Title	Riesz's Functions In Weighted Hardy And Bergman Spaces
Author(s)	Nakazi, T.; Yamada, M.
Citation	Hokkaido University Preprint Series in Mathematics, 284, 1-20
Issue Date	1995-3-1
DOI	10.14943/83431
Doc URL	http://hdl.handle.net/2115/69035
Туре	bulletin (article)
File Information	pre284.pdf

Riesz's Functions In Weighted Hardy And Bergman Spaces

T. Nakazi and M. Yamada

Series #284. March 1995

HOKKAIDO UNIVERSITY

PREPRINT SERIES IN MATHEMATICS

- # 259 K. Iwata, J. Schäfer, Markov property and cokernels of local operators, 7 pages. 1994.
- # 260 T. Mikami, Copula fields and its applications, 14 pages. 1994.
- # 261 A. Inoue, An Abel-Tauber theorem for Fourier sine transforms, 6 pages. 1994.
- # 262 N. Kawazumi, Homology of hyperelliptic mapping class groups for surfaces, 13 pages. 1994.
- # 263 Y. Giga, M. E. Gurtin, A comparison theorem for crystalline evolution in the plane, 14 pages. 1994.
- # 264 J. Wierzbicki, On Commutativity of Diagrams of Type II₁ Factors, 26 pages. 1994.
- # 265 N. Hayashi, T. Ozawa, Schrödinger Equations with nonlinearity of integral type, 12 pages. 1994.
- # 266 T. Ozawa, On the resonance equations of long and short waves, 8 pages. 1994.
- # 267 T. Mikami, A sufficient condition for the uniqueness of solutions to a class of integro-differential equations, 9 pages. 1994.
- # 268 Y. Giga, Evolving curves with boundary conditions, 10 pages. 1994.
- # 269 A. Arai, Operator-theoretical analysis of representation of a supersymmetry algebra in Hilbert space, 12 pages. 1994.
- # 270 A. Arai, Gauge theory on a non-simply-connected domain and representations of canonical commutation relations, 18 pages. 1994.
- # 271 S. Jimbo, Y. Morita and J. Zhai, Ginzburg landau equation and stable steady state solutions in a non-trivial domain, 17 pages. 1994.
- # 272 S. Izumiya, A. Takiyama, A time-like surface in Minkowski 3-space which contains light-like lines, 7 pages.

 1994.
- # 273 K. Tsutaya, Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations, 11 pages. 1994.
- # 274 H. Kubo, On the critical decay and power for semilinear wave equations in odd space dimensions, 22 pages.
 1994.
- # 275 N. Terai, T. Hibi, Alexander duality theorem and second Betti numbers of Stanley-Reisner rings, 2 pages.
 1995.
- # 276 N. Terai, T. Hibi, Stanley-Reisner rings whose Betti numbers are independent of the base field, 12 pages.
 1995.
- # 277 N. Terai, T. Hibi, Computation of Betti numbers of monomial ideals associated with cyclic polytopes, 11 pages. 1995.
- # 278 N. Terai, T. Hibi, Computation of Betti numbers of monomial ideals associated with stacked polytopes, 8 pages. 1995.
- # 279 N. Terai, T. Hibi, Finite free resolutions and 1-skeletons of simplicial (d-1)-spheres, 3 pages. 1995.
- # 280 N. Terai, T. Hibi, Monomial ideals and minimal non-faces of Cohen-Macaulay complexes, 6 pages. 1995.
- \$ 281 A. Arai, N. Tominaga, Analysis of a family of strongly commuting self-adjoint operators with applications to perturbed d'Alembertians and the external field problem in quantum field theory, 44 pages. 1995.
- \$\pm\$ 282 T. Mikami, Asymptotic behavior of the first exit time of randomly perturbed dynamical systems with a repulsive equilibrium point, 29 pages. 1995.
- 283 K. Iwata, J. Schäfer, Markov property and cokernels of local operators, 17 pages. 1995.

Riesz's Functions In Weighted Hardy And Bergman Spaces

by

Takahiko Nakazi *

and

Masahiro Yamada

Dedicated to Professor Fumi-Yuki Maeda on his sixtieth birthday

Department of Mathematics

Hokkaido University

Sapporo 060, Japan

AMS Subject Classification(1991): Primary 46 E 15, 30 A 98; Secondary 47 B 20

Key Words And Phrases: Hardy space, Bergman space, weight, Riesz's function, Carleson inequality

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Abstract. Let μ be a finite positive Borel measure on the closed unit disc \bar{D} . For each a in \bar{D} , put

$$S(a) = \inf \int_{\mathcal{D}} \mid f \mid^p d\mu$$

where f ranges over all analytic polynomials with f(a) = 1. This upper semicontinuous function S(a) is called a Riesz's function and studied in detail. Moreover several applications are given to weighted Bergman and Hardy spaces.

§1. Introduction

Let D be the open unit disc in the complex plane C. P denotes a set of all analytic polynomials and H denotes a set of all analytic functions on D. Suppose $0 . When <math>\mu$ is a finite positive Borel measure on \overline{D} and $a \in \overline{D}$, put

$$S(\mu, a) = S(\mu, p, a) = \inf\{\int_{D} |f|^{p} d\mu \; ; \; f \in P \text{ and } f(a) = 1\}$$

and

$$R(\mu, a) = R(\mu, p, a) = \sup\{|f(a)|^p ; f \in P \text{ and } \int_{\bar{D}} |f|^p d\mu \le 1\}.$$

When μ is a finite positive Borel measure on D and $a \in D$, put

$$s(\mu,a) = s(\mu,p,a) = \inf\{ \int_D \mid f \mid^p d\mu \ ; \ f \in H \ \text{and} \ f(a) = 1 \}$$

and

$$r(\mu, a) = r(\mu, p, a) = \sup\{|f(a)|^p \; ; \; f \in H \text{ and } \int_D |f|^p d\mu \le 1\}.$$

The four functions S, R, s and r are called Riesz's functions. In this paper we study these four Riesz's functions. M.Riesz used such functions to solve the moment problem on the real line (cf. [6, Chapter 5]). T.Kriete and T.Trent [7] also investigated the relationship between μ and $R(\mu, 2, a)$. In the investigations of Riesz's functions, the most fundamental and important result is the following theorem by G.Szegő (cf. [5, Chapter 3]). He proved it only when p=2 but it can be proved for arbitrary p.

Szegő's Theorem. Suppose $0 , <math>\mu$ is a finite positive Borel measure on \bar{D} with supp $\mu \subseteq \partial D$ and $d\mu/(d\theta/2\pi) = w(e^{i\theta})$.

Then,

$$S(\mu, p, a) = (1 - |a|^2) exp(log w)^{\wedge}(a)$$
 $(a \in D)$

where
$$(log w)^{\wedge}(a) = \int_0^{2\pi} log w(e^{i\theta}) \frac{1 - |a|^2}{|1 - \bar{a}e^{i\theta}|^2} d\theta / 2\pi$$
.

It is most desirable to describe $S(\mu, p, a)$ using μ as in Szegő's Theorem, when μ is an arbitrary measure on \bar{D} . However such a problem is very difficult except for some special measures μ . In Section 2, we study the behaviour of $S(\mu, p, a)$ as $|a| \to 1$ for an arbitrary measure on \bar{D} . Moreover we note that $S(\mu, p, a)$ $R(\mu, p, a) = 1$ $(a \in \bar{D})$. Thus we need to know only S or R. In this paper, the results and the proofs about s and r are very similar to those about S and R. Hence we concentrate on only S or R in

Sections 2, 3 and 4. Let m be the normalized area measure on D, that is, $dm = rdrd\theta/\pi$. In Section 3, we give the several lower estimates of S using $d\mu/dm$. It is more difficult to give the upper estimates of S. We do it only in very special cases. In Section 4, we show that $R(\mu, p, a)$ is not in $L^1(\mu)$ if $supp \mu$ is not a finite set

Suppose $0 . <math>H^p(\mu)$ denotes the closure of P in $L^p(\mu)$ when μ is a finite positive Borel measure on \bar{D} . $H^p(\mu)$ is called a weighted Hardy space. If $d\mu =$ $d\theta/2\pi$, $H^p(\mu) = H^p$ is the classical Hardy space. When μ is a finite positive Borel measure on D, then one defines $L_a^p(\mu) = H \cap L^p(\mu)$. $L_a^p(\mu)$ is called a weighted Bergman space. If $\mu = m, L_a^p(\mu) = L_a^p$ is the usual Bergman space. H^p can be embedded in H. $L_a^p = H^p(m)$ and hence L_a^p is closed. We are interested in the following questions: (1) When $H^p(\mu)$ can be embedded in H? (2) When $L_n^p(\mu)$ is closed? (3) When $H^p(\mu)$ can be embedded in $L_a^p(\mu)$? Of course it is very interesting to know when $L_a^p(\mu) = H^p(\mu)$, where μ is a measure on D. This problem is classical and important (cf. [2]). However, in this paper we are not going to consider this problem. The problem (2) was studied by M.Yamada [13]. If μ is a measure on D, the problem (1) is equivalent to (3). Note that the measure μ for (2) satisfies (3). In Section 5, we study the three problems above. For example, for some compact set K in D, if $\int_{\bar{D}\setminus K} logWdm > -\infty$ then $H^p(\mu)$ can be embedded in H where $W = d\mu/dm$. This result follows from the lower estimate of $S(\mu, p, a)$ in Section 3. In this paper, we will use the following notations. For each $a \in D$, let ϕ_a be the Möbius function on D, that is,

$$\phi_a(z) = \frac{a-z}{1-\bar{a}z} \qquad (z \in D),$$

and put

$$\beta(a,z) = \frac{1}{2} \log \frac{1+|\phi_a(z)|}{1-|\phi_a(z)|} \quad (a,z \in D).$$

For $0 < r \le \infty$ and $a \in D$,

$$D_r(a) = \{ z \in D ; \beta(a, z) < r \}$$

be the Bergman disc with 'center' a and 'radius' r. For $u \in L^1(m)$,

$$\tilde{u}(a) = \int_{D} u \circ \phi_{a}(z) dm(z) \qquad (a \in D).$$

Then \tilde{u} may be bounded on D even if u is not bounded on D.

§2. Riesz's function

If $\mu = m$, then for $0 <math>S(m, p, a) = (1 - |a|^2)^2$. Hence $\mu = m$ or $supp \ \mu \subseteq \partial D$, by Szegő's Theorem $\lim_{r \to 1^-} S(\mu, p, re^{i\theta}) = 0$ a.e. θ . In this section, we show that this is true in general. In particular, R is not bounded on D. In fact, for arbitrary μ , we show that $\lim_{r \to 1^-} S(\mu, p, re^{i\theta}) = 0$ except a countable set of θ .

Proposition 1. Suppose $0 and <math>\mu$ is a finite positive Borel measure. Then the following are valid for $R(a) = R(\mu, p, a)$ and $S(a) = S(\mu, p, a)$.

(1) $R(\mu, p, a)$ $S(\mu, p, a) = 1$ for $a \in \overline{D}$, assuming $\infty \times 0 = 1$.

(2) $R(\mu)$ is lower semicontinuous on $(0, \infty) \times D$, and $S(\mu)$ is upper semicontinuous on the same set. Moreover $R(\mu, p, a) \geq 1/\mu(\bar{D})$ and $S(\mu, p, a) \leq \mu(\bar{D})$.

(3) If log R or R is in $L^1(m)$, then for $a \in D$

$$R(a) \le exp(log R)^{\sim}(a) \le \tilde{R}(a).$$

(4) If $r < \infty$, then for $a \in D$

$$log R(a) \le \left(\frac{1+s\mid a\mid}{1-s\mid a\mid}\right)^2 \quad \frac{1}{m(D_r(a))} \int_{D_r(a)} log R dm$$

where $s = \tanh r$. Hence for $a \in D$

$$log R(a) \le \left(\frac{1+\mid a\mid}{1-\mid a\mid}\right)^2 \int_D log R dm.$$

These inequalities are also valid for R instead of log R.

(5) For $a \in D$,

$$S(\mu, p, a) \ge S(S(\mu)dm, p, a).$$

(6) R is not bounded on D and \bar{D} .

Proof. (1) It is easy to see that $1 \leq R(a)S(a)$ for $a \in \overline{D}$. If 1 < R(a)S(a), then there exists a positive constant γ such that $1 \leq \gamma$ S(a) and $\gamma < R(a)$. Hence $1 \leq \gamma \int |g|^p d\mu$ for any $g \in P$ with g(a) = 1 and so

$$\mid f(a)\mid^p \leq \gamma \int_{\bar{D}} \mid f\mid^p d\mu \text{ for any } f \in P.$$

This implies $\gamma \geq R(a)$. This contradiction shows that 1 = R(a) S(a). (2) is clear by (1). (3) If $f \in P$, then $\log |f|$ is subharmonic on D and hence for any $a \in D$,

$$\log |f(a)|^p \le \int_D \log |f(z)|^p \frac{(1-|a|^2)^2}{|1-\bar{a}z|^4} dm(z).$$

Assuming $\int |f|^p d\mu \le 1$, by definition on R

$$log R(a) \le \int_{D} log R(z) \frac{(1-|a|^{2})^{2}}{|1-\bar{a}z|^{4}} dm(z).$$

This implies $R(a) \leq exp(\log R)^{\sim}(a) \leq \tilde{R}(a)$. (4) If $0 < r < \infty$, for any $a \in D_r(0)$ and any $f \in P$,

$$\log |f(a)|^{p} \leq \frac{1}{m(D_{r}(0))} \int_{D_{r}(a)} \log |f(z)|^{p} \frac{(1-|a|^{2})^{2}}{|1-\bar{a}z|^{4}} dm(z)$$

and hence

$$\log |f(a)|^p \le \frac{1}{m(D_r(a))} \left(\frac{1+s|a|}{1-s|a|}\right)^2 \int_{D_r(a)} \log |f|^p dm$$

where $s = \tanh r$. This proof is same to that of [14, Proposition 4.3.8.]. Assuming $\int |f|^p d\mu \le 1$, we get (4) as in (3). (5) By (1),

$$\int |f|^p d\mu \geq S(\mu, z) |f(z)|^p \qquad (z \in D).$$

and hence $\int |f|^p d\mu \ge \int |f|^p S(\mu)dm$. Assuming f(a) = 1 and $a \in D$, we get $S(\mu, a) \ge S(S(\mu)dm, a)$. (6) If $R(\mu, p, a)$ is bounded on \bar{D} , then $H^p(\mu) \subset L^{\infty}(\mu)$. By [11, Theorem 5.2], $H^p(\mu)$ is finitely dimensional. It is easy to see that $supp \ \mu$ is a finite set. Then trivially $R(\mu, p, a) = \infty$ except $supp \ \mu$. The proof of the statement for D is same to that for \bar{D} , assuming $\mu = \mu \mid D$.

Even if v is not bounded, \tilde{v} may be bounded. However (3) and (6) of Proposition 1 show that \tilde{R} is also not bounded. The following theorem gives a stronger result.

Theorem 2. Suppose $0 and <math>\mu$ is a finite positive Borel measure. If $a \in \partial D$, then the following are valid.

- (1) $\mu(\{a\}) = 0$ if and only if $S(\mu, p, a) = 0$.
- (2) $\lim_{r\to 1^-} S(\mu, p, ra) = 0$ except a countable set of a in ∂D .
- (3) If $\mu(\{a\}) = 0$ and $\{a_n\}$ is a sequence in D with $\lim_{n \to \infty} S(\mu, p, a_n) = 0$.
- (4) If $\mu(\{a\}) > 0$, then for each n, the set $\{z \in D : |z-a| < 1/n\} \cap \{z \in D : S(\mu, p, z) < 1/n\}$ is a nonempty open set.
- (5) If b < c and $E = \{z \in D ; z = re^{i\theta}, 0 \le r < 1 \text{ and } b \le \theta \le c\}$, then R is not bounded on E.

Proof. We may assume a = 1. (1) If $\mu(\{1\}) > 0$, then $|f(1)|^p \le \int |f|^p d\mu/\mu(\{1\})$ and so $R(\mu, p, 1) \le 1/\mu(\{1\})$. (1) of Proposition 1 implies $S(\mu, p, 1) > 0$. Conversely suppose $\mu(\{1\}) = 0$. If $z \in \bar{D}$ and $z \ne 1$, then $\lim_{t \to 1+} |(1-t)/(z-t)| = 0$ and

$$\left| \frac{z-1}{z-t} - 1 \right| = \left| \frac{1-t}{z-t} \right| < 1 \quad (t > 1).$$

For any t > 1,

$$S(\mu, p, 1) \leq \int_{\bar{D}} |1 - \frac{z - 1}{z - t}|^p d\mu(z) = \int_{\bar{D} \setminus \{1\}} |\frac{1 - t}{z - t}|^p d\mu(z).$$

As $t \to 1$, by the Lebesgue's dominated convergence theorem, $S(\mu, p, 1) = 0$. (2) Suppose $\mu(\{1\}) = 0$. If there exist a sequence $\{r_n\}$ and a positive constant ε such that $0 < r_n < 1$ with $r_n \to 1$ and $S(\mu, p, r_n) \ge \varepsilon > 0$, then

$$|f(r_n)|^p \le \frac{1}{\varepsilon} \int_{\bar{D}} |f|^p d\mu \text{ and so } |f(1)|^p \le \frac{1}{\varepsilon} \int_{\bar{D}} |f|^p d\mu.$$

This implies $S(\mu, p, 1) > 0$ and contradicts (1). Hence if $\mu(\{1\}) = 0$, then $\lim_{r \to 1^{-}} S(\mu, p, r) = 0$. This implies (2) because $\{a \in \partial D ; \mu(\{a\}) > 0\}$ is a countable set. (3) is clear by the proof of (2). (4) Suppose $\mu(\{1\}) > 0$ and for each n, put

$$G_n = \{ z \in \bar{D} ; |z-1| < \frac{1}{n} \} \cap \{ z \in \bar{D} ; S(\mu, p, z) < \frac{1}{n} \}.$$

Since $\{z \in \partial D ; \mu(\{z\}) > 0\}$ is a countable set, for each n there exists $b_n \in \{z \in \partial D ; |z-1| < \frac{1}{n}\}$ with $\mu(\{b_n\}) = 0$. Then $S(\mu, p, b_n) = 0$ by (1) and hence G_n is not empty. G_n is a relatively open set in \bar{D} by (2) of Proposition 1 and so $G_n \cap D$ is a nonempty open set. (5) follows from (2).

If $R(\mu,2,a) < \infty$, then there exists k_a in $H^2(\mu)$ such that $f(a) = \int f(z)\overline{k_a(z)}d\mu(z)$ for any f in $H^2(\mu)$ and hence $R(\mu,2,a) = \int |k_a(z)|^2 d\mu(z)$. Thus the results in this section give the informations about the reproducing kernel k_a .

§3. Estimate of Riesz's function

In this section we give upper and lower estimates of S. The lower ones will be used later. The following proposition is a generalization of Szegő's Theorem in Introduction. In fact, if $\mu \mid D$ is a zero measure, then it gives Szegő's Theorem.

Proposition 3. Suppose $0 and <math>\mu$ is a finite positive Borel measure such that $(d\mu \mid \partial D)/(d\theta/2\pi) = w(e^{i\theta}), \mu \mid D = \sum a_j \delta_{z_j}$ and $\sum (1-\mid z_j\mid) < \infty$. Let b be a Blaschke product of $\{z_\ell\}$ and b_j a Blaschke product of $\{z_\ell\}_{\ell \neq j}$. Then for all $a \in D, (1-\mid a\mid^2) exp(\log w)^{\wedge}(a) \leq S(\mu, p, a)$. If $a \in D \setminus \{z_\ell\}$, then

$$S(\mu, p, a) \le |b(a)|^{-p} (1-|a|^2) exp(logw)^{\wedge}(a).$$

If $a = z_j$, then

$$S(\mu, p, a) \leq |b_j(a)|^{-p} (1-|a|^2) exp(logw)^{\wedge}(a) + a_j.$$

In particular, $S(\mu, p, a) > 0$ if and only if $log w \in L^1(d\theta)$.

Proof. Since $S(\mu, p, a) \geq S(wd\theta/2\pi, p, a)$ for all $a \in D$, by Szegő's Theorem $(1-\mid a\mid^2)exp(logw)^{\wedge}(a) \leq S(\mu, p, a)$ for all $a \in D$. Let B_n be a finite Blaschke product of $\{z_1, z_2, \dots, z_n\}$. If $a \in D \setminus \{z_\ell\}$, then

$$S(\mu, p, a) \leq \inf\{\int |\frac{B_n}{B_n(a)}g|^p d\mu | \partial D + \sum_{j=1}^{\infty} a_j | \frac{B_n(z_j)}{B_n(a)}g(z_j)|^p ; g \in P \text{ and } g(a) = 1\}$$

$$= \frac{1}{|B_n(a)|^p}\inf\{\int |B_ng|^p d\mu | \partial D + \sum_{j=n+1}^{\infty} a_j |B_n(z_j)|^p |g(z_j)|^p ; g \in P \text{ and } g(a) = 1\}.$$

As $n \to \infty$,

$$S(\mu, p, a) \leq \frac{1}{\mid b(a) \mid^p} inf\{ \int \mid g \mid^p d\mu \mid \partial D \; ; \; g \in P \; \text{ and } \; g(a) = 1 \}.$$

Now by Szegő's Theorem, for each $a \in D$ $S(\mu, p, a) \leq |b(a)|^{-p} (1 - |a|^2) exp(log w)^{(a)}$. Let $B_{j,n}$ be a finite Blaschke product of $\{z_1, z_2, \dots, z_n\} \setminus \{z_j\}$. If $a = z_j$ and n > j, then

$$S(\mu, p, a)$$

$$\leq \inf\{\int \left| \frac{B_{j,n}}{B_{j,n}(a)} g \right|^p d\mu \; ; \; g \in P \text{ and } g(a) = 1\}$$

$$= \frac{1}{\left| B_{j,n}(a) \right|^p} \inf\{\int \left| B_{j,n} g \right|^p d\mu \mid \partial D + a_j \mid B_{j,n}(a) \mid^p$$

$$+ \sum_{\ell \geq n+1} a_{\ell} \mid B_{j,n}(z_{\ell}) \mid^p \mid g(z_{\ell}) \mid^p \; ; \; g \in P \text{ and } g(a) = 1\}.$$

As $n \to \infty$, by Szegő's Theorem, for $a = z_j$,

$$S(\mu, p, a) \leq |b_j(a)|^{-p} (1-|a|^2) exp(logw)^{\wedge}(a) + a_j.$$

The following proposition is related to Theorem 2 in this paper and Theorem in [7]. In fact, if \tilde{W} is bounded on D, then $(1-|a|^2)^{-2}S(Wdm,p,a)$ is bounded on D. Moreover if W is continuous on \bar{D} , then for all $e^{i\theta}$

$$\lim_{a \to e^{i\theta}} (1 - |a|^2)^2 R(Wdm, p, a) = 1/W(e^{i\theta}).$$

Proposition 4. Suppose $0 and <math>\mu$ is a finite positive Borel measure on \bar{D} .

- $(1) \quad \tilde{\mu}(a) \ge (S(\mu))^{\sim}(a) \qquad (a \in D).$
- (2) If $d\mu = Wdm$ and $a \in D$, then

$$(1-|a|^2)^2 exp(log W)^{\sim}(a) \le S(\mu, p, a) \le (1-|a|^2)^2 \tilde{W}(a).$$

(3) $S(Wdm, a) = (1 - |a|^2)^2 S(W \circ \phi_a dm, 0)$ for $a \in D$.

Proof. (1) For all $z \in D$

$$\int \mid f\mid^p d\mu \ge \mid f(z)\mid^p S(z) \text{ and so } \int \mid f\mid^p d\mu \ge \int \mid f\mid^p Sdm.$$

Assuming $f(z) = \{(1-|a|^2)/(1-\bar{a}z)^2\}^{2/p}$ for $a \in D, \tilde{\mu}(a) \geq \tilde{S}(a)$. (2) If $\log W \in L^1(m)$, then

$$S(Wdm, p, a) = \inf\{\int |f|^p Wdm \; ; \; f \in P \text{ and } f(a) = 1\}$$

$$= \inf\{\int |g|^p W \circ \phi_a \frac{(1 - |a|^2)^2}{|1 - \bar{a}z|^4} dm \; ; \; g \in H^p(W \circ \phi_a dm) \text{ and } g(0) = 1\}$$

$$= (1 - |a|^2)^2 \inf\{\int |k|^p W \circ \phi_a dm \; ; \; k \in H^p(W \circ \phi_a dm) \text{ and } k(0) = 1\}$$

$$\geq (1 - |a|^2)^2 \exp\int(\log W) \circ \phi_a dm = (1 - |a|^2)^2 \exp(\log W)^{\sim}(a).$$

The inequality above is proved by two Jensen's inequalities. (3) is clear by the proof of (2).

In (2) of Proposition 4, we can get estimates of $S(\mu, p, a)$ as in Proposition 3 when $d\mu = Wdm + \sum_{j=1}^{\infty} a_j \delta_{z_j}$, $\{z_j\} \subset D$ and $\sum (1-|z_j|) < \infty$. The following theorem is important in this paper and the following lemma is used to prove it.

Lemma 1. Let $\Delta_s(a)$ be the set $\{z \in D : |(a-z)/(1-\bar{a}z)| < s\}$ where $a \in D$ and $s \in (0,1)$. If $t \in (0,1)$ and $1-s^2=(1-|a|^2)(1-t^2)/5$, then $\Delta_t(0) \subset \Delta_s(a)$.

Proof. The Euclidean center and radius of $\Delta_s(a)$ are

$$C = \frac{1 - s^2}{1 - s^2 |a|^2} a , R = \frac{1 - |a|^2}{1 - s^2 |a|^2} s$$

respectively. Hence to prove $\overline{\Delta_t(0)} \subset \Delta_s(a)$, it is sufficient to show that

$$t + \frac{1 - s^2}{1 - s^2 \mid a \mid^2} \mid a \mid \le \frac{1 - \mid a \mid^2}{1 - s^2 \mid a \mid^2} s.$$

If $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then

$$1 - s^2 \le \frac{(1 - |a|^2)(1 - t^2)}{5 - |a|^2}$$

and hence $s^2 \ge \{4 + (1-|a|^2)t^2\}/(5-|a|^2)$. The last inequality is equivalent to

$$1 - s^2 \le \frac{(1 - |a|^2)(s^2 - t^2)}{4}.$$

Then

$$1 - s^2 \le \frac{(1 - |a|^2)(s - t)}{2} \frac{s + t}{2} \le \frac{(1 - |a|^2)(s - t)}{|a|(t |a| + 1)}$$

because $s + t \le 2$ and $|a|(t|a|+1) \le 2$. This implies that

$$t + \frac{1-s^2}{1-s^2 \mid a \mid^2} \mid a \mid \le \frac{1-\mid a \mid^2}{1-s^2 \mid a \mid^2} s.$$

Theorem 5. Suppose $0 and <math>\mu$ is a finite positive Borel measure on \bar{D} . Let $d\mu/dm = Wdm, K$ an arbitrary compact set in D and $t = max\{|z|; z \in K\}$. Then, for $a \in D$

$$S(\mu, p, a) \ge \frac{(1 - |a|^2)^3 (1 - t^2)}{5} exp \frac{2^4 \cdot 5}{(1 - |a|^2)^3 (1 - t^2)} \int_{K^c} log(W \wedge 1) dm.$$

If $1 \le p < \infty$ and $a \in D$, then

$$S(\mu,p,a) \geq \frac{(1-\mid a\mid^2)^{3(2-\frac{1}{p})}(1-t^2)^{2-\frac{1}{p}}}{2^{4(1-\frac{1}{p})}\cdot 5^{2-\frac{1}{p}}} \left(\int_{K^c} W^{-\frac{1}{p-1}} dm\right)^{\frac{1}{p}-1}.$$

Proof. By two Jensen's inequalities, for $a \in D$

$$S(\mu, p, a) \ge S(Wdm, p, a)$$

$$= \inf\{ \int |g|^p W \circ \phi_a \frac{(1 - |a|^2)^2}{|1 - \bar{a}z|^4} dm \; ; \; g(0) = 1 \}$$

$$= (1 - |a|^2)^2 \inf\{ \int |k|^p W \circ \phi_a dm \; ; \; k(0) = 1 \}$$

$$\geq (1 - |a|^{2})^{2} \int_{0}^{1} 2r dr \, exp \int_{0}^{2\pi} log W \circ \phi_{a} d\theta / 2\pi$$

$$\geq (1 - |a|^{2})^{2} (1 - s^{2}) \int_{s}^{1} \frac{2r}{1 - s^{2}} dr \, exp \int_{0}^{2\pi} log W \circ \phi_{a} d\theta / 2\pi$$

$$\geq (1 - |a|^{2})^{2} (1 - s^{2}) \, exp \frac{1}{1 - s^{2}} \int_{s}^{1} 2dr \int_{0}^{2\pi} log W \circ \phi_{a} d\theta / 2\pi$$

$$= (1 - |a|^{2})^{2} (1 - s^{2}) \, exp \frac{1}{1 - s^{2}} \int_{D \setminus \Delta_{s}(0)} log W \circ \phi_{a} dm$$

$$= (1 - |a|^{2})^{2} (1 - s^{2}) \, exp \frac{1}{1 - s^{2}} \int_{D \setminus \Delta_{s}(a)} log W \frac{(1 - |a|^{2})^{2}}{|1 - \bar{a}z|^{4}} dm$$

$$\geq (1 - |a|^{2})^{2} (1 - s^{2}) \, exp \frac{(1 - |a|^{2})^{2}}{(1 - |a|^{2})^{4}} \frac{1}{1 - s^{2}} \int_{D \setminus \Delta_{s}(a)} log (W \wedge 1) dm$$

where $s \in (0,1)$ and $\Delta_s(a) = \{z \in D ; \mid (a-z)/(1-\bar{a}z) \mid < s\}$. For each compact set $K \subset D$, if $t = max\{\mid z \mid ; z \in K\}$ and $1-s^2 = (1-\mid a\mid^2)(1-t^2)/5$, then by Lemma 1 $\overline{\Delta_t(0)} \subset \Delta_s(a)$. Hence $K \subset \Delta_s(a)$ and so $K^c \supset D \setminus \Delta_s(a)$. Thus, if $1-s^2 = (1-\mid a\mid^2)(1-t^2)/5$, then

$$\frac{(1-\mid a\mid^2)^2}{(1-\mid a\mid)^4} \frac{1}{1-s^2} = \frac{(1+\mid a\mid)^4}{(1-\mid a\mid^2)^2(1-s^2)} \le \frac{2^4 \cdot 5}{(1-\mid a\mid^2)^3(1-t^2)}$$

and hence for all $a \in D$

$$S(\mu, p, a) \geq \frac{(1 - |a|^2)^3 (1 - t^2)}{5} exp \frac{2^4 \cdot 5}{(1 - |a|^2)^3 (1 - t^2)} \int_{K^c} log(W \wedge 1) dm.$$

Now we will prove the second inequality. Instead of two Jensen's inequalities, we will use Kolmogoroff's inequality (cf.[12, Theorem 4.3.1]). For $a \in D$, if $1 \le p < \infty$ and 1/p + 1/q = 1,

$$S(\mu, p, a)$$

$$\geq (1 - |a|^{2})^{2} \int_{0}^{1} 2r dr \left(\int_{0}^{2\pi} (W \circ \phi_{a})^{-\frac{1}{p-1}} d\theta / 2\pi \right)^{-\frac{1}{q}}$$

$$\geq (1 - |a|^{2})^{2} (1 - s^{2}) \int_{s}^{1} \frac{2r}{1 - s^{2}} dr \left(\int_{0}^{2\pi} (W \circ \phi_{a})^{-\frac{1}{p-1}} d\theta / 2\pi \right)^{-\frac{1}{q}}$$

$$\geq (1 - |a|^{2})^{2} (1 - s^{2}) \left(\frac{1}{1 - s^{2}} \int_{s}^{1} 2r dr \int_{0}^{2\pi} (W \circ \phi_{a})^{-\frac{1}{p-1}} d\theta / 2\pi \right)^{-\frac{1}{q}}$$

$$= (1 - |a|^{2})^{2} (1 - s^{2})^{1 + \frac{1}{q}} \left(\int_{D \setminus \Delta_{s}(a)} (W \circ \phi_{a})^{-\frac{1}{p-1}} dm \right)^{-\frac{1}{q}}$$

$$= (1 - |a|^{2})^{2} (1 - s^{2})^{1 + \frac{1}{q}} \left(\int_{D \setminus \Delta_{s}(a)} W^{-\frac{1}{p-1}} \frac{(1 - |a|^{2})^{2}}{|1 - \bar{a}z|^{4}} dm \right)^{-\frac{1}{q}}$$

$$\geq (1 - |a|^{2})^{2} (1 - s^{2})^{1 + \frac{1}{q}} \left\{ \frac{(1 - |a|^{2})^{2}}{(1 - |a|)^{4}} \int_{D \setminus \Delta_{s}(a)} W^{-\frac{1}{p-1}} dm \right\}^{-\frac{1}{q}}$$

$$\geq \frac{(1-|a|^2)^{2(1+\frac{1}{q})}(1-s^2)^{1+\frac{1}{q}}}{2^{\frac{4}{q}}} \left(\int_{D\setminus \Delta_s(a)} W^{-\frac{1}{p-1}} dm \right)^{-\frac{1}{q}}$$

where $s \in (0,1)$. As in the proof of the first inequality, for each compact set $K \subset D$, if $t = max\{|z|; z \in K\}$ and $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then $K^c \supset D \setminus \Delta_s(a)$. Thus, if $1 - s^2 = (1 - |a|^2)(1 - t^2)/5$, then for all $a \in D$

$$S(\mu, p, a) \ge \frac{(1 - |a|^2)^{3(1 + \frac{1}{q})} (1 - t^2)^{1 + \frac{1}{q}}}{2^{\frac{4}{q}} \cdot 5^{1 + \frac{1}{q}}} \left(\int_{K^c} W^{-\frac{1}{p-1}} dm \right)^{-\frac{1}{q}}.$$

The second inequality of Theorem 5 implies $S(\mu,1,a) \geq (1-|a|^2)^3 \times (1-t^2)(1/5)ess.inf\{W(x)\;;\;x\in K^c\}$. Let σ be a finite positive Borel measure on [0,1]. $\mu(re^{i\theta})=\sigma(r)\times W(re^{i\theta})d\theta/2\pi$ is more general than $Wdm=2rdr\times W(re^{i\theta})d\theta/2\pi$. If $\sigma(r)$ is singular to the Lebesgue measure on [0,1], then μ is singular to m. However we can give an interesting lower estimate. It is different from that of Theorem 5 in case of $\mu=Wdm$.

Theorem 6. Suppose $0 and <math>d\mu = \sigma(r) \times W(re^{i\theta})d\theta/2\pi$ where $\sigma(r)$ is a finite positive Borel measure on [0, 1]. If $W(e^{i\theta}) = \sup_r W(re^{i\theta})$ and $W_r(e^{i\theta}) = W(re^{i\theta})$, then for $a \in D$

$$(1 - |a|^{2}) \int_{|a|}^{1} exp(logW_{r})^{\wedge}(a)d\sigma(r) \leq S(\mu, p, a)$$

$$\leq \sigma([0, 1]) \inf \left\{ \sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(re^{i\theta})d\theta/2\pi ; f(a) = 1 \right\}$$

$$\leq \sigma([0, 1]) \inf \left\{ \sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(e^{i\theta})d\theta/2\pi ; f(a) = 1 \right\}.$$
Proof. For $a \in D$,
$$S(\mu, p, a) = \inf \left\{ \int_{0}^{1} d\sigma(r) \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(re^{i\theta})d\theta/2\pi ; f(a) = 1 \right\}$$

$$\geq \int_{0}^{1} d\sigma(r) \inf \left\{ \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(re^{i\theta})d\theta/2\pi ; f(a) = 1 \right\}$$

$$= \int_{|a|}^{1} d\sigma(r) \inf \left\{ \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(re^{i\theta})d\theta/2\pi ; f(a) = 1 \right\}$$

$$= \int_{|a|}^{1} d\sigma(r) \inf \left\{ \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(re^{i\theta})d\theta/2\pi ; f(a) = 1 \right\}$$

$$= \int_{|a|}^{1} (1 - |a|^{2}) \exp(logW_{r})^{\wedge}(a)d\sigma(r).$$

We used Szegő's Theorem in the last equality. The upper estimates are trivial.

Corollary 1. Let $d\mu = \sigma(r) \times W(re^{i\theta})d\theta/2\pi$ as in Theorem 6 and 0 . $(1) If <math>W(re^{i\theta}) \equiv 1$, then for $a \in D$

$$(1-\mid a\mid^2) \ \sigma([\mid a\mid,1]) \le S(\mu,p,a) \le (1-\mid a\mid^2)\sigma([0,1]).$$

In particular, $S(\mu, p, 0) = \sigma([0, 1])$.

(2) If $W(re^{i\theta}) = |h(re^{i\theta})|$ for some outer function h in $H^1(d\theta)$, then for $a \in D$ $(1-|a|^2)\int_{|a|}^1 W(ra)d\sigma(r) \leq S(\mu, p, a) \leq (1-|a|^2)W(a)\sigma([0, 1]).$

(3) If $1 and <math>\mathbf{W}(e^{i\theta}) = \sup_{r} W(re^{i\theta})$ satisfies the A_p condition, then there exists a positive constant γ such that for $a \in D$

$$S(\mu, p, a) \le \gamma(1 - \mid a \mid^2) \ exp(log \mathbf{W})^{\wedge}(a) \sigma([0, 1]).$$

Proof. (1) is a special case of (2). (2) Since h is an outer function in H^1 , for $a \in D$

$$exp(log W_r)^{\wedge}(a) = exp(log \mid h_r \mid)^{\wedge}(a) = \mid h(ra) \mid = W(ra)$$

and

$$\inf_{f} \left\{ \sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} W(re^{i\theta}) d\theta / 2\pi \right\}$$

$$= \inf_{f} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} |h(e^{i\theta})| d\theta / 2\pi = (1 - |a|^{2}) |h(a)| = (1 - |a|^{2}) W(a).$$

Now Theorem 6 implies (2). (3) By a theorem of M.Rosenblum (cf. [10] and [9, Theorem 2.2]), there exists a positive constant γ such that for any $f \in P$

$$\sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi \leq \gamma \int_{0}^{2\pi} |f(e^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi$$

because $\mathbf{W} \in A_p$. By Theorem 6 and Szegő's Theorem, for $a \in D$

$$\inf_{f} \left\{ \sup_{r} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi \right\} \leq \gamma \inf_{f} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} \mathbf{W}(e^{i\theta}) d\theta / 2\pi$$
$$= \gamma (1 - |a|^{2}) \exp(\log \mathbf{W})^{\wedge}(a).$$

This implies (3).

§4. Carleson inequality and Riesz's function

Let ν and μ be finite positive Borel measures on \bar{D} and $1 \leq p < \infty$. We say that ν and μ satisfy the (ν, μ, p) - Carleson inequality, if there exists a constant $\gamma > 0$ such that

$$\int_{\bar{D}} |f|^p d\nu \le \gamma \int_{\bar{D}} |f|^p d\mu$$

for all $f \in P$ (see [8]). ν and μ satisfy the (ν, μ, p) - Carleson inequality if and only if $H^p(\mu) \subset H^p(\nu)$ and the inclusion mapping $i_p : H^p(\mu) \to H^p(\nu)$ is bounded. We say that for p > 1, ν and μ satisfy the (ν, μ, p) -vanishing Carleson inequality if $H^p(\mu) \subset H^p(\nu)$ and $i_p : H^p(\mu) \to H^p(\nu)$ is compact. We say that for p = 1, ν and μ satisfy the (ν, μ, p) -vanishing Carleson inequality if i_p is star-compact. We could not prove Theorem 7 for p = 1 because we do not know anything about the predual of $H^1(\mu)$. Using Riesz's functions, we will show vanishing Carleson inequalities. As a result, we show that $R(\mu, p) \not\in L^1(\mu)$ if $supp \mu$ is not a finite set. Moreover, from given a measure μ , we will show how to construct a measure ν such that the (ν, μ, p) -vanishing Carleson inequality is valid.

Theorem 7. Suppose $1 , and <math>\nu$ and μ are finite positive Borel measures on \bar{D} .

(1) If $\int R(\mu, p) d\nu < \infty$, then ν and μ satisfy the (ν, μ, p) -vanishing Carleson inequality and

$$R(\mu, p, a) \le \left(\int R(\mu, p) d\nu\right) R(\nu, p, a) \quad (a \in \bar{D}).$$

(2) If V is a Borel function such that $0 \le V \le S$ on \bar{D} , then $V \mid g \mid^p$ is bounded on \bar{D} for each g in $H^p(\mu)$, and Vdm and μ satisfy the (Vdm, μ, p) -vanishing Carleson inequality.

Proof. (1) By definition of $R(\mu, p, a)$, for $a \in \bar{D}$,

$$\mid f(a)\mid^{p} \leq R(\mu, p, a) \int \mid f\mid^{p} d\mu \quad (f \in P).$$

Hence if $\gamma = \int R(\mu, p) d\nu < \infty$, then $\int |f|^p d\nu \leq \gamma \int |f|^p d\mu$ $(f \in P)$ and so $i_p : H^p(\mu) \to H^p(\nu)$ is bounded. We will show that i_p is compact. If $f_n \to f$ weakly in $H^p(\mu)$, then there exists a finite positive constant γ' such that

$$\int \mid f_n - f \mid^p d\mu \le \gamma' \quad \text{for all } n.$$

By the hypothesis, $R(\mu, p, a) < \infty$ $\nu - a.e.$ on \bar{D} and so $f_n \to f$ $\nu - a.e.$ on \bar{D} because $f_n \to f$ weakly. Moreover by definition of $R(\mu, p, a)$, $|f_n(a) - f(a)|^p \le \gamma' R(\mu, p, a)$ and by the hypothesis, $R(\mu, p, a) \in L^1(\nu)$. Thus

$$\int |f_n - f|^p d\nu \to 0 \text{ as } n \to \infty.$$

by the Lebesgue's dominated convergence theorem. This implies i_p is compact. Since $\int |f|^p d\nu \le \gamma \int |f|^p d\mu$ and $\gamma = \int R(\mu, p) d\nu$, assuming f(a) = 1, we get $S(\nu, p, a) \le \gamma S(\mu, p, a)$. Now by (1) of Proposition 1, we get the inequality of (1). (2) If $0 \le V \le S$, then $VR \le 1$ and hence $V(a) |f(a)|^p$ is bounded on \bar{D} by $\int |f|^p d\mu$, for each $f \in H^p(\mu)$. Moreover if $\nu = Vdm$ and $0 \le V \le S$, then $\int R(\mu, p) d\nu \le \int dm = 1$ and hence by (1) ν and μ satisfy the (ν, μ, p) -vanishing Carleson inequality.

Corollary 2. If $0 and <math>supp \mu$ is not a finite set, then $R(\mu, p) \notin L^1(\mu)$. Proof. Suppose $1 . If <math>R(\mu, p) \in L^1(\mu)$, then the inclusion map $i_p : H^p(\mu) \to H^p(\mu)$ is compact. It is easy to see that i_p is an identity operator. Hence the unit ball of $H^p(\mu)$ is compact with respect to the norm. Therefore $H^p(\mu)$ is finitely dimensional. This contradicts that $supp \mu$ is not a finite set. This implies that $R(\mu, p) \notin L^1(\mu)$. For 0 , the proof is due to the referee. Choose <math>n sufficiently large that np > 1. If g(a) = 1 then $g^n(a) = 1$ as well, and g^n is a polynomial if g is a polynomial. Thus,

$$S(\mu, p, a) = \inf \{ \int_{\bar{D}} |f|^p d\mu ; f \in P, f(a) = 1 \}$$

$$\leq \inf \{ \int_{\bar{D}} |g^n|^p d\mu ; g \in P, g(a) = 1 \} = S(\mu, np, a).$$

This implies that $R(\mu, p) \notin L^1(\mu)$ for 0 .

Corollary 3. Suppose $1 and <math>d\mu/dm = W$

- (1) If $logW \in L^1(m)$ and $d\nu = (1-|z|^2)^2 exp(logW)^{\sim} dm$, then ν and μ satisfy the (ν, μ, p) vanishing Carleson inequality.
- (2) If $\chi_{K^c} \log(W \wedge 1) \in L^1(m)$ for some compact set K in D, there exist positive constant a and nonpositive constant b such that $d\nu = a(1-|z|^2)^3 \{\exp b(1-|z|^2)^{-3}\} dm$ and μ satisfy the (ν, μ, p) -vanishing Carleson inequality.
- (3) Suppose $\chi_{K^c}W^{-\frac{1}{p-1}} \in L^1(m)$ for some compact set K in D. If $d\nu = c(1-|z|^2)^{3(2-\frac{1}{p})}dm$, then ν and μ satisfy the (ν,μ,p) -vanishing Carleson inequality.

Suppose $1 and <math>d\mu/dm = W$. If $\chi_{K^c}logW \in L^1(m)$ for some compact set K in D, there exist positive constant a and nonpositive constant b such that

$$\{a(1-\mid z\mid^2)^3 \exp b(1-\mid z\mid^2)^{-3}\} \mid f(z)\mid^p$$

is bounded on D for each $f \in H^p(\mu)$. Here a and b do not depend on f. This is a corollary of (2) in Theorem 7.

§5. $H^p(\mu)$ and $L^p_a(\mu)$

The following is a result of Theorem 5. If $d\mu/dm = W$ and logW is integrable on the complement K^c of a compact set in D, then $H^p(\mu) \subseteq L^p_a(\mu)$. In this section, we show that if logW is locally integrable on K^c , then the same result is true. We give a necessary and sufficient condition for $H^p(\mu) \subset L^p_a(\mu)$ using Riesz's function. Theorem 8 is a joint work with K.Takahashi. A subset E of D is a uniqueness set if E satisfies the following: If f in H is zero on E, then $f \equiv 0$ on D.

Lemma 2. Suppose $0 and <math>\mu$ is a finite positive Borel measure on D. Then, the following $(1) \sim (3)$ are equivalent.

(1) $\sup_{a \in K} R(\mu, p, a) < \infty$ for all compact set K in D.

(2) $\int_K R(\mu, p) dm < \infty$ for all compact set K in D.

(3) $\int_K \log R(\mu, p) dm < \infty$ for all compact set K in D.

Proof. Both (1) \Rightarrow (2) and (2) \Rightarrow (3) are trivial. We will show (3) \Rightarrow (1). We may assume that $\mu(D) = 1$. For any $f \in P$,

$$\log |f(0)|^p \le \frac{1}{m(D_r(0))} \int_{D_r(0)} \log |f|^p dm.$$

If $a \in D_r(0)$, then for all $f \in P$

$$\log |f(a)|^p \le \frac{1}{m(D_r(0))} \int_{D_r(a)} \log |f|^p \frac{(1-|a|^2)^2}{|1-\bar{a}z|^4} dm.$$

Assuming $\int |f|^p d\mu \le 1$, we get

$$\log R(\mu, p, a) \le \frac{1}{m(D_r(0))} \frac{(1+|a|)^2}{(1-|a|)^2} \int_{D_r(a)} \log R(\mu, p) dm.$$

Since $D_r(a) \subset D_{2r}(0)$ and $R(\mu, p, a) \geq 1$, for each $a \in D_r(0)$ there exists a finite positive constant γ_r such that

$$\log R(\mu, p, a) \leq \gamma_r \int_{D_{2r}(0)} \log R(\mu, p) dm.$$

This implies (1).

Lemma 3. Let X be a Banach space which consists of analytic functions on D and contains 1. Suppose there exists a dense subspace Y of X such that if f in Y, then (f-f(a))/(z-a) belongs to Y for some a in D. If (z-a)X is not dense in X, then the functial $f \to f(a)$ is bounded.

Proof. By the hypothesis, if $f \in Y$, then f = f(a) + (z - a)g for some $g \in Y$. Since (z - a)X is not dense in X, there exists $\phi \in X^*$ such that $\langle (z - a)h, \phi \rangle = 0$ for all $h \in X$ but $\langle 1, \phi \rangle \neq 0$. Hence, $\langle f, \phi \rangle = f(a) \langle 1, \phi \rangle$. Thus $|f(a)| \leq \gamma ||f||$ for all $f \in X$ where $\gamma = |\langle 1, \phi \rangle|^{-1} ||\phi||_*$.

Theorem 8. Suppose $1 \le p < \infty$ and μ is a finite positive Borel measure on D such that $(supp \ \mu) \cap D$ is a uniqueness set for H.

(1) $L_a^p(\mu)$ is closed if and only if for all compact set K in D

$$\int_{K} log \ r(\mu, p) dm < \infty \ \text{or} \ \int_{K} log \ s(\mu, p) dm > -\infty.$$

(2) $H^p(\mu) \subset L^p_a(\mu)$ if and only if for all compact set K in D

$$\int_{K} log \ R(\mu, p) dm < \infty \ \text{or} \ \int_{K} log \ S(\mu, p) dm > -\infty.$$

Proof. (1) If $f \in L_a^p(\mu)$, then (f - f(0))/z belongs to H. Since (f - f(0))/z is bounded on $|z| \le t < 1$ and 1/z is bounded on $|z| \ge t$, (f - f(0))/z belongs to $L_a^p(\mu)$. This implies that $\{f \in L_a^p(\mu) : f(0) = 0\} = zL_a^p(\mu)$ and hence $L_a^p(\mu) = \mathbb{C} \oplus zL_a^p(\mu)$. If Af = zf for $f \in L_a^p(\mu)$, then A is a bounded operator on $L_a^p(\mu)$ and the range of A is complemented in $L_a^p(\mu)$ by what was just proved. By [4, Part III, Corollary 2.3], the range of A is closed and hence $zL_a^p(\mu)$ is not dense in $L_a^p(\mu)$. Applying Lemma 3 with $X = Y = L_a^p(\mu)$ and $a = 0, r(\mu, p, 0) < \infty$ follows. The same argument is true for all $a \in D \setminus \{0\}$ and hence $r(\mu, p, a) < \infty$ for all $a \in D$. By the boundedness of holomorphic functions on compact sets and the uniform boundedness principle, $\sup_{a \in K} r(\mu, p, a) < \infty$ for all compact set K in D. As Lemma 2 is also for $r(\mu, p, a)$,

$$\int_K log \ r(\mu, p) dm < \infty \ \text{ or } \int_K log \ s(\mu, p) dm > -\infty.$$

Conversely, suppose $\int_K \log r(\mu, p) dm < \infty$ for any compact set K. Then by the above lemma, $\sup_K r(\mu, p) < \infty$ for any compact set K. If f is in the $L^p(\mu)$ -norm closure of $L^p_a(\mu)$, then there exists a sequence $\{f_n\}$ in $L^p_a(\mu)$ such that $\int |f - f_n|^p d\mu \to 0$. Then by hypothesis on $r(\mu, p)$, $\sup_{\{|f_n(z)|\}} |f_n(z)| < \infty$ for each $r < \infty$, Hence, for each $r < \infty$ there exists a subsequence $\{f_{n_j}\}$ in $L^p_a(\mu)$ and an analytic function g_r on $D_r(0)$ such that $f_{n_j} \to g_r$ uniformly on $D_r(0)$. This implies that $f = g_r \mu - a.e.$ on $D_r(0)$ for all $r < \infty$. Thus $g = \lim_r g_r$ is analytic on D and $f = g \mu - a.e.$ on D.

(2) The 'if' part is same to (1) and hence we will show the 'only if' part. Put $M = \{ f \in L^p(\mu) \; ; \; zf \in H^p(\mu) \}$, then M is a closed subspace of $L^p(\mu)$ such that

$$M \supseteq H^p(\mu) \supseteq zM \supseteq H^p(\mu)_0$$

where $H^p(\mu)_0 = \{f \in H^p(\mu) \; ; \; f(0) = 0\}$. $H^p(\mu)_0$ is well defined because $H^p(\mu) \subset L^p_a(\mu)$. Suppose $H^p(\mu) \neq zM$. Then $H^p(\mu) = C + H^p(\mu)_0 = C + zM$ and $C \cap zM = \{0\}$. As in the proof of (1), by [4, Part III, Corollary 2.3], zM is closed and hence $zH^p(\mu)$ is not dense in $H^p(\mu)$. Applying Lemma 3 with $X = H^p(\mu)$, Y = P and a = 0, $R(\mu, p, 0) < \infty$ follows. Suppose $H^p(\mu) = zM$. Then $z^{-1} \in L^p(\mu)$ and hence $\mu(\{0\}) = 0$. If Af = zf for $f \in M$, then A is a one-one bounded operator from M onto $H^p(\mu)$. Therefore A is invertible and hence $A(zM) = zH^p(\mu)$ is closed. Since $H^p(\mu) \subset L^p_a(\mu)$, $zH^p(\mu) \neq H^p(\mu)$ and hence by Lemma 3, $R(\mu, p, 0) < \infty$ follows. The same argument implies that $R(\mu, p, a) < \infty$ for all $a \in D$. Now, as in the proof of (1), Lemma 2 implies the 'only if' part of (2).

Corollary 4. Suppose $1 \leq p < \infty$ and $d\mu/dm = W$. If logW is locally integrable on K_0^c for some compact set K_0 in D, then $L_a^p(\mu)$ is closed and $H^p(\mu) \subseteq L_a^p(\mu)$. Proof. By (1) of Theorem 8, it is sufficient to prove that for any compact set K in D, $\inf_K s(\mu, p) > -\infty$. If logW is integrable on K_0^c , then by the proof of Theorem 5 $inf_K s(\mu, p) > -\infty$. For a more general W in this corollary, we have to proceed as the following. Suppose $a \in D$ and $0 < \varepsilon < \delta < 1$. As in the proof of Theorem 5,

$$\begin{split} & s(\mu, p, a) \\ & \geq (1 - \mid a \mid^{2})^{2} \int_{\varepsilon}^{\delta} exp \left(\int_{0}^{2\pi} log W \circ \phi_{a} d\theta / 2\pi \right) 2r dr \\ & \geq (1 - \mid a \mid^{2})^{2} (\delta^{2} - \varepsilon^{2}) exp \left(\frac{1}{\delta^{2} - \varepsilon^{2}} \int_{\Delta_{\delta}(0) \setminus \Delta_{\epsilon(0)}} log W \circ \phi_{a} dm \right) \\ & \geq (1 - \mid a \mid^{2})^{2} (\delta^{2} - \varepsilon^{2}) exp \left(\frac{2^{2}}{(1 - \mid a \mid)^{2} (\delta^{2} - \varepsilon^{2})} \int_{\Delta_{\delta}(a) \setminus \Delta_{\epsilon}(a)} log (W \wedge 1) dm \right). \end{split}$$

Suppose K is an arbitrary compact set in D. Put $t = max\{|z|; z \in K_0\}$ and $k = max\{|z|; z \in K\}$. The Euclidean center and radius of $\Delta_{\gamma}(k)$ $(0 < \gamma < 1)$ are

$$C(\gamma) = \frac{1 - \gamma^2}{1 - \gamma^2 k^2} k, \ R(\gamma) \frac{1 - k^2}{1 - \gamma^2 k^2} \gamma$$

respectively. Put $\ell = R(\delta) + C(\delta)$ and $s = R(\varepsilon) - C(\varepsilon)$. There exist δ and ε such that

$$\Delta_{\ell}(0)\backslash\Delta_{s}(0)\subset D\backslash\Delta_{t}(0).$$

Then for all $a \in K$

$$\Delta_{\delta}(a)\backslash\Delta_{\varepsilon}(a)\subset\Delta_{\ell}(0)\backslash\Delta_{s}(0).$$

Hence for all $a \in K$

$$\Delta_{\delta}(a) \backslash \Delta_{\varepsilon}(a) \subset K_0^{c}$$

and so for all $a \in K$

$$s(\mu,p,a) \geq (1-\mid a\mid^2)^2(\delta^2-\varepsilon^2) exp\left(\frac{2^2}{(1-\mid a\mid^2)^2(\delta^2-\varepsilon^2)}\int_{K_0^\varepsilon} log(W\wedge 1) dm\right).$$

This shows the corollary.

We are very grateful to the referee who improved the exposition and pointed out the errors in the first draft of this paper. In particular, Corollary 2 for 0 is due to the referee.

References

- 1. P.S.Bourdon and J.H.Shapiro, Spectral synthesis and common cyclic vectors, Michigan Math. J. 37(1990), 71-90.
- 2. J.E.Brennan, Weighted polynomial approximation, quasianalyticity and analytic continuation, J.für Mathematik. 357(1984), 23-50.
- 3. J.B.Conway, Subnormal Operators, Research Notes in Mathematecs, Pitman Advanced Publishing Program.
- 4. I.Gohberg, S.Goldberg and M.A.Kaashoek, Classes Of Linear Operators Vol.I, Birkhäuser
- 5. U.Grenander and G.Szegő, Toeplitz Forms And Their Applications, Chelsea Publishing Company.
- 6. P.Koosis, The Logarithmic Integral I, Cambridge University Press.
- 7. T.Kriete and T.Trent, Growth near the boundary in $H^2(\mu)$ spaces, Proc. Amer. Math. Soc. 62(1977), 83-88.
- 8. T.Nakazi and M.Yamada, (A_2) -conditions and Carleson inequalities in Bergman spaces, to appear in Pacific J. Math.
- 9. R.Rochberg, Toeplitz operators on weighted H^p spaces, Indiana Univ. Math.J. 26(1977), 291-298.

- 10. M.Rosenblum, Summability of Fourier series in $L^p(d\mu)$, Trans. Amer. Math. Soc. 105(1962), 32-42.
- 11. W.Rudin, Functional Analysis, McGraw-Hill Book Company.
- 12. T.P.Srinivasan and J.K.Wang, Weak-* Dirichlet algebras, Proc. Internat. Sympos. on Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, III, 1966, 216-249.
- 13. M.Yamada, Weighted Bergman space and Szegő's infimum, in preprint.
- 14. K.Zhu, Operator Theory In Function Spaces, Pure and Applied Mathematics, Marcel Dekker, Inc. New York and Basel, 1990.