. 1 s ]
ou(s)l|7, < MN{1+M—I2V'MN /0 (¢+1)-l—mm{1/3,2v}/2d7}

(7.16) < 2My.
Therefore it follows from (7.12) and (7.16) that

[Pu(t)ly < Mw {6+ sup [6u(8)]o-4sMN-(2MN)1/2}

O<s<t

o1
< Mpye+ < sup [0u(s)]o
2 o<s<t

1
< Mye+5 sup [Ju(s)]w,
2 0<s<To
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which implies

sup [Qu(t)]y < 2Mpye.
0<t<Tp .

Therefore Ty cannot be finite, and we complete the proof of the theorem. I
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