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Abstract. Let p be a finite positive Borel measure on the closed unit disc D.
For each a in D, put

S(a) = inf [ |17 du

where f ranges over all analytic polynomials with f(a) = 1. This upper semicontinu-
ous function S(a) is called a Riesz’s function and studied in detail. Moreover several
applications are given to weighted Bergman and Hardy spaces.



§1. Introduction

Let D be the open unit disc in the complex plane C. P denotes a set of
all analytic polynomials and H denotes a set of all analytic functions on D. Suppose
0 < p < co. When p is a finite positive Borel measure on D and a € D, put

S(ur0) = S(up,a) = inf{ [ | { P du s f € P and f(a) = 1)
and
R(u,0) = B(,p,a) = sup{| () I f € Pand [ | du<1}.

When p is a finite positive Borel measure on D and a € D, put

() = s(,p,@) = inf{ [ | f P du; f € H and f(a) = 1)
and |
(@) = r(pp,0) = sup{| f(a) 5 fe Hand [ | f P du<1}.

The four functions S, R, s and r are called Riesz’s functions. In this paper we study these
four Riesz’s functions. M.Riesz used such functions to solve the moment problem on the
real line (cf. [6, Chapter 5]). T.Kriete and T.Trent [7] also investigated the relationship
between p and R(k,2,a). In the investigations of Riesz’s functions, the most fundamental
and important result is the following theorem by G.Szegd (cf. [5, Chapter 3]). He proved
it only when p = 2 but it can be proved for arbitrary p.

. Szego’s Theorem. Suppose 0 < p < oo, u is a finite positive Borel measure on
D with supp u C 0D and du/(d6/27) = w(e?).

Then,

S(pg,pya) = (1- | a |*)ezp(logw)”(a) (a € D)

) 27

A oy 1—|al?
where (logw)*(a) = [ logw(e”)
0

1= ae® |2

dé/2m.

It is most desirable to describe S(u, p, a) using p as in Szegé’s Theorem, when
{4 is an arbitrary measure on D. However such a problem is very difficult except for some
special measures p. In Section 2, we study the behaviour of S(u,p,a) as | a |- 1 for an
arbitrary measure on D. Moreover we note that S(u, p, a) R(p,p,a) =1 (e € D).
Thus we need to know only S or R. In this paper, the results and the proofs about s
and r are very similar to those about S and R. Hence we concentrate on only S or R in
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Sections 2, 3 and 4. Let m be the normalized area measure on D, that is, dm = rdrdf/x.
In Section 3, we give the several lower estimates of S using du/dm. It is more difficult to
give the upper estimates of 5. We do it only in very special cases. In Section 4, we show
that R(u,p,a) is not in L!(p) if supp p is not a finite set

Suppose 0 < p < oco. HP(u) denotes the closure of P in LP(u) when p is
a finite positive Borel measure on D. H?(y) is called a weighted Hardy space. If du =
df /2w, H?(u) = HP is the classical Hardy space. When p is a finite positive Borel measure
on D, then one defines L2(p) = H N LP(p). L?(p) is called a weighted Bergman space. If
p = m, LE(p) = L? is the usual Bergman space. H” can be embedded in H. L? = H?(m)
and hence L7 is closed. We are interested in the following questions : (1) When H?(u)
can be embedded in H ? (2) When L2(u) is closed ? (3) When H?(u) can be embedded
in L2(u) 7 Of course it is very interesting to know when L?(u) = HP(u), where 4 is a
measure on D. This problem is classical and important (cf. [2]). However, in this paper
we are not going to consider this problem. The problem (2) was studied by M.Yamada
[13]. If px is a measure on D, the problem (1) is equivalent to (3). Note that the measure
p for (2) satisfies (3). In Section 5, we study the three problems above. For example, for

some compact set K in D, if /D\Klongm > —oo then H?(u) can be embedded in H
where W = dpu/dm. This result follows from the lower estimate of S(, p,a) in Section 3.

In this paper, we will use the following notations. For each a € D, let ¢, be
the M&bius function on D, that is,

(z € D),

and put

Bla,z) = 5 zogl_tlLa(z_;_

|
= (2) ] (a,z € D).

For 0 <r < oo and a € D,
D.(a)={z€ D; B(a,z) <r}
be the Bergman disc with ‘center’ a and ‘radius’ r. For u € L}(m),
i(a) = /D uody(z)dm(z)  (a € D).

Then # may be bounded on D even if u is not bounded on D.



§2. Riesz’s function

If p = m, then for 0 < p < 00 S(m,p,a) = (1- | a |*)*. Hence p = m or
supp p C 0D, by Szegé’s Theorem lim S(u,p,re?) =0 a.e.f. In this section, we show

that this is true in general. In partlcular, R is not bounded on D. In fact, for arbitrary
¢, we show that 111’{1_ S(u,p,re?) = 0 except a countable set of 6.

Proposition 1. Suppose 0 < p < oo and p is a finite positive Borel measure.
Then the following are valid for R(a) = R(u,p,a) and S(a) = S(u,p, a).

(1) R(u,p,a) S(i,p,a) =1 for a € D, assuming co X 0 = 1.

(2) R(p) is lower semicontinuous on (0,00) x D, and S(x) is upper semicon-
tinuous on the same set. Moreover R(u,p,a) > 1/u(D) and S(u,p, a) < u(D).

(3) If logR or R is in L!(m), then for a € D

R(a) < ezp(logR)™(a) < R(a).
(4) If r < oo, then for a € D

o [1+s]a]\? 1
logR(a) < (1 —s , a |> m(Dr(a)) Dr(a))

where s = tanh r. Hence for a € D

logR(a) < (if:“') | togRam.

logRdm

These inequalities are also valid for R instead of logR.

(5) Fora € D,
S(,u,p,a) 2 S(S(;z)dm,p,a).
(6) R is not bounded on D and D.

Proof. (1) It is easy to see that 1 < R(a).S'(a) fora € D. If 1 < R(a)S(a),
then there exists a positive constant 4 such that 1 < 4 S(a) and v < R(a). Hence

1S7/|g|”duforanyg€Pwithg(a)=1andso

|f(a)IPS’Y/DIfI”d,uforannyP.

This implies v > R(a). This contradiction shows that 1 = R(a) S(a). (2) is clear by
(1). (3) If f € P, then log | f | is subharmonic on D and hence for any a € D,

g | £(0) < [[1og | 52 P S ),
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Assuming / | f |P du <1, by definition on R
(1=]a?)?
logR(a) < /DlogR(z) -2z ] S—————dm(2).

This implies R(a) < ezp(logR)~(a) < R(a). (4) 0 < r < oo, for any a € D,(0) and any
fep,
|a ?)?

P 1 P.(_l_:.___.mz
log | £(6) P< 5537 [ 0 O P T ()

and hence

0 a) | - 1+3|al>2 o Pdm
g 10) < s (K2l [ g7

where s = tanh r. This proof is same to that of [14, Proposition 4.3.8.]. Assuming
/ | F 1P di < 1, we get (4) as in (3). (5) By (1),

J1FPdu2S2) 1) P (z€D).

and hence/ | f P dp > / | f P S(u)dm. Assuming f(a) = 1 and a € D, we get

S(u,a) 2 S(S(u)dm,a). (6) If R(p,p,a) is bounded on D, then HP(u) C L*®(u). By [11,
Theorem 5.2], H?(u) is finitely dimensional. It is easy to see that supp u is a finite set.
Then trivially R(p,p,a) = oo except supp u. The proof of the statement for D is same
to that for D, assuming p = u | D.

Even if v is not bounded, ¥ may be bounded. However (3) and (6) of Propo-
sition 1 show that R is also not bounded The following theorem gives a stronger result.

Theorem 2. Suppose 0 < p < oo and p is a finite positive Borel measure. If
a € 0D, then the following are valid.

(1) p({a}) =0if and only if S(y,p,a) = 0.

(2) Tl_isn_S(u,p,ra) = 0 except a countable set of a in dD.

(3) If u({a}) = 0 and {a.} is a sequence in D with lim a, = a, then
nli_,rgos(l‘,l’a an) = 0.

(4) If p({a}) > 0, then for each n, theset {z€ D; |z—a|<1/n}n{z €
D; S(u,p,z) < 1/n} is a nonempty open set.

(5) fb<cand E={2€D; z=re?,0<r<1land b< 0 <c}, then R is
not bounded on E.

Proof. We may assume a = 1. (1) If p({1}) > 0, then | f(1) |P< / | £ P

du/u({1}) and so R(g,p,1) < 1/p({1}). (1) of Proposition 1 implies S(u,p,1) > 0.
Conversely suppose p({1}) =0. If z€ D and z # 1, then hm | (1—=1¢)/(z—1)|=0and



z—1

1-—-1
; —1]=]|=—=1|<1 (t>1).
z—1

For any t > 1,
Sup ) < [N =22 pue) = [ |2 - [ du(z).
= Up z—t D\{1} z —

Ast — 1, by the Lebesgue’s dominated convergence theorem, S(g,p,1) = 0. (2) Suppose
#({1}) = 0. If there exist a sequence {r,} and a pos1t1ve constant € such that 0 <r, <1
with r, — 1 and S(g,p,rs) > € > 0, then

| Fa) P2 [ 1P dpandso ) P< [ | 7P dp.

This implies S(y,p,1) > 0 and contradicts (1). Hence if g({1}) = 0, then TEqLS(u,p,r) =

0. This implies (2) because {a € 8D ; u({a}) > 0} is a countable set. (3) is clear by the
proof of (2). (4) Suppose ({1}) > 0 and for each n, put

- = 1
Gn={z€D; |z—1|<-71;}ﬂ{z€D; S(,u,p,z)<;}.

Since {z € 0D ; u({z}) > 0} is a countable set, for each n there exists b, € {z € 9D ;
lz—1]|< %} with u({b,}) = 0. Then S(u,p,b,) = 0 by (1) and hence G,, is not empty.

G, is a relatively open set in D by (2) of Proposition 1 and so G, N D is a nonempty
open set. (5) follows from (2). :

If R(p,2,a) < oo, then there exists k, in H?(p) such that f(a) =
/f(z)ka(z)du(z) for any f in H?*(p) and hence R(y,2,a) = / | k.(2) |* du(z). Thus
the results in this section give the informations about the reproducing kernel k,.

§3. Estimate of Riesz’s function

In this section we give upper and lower estimates of S. The lower ones will be
used later. The following proposition is a generalization of Szegé’s Theorem in Introduc-
tion. In fact, if p | D is a zero measure, then it gives Szegé’s Theorem.

“Proposition 3. Suppose 0 < p < oo and y is a finite positive Borel measure
such that (dy | 8D)/(d0/27) = w(e),u | D = Y a;6,; and L1~ | z; |) < oo. Let
b be a Blaschke product of {z;} and b; a Blaschke product of {z;}sx;. Then for all
a € D,(1- | a [*)ezp(logw)*(a) < S(u,p,a). If a € D\ {2}, then
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S(p,p,a) | ba) |77 (1— | a |2)e:z;p(logw‘)’\(a).

If a = z;, then

S(upya) <[ bi(a) 7P (1- | a [*)exp(logw)”(a) + a;.

In particular, S(g,p,a) > 0 if and only if logw € L*(d9).
Proof. Since S(x,p,a) > S(wdf/2x,p,a) for all a € D, by Szegd’s Theorem

(1- | a |*)exzp(logw)*(a) < S(u,p,a) for all a € D. Let B, be a finite Blaschke product
of {21,253, +,2,}. If a € D\ {2}, then

S(p,p,a)
< inf(f | 5 l"dul@D+ZJI (()) ()P 5 g€ Pend g(a) = 1)
1 p
= m—(—mf{/wm dulaD+J;ﬂaJ|B () Ploz) P geP
and g(a)=1}.
As n — oo,

S(uypya) < |—b(-(1;)—|;inf{ [lsPduloD; geP and ga)=1}.

Now by Szegd’s Theorem, for each a € D S(u,p,a) <| b(a) |77 (1— | a [2)ezp(logw)*(a).
Let Bj be a finite Blaschke product of {2, 2, -+, 2, }\{2;}. If @ = z; and n > j, then

S(u,p;a)
. B'n
< inf{[ | 522sg P dus g€ Pandgla) =1}
Jn
1

Bn@p {[ 1 Bing I? du | 8D + a; | Bynla) F
+ 3 ael| Bin(ze) Plg(z) IP ; g € P and g(a) =1}.

on+1

As n — oo, by Szegé’s Theorem, for a = z;,

S(wypa) <[ bi(a) |77 (1- | a [*)ezp(logw)*(a) + a;.

The following proposition is related to Theorem 2 in this paper and Theorem
in (7). In fact, if W is bounded on D, then (1— | a |2)~25(Wdm,p, a) is bounded on D.
Moreover if W is continuous on D, then for all e

8



lim (1~ | a [))R(Wdm,p,a) = 1/W(€?).

a—etf

Proposition 4. Suppose 0 < p < oo and p is a finite positive Borel measure on

(1) fa) 2 (S(w))*(a) (e € D).
(2) If dp = Wdm and a € D, then

.bi

(1= | a [*)%ezp(logW)™(a) < S(g,p,a) < (1— | a |*)*W(a).
(3) S(Wdm,a)=(1—|a|?>)2S(Wog,dm,0) for a € D.
Proof. (1) For all z € D
J 15 duzl f(z) P S(z) andso [ | fPdu> [|f P Sdm.

Ailssuming f(z) ={(1— | a|?)/(1 = az)*}*/? for a € D, ji(a) > S(a). (2) If logW € L}(m),
then

S(Wdm,p,a) =inf{[ | { P Wdm ; f € P and f(a) =1}

(1-lal?)?

. P —_
-2z dm ; g € H (Wo¢,dm) and ¢(0) = 1}

=inf{[ |9l Wog,
—(1-|a |2)2inf{/ | k[P Wododm ; k € HY(W o dodm) and k(0) = 1}
> (1= | a Peap [(logW)ogedm = (1- | a [*}eap(logW)* (o).

The inequality above is proved by two Jensen’s inequalities. (3) is clear by the proof of

(2)-

In (2) of Proposition 4, we can get estimates of S(u,p, a) as in Proposition 3

(e}

when dy = Wdm + ) _a;6,;, {zj} C D and Y (1— | z; |) < co. The following theorem is
J=1

important in this paper and the following lemma is used to prove it.

—Lemma 1. Let A;(a) be theset {z € D ; | (a—2)/(1 —@z) |< s} where a € D
and s € (0,1). If t € (0,1) and 1 — s? = (1— | a |?)(1 — ?)/5, then A;(0) C A,(a).

~ Proof. The Euclidean center and radius of A,(a) are



14 Re 1—]al?
—l—s"’lalza’ T 1—-s2]al?

C

S

respectively. Hence to prove A;(0) C A,(a), it is sufficient to show that

1-—s? 1—|a?
t4 —m—m L ——s,
T e S T

1—s?= (1= | a [)(1 - £2)/5, then

, . (=laP)a-#)
=T 5 [aP

and hence s? > {4 + (1— | a |2)t2}/(5— ] a |?). The last inequality is equivalent to

_ 2\ .2 _ 42
e lmlenE =)

1—3s

Then

_ o (I=laP)(s—1t) s+t _(1—-]a>)(s—1)
1-s"% 2 2 S Tal(tle|4D)

because s+t <2 and |a | (¢]|a|+1) < 2. This implies that

1-—s? 1—|al?
—_— < — 11
T e 1415 T s

t .
¥ =s'Tap?

~ Theorem 5. Suppose 0 < p < oo and p is a finite positive Borel measure on
D. Let du/dm = Wdm, K an arbitrary compact set in D and ¢t = maz{| z | ; z € K}.
Then, fora € D

‘ (=] a?P(1 -1 2*.5
S(y,p,a) 2 5 ea:p(l_ T2 PP = t2)/Kclog(W/\ 1)dm.

If1<p<ooandaé€D,then

1 12y30-1) 1 _ 21 L\
S(u,pya) > S e 7 71— 8) P(/}{W'?:fdm) .

24(1-“—,) . 52—%

Proof. By two Jensen’s inequalities, for a € D
S(u,p,a) 2 S(Wdm, p, a)
u ) 1— | a |2)2
= inf{[ g Wog, LLeD)

|1—az|¢

= (1=l aPinf{ [ | kP Wopsdm ; k(0)=1}

dm ; g(0) =1}

10



v

(1-]a |2)2/12rdr ea:p/%logWo¢ad0/27r
> (- JaPP-o) [ 2
> (1= [a )01~ ) cap-

= (I-|a[")*(1 - s*) exp

dr e:z:p/ logWo¢,db/2x

!
- / 2dr /0 logWogedf/2r

logWog,d
/D\As(m 29N ogadm

1—3s2

1 (1—lal?)”
— 1— 2\2 _ o2 ________d
(1-]a]®)*(1 s)ea:p 52/D\A(a)lo‘qW|1—c'zz|4 m

S _ 2\2 o2 (1=a?)? 1 W

2 (1= la (= &) eap g SQ/D\A’(Q)M A1)dm
where s € (0,1) and A,(a) = {z € D ; | (a — 2)/(1 — @z) |< s}. For each compact
set K C D,ift = maz{| z|; z € K} and 1 — s> = (1- | a |*)(1 — t?)/5, then
by Lemma 1 A0) C Ay(a). Hence K C A,(a) and so K° D D\A,(a). Thus, if
1-s®=(1-|a[*)(1 —t?)/5, then

(1= ]afy? 1 (lely 2
(I=Tal)® I-s2 (1= |aPP(l-2) ~ (- |a PP -£)
and hence for all a € D |

() 2 L I25)3(1 D e = a2|2)'3521 - tz)/xc’og(WA 1)dm

Now we will prove the second inequality. Instead of two Jensen’s inequalities,
we will use Kolmogoroff’s inequality (cf.[12, Theorem 4.3.1]). For a € D, if 1 < p < o0
and 1/p+1/q=1,

~S(w,p,a) ]
> (1-lay [ “ordr ( / (Woda)™ p-1d0/27r) :
> (1= |a [2)? /311 dr(/ (qusa)-;-—fdo/zT) .

-<)I'-l

> (1-]a |1 - (1 L 2rdr/ (Wog,)~ = d9/27r)

1
- (1_ 1+1 L !
= - laPR = ([ Wepy i)

( 1
= (1-|a Q- 1+%< -—(1—|a|)2dm)‘3
{

D\A (a) |1—az [

L o

(1-1]a]?)?

1-|a I)“ D\A, ()

o =

> (1-]a?(1 -5 W"T—Tdm}



1

L L
29 D\As(a)
where s € (0,1). As in the proof of the first inequality, for each compact set K C D, if
t=maz{|z]|; 2€ K} and 1 — s = (1— | a |*)(1 — ¢?)/5, then K¢ D D\A,(a). Thus, if
1-s=(1-]al?)(1 —~¢?)/5, thenforalla € D
1

1 1
(1= ] a [P0+ - 2)*e < - >'3
S(u,p,a) 2 peap /ch =Tdm) °.

The second inequality of Theorem 5 implies S(g,1,a) > (1~ | a [?)® x
(1 —?)(1/5)essinf{W(z) ; = € K°}. Let o be a finite positive Borel measure on
[0,1). p(re?) =o(r) x W(re??)df/2x is more general than Wdm = 2rdr x W (re®)df/2x.
If o(r) is singular to the Lebesgue measure on [0, 1], then g is singular to m. However
we can give an interesting lower estimate. It is different from that of Theorem 5 in case

of p = Wdm.

Theorem 6. Suppose 0 < p < oo and dp = o(r) x W(re)dd/2r where o(r) is
a finite positive Borel measure on [0, 1). If W(e) = supW (re”?) and W, (e?) = W (re*),

then for a € D

(1= 1a ) [ eanllogW.) a)do(r) < (s p,0)
< o1 inf {sup [ f(re®) P Wire)db/2r 5 fla) =1}
< o, ing {sup [ 1 flre®) P We)do/2m ; f(a) =1}
Proof. For a € D,
Sp,) = inf { [ o) [ | fre®) IP Wire)do2m ; f(a) =1}
> [Cao(r)yinf { [71 fre?) I Wire®)a0/2m 5 f(a) =1}
= [ oty ins {[71 ey P WireP)asf2n 5 (o) =1)

= [ (1=1aP) ezpllogW,\"(@)dor).

a|

We used Szeg6’s Theorem in the last equality. The upper estimates are trivial.

Corollary 1. Let du = o(r) x W(re')df/2x as in Theorem 6 and 0 < p < co.
(1) If W(re®) =1, then for a € D

12



(A=T1al)o(llal1]) < S(k,p,a) < (1= | a [*)o([0,1]).

In particular, S(u,p,0) = o({0,1]).
(2) If W(re®®) =| h(re') | for some outer function k in H*(df), then for a € D

(1= [ ) [ Wira)do(r) < S(up,0) < (1= |« YW (@)o ([0, 1)

(3) If1 < p < oo and W(e®) = supW (re®) satisfies the A, condition, then

.
there exists a positive constant 4 such that for a € D

S(u,p,0) < 7(1= | a |*) ezp(logW)"(a)o ([0, 1]).

Proof. (1) is a special case of (2). (2) Since k is an outer function in H?, for
a€D '

eap(logW,)(a) = exp(log | e [Ya) =| h(ra) |= W (ra)

and

inf {sup /21r | f(re®) |P W(reie)d0/27r}
= inf [T ] F(E) PR | d0/27 = (1= | a )| h(a) |= (1— |« YW (a).

Now Theorem 6 implies (2). (3) By a theorem of M.Rosenblum (cf. [10] and [9,
Theorem 2.2]), there exists a positive constant 5 such that for any f € P

27 . . 2T . .
sup [ | f(re®) P W(e®)d/2m <y [ | £(e2) P W(e®)do/2m
because W € A,. By Theorem 6 and Szegé’s Theorem, for a € D
inf {sup/27r | f(re®®) P W(eia)d0/27r} <4 inf/27r | f(e) |? W(e®)db/2r
f r JO - fJo

= v(1- | a |*)ezp(logW)"(a).
This implies (3).

§4. Carleson inequality and Riesz’s function

Let v and p be finite positive Borel measures on D and 1 < p < co. We say
that v and p satisfy the (v, u,p) - Carleson inequality, if there exists a constant v > 0
such that

13



sy £

for all f € P (see [8]). v and p satisfy the (v, p,p) - Carleson inequality if and only if
H?(p) C H?(v) and the inclusion mapping i, : H?(u) — HP(v) is bounded. We say that
for p > 1,v and u satisfy the (v, 4, p)-vanishing Carleson inequality if H?(x) C H?(v) and
ip + HP(u) — HP(v) is compact. We say that for p = 1, v and p satisfy the (v, p, p)-
vanishing Carleson inequality if ¢, is star-compact. We could not prove Theorem 7 for p =
1 because we do not know anything about the predual of H'(x). Using Riesz’s functions,
we will show vanishing Carleson inequalities. As a result, we show that R(y,p) & L*(1)
if supp p is not a finite set. Moreover, from given a measure pu, we will show how to
construct a measure v such that the (v, g, p) -vanishing Carleson inequality is valid.

Theorem 7. Suppose 1l < p < 00, and v and y are finite positive Borel measures

on D.
(1) It /R(,u,p)dll < 00, then v and p satisfy the (v, p, p)-vanishing Carleson

inequality and

R(pp,0) < ([R(u.p)dv) B(vpa)  (a € D).

(2)_ If V is a Borel function such that 0 < V < S on D, then V | g |Pis
bounded on D for each g in H?(x), and Vdm and p satisfy the (Vdm, u, p)-vanishing

Carleson inequality. ' )
Proof. (1) By definition of R(y,p,a), for a € D,

| f(a) P< R(up,a) [ 1P dp (£ € P).

Hence if v = /R(,u,p)dz/ < 00, then/ | f P dv < 7/ | f|P dp (f € P) and so

ip : HP(u) — HP(v) is bounded. We will show that i, is compact. If f, — f weakly in
H?(u), then there exists a finite positive constant 4’ such that

/lfn—f|”dug»/ for all .

By the Hypothesis, R(p,p,a) < oo v—a.e.onDandso f, » f v—a.e on D because
fn — f weakly. Moreover by definition of R(k,p,a),| fu(a) — f(a) |P< v'R(u,p,a) and
by the hypothesis, R(u,p,a) € L*(v). Thus

— /lfn—f|”du—+0 as n — 0o.

14



by the Lebesgue’s dominated convergence theorem. This implies 7, is compact. Since

| f]Pdv < 7/ | f|P dp and v = /R(,u,p)du, assuming f(a) = 1, we get S(v,p,a) <
v S(p,p,a). Now by (1) of Proposition 1, we get the inequality of (1). (2) If0 <V < S,
then VR < 1 and hence V(a) | f(a) |P is bounded on D by/ | f |P du, for each f € HP(y).

Moreover if v = Vdm and 0 < V < S, then /R(p,p)du < /dm =1 and hence by (1) v
and p satisfy the (v, y, p)-vanishing Carleson inequality.

Corollary 2. If 0 < p < co and supp p is not a finite set, then R(u,p) & L().

Proof. Suppose 1 < p < oco. If R(u,p) € L*(u), then the inclusion map
ip : HP(p) — HP(p) is compact. It is easy to see that ¢, is an identity operator.
Hence the unit ball of H?(yx) is compact with respect to the norm. Therefore H?(p) is
finitely dimensional. This contradicts that supp p is not a finite set. This implies that
R(p,p) ¢ L'(p). For 0 < p < 1, the proof is due to the referee. Choose n sufficiently
large that np > 1. If g(a) = 1 then g™(a) = 1 as well, and ¢" is a polynomial if g is a
polynomial. Thus,

S(u,pa)=inf{[ 1P du; fePfla)=1)
< inf{/D 9" [P dp; g € P, g(a) =1} = S(p,np, a).
This implies that R(y,p) ¢ L'(x) for 0 < p < 1.

Corollary 3. Suppose 1 < p < 0o and dp/dm =W

(1) If logW € L'(m) and dv = (1— | z |*)%exp(logW)~dm, then v and p
satisfy the (v, u, p) - vanishing Carleson inequality.

(2) If xkelog(WA1) € L}(m) for some compact set K in D, there exist positive
constant a and nonpositive constant b such that dv = a(1— | z |*)3{exp b(1— | z |*)3}dm
and p satisfy the (v, p, p)-vanishing Carleson inequality.

(3) Suppose Xk W™ T € L'(m) for some compact set K in D. If dv =

c(1-| =z |2)3(2_'117)dm, then v and p satisfy the (v, u, p)-vanishing Carleson inequality.

Suppose 1 < p < oo and dp/dm = W. If xxelogW € L*(m) for some compact
set K in D, there exist positive constant ¢ and nonpositive constant b such that

{a(l= 12 PP exp b1~z )} | f(2) P
is bounded on D for each f € H?(u). Here a and b do not depend on f. This is a corollary
of (2) in Theorem 7.

—
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§5. H?(p) and L5(p)

The following is a result of Theorem 5. If dp/dm = W and logW is integrable
on the complement K¢ of a compact set in D, then H?(u) € LP(p). In this section, we
show that if logW is locally integrable on K°, then the same result is true. We give a
necessary and sufficient condition for H?(u) C LZ(p) using Riesz’s function. Theorem 8
is a joint work with K.Takahashi. A subset E of D is a uniqueness set if F satisfies the
following : If f in H is zero on E, then f =0 on D.

Lemma 2. Suppose 0 < p < oo and y is a finite positive Borel measure on D.
Then, the following (1) ~ (3) are equivalent.
(1) sup R(g,p,a) < co for all compact set K in D.
a€K

(2) /KR(,u,p)dm < oo for all compact set K in D.
(3) /Klog R(p,p)dm < oo for all compact set K in D.

Proof. Both (1) = (2) and (2) = (3) are trivial. We will show (3) = (1). We
may assume that u(D) = 1. For any f € P,

log | 1(0) P s [ loa | £ P dm.

If a € D,(0), then for all f € P

(1- |a|2)2
l a) |? Po——dm.
og | £(0) P< g [ g 7 el
Assuming / | fIPdu <1, we get
o Rl a) <L (Elally .
o9 7.0) £ S 5y (a7 ™ 2

Since D,(a) C D2,(0) and R(u,p,a) > 1, for each a € D,(0) there exists a finite positive
constant 4, such that

log R(p,p,a) <7y / . o)log R(u,p)dm.

Do (

This implies (1).

e
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Lemma 3. Let X be a Banach space which consists of analytic functions on D
and contains 1. Suppose there exists a dense subspace Y of X such that if f in Y, then
(f — f(a))/(z — a) belongs to Y for some a in D. If (z — a)X is not dense in X, then the
functial f — f(a) is bounded.

Proof. By the hypothesis, if f € Y, then f = f(a) + (2 — a)g for some g € Y.
Since (z — a)X is not dense in X, there exists ¢ € X* such that < (z — a)h,¢ >= 0 for
all h € X but < 1,4 >5# 0. Hence, < f,¢ >= f(a) <1,¢ >. Thus | f(a) [< 4||f|| for all
f € X where vy =[<1,4 >|7" [|¢]..

Theorem 8. Suppose 1 < p < oo and p is a finite positive Borel measure on D
such that (supp p) N D is a uniqueness set for H.
(1) L2(p) is closed if and only if for all compact set K in D

| /Klog r(g,p)dm < oo or /Klog s(p,p)dm > —oo.

(2) HP(p) C L2(p) if and only if for all compact set K in D

/Klog R(p,p)dm < oo or /Klog S(g,p)dm > —oco.

Proof. (1) If f € L®(p), then (f — f(0))/z belongs to H. Since (f — f(0))/=
is bounded on | z |[< ¢t < 1 and 1/z is bounded on | z |> ¢,(f — f(0))/z belongs to LE(u).
This implies that {f € L2(x) ; f(0) = 0} = zLE(p) and hence L2(x) = C @ zLE(p).
If Af = zf for f € L?(p), then A is a bounded operator on L2(p) and the range of A
is complemented in LZ(x) by what was just proved. By [4, Part III, Corollary 2.3], the
range of A is closed and hence zL?(yx) is not dense in L?(u). Applying Lemma 3 with
X =Y = L%(u) and a = 0,r(¢,p,0) < oo follows. The same argument is true for all
a € D\{0} and hence r(y,p,a) < oo for all a € D. By the boundedness of holomorphic
functions on compact sets and the uniform boundedness principle, sufg r{p,p,a) < oo for

ag

all compact set K in D. As Lemma 2 is also for r(g, p, a),
/Klog r(u,p)dm < oo or /Klog s(p, p)dm > —o0.

Conversely, suppose /K log r(y,p)dm < oo for any compact set K. Then by
the above lemma, supy r(p,p) < oo for any compact set K. If f is in the LP(u)-norm
closure of L? (1), then there exists a sequence {f,} in L?(x) such that / | f=fa|P du — 0.

Then by hypothesis on r(u,p), sup{| f.(2) | ; z € D,(0)} < oo for each r < oo, Hence,
for each r < co there exists a subsequence {f, } in L2(x) and an analytic function g, on
D.(0) such that f.; — g, uniformly on D,(0). This implies that f = g, 4 — a.e. on D,(0)
for all r < 0. Thus ¢ = lim, g, is analyticon D and f =g g — a.e. on D.

(2) The ‘if’ part is same to (1) and hence we will show the ‘only if’ part. Put
M={feL(p); zf € H?(u)}, then M is a closed subspace of LP(u) such that
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M D H?(u) 2 zM 2 H(p)o

where H?(p)o = {f € H?(p) ; f(0) =0}. H?(u)o is well defined because H?(u) C L2(p).
Suppose HP(u) # zM. Then H?(p) = C+ HP(u)o = C+ zM and CNzM = {0}. Asin
the proof of (1), by [4, Part III, Corollary 2.3], zM is closed and hence zH?(1) is not dense
in H?(p). Applying Lemma 3 with X = H?(u),Y = P and a =0, R(y, p,0) < oo follows.
Suppose HP(u) = zM. Then 27! € L?(u) and hence p({0}) =0. f Af = zf for f € M,
then A is a one-one bounded operator from M onto H?(x). Therefore A is invertible and
hence A(zM) = zH?(p) is closed. Since HP(u) C LE(p), zHP(p) # HP(p) and hence by
Lemma 3, R(y,p,0) < oo follows. The same argument implies that R(u,p,a) < oo for all
a € D. Now, as in the proof of (1), Lemma 2 implies the ‘only if’ part of (2).

Corollary 4. Suppose 1 < p < oo and du/dm = W. If logW is locally
integrable on K for some compact set Ko in D, then LE(u) is closed and H?(u) C L2().
Proof. By (1) of Theorem 8, it is sufficient to prove that for any compact set
K in D,infg s(y,p) > —oo. If logW is integrable on K§, then by the proof of
Theorem 5 infx s(p,p) > —oo. For a more general W in this corollary, we have to
proceed as the following. Suppose a € D and 0 < € < § < 1. As in the proof of
Theorem 5, '

(i, p, )
§ 27
> (1-|a |2)2/ erp (/0 logW9¢ad0/27r) 2rdr

> (1o Y5 - e

1
logW og,d
62 — ¢g? /A6(0)\A¢(o) ogWed m)

22
> (1- | a P)X(8% - *)exp ((1_ T2 e =) Ag(a)\A,(a) log{W A 1)dm) .

Suppose K is an arbitrary compact set in D. Put t = maz{| z | ; 2 € Ko} and k =
maz{| z | ; z € K}. The Euclidean center and radius of A,(k) (0 < < 1) are

1 —~2 1—k?
Clv) = i‘j‘_‘:y‘{,;gk, R(M)1= el

respectively. Put £ = R(6) + C(é) and s = R(e) — C(e). There exist § and ¢ such that
AONAL(0) € D\ALO).
Then for all @ € K
— As(a)\Ae(a) C Ar(0)\AL(0).
Hence for all a € K
As(@)\A(a) C K

18



andsoforalla e K

S(#vP, a) > (1— | a |2)2(6,2 —52)6117}7 ((1_ I . |22)22(52 — 82)/Kglog(W/\ l)dm)

This shows the corollary.

We are very grateful to the referee who improved the exposition and pointed
out the errors in the first draft of this paper. In partictlar, Corollary 2 for 0 < p < 1 is
due to the referee.
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