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Singulai‘ Degenerate Prarabolic Equations
with Applications to the p-Laplace Diffusion Equation

Masaki Ohnuma Koh Sato
Department of Mathematics Department of Social Science and Information
Hokkaido University Otaru University of Commerce
Sapporo 060, Japan Otaru 047, Japan

Abstract. We consider singular degenerate parabolic equations including the p-Laplace diffusion equa-
tion. We establish a comparison priciple which is a natural extension of the paper [12] by Ishii and
Souganidis. Once we get a comparison priciple we can construct the unique global-in-time viscosity so-
lution to the Cauchy problem for the p-Laplace diffusion equation. The solution is bounded, uniformly
continuous in [0,T) x RY if the initial data is bounded, uninformly continuous on RN .

§1. Introduction
We consider a singular degenerate parabolic equation of the form ,
u + F(Vu,V?u) =0 in Qr = (0,T) x €, (1.1)

where Q is a domain in RY and T > 0. Here u; = Ou/0t, Vu and V2u denote, respectively, the time
derivative of u, the gradient of u and the Hessian of u in space variables. The function F = F(¢,X) needs
not to be bounded arouned ¢ = 0 even for fixed X and F needs not to be geometric in the sense of [2].

A typical example is the p-Laplace diffusion equation

u — div(|Vul~2Vu) =0 in Qr = (0,T) x Q, (1.2)

especially when p < 2. For this equation, F = F(g, X) is given by

Fla,X) = ~larsce {1+ (- D2 x ], (13)
where @ denotes the tensor product.

Our major goal is to extend the theory of viscosity solutions for singular degenerate parabolic equations
including this type of equation. We introduce a notion of viscosity solutions so that the comparison
principle holds. This is considered as a natural extension of the work of [12], where they assumed F is
geometric in the sense of [2]. :

- We shall establish the comparison theorem and the existence theorem based on Perron’s method for a
large class of equations including all geometric equations and the p-Laplace diffusion equationfor1 < p < 2.
(Note if p > 2, the p-Laplace diffusion equation has no singularity at Vu = 0). The proof of comparison
theorem parallels that of [12]. However we give a simple proof by restricting bounded domain 2. The
proof of existence theorem needs a new choice of sub- and supersolution. Since we do not assume that F
is geometric, an extra effort is necessary. -

We apply our theory to the Cauchy problem for the p-Laplace diffusion equation. We prove the unique
existence of global-in-time solution with every initial data which is bounded, uniformly continuous in RV
provided that 1 < p < 2. The solution is bounded, uniformly continuous on [0,T] x RN for every T > 0.
This result has already been known by interpreting solutions as usual weak solutions. The existence of the
unique global-in-time weak solution was proved in [13]. The continuity of such a weak solution is known.
For details, see the book [5] by DiBenedetto. However, since the proof of continuity was done by using
the Harnack inequality and many a priori estimates, we need many procedures to get such a solution. We
believe our approach is simple to construct continuous solutions. Moreover, our theory does not require
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the divergence structure of the equation. For example our theory applies to

uy — |VulP~%trace {(I +(p' - 2)%;3)V2u} =0, (1.4)

where p’ > 1. Note that if p’ = p this is nothing but the p-Laplace diffusion equation. We note that a C?
solution of

IVulz'put - |Vu|2"’div(|Vu|p’2Vu) =0

needs not to be a viscosity solution of (1.2). To see this we consider a symmetric nonnegative separable
function .
_ ] te-t)=U(z) ft<t,,0<z<]1,
u(t,z) = X
0 ift>t,0<z <1,

with u(t,0) = u(t,1) = 0 for fixed £, > 0, where U is a positive C? function. For fixed ¢, there are infinitely
many C? solution u of the one dimensional equation

wg|ug[27P = (p - Dtge, (t,z) € (0,T) x (0,1)

with u(t,0) = u(t, 1) = 0. However, only one of them is the viscosity solution of (1.2).

Finally, we establish a general stability result. This would be useful to prove that our solution agrees
with usual weak solution when the equation is the p-Laplace diffusion equation. However, we do not pursue
this problem in this paper. '

In the theory of viscosity solutions, many degenerate parabolic equations have been studied. Here we
focus on the singularity of those equations. For example the existence and uniqueness of solutions for
a given initial data was established in [2] when F = F(¢, X) is singular on ¢ = 0 assuming that F' can
be extended continuously at (¢,X) = (0,0). The result is applicable to the level set equation of the
mean curvature flow equation. Further developments are obtained in [14], [8], [6], [11]. Moreover, the
existence and uniqueness theorems are obtained in [7], [12] even if F can not be extended continuously at
(¢, X) = (0,0). This paper is organized as follows. In section 2 we give a notion of viscosity solutions and
some basic propositions. In section 3 we establish the comparison principle of the viscosity solutions when
2 is bounded. Also we remark the comparison theorem for a domain not necessarily bounded. In section
4 we prove the existence of the solution to the Cauchy problem using Perron’s method. In section 5 we
consider the separable solutions to the p-Laplace diffusion equation with one space dimension. We prove
that one of them is a viscosity solution. In section 6 we give a general stability result.

§2. Viscosity Solutions
We list the assumptions of F' which are important to consider the viscosity solutions of (1.1).
(F1) F is continuous in (RV\{0}) x SV
(F2) Fis degeneréte elliptic, i.e.,if X > Y, then F(q,X) < F(q,Y) for all g € (RM\{0}).
Definition 2.1 We denote by F(F) the set of function f € C?[0,00) which satisfies

FO) =F'(0)=r"(0)=0, f'(r) >0 for allr >0, (2.1)
and .
lim P9 5(el), V2 £(el) = 0. (22)

. 1 . L
Remark 2.2 For F of (1.3) with 1 < p < 2 we note f(r) = r1+% with o > p > 1 is a function in
F(F). For F of (1.3) with p > 2 we see f(r) = r? € F(F). Our definition of F(F) is an extension of that
in [12]. Actually, if F is geomelric in the sense of [2], i.e.,
F(Ag, X 4+ pg® q) = AF(q,X) for all A > 0, € R,q € (RV\{0}), X € sV,

the set F(F) is the same in [12]. The set F(F) in [12] is not empty provided F satisfies (F1) and (F2),
but our F(F') could be empty. Indeed, we know F(F) is empty for F of (1.3) with p < 1.
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Definition 2.3 A function ¢ € C*(Qr) is admissible(i.e., ¢ € A(F)) if for any 2 = (£,2) € Qr with
V() = 0, there are a constant § > 0 ,f € F(F) and w € C[0, o) satisfying w > 0 and lim,jow(r)/r=10
such that for all z = (t,z), |2 — 2| < 6 satisfies

lp(2) = p(2) = p1()(t — D] < f(le ~ &) + w(]t - ). (23)

Note that if ¢ is admissible, so is —¢.
Next we recall that the upper semicontinuous envelope u* and the lower semicontinuous envelope u,
of a function % : Qr — R U {zco} are defined by

u*(2)
ux(2)

lim sup{u(¢); ¢ ~ 2| <7},
rl0

lim inf{u(¢); I - 2| < r},

respectively.
Definition 2.4 Assume that (F1) and (F2) hold and that F(F) # 0.

1. A function u: Qr — RU{~o0} is a viscosity subsolution of (1.1) in Qr if u* < 00 on Qr and for
all p € A(F) and all local mazimum points z of u* — ¢ in Qp,

{ pi(2) + F(Vo(2), V2p(2)) S0 if Vop(2) # 0,
pi(2) <0 otherwise.

2. A function u: Qr — R U {00} is a viscosity supersolution of (1.1) in Qr if uy > —00 on Qr and
for all o € A(F) and all local minimum points z of u, — ¢ in Qr,

{ ei(2) + F(Vo(2), V2p(2)) 2 0 if Vep(2) #0,
pi(2) >0 otherwise.

3. A wviscosity solution of (1.1) in Qr is a function which is both a viscosity sub- and super- solution of

(1.1) in Q.

We often suppress the word “viscosity”, except in statements of theorems. As usual we obtain basic
properties of viscosity solutions. We state them without their proof.

Proposition 2.5 Assume that (F1) and (F2) hold and F(F) # 0. Let S be a set of subsolutions of (1.1)
in Qp. Set

u(z) := sup{v(2);v € S,z € Qr}.

Ifu* < oo in Qr, then u is a subsolution of (1.1) in Qr. A similar assertion holds for supersolutions of

(1.1) n QT.

Proposition 2.6 Assume that (F1) and (F2) hold and F(F) # 0. Let S be a set of subsolutions of (1.1)
in Q7. Let £ and h be a subsolution and a supersolution of (1.1) in Qr, respectively. Assume that £ and
h are locally bounded in Qr and £ < h holds. We define u as follows:

u(z) == sup{o(2); v €S, £<v<h in Qr, € Qr).
Then u is a solution of (1.1) in Qr.

$3. Comparison Theorem
Let © be a domain in R" and T'> 0. We consider a degenerate parabolic equation
u; — div(|[VulfP"2Vu) = 0 in Qr = (0,T) x , (3.1)

In section 4 we shall consider the initial value problem of (1.1) as a Cauchy problem. So we have to obtain
the comparison theorem in the case @ = RM. The proof is almost same as in [12]. For readers we shall
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give a comparison theorem for a bounded domain § since we believe the proof is more simple than that
of the @ = RN. After we proved the theorem, we shall give a lemma for the proof of the theorem in the
case @ = R". We need the lemma because our definition of F (F) is different from that in [12]. Here we
give our main theorem of the comparison principle. For Qp = (0,T) x Q, we call

0pQr = {0} x QU[0,T] x 6Q (3.2)
the parabolic boundary of Q7.

Theorem 3.1 (Comparison Theorem) Let Q be a bounded domain in RY and T > 0. Suppose that F
satisfies (F1) and (F2) and that F(F)# 0. Letu and v be a viscosity sub- and super- solution of (1.1) in
Qr, respectively. If u* < vy on 8,Qr, then u* < v, in Qr.

We argue by contradiction. Let w be upper semicontinuous on Q7 x Qr, and Q7 be compact. Then
there is a positive constant M satisfying

w(t,z,s,y) < M for all (¢,2), (s,9) € Qr. (3.3)
Now, we set
a=sup{w(t,z,t,z); 2 € Q,0<t < T}, (3.4)
_1 1 2 7 Y
@(t,m,s,y)—6P(|:C-y[)+6(t—5) +T—S+T—t, (35)

where €,y > 0, with P € F(F). We define ¥(t,z,s,y) := w(t, z,5,9) — (¢, z,5,9).

Proposition 3.2 Suppose that w is upper semicontinuous on Qr x Qr and o > 0. Then there is a positive
constant vy such that

sup{¥(t,2,5,9); (t,2), (5,9) € Gr} > (3.6)

2R

holds for all0 < v < 75, € > 0.

Proof. Since w is bounded on Qr x Q7 and a > 0, we see that there is a point (to,zo) € Qr such that

w(to, 2o, to, o) > Za. Choose v which is sufficiently small so that
2y
T -1

<3 | (3.7)

Then we see L o
sup{\Il(t,:L',s, y)) (t,.’L‘), (Sl y) € QT} Z W(to;anthmO) 2 —2-

Proposition 3.3 Suppose that w be upper semicontinuozion_Q__T x Qr and a > 0. Let v be as in
Proposition 3.2. Let ¥ attain its mazimum at ({,%,3,9) € Qr x Qr for all0 < v < yo. Then | —§| =0
and |t — 3| = 0 as € — 0; these convergences are uniform in 0 < 7 < 7o-

Proof. By Proposition 3.2, ¥(, #,$,§) > 0. Therefore,

]. - ~ 1»\ A\2 7 7 $ A A A
- - (= —r T ,2,5,9) < M.
P —)+ 20 -8+ e+ = <w(t2,8,9) <

Note that P € F(F) is monotone increasing since P satisfies (2.1). Its inverse function denotes P~1. Thus
we obtain

|2 - 91 < P (eM), [E—- 3] < (eM)M2. (3.8)
1

By those propositions, we now get:



Proposition 3.4 Suppose that w is upper semicontinuous on Qr x Qr and o > 0. Let Yo be as in
Proposition 3.2. Set U = Qr x Qr and 6,U = (6,Q1 x Q) U (Q7 x 0pQr). Suppose that there is a
modulus function m (i.e., m:[0,00) — [0,00) such that continuous, nondecreasing and m(0) = 0) which
satisfies w(t, z,s,y) < m(|lz — y| + |t — s|) for all (t,2,s,y) € OpU. Then there exists 9 > 0 such that ¥
attains its mazimum over U al an interior point (£, 23,9 €U forall0<e < e and 0 < < 70.

Proof. Suppose the conclusion were false. By the properties of the function 1/(T = 8)+ /(T —t) we
see { < T and § < T. There would exist sequences {e;} with €; — 0 and {v;} C (0,70) such that 6, U
contains a maximum point (fj,:"cj, 3;,9;) of ¥ for the value ¢ = €j, ¥ = v;. By Proposition 3.2 and the
assumption of Proposition 3.4, we see

o c e P .. f

5 S, 85,8, 8) < w(tj, 35,58, 5) < m(l3; — 3]+ [f5 — §1). (3.9)
Letting ¢; — 0, and applying Proposition 3.3 yields |#; — 951 — 0 and [{; — 3;] — 0, which leads a
contradiction. | |

We give basic properties on the relation between elliptic superjets J>* and parabolic superjets P2,
Moreover, we shall obtain a similar relation for J2+ and P2+, Although we do not state explicitly, those
relations hold for elliptic subjets /%~ and parabolic subjets P2~. For the definitions of J2%, P2% J2.
and P2E, see the review paper [4].

(D)5 4) e

where (7,q) ERxRY, a € R, I € RN, X € SV. Then (r,q,X) € P>Hu(i, 2).

Lemma 3.5 Suppose

Proof. The assumption is equivalent to

u(t,z) < u(f,a:-)+r(t-t)+(q,m-a)+%a(t-t)2+(t-t)(1,m-ﬁ)

+ —21-(X(m—i:),x—:i:)+o(|t—f|2+|a:-—:i:|2) ast—i,z— g

where (, ) denotes the Euclidean inner product. By Young’s inequality we see
t-Dhz—2) < |ft—"llz- 2]
2 a2, 1 ~13
GG~ 297 + 1o — 8f%)
ot — 8]+ |z — 2P).

IN

Finally we obtain

u(t,z) < u(f,:?:)+7'(t—0+(q,m—-:&)+%(X(:c—:i'),m—:&)+o(|t-f|+J:v—i-|2):
ast —t, x — &.

By the definitions of J2+, P2+ we see:

()3 1) e7mn,

where (1,¢) ERxRY, a € R, 1€ RN, X € SN. Then (r,q, X) € Po¥u(i, 2).

Corollary 3.6 Suppose

We shall state a lemma on admissible test functions without its proof.
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Lemma 3.7 Assume that (F1) and (F2) hold and that F(F) # 0. Suppose that (,o Qr — R is admissible
(i.e., o € A(F)). If Vo(i, ) = 0 where ({,2) € Qr with < T, then (2, z) + 5
ally > 0.

is also admissible for

Now we are position to the proof of Theorem 3.1.

Proof. We may assume that u and v are upper semicontinuous and lower semicontinuous, respectively,
in Q7 so that

Cw(t,z,s,y) = ult, z) —v(s,y)

is upper semicontinuous in U = Q7 x Q7. Note that u < v on 0pQr implies the existence of modulus m
satisfying

w(t, 2, s,y) <m(|z —y|+ |t - s]) on U = (8,Qr x Qr) U (Qr x 8,Qr)

since 0, Qr is compact. We assume that
a=sup{w(t,z,t,z);z€R,0<t< T} >0,

then derive a contradiction. By the assumption o > 0 we vérlfy all conclusion of Proposition 3.2 - 3.4
would hold for ¥ = w — ®&. We know ¥ attains its maximum over U at (f, 2,5 ) €U = Qr x Qr for
small €,4 because Proposition 3.4 holds. Since

\I/(t,:l,', 5):‘}) S \I’(tA: 2;‘%@))

we obtain

5,1 1 0 1 232 Y Y
u(t, z) — v(3,9) 6P(|z—-y|)_.€(t 8) el
< u(f,:“c)~v(§,1?)—%P(|a”c—g|)_ é(t“__g)z_T’)’_{_ ng'

By Lemma 3.7,

1 . 1 ¥
+ — — 2t = 8)? 4+ ——
4 (t,z) = EP(|‘c ah+ s(t 8) T —1

is an admissible test function which satisfies

max_(u—¢") = (u—¢*)({2).
(tlz)EQT

In the same way since ¥(%, 2,s,y) < ¥({, 2,3, §) holds,

s 1 . 1,.
u(t,8) = v(s,9) = ZP(1g~ o) = Z({ - 8)? = L= -

(i, ) = (5,8) = 2P(18 ~ ) — 2~ 8 - =1 - ~T

Hence,

p™(5,9) i= =2P(8 ~yl) - 2(i - 8)? = L

is an admissible test function which satisfies

s

min_(v—¢7) = (v—9¢7)3,9).
(5,9)€@T

1. In the case & = §.

Since Vot (f, 2) = Ve~ (3,9) = 0, the definitions of viscosity subsolution and supersolution yield the
following inequalities;

ol (6,2)= 2~ ) + (3.10)

o s



0r(5,9) = 2(F - 3) - T 20 (3.11)

Subtracting (3.10) from (3.11), we obtain

(th‘)z + (ng)z <. (3.12)

Thus we get a contradiction.

. In the case £ # §.
We set £ = (¢,2), 7= (s,y). Since w(£,n) — ®(¢,n) < w(, 4) — (¢, ),

() 4) s

A= ( S B )
Pne - By

with € = (, &), 7 = (5, 9), and

where <i>5 = Vg@(é 1), ‘i’ff = V%g@(é ,7) and so on. Applying the elliptic version of Crandall-Ishii’s
Lemma (c.f. {3], [4]), we see that

for all positive A, there exist X;,Y; € SV such that

(i)
(q)fa Xl) € mu({’ ';i"))
(85,1) € TPH(=0(5,9) i, (~8y, V1) € TP (u(3,9)).
(i) |
~GHADBve < (B9 ) saaa (3.13)

Here, ||A| denotes the operator norm of A. Since X;,Y; € SV*!, we can represent that

t t
_fa { _ b 'm
w=(f ) w=(a 3):

for some a,b € R, I,m € R and X3, Yy in V. By Corollary 3.6, we see
(éta éz‘;XZ) € ,PZ'+U({; 57)1 (_(i)s: _(i)ya _Y2) € ’PZ»-U(.;-, g)

Since u is a viscosity subsolution, we get

0> & + F(d,, X,) = 2({5‘ I (th)z + F(da, Xs). (3.14)
In the same way, we get
0<—b, + F(=b, —vy = 20=8) _ T . 5t F(&,,-Y). (3.15)
Subtracting (3.15) from (3.14), we get
L 4 F($,, X5) — F($s,~Y3) < 0. (3.16)
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From matrix inequality (3.13), we observe that X; + Y3 < O. Since F is degenerate elliptic we
observe that

0 2 75+F(8:,X) - F(§s,-Yy)
> o+ P, Xo) - F(&s, X1)
Y

We get a contradiction. Now we have completed the proof of Theorem 3.1.

Lemma 3.8 Let Q be a domain in RN not necessarily bounded and T > 0. Suppose that F satisfies
(F1) and (F2) and that F(F) # 0. Let u and v be upper semicontinuvous and lower semicontinuous on
[0,T)x Q. Suppose that u and v are a viscosity subsolution and a supersolution of (1.1) in Qr = (0,T)x L,
respectively. Set

u(T,z) := lim sup{u(s, y); (s,9) € Qr, |y — 2| +|s - T| < r},
v(T,z) := lim inf{v(s,y); (s,y) € Qr, ly — 2| + |s = T| < r}.

Then u and v are a viscosity subsolution and a supersolution of (1.1) in (0,T] x Q, respectively.

Proof. We only prove the subsolution case. Let ¢ € A(F) and let 2 = (T, §) satisfy

ce <p)(?) = (u—¢)(2).

We may assume that u — ¢ attains its strict maximum at 3. Then we shall show

{ ei(2) + F(Vo(2), V2p(2)) <0 if Vo(2) #0,

pi(2) <0 otherwise.

1. In the case V(%) # 0.

For sufficiently large n, there exists (t,,y,) € @7 such that
max |u - ! = (u — p)(t )— !
2€(0,T]xQ # n(T-1)) P nrUn n(T —t,)

with (¢,,yn) — % as n — oo. Thanks to Lemma 3.7, ¢ + _(TIT) € A(F). Since V¢ is continuous
n —
on Qr, Ve(tn,y,) # 0 for sufficiently large n. Moreover, u is a subsolution of (1.1) in Q7,

0

v

©1(tn, Un) + F(Vo(tn, Yn) VEP(tn, 1)) +

Sot(tm yn) + F(V‘P(tna yn)a sto(tm yn))-

1
n(T —1,)?

v

Letting n — oo yields
02 @i(2) + F(Vep(2), V2p(2)).

2. In the case V¢(2) = 0. Since p € A(F), there are § > 0, f € F(F) and w(r) € C[0, 00) satisfying
w(r) > 0 and w(r) = o(r) such that far all z = (t,z) € Qr if |z — 2| < § then

lp(2) = (2) — ()t = T)] < f(lz - 2]) + w(T - 2).

Set ¥(t,z) = pu(2)(t — T) + 2f(Jz — §]) + 20(T — t). We may assume that w(r) € C2[0,00),
w(0) = w'(0) = 0 and w(r) > 0 for all r > 0. Note that ¢ € A(F) and

max (u—v¥)(z) = (v —¢)(2)

2€(0,TIx )
8



with 2 = (T, §). As in the former case, there exists (tn,yn) € Qr such that

1 1
ze(%l,%(xn (u —v- n(T — t)) = (= ¢)tn,5n) - n(T —t,)
with (4,,yn) — % as n — o0. Set P,(t,z) = ¥(t,z) + ;(—Tl——t-)-’ then ¢, € A(F). We shall show

w1(2) < 0. We consider the following two cases.

(a) In the case Vi (tn,yn) # 0. Since u is a subsolution in Qr, we observe

0 > ("/)n)t(tn; Yn) + F(Vipn(tn, Yn); V2¢n(tm Yn))
1
wt(tn) yn) + m + F(VT/’(tmyn), Vz'/’(tm yn))
2 pi2) + 2 (T = 1) + F(2V£(lyn — 81), 2V f(lya — 3I))-
Since f € F(F), letting n — oo yields 0 > (2).
(b) In the case Vin(tn,yn) = 0. Since u is a subsolution in Qr, we observe
0 > ("/)n)t(tnayn)
1
= Yi(tn,yn) + AT—t)t

©1(2) + 2" (T ~ t,).

A\

v

Letting n — oo yields 0 > ¢¢(2).

Now we state the comparison principle for (1.1) when the domain Q is not necessarily bounded.

Theorem 3.9 Let Q be a domain in RY not necessarily bounded and T > 0. Suppose that F satisfies
(F1) and (F2) and that F(F) # 0. Let u and v be upper semicontinuous and lower semicontinuous on
[0,T) x Q, respectively. Let u and v be a viscosity sub- and super- solution of (1.1) in Qp, respectively.
Assume that '

lim sup{u(2) ~ v()l(2,€) € (8,Qr x (10, T) x Q) U((10,T) x Q) x 8,Qr), |z =¢| <r}<0. (3.18)

Then
lim sup{u(z) - o(¢)]z,¢ € [0,T) x T, |z ¢ < r} < 0.

Moreover, u < v in [0,T) x Q.

§4.y Existence of Solutions.

We shall construct a viscosity solution to the Cauchy problem of (1.1). We shall use Perron’s method
for this purpose. To apply Perron’s method, we shall construct a subsolution and a supersolution of (1.1)
- for a given initial data. In this section, we only prove the supersolution case, since the subsolution case
can be proved similarly. From the degenerate elliptic condition (F2), we have a sufficient condition that a
C? function to be a supersolution or a subsolution.

Lemma 4.1 Assume that F satisfies (F1) and (F2). Suppose that F(F) # 0. If u € C*(Qr) satisfies

{ ut(2) + F(Vu(z), Viu(2)) > 0 if Vu(z) #0,
u(2) >0 if Vu(z) =0,

<resp { ug(z) + F(Vu(z),v2u(z)) <0 ifVu(z) #0, )
. v ut(Z) <0 _ ifVu(z) =0

then u is a viscosity supersolution (resp. subsolution) of (1.1) in Qr.

9



Proof. Let ¢ € A(F) and let # satisfies Igin(u—tp) = (u—)(£). Then we have u; = ¢;, Vu = Vi, V3u >
T
Vipatz = 2.
In the case Vip(2) # 0, i.e., Vu(Z) # 0. By the assumptions and (F2), we obtain
0 < uy(2) + F(Vu(2), V2u(2) < i(2) + F(Vo(2), V().

In the case V(2) = 0, i.e., Vu(2) = 0. We know 0 < uy(2) = ¢(%). Thus u is a viscosity supersolutions
of (1.1) in Q.

We construct a viscosity supersolution and subsolutlon of (1.1) satisfying the assumption of Lemma
4.1. We introduce a set of function G;

= {g(r) € C?[0,00),9(0) = ¢ "0)=10,¢'(r) > 0if r >0, hm g(r) = o0}.

Note that g(|z]) € C2(R¥) if g € G. A direct calculation yields

e s (=440 (5).

Although V2g(|z|) does not appear to be continuous at z = 0, it is continuous. Indeed, VZg(0) = g"(0)I
!
g(r) = ¢"(0) by the definition of G.
Our goal is to construct a viscosity solution for a given initial data a. By Perron’s method it suffices
to construct a sub- and a supersolution for a given initial data. Since the constructions of a sub- and a
supersolution are similar procedures, we only explain the latter. To do this, we show in Lemma 4.2 that

uy(t,z) = B(e)t + A(e)g(|z]) with g € G could be a supersolution when we choose A, B > 0 in a suitable
way. Since the equation is invariant under the translation and additions of constants to Ug,

holds since lim
r—0

uye(t,2i€) = a(§) + Bt + Ag(lz — &) +¢
is also a supersolution, where £ € R" and ¢, 4, B > 0. We take A and B in a way so that

inf U4 ¢(0,z;€) = a(z).
o<e<1,6eRY ¢

By Proposition 2.5 the infimum of a family of supersolutions is also a supersolution;

U+(t,1') = inf U+'€(t,.’l!'€)
o<e<1,eeRY ’

is a des1red supersolution. We shall also show that our solution is bounded and uniformly continuous in
[0,T) x RY for each T' > 0 provided that a is bounded and uniformly continuous on R™. For this purpose
we have to work a little bit more. For example, we should check that the comparison theorem applies to
our solution.

Lemma 4.2 Assume that F satisfies (F1) and (F2) and that F(F) # 0. Suppose that g € G and A,B > 0
satisfy
F(V(Ag(|z])), V*(Ag(Iz]))) > =B for all = € (RV\{0}). (4.1)

Then uy(t,z) := Bt + Ag(|z|) is a viscosity supersolution of (1.1) in Qr.

Proof. Since uy(t,z) € C%(Qr), we only have to check that uy (t,z) satisfies

{ (ut)e(2) + F(V(ug)(2), V3 (ug )(2)) 2 0 if V(uy)(2) #0,
(u4)i(2) 20 if V(uy)(z) =0.

In the case V(uy)(z) # 0, i.e., V(Ag(]z])) # 0, which is equivalent to z # 0.

10



Assumption yields

(u4)e(2) + F(V(us)(2), V2(u4)(2)) = B + F(V(Ag(Jz])), V*(Ag(J=))) > 0.

In the case V(uy)(2) =0, i.e., V(Ag(Jz])) = 0.
We have (uy):(z) = B > 0. Applying Lemma 4.1, we prove u, is a viscosity supersolution of (1.1) in

Qr.

For the subsolution case, the condition (4.1) is replaced by

F(V(~Ag(lz)), V*(~4g(|z]))) < B for all z € (RV\{0}). (4.2)

Remark 4.3 For each g € G, there is § € G such that

1. g(r)y=g(r) for0<r<1.

2. rlg% §(r)>0, sup §'(r) < oo.
By this modification, § satisfies (4.1)(resp. (4.2)) if g satisfies (4.1) (resp. (4.2)) with increasing the value
of B if necessary.

We now consider the initial value problem;

w+ F(Vu, V) =0  inQr=(0,T) x RV, (4.3)
u(0, z) = a(z) on RV, (4.4)

where a(z) is a given continuous function on RY. We suppose additional assumptions on F.
(F3), There exists g € G such that for all A > 0, there is B > 0 such that (4.1) holds.
(F3)_ There exists g € G such that for all 4 > 0, there is B > 0 such that (4.2) holds.
For ¢, 4,B > 0 and for £ € RN we set ug ¢(t,2;¢) := a(§) £ Bt+ Ag(jz — €]) £ e withg € G.

Lemma 4.4 Suppose that a(z) is a given bounded uniformly continuous function on RY ; a(z) € BUC(RY).
For all e with 0 < e <1 and for each § € RV, there ezist A(€) > 0 and B(e) > 0 such that

uy ¢(0,z;€) > a(z) for allz e RV, (4.5)

and ,
inf uy ¢(0,2;¢) < a(z)+¢ for allz € RV. (4.6)
¢eRY

Proof.- It is easy to show (4.6). We put z = ¢ in the left side of (4.6) and observe that

inf uy¢(0,6;6) = inf a(f)+e<a(z)+e. 4.7
el +£(0,&;¢) o (€) (z) (4.7)

To prove the inequality (4.5), we have to show the existence of A(e) such that
la(2) = a(§)] < A(e)g(lz - €]) +e. (4.8)

Since a € BUC(RY), there exists a bounded modulus function m (i.e., m : [0,00) — [0, 00) is continuous,
nondecreasing and m(0) = 0) such that

la(2) — ay)| < m(jz — yl) for all 2,y € RV (49)
We set 7 := min{r > 0;m(r) = ¢}. Since m is bounded, we can choose A(¢) so that

Ag(F) + € > sup m(r). (4.10)
r>0

Thus we obtain (4.8) and the inequality (4.5) is proved. |

Although we do not give a proof, we conclude a lemma such Lemma 4.4 for the subsolution case.
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Lemma 4.5 Suppose that a(z) € BUC(RY). For all e with 0 < e < 1 and for each £ € RN, there ezist
A(€) > 0 and B(e) > 0 such that

u_g(0,2;¢) < a(z) forallz € RV, (4.11)

and
sup u_¢(0,2;¢) > a(z) —€ for allz e RV, (4.12)
¢eRY

Combining Lemma 4.2, Lemma 4.4 and Lemma 4.5, we shall construct a supersolution and a subsolution
satisfies the given initial data. ‘

Lemma 4.6 Assume that F satisfies (F1), (F2), and (F3); and that F(F) # 0. Suppose that a(z) €
BUC(RY). Then for all T > 0, there ezist Uy, U-:[0,T) x RN = R such that Uy is a supersolution of
(1.1), U~ is a subsolution of (1.1) and (U1)+(0,2) = (U-)*(0,2) = a(z). Moreover, Uy(t,z) > U_(t,z)
in [0,T) x RV,

Proof. ~ We shall prove the supersolution case. Applying Lemma 4.2, we see that uy e(t,z;€) is a
supersolution of (1.1). From Proposition 2.5

Up(t,z) ==inf{us ¢(t,z;¢);0 <e< 1,6 € RN}

is also a supersolution of (1.1). Applying Lemma 4.4 and (4.5), we observe that (U, )(0,z) > a(z) for
all z € RY. Moreover, we obtainl\gU.,.)*(O,z) > a(z) for all z € RY. By (4.5) and (4.6) we easily
see Uy(0,2) = a(z) for all z € . Since generally we know (U;).(0,2) < U4(0,&), we can prove
that (Uy).«(0,2) = a(z). Set U_(t,z) := sup{u_¢(t,2;¢);0 < ¢ < 1,6 € RV}, In the same way we
can prove the case of subsolutions. By the definitions of U} and U—, we see UL (t,z) > U4+(0,z) and
U-(0,2) > U_(t,z). Since we know U.(0,2) = a(z) = U_(0,z), we obtain Us(t,z) > U_(t,z) in
[0,7) x RV,

Lemma 4.7 Assume that F' satisfies (F1), (F2) and (F8), and that F(F) # 0. Suppose that a(z) €
BUC(RY). Let Uy and U_ be as in Lemma 4.6. Then there is a modulus function w such that

Us(t,z) —U_(0,y) <w(lz -yl +1) for allt € [0,T),z,y € RV, (4.13)
and k
Us(0,2) = U—(5,y) Sw(|z — y| + ) for all s €[0,T),z,y € RV, (4.14)

Moreoqer,
Ur(t,z) < oo, U_(t,z) > —0o in [0,T) x RV,

Proof. We shall prove only (4.13). By Lemma 4.6 we see
a(y) = U_(0,y) = U4(0,y) = inf{uy £(0,y;6);0 < e < 1, e RV},
This is equivalent to that for all § > 0 there are £(§) € RN and ¢(6) with 0 < £(6) < 1 such that

a(y) > uy ¢5)(0, y;(8)) — 6.

By Remark 4.3 g is global Lipschitz continuous. Then L denotes the Lipschitz constant. By the definition
of Uy we observe that

Us(t,2) — a(y) Uy (t, ) — ut g6)(0,9;€(6)) + 6
Uy e(8) (2, 256(6)) — uy ¢6)(0,y;€(6)) + 6
- Ale())t + A(e(8)) (g(lz = £(B)]) — 9(ly — E(B))) + &
A(e(8))t + LA(E(S)) |z —y| + 6
max{1, L}A((6))(t + |z — y|) + 6.
12
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Forall 7> 0,6 >0and A> 0 we set L
Fs(r)=6+ Ar
and '

w(r) =inf{fs(r);0< 6 < 1,7 > 0}.

Then w with 4 = max{1, L}A(e(6)) is a desired modulus function. Indeed, w is continuous on [0, o),
nondecreasing and w(0) = 0. In the same way we can prove (4.14). We shall prove the boundedness of
U4(t,z). Putting y = z in (4.13), we obtain U, (2,z) < a(z) +w(t). For all T > 0 we see

U(t,z) < sup a(z)+w(T)< ocoin [0,T) x RV,
::ERN

We can prove the boundedness of U/_ similarly. , |
Using Perron’s method we obtain the existence of a viscosity solution of (4.3) and (4.4).

Theorem 4.8 Suppose that F satisfies (F1), (F2) and (F3)+ and that F(F) # 0. Assume that a(z) €
BUC(R™). Then there ezists a (unique) viscosity solution u € BUC([0,T) x RY) of (4.8) and (4.4).

Here we consider

uy — [Vl ~2trace {(1 +( - 2)%"%’1)%} =0 mQr=0T)xRY,  (415)
u(0,2) = a(z) on RN (4.16)

with 1 < p < 2, p’ > 1. This equation (4.15) is given by
F(q,X) = —|q|P~2trace {(I + (' -2) q|:18|)2q )X} o (41

in (4.3). Note that if p’ = p this is nothing but the p-Laplace diffusion equation. We take g(r)= P—;lr?ﬂ_l €
G to conclude the following,

Lemma 4.9 Let F be defined by (4.17). Then F satisfies (F3)4.

Proof. Note that if Vg(|z[) # 0 (i.e., |z| # 0), then

F(Vg(l=l), vg(|z])) = ~g'(|zl)*~ {(p’ - Dg"(lel) + ug'(lwl)} :

|=|

. /
Choose B > (%———11 +N - 1) AP~ we observe that (F3). are fullfiled. N

For F of (4.17) we know f(r) = r'*? with ¢ > ﬁ > 1is a function of F(F). Now we conclude the
following corollary.

Corollary 4.10 Assume that a(z) € BUC(RY). Then there ezists a (unique) viscosity solution u €
BUC([0,T) x RY) of (4.15) and (4.16).

Also Theorem 4.8 is applicable to (4.15) and (4.16) with p > 2, p’ > 1. For this purpose we only prove
Lemma 4.9 for p > 2, p > 1.

Lemma 4.11 Let F be defined by (4.17) p> 2, p' > 1. Then F satisfies (F3),.

Proof. We choose g(r) = r — arctan(r) € G, where arctan(r) denotes arc tangent of ». Note that if
Vg(lal) # 0 (i.e., |z] # 0), then

22 \P? z z
F(Tg(la)). Pe(el) = - (2 = {o - 1) gy + (V- e (4.18)
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Since (4.18) is continuous,

Jim P(Vg(e), V9((el)) =0 and  Tim F(Vg(jal), Vg(jz]) =

we know F(Vg(|z|), V2¢(|z|)) is bounded on RV . Set

Clo,/,N) = max F(Vg(Jal), Vg(jz)).
.‘L‘ER
Choose B > AP=1C(p,p’, N), we observe that (F3), are fullfiled. ]

Remark 4.12 In the literature on the p-Laplace diffusion equation, many authors have studied and they
dealt with the solutions defined in distribution sense. It is crucial to define them that the equation has
divergence structure. But our definition of viscosity solutions does not depend on such like structure of the
equation. Indeed, (4.15) does not depend on the divergence structure if p' # p.

Remark 4.13 If F satisfies (F1) and (F2) and F is geometric in the sense of [2], then the conclusion of
Theorem 4.8 holds. Indecd, if F' satisfies (F1) and (F2) and F is geometric, then F(F) # @ (see [12]). By
laking an f € F(F) as a function in G, then F satisfies (F3)s.

Remark 4.14 If p > 2, then there is a standard definition of viscosity solutions in [{]. We wonder
whether or not our definition of solutions agree with the usual one. For example 1t is not diffcult to prove
that both defintions are equivalent although we do not present the proof here.

§5. Separable Solution.

Throughout this section, we only consider the Dirichlet boundary problem of the p-Laplace diffusion
equation (1.2) with one space variable. Rescaling the space variable to simplify the equation, we consider
of the form

ur = Uz [P 2uge,  (t,2) €(0,T) x (0,1), (5.1)
u(t,0) =u(t,1) =0, tel0,T), ' (5.2)

where 1 < p < 2. We seek a non-negative separable solution of the form
u(t,z) = U(z) - A(2), (56.3)

where U(z) and A(t) are assumed to be a non-negative C? function and a C* function, respectively.
Thus, substituting (5.3) to (5.1), we get

Al"’(t)A’(t)‘: U~Y(2)|U'(z)[P~2U"(z) = const, (5.4)

Since U(0) = U(1) = 0 and U > 0, we get U”(z) < 0. Moreover, the following equations for U(z) and
A(t) hold;

AP+ A() = —c, (5.5)
U'(z) = —cU(2)|U"()[>? (5.6)

for some positive constant c. When U(z) = BU(z) and A(t) = S~1A(t), where § is a positive constant,
then U(z)A(t) = U(z)A(t) and

AP O () = 50" (=)P 0" 2) =~

in (5.5) and (5.6) without loss of generality. Integrating

. 1
By a suitable choice of 8, we may assume ¢ = 3

(5.5), we easily see that the separable solution is of the form

u(t,z) = (t. — )77 U(z), 0 <t < tu,
14



where t, > 0 is a positive constant (called the extinction time) and U(z) is a solution of the following
equatlon

U'(z) = —-zi—pU(m)|U'(z)|2‘P, U(x)>0, 0<z<1, (5.7)
U(©0) = U(1) = 0: (5.8)

We shall solve (5.7), (5.8).
Proposition 5.1 Suppose V(z) > 0 solves

Vi) = 5= V@@, 0ss<1, (59)
V(0) =0, (5.10)
V'(z) > 0 in a neighborhood of z = 0. (5.11)

1. Then there exists a positive number ¢, such that V'(z) > 0 for all 0 < & < 2., V'(2.) = 0 and that
V(z) solves (5.9) in 0 < z < z..

2. Furthermore, there exists z. such that z, < 1/2.
3. In the case z, < 1/2, ,
V(z), 0<z<z,,
U(z) = V(z), 2, <z <1-z,, (5.12)
Vil-2), 1-z.<2z<1
is a symmetric solution of (5.7), (5.8).

Proof.
1. Multiply both sides of (5.9) by (V'(z))?~! and integrate them from 0 to z to get

Vi(z) = (K? — ¢, V(2)?)%,

where ¢, = and K denotes V/(0). This equation is valid while z is sufficiently small.

P
. 22-p)
Integrating this yields
V(z) = K¢, P Wyl (K 5 ch ).

Here W, !(z) is the inverse function of a non-decreasing function W, such that

y 1
W (y) :=/0 (1-s%)"%ds, 0<y<1.

Note that the integral is convergent at y = 1 and we put W,(1) = Mp(< 00). To say the least this
representation of V is valid while & is small. We take the supremum of z at which the representation

of (K? — ch(:c)Z)r > 0 1s valid, which is denoted by «.. The value of z. can be written explicitly
as follows;

.= K55 ¢y 3 M, (5.13)
Then this z, satisfies all desired properties. '

2. By seeing (5.13), we see that 2, < 1/2 holds if we choose sufficiently large K.
3. Tt suffices to prove U given by (5.12) is C? across ¢ = z,, which holds since V'(z,) = V"(z,) = 0.
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Theorem 5.2 Set

t,—1)TFU(2), 0<t<t.,
u@m={( )TV, 0stst

with U in (5.12). Then u is a viscosity solution of (5.1)-(5.2) if and only if V(z) attains its unique
mazimum value (i.e., z, = 1/2).

Proof. Note that u; is continuous at ¢ = ¢, since 3 > 1. We easily see that u satisfies the conditions

to be a viscosity solution in the case ¢ > t,. So we consider the case < th. We see that if 2. < 1/2, then
u(t,z) = U(z) - A(t) is not a viscosity super solution. Indeed, we can choose an admissible test function
¢(t,z) such that u — ¢ attains its local minimum in (0,T) x (2.,1 — ,), where u; = ¢, < 0, which
contradicts the definition of viscosity supersolution.

In the case z, = 1/2, it is obvious that the u(t,z) = U(z) - A(¢) is a viscosity subsolution. To show
that u is a viscosity supersolution, we are going to show that for any admissible test function ¢, u — ¢
never attains its local minimum on z = 1/2, where u, = 0.

Suppose that u — ¢ attains its local minimum at (f,1/2). Then there exist f € F(F) and 6 > 0 such
that

le(t, =) — ¢(i,1/2)| < f(le - 1/2)) (5.14)
for all z such that |z —1/2| < §. Note that in this case, f € F(F) is equivalent to f(0) = f(0) = f'(0) =
0, f"(r) > 0 for all r > 0, and ‘
lim(£/(m)P2 - £(r) = 0. (5.15)

Since u — ¢ attains its minimum at (£,1/2) and (5.14) holds, we observe that
u@,1/2) —ult,2) = A@)-(U(1/2)-U(2))

(f,1/2) - o({, )
f(1/2- =) (5.16)

IN A

for z € [0,1/2].
Set g(r) := A(f) - (U(1/2) = U(1/2 — 7)) for r € [0,1/2] Then (5.16) is equivalent to

g(r) < f(r). (5.17)
On the other hand, We consider an inequality obtained by replacing f by ¢ in (5.15). Note that g(0) =0,
g'(r) = A[) - U'(1/2 =), ¢"(r) = —A{) - U"(1/2 - r)). Utilizing (5.7), we get
lim(g'(r))?~ - ¢"(r) = é—é—p A@PT-U(1/2) > 0. (5.18)
From (5.15) and (5.18) we see
(@' ()72 g"(r) > (F1()P 72 £(r) (5.19)

for all  such that 0 < r < § if a positive number § is sufficiently small. Integrating both sides from 0 with
respect to r, we get

1 1?1 1 ORNY b
— " . 5.20
L EOF > o) (5.20)
Hence ¢'(r) > f'(r) holds for sufficiently small r, we get
g(r) > f(r), ’ (5.21)
which contradicts (5.17). |
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Remark 5.3 A C? class function u can be a supersolution even if it violates

u(z) + F(Vu(z), Viu(2)) > 0, if Vu(z) £ 0, (5.22)
S u(2) >0, if Vu(z) = 0. (5.23)

Indeed, our u defined in Theorem 5.2 is a supersolution which does not satisfy (5.23). This is the reason
why we do not apply Lemma 4.1 to show that u is a supersolution.

Remark 5.4 The ezistence of the unique solution of (5.7) and (5.8) was proved by Otani [9], [10] in usual
weak solution sense.

§6. Stability of the Solution

In this section we are concerned with the stability of viscosity solutions; one of the basic properties
of viscosity solutions. We have in mind the p-Laplace diffusion equation. For functions u, : Qr —

R U {£o0} (n € N), where Q7 = (0,T) x ©, 2 ¢ R"; not necessarily bounded, we define T, u : Qr —
R U {0} by

) = limsupfunil— 2l < rn> 1), (6.1)

u(z) = lir%inf{u,,; K=2|<rn> %} (6.2)
We give a stability theorem as in [12].

Theorem 6.1 Assume that F and F, (n € N) satisfy (F1) and (F2) and that F, — F uniformly in any
compact set of (RV\{0}) x SN. Suppose that F(F) # 0 and F(F) C F(F,) for alln € N and that for all
f e F(F),

lim _ Fa(V§(le]), V3£ () = 0. (6.3)

lz|—=0,n—
Let un (n € N) be subsolutions (resp. supersolutions) of

%‘; + Fo(Vtn, V2u,) = 0 in Qp. (6.4)

Assume that U(z) < +0o (resp. u(2) > —oc) for all z € Qp. Then T (resp. u) is a subsolution (resp. a
supersolution) of (1.1) in Qrp.

Proof. We only prove a subsolution case, since a supersolution case can be proved similarly.

We take ¢ € A(F) and assume that maxq, (¥ — ) = (T — ¢)(%) with 2 = ({, 2). We may assume T — ¢
attains its strict maximum at 2. If V(%) # 0, standard argument yields the conclusion. We only have to
check that if V(%) = 0, then ¢4(2) < 0.

Since ¢ € A(F'), there exist § > 0, f € F(F) and w € C[0, 00) with w(r) = o(r) as r goes to zero such
that if [z — &|+ |t — {] < & then

lp(2) = ¢(2) — ()t ~ DI < f(le ~ &) + w(]t - £). (6.5)
We may assume that w € C?[0,0), w(0) = w’(0) = 0 and w(r) > 0 for all r > 0. Moreover, we set
sy =4 @), 720,
&(r) = { w(=r), r<O0.

Note that & € C?(R) and that &’(0) = 0. We choose a sequence {wp}n C C?(R) such that w,(r) and
wy,(r) uniformly converge to &(r), @'(r), respectively , on any compact set in R. and that wn(r) = o(r) and
wn(0) = w},(0) = 0. We set

»(t, ) ee(2)(t — 1) + 2f (|2 — &) + 25(t — 1), (6.6)

¥n(t, ) Pi(2)(t =) + 2f (|l — &[) + 2w, (t - 9). (6.7)

Note that @~ ¢ has its strict maximum at z = 2. Since w,(r) = o(r) and w'n(0) = 0, we know ¢, € A(F).
In view of Barles - Perthame’s Lemma (Lemma A.3 in [1]) we may assume that u* —i,, attains its maximum

at some point (¢n,25) with (t,,2,) goes to z as n — oo, since w, — & uniformly on any compact set in
R. Since u, is a subsolution, we have:
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1. In the case V¢ (tn,zn) # 0, i.c., zp # &. We get
1(2) + 2'n(tn — 1) + Fa(Vf(lza — 2]), V2 f(lzn — 2])) < 0.
Letting n — 0o and assumption (6.3) yield (%) < 0.
2. In the case Vifn(tn,2n) = 0, i.e., T, = &. We get

w1(2) + 2, (2, — ) < 0.

Letting n — oo, we obtain ¢;(2) < 0. |

We want to check that Theorem 6.1 is applicable to the p-Laplace diffusion equation (1.2) with 1 <
p < 2. We give an approximate equation of (1.1) by

Fo(g,X) = —|qlep'2trace I+(p-2 1%9 X
lql2 -

with |gle = (lgf* +€%)"/2, e = 1/n.
Proposition 6.2 Let F be as in (1.3) and let F, be as above. Then F(F) C F(F,) for alln € N, and
lim  F(VS(l]), V2 f(l2]) = 0

Jz|=0,n—400

Jor all f € F(F).

Proof. Let f € F(F), i.e.,
feC?0,00), f(0)=f(0)=f"(0)=0, b F(Vf(lz]), V2f(le[)) = 0
hold. Then we have
%f’(r)”~1 -0 asr—0, , (6.8)
IO >0 asr—0 (6.9)
with r = [z|. For such f € F(F), we have to show

Il}mo F.(Vf(lz]), V?f(lz])) = 0 for all n € N.
This is equivalent to
PO =0 asr o,
{1 +(p- 2)%} 'O =>0 asr—o0.
1f'(r)le
Since 1 : ]
SO <o (6.10)
and since (6.8) holds, we obtain
lim = /()7 ()17 = 0.

By the definition of | - |. and since 1 < p < 2, we observe that
(r)?
1+ (p—2
o)
18

<1l+4|p-2|-1, (6.11)




OIS < PP (6.12)
By (6.11), (6.12) and (6.9) we have ' k
'I(r')Z

im - "V F(p P—2=‘
L&LHP%F@m}fUVUh :

Thus we have proved F(F) C F(Fy) for all n € N. Next we shall verify for all f € F(F),
lim  Fu(VA(i), V(1)) = 0,

Ia:l—-O,n—»+

which is equivalent to

lim Sl =0 (6.13)
1 I(T)z 1" 1N P2
r—»légl-»o {1 +(p-2) HOE } f(nlf (r)|sp = 0. | (6.14)

From (6.10) and (6.8) we conclude (6.13) holds. Since (6.11), (6.12) and (6.9) hold, we also obtain (6.14).

Also Theorem 6.1 is applicable to the p-Laplace diffusion equation (1.2) with p > 2.
Proposition 6.3 Let F' be as in (1.3) and let F,, be as follows.

- ®
Fo(q,X) = —|qP~%trace {(I+ (r- 2)%)X} .
4

Then the conclusion of Proposition 6.2 holds.
The proof parallels that of Proposition 6.2.
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