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Abstract. Let p and g be finite positive measures on the open unit
disk D. We say that v and gy satisfy the (v ,u)-Carleson inequality,

if there is a constant C >0 such that

XD l[f12 dv éCXD I fI1%2 dp

for all analytic polynomials f. In this \paper, we study the necessary
and  sufficient condition for the (v ,u )-Carleson inequality. We
establish it when v or g is an absolutely continuous measure with
respect to the Lebesgue area measure which satisfies the (A;)-condition.

Moreover, many concrete examples of such measures are given.



§ 1. Introduction

‘Let D denote the open unit disk in the complex plane. For 1<p< =,
let L® denote the Lebesgue space on D with respect to the normalized
Lebesgue area measure m, and |-|, represents the usual LP-norm. For
1=p< =, let L?, be the collection of analytic functions f on D such
that | £, is finite, which are so called the Bergman spaces. For any =z

in D, let ¢ . be the Modbius function on D, that is

p(w) = —=  (weD),

1—zw

and pqt
B(z,w) = 1/2 log(1+ | ¢ (w)D)(—1¢.(w)l)' (z,weED).
For 0< r <o and z in D, sét :
D.(z)=tweD; B(z,w)<r}

be the Bergman disk with "center" =z and "radius" r, and we define an

average of a finite positive measure ¢ on D,(a) by

1

(D, (a)) Xma) du (a€D),

£-(a) =

and if ' there exists a non-negative function x in L! such that

d yt=udm, then we may write it «, instead of ..
Let v and g be finite positive measures on D, and let P be the set
of all analytic polynomials. We say that v and g satisfy the (v ,u)-

Carleson inequality, if there is a constant C >0 such that

XD lf12 dv = CS’D lf12 dp

for all f in P. Our purpose of this paper is to study conditions on v

and g so that the (v yu )-Carleson inequality is satisfied. If v=Cu
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on D, then the (v,u)-Carleson inequality is true. However it is clear
that this sufficient condition for the (v ,u)-Carleson inequality is
too strong. A reasonable and natural condition 'is the - following: there

exist >0 and 7 >0 such that

(%) v,(a) £ vi.(a) (a€D).

The averages [,(a) are sometimes computable. If g =m, then

Z,(a)=1 on D. If du=(~1zl2)*dm for a>—1, then g,(a) is
equivalent to (1—1a 12)* on D.

When 4 u=(0—1zl2)*dm for a>—1, Oleinik-Pavlov [7], Hastings
[2, or Stegenga [8] showed that v and pu satisfy the Carleson
inequality if and only if they satisfy (%). In §3 of this paper, when
du=udm and wu satisfies the (Az)a—condition ( the definition is in
§ 3 ), we obtain that the (v ,x)-Carleson inequality is satisfied if
and only if they satisfy (% ). We show that if both « and « ~! are in
BMOa ( see [9;p127] ), then wu satisfies the (Az)a—condition. We give
some concrete examples which satisfy the (Az)a—condition.

When v =m and d yu=yxy¢cd m, where x¢ is a characteristic function
of a measurable subset G of D, Luecking [4] showed the equivalence
bet\:veen the (v ,u)-Carleson inequality‘and the condition (k). If we do
not. put any hypotheses on g, the problem 1is very difficult. The
equivalence between the (v ,u)-Carleson inequality and the condition

(%) is not known even if vy =m. Luecking [5] showed the following:

(1) If there exists 7 >0 such that m,(a) £ 7 u,(a) for all >0
and e in D, then the (m,py )-Carleson inequality is satisfied.

(2) Suppose the (g ,m)-Carleson inequality is valid ( equivalently

£, is bounded on D ). Then the (m,u)-Carleson inequality implies the
condition (k).

In §2 of this paper, we give a sufficient condition ( close to that of
(1) ) for the (v ,u)-Carleson inequality when v is not necessarily m.
Moreover,y using the idea of Luecking's proof of (2), a generalization of
(2) is given. In §4, when dv=wvdm and v satisfies the (A,)-

condition ( the definition is in §3 ), we establish a more natural



extension of (2) under some condition of a quantity e,(v) ( the
definition is in §2 ), that is, &,(yv)»>0 as 7 —-oc. The (A.)-condition
is weaker than the (Az)a -condition. We give some concrete examples

which satisfy the (A;)-condition or the above condition of €, (v ).

§ 2. (v, )-Carleson inequality

Let G be a measurable subset of D and « be a non-negative function

in L', and put

RN : 1
(e »(a)=—— ulye dm.
m(D,(a)) SD,(a)

Particularly, when G=D, we will omit the letter D in the above
notation. The following proposition 1 gives a general sufficient

condition on v and g which satisfy the (v ,u)-Carleson inequality. In
order to prove it we use ideas in [5] and [9;p109]. Since (u ~!),(a)!

" <#,(a) for all a in D, proposition 1 is also related with (1) of §1

( cf.[5; Theorem &.2] ).

Proposition 1. Suppose that d y=u dm. Put E,={z &€ D;there is a
weEsuppy such that B(z,w)< r /2}. If there exist >0 and 7 >0

such that « >0 a.e. on E=EFE,, and VA,(a)X(uE_l):(a)é'r for all a

in D, then there is a constant C >0 such that

2 4y < 2
SD £ u_CSE | £12 du

for all £ in P.

Proof. - Suppose that ;2,(a)><(u;l);(a)§7 for all e in D, and
put E={z €& Dsthere is a w&Esuppy such that B(z,w)< r}. By an

elementary theory for Bergman disks, there is a positive integer N =N,

_5_..



such that there exists {A,}C D satisfying that D=UD,(2.) and any
z in D belongs to at most N of the sets D, (4,) ( cf.[95p62] ),
therefore

S [ f1Z2 dv
supp v

<= X lF12 dv
D, (A-)Nsuppy

S 2 v(D, (A Dxsup{l f(z)1%2;z€ D, (A.)Nsuppv }.

By proposition #4.3.8 in [9;p62], there is a constant C=C, >0 such
that '

o

AR P XD,(z)

| FCw)l dm(w)

for all f analytic, z in D. If =z in D,(Ax)Nsuppy, then D, (=)
is contained in D, (2,.)NE, and there exists a constant K=K, >0
such that m(D; (A )SKm(D,(z)) for all n=1 ( cf. [9p61] ).

Hence the Cauchy-Schwarz's inequality implies that

SD | f12 dy

KC z

—_— 1 f1 dm)
m(Dzr(An)) D2,(1n>nE

<= v (1 x (

éZU(D;(An))XKzCZ

1 2
(e o Xuz,un)'f' “xs dm)

I ]
(Dn Xuz,un) ulys dm)

S K2C2 Y 0 (An)X (s Yo (An)

% (gpz,(a,.)nE 1 f12u dm).

___6._



By the hypothesis and a choice of disks, it follows that
lf12 dv £ K2C2%29 N g 1 F12 d .
S D J 7 B S J7

This completes the proof. J
Let ¢ be a finite nonzero positive measure on D. For any ¢ in D,

put

ko(z)=(1-1al?)/(1—a z)? (z€D),
and a function gz on D is defined by

L(a)= SD lkal? dyu.

Moreover, for any fixed r < o, put

e, () = sup (S lkal? du)X(S [ kal? du)‘_l.
aceD D\D,(a) D

If there exists a non-negative function % in L! such that d y=u d m,

then making a change of variable, it is easy to see that

e, () = sup (g uUo g dm)x(g Uo P, a’m)_l
aeD D\D,(0) D

In general 0< e,(z)<1. In this section and §#4, this quantity &, is
important. The following proposition 2 gives two general necessary
conditions on vy and g which satisfy the (v, 1 )-Carleson inequality.
In order to prove (2) of proposition 2 we use ideas in [5; Theorem &.3].
Since e,(m)<1 and ¢&,(m)>0 (r-—>o), (2) of proposition 2 is
related with (2) of §1.

Lemma 1. Let gz be a finite positive measure on D and 0< 7 < o,
then the following (1)~ (3) are equivalent.

(1M e, (u)<1.

(2) There is a 6 = &, <o such that

|kal? dy < 6& | kal? du
D\Dr(a) Dr(a)

for all ¢ in D.

(3) There is a p = p, <o such that

- < -
for all ¢ in D. #(a) = pu,Ca)



Proof. The implication (1)=(2) is trivial. (2)=(3) and @)}x>(1)
follow from lemma #4.3.3 in [9;p60]. In fact, by lemma #£.3.3, there exist
L=L,>0and M=M, >0 such that

L=m(D,(a))Xinf{l k.(z)I2;5z€ D,(a)}
and )
m(D,(a))Xsupil k.(z)I%;z€ D, (a 3= M

for all a in D. Thus remainder implications are obtained. §

Proposition 2. Suppose that v and gy satisfy the (v ,u)-Carleson
inequality, then the following are true.

(1) If there exists 7 <o such that &,(g)<1, then there exists

7 >0 such that v,(a) £ 7 g,{(a) for all a in D.
@2 If dv=vdm, v>0 ae. on D, e.(v)>0 (t—>=), and there

are [/ >0 and ¢”>0 such that 'Zzl(a)x(v"l)f(a)é v’ for all a in

D, then there are r >0 and 7y =7, >0 such that Vv,(a)< 7 &,(a) for
all a in D.

Proof. Since k£ .(z) is uniformly approximated by polynomials, the

ineiiuality is valid for f = k., that is

g lkalzdvécg lkal? 4 p.
D D :

Firstly, we show that (1) is true. The above inequality and lemma 1
imply that

v(a) £ Cu(a)

£ Cppura)

for all @« in D. Moreover, by lemma #4.3.3 in [9;p60], there exists a

constant L >0 such that

v,(a) £ L'v(a)

for all a in D. Hence we have that



v,(a) £ CopL'g,(a)
for all a in D.

Next, we prove that (2) is true. For any ¢ in D and r =1/, put
dttaw=(—Xbr ar)d u. By the latter half of the hypothesis in (2),

we have that

(Zayr N(AIX(U ) (X)) £ 77

for all a, A in D, and r=1[. Set E. ., n={z€E Dsthere is a w in
suppfas Such that B(z,w)< [ /2}. By proposition 1, there exists a

constant C” >0 such that

Iflzdﬂéc’g I f12 dv

XD\D,([Z) Ea,,,[

for all a in D, r=/[ and f in P. Here we claim that E., x Iis
contained in D\D,,,(a). In fact, since D\D,(a) contains suppf a.
and r =1/, if z belongs to E..,,x then there exists w in D such

that B(w,a )= » and B(w,z )< r /2. Therefore,
r<B(w,a)
<B(w,z)+B(z,a)

<7r/[2+ B(z,a),
thus we have that =z is contained in D\D,,,(a). Particularly put

S = k . .in the above inequality, then

lkal2 du £ C’ | kal2 d v
D\Dr(a) . D\Dr/z(a)

for all a "in D and r = [ . It follows that

gp,(a)““"2 4u

; Ikalzd ""S I/falzd
SD “7)p\p, (a) #

20"'& |/ca|2dU—C'S | kal?2 dv.
D D\Drlz(a)

_9_..



By the definition of £.(v ), the above ‘in'equality implies that

XD'(a)Ilc.,l2 dpu

> (C'“‘C'a”z(“))xu k12 dy

for all a in D and » =1 . Here let r be sufficiently large, then by
the hypothesis on &,(v), C '—C’ &,,,(v)>0, and by lemma #.3.3 in
[9;p60], we conclude that

g-(a) 2 [M(C'—=C’ e,,2(v)L] ,(a)

for all a in D. 1

§ 3. (A;)-condition

For a complex measure g on D, recall that a function z on D is

defined by

t(a)= lkal2 dpu.
z(a) SD u

Particularly, if there exists a complex valued L!-function = such that.
dy=wudm, then we denote the function by # instead of #Z., and say

that « is the Berezin transform of the function u .
Let v and u be non-negative functions in L!,; put d v =v dm and

d 1 = u dm. Suppose that there is a constant 7 >0 such that

v(a)x(u 'Y (a) £ 7
for all a in D, then lemma #.3.3 in [9;p60] implies that there exist

7 >0 and 7’ >0 such that

- _lA ’
v,(a)xX(u ) (a) £ 7
for all @ in D, and hence by proposition 1, we obtain that the

(v ,u )-Carleson inequality is satisfied. In the above two inequalities,



if we put « = v, then such a function « is interesting for us.
A non-negative function % in L' is said to satisfy a (Az)a -condition,

if there exists a constant A4 >0 such that

#(a)x(u'Y(a) <A

for all @ in D. If there exist » >0 and A, >0 such that

@, (a)x(u'y(a) A, |

for all @« in D, then we say that u satisfies a (A;)-condition. In
[6], the (A;)-condition is called Condition C,. It is known that
satisfies the (A;)-condition for some 0<.r <o~ jif and only if «
satisfies the (A;)-condition for all 0< r <~ [6]. Hence it shows that
the definition of the (A,)-condition is independent of 7. In general,
lemma 4.3.3 in [9;p60] and the familiar inequality between the harmonic
and arithmetic means imply that for any 0< r <o there exists a
constant M=M,>0 such that M "(u"'y '=(u ') '=2%,sMu.
Therefore, if «  satisfies the (Az)a -condition, then (« ') -!,
(27 '),"', u,, and u are equivalent. Similarly, if wu satisfies the
(Az)-condition, then (z ~!'),"!, and u, are equivalent. When = is in
L'@D) ( L' is a ‘usual Lebesgue space on the unit circle and £.(z) is
a normalized reproducing kernel of a Hardy space ), the (Ag)a—condition
has.been studied in [3; (c) of Theorem?2].

The - following theorem 3 gives a necessary and sufficient condition in
order to satisfy the (v ,u)-Carleson inequality when d y=u dm and u
satisfies the (Az) a—condition.

Theorem 3. Suppose that u satisfies the (A,) a—condition, then the
following are equivalent.

(1) There is a constaﬁt C >0 such that

XD | fl12 dyv = C Xblf,lz wudm

for all £ in P.

(2) There exist >0 and 7 >0 such that
gr(a) = 727r(a)

for all ain D.

(3) For any r >0, there exists v = 7, >0 such that

-

v,(a) £ 7u,(a)



for all @ in D.

Proof. Suppose that (1) holds. Since wu satisfies the (A;) 5 "
condition, by (1) of proposition 8, u satisfies a relation in (3) of
lemma 1 for all r >0. Therefore, (3) follows from (1) of proposition 2.
The implication (3)=>(2) is obvious. We will show that (2)=(1). Since
u satisfies the (A;) a—condition, #~! is integrable, hence u >0 a.e.
on D. Moreover, by (5) of proposition &, wu satisfies the (A;)-

condition for all » >0 and therefore (2) implies that

Dr(a)x(u 'Y (a) s Ay
for all a in D. In the statement of proposition 1, put E =D, then
the above fact shows that the inequality in (1) is satisfied. This
completes the proof. I
For any # in L2, ¢ in D, we put

lr72

MO(u)(a)= { lul2~(a)—‘|z7(a)lz} ,
and let BM Oa be the space of functions % such that MO (u)a) is
bounded on D (cf.[9;p127]). We give several simple sufficient
conditions.

Proposition 4. Let « be a non-negative function in L', then the

following are true.

(1) If both # and (¢ 'y are in L, then u satisfies the (Az% -
condition.
(2) If both « and %« -! are in BMOa , then u satisfies the (A,) 5"

condition.

(3) Let 1<p, q< and 1/p+1/q=1. f u, and u, satisfy the (Ag)a-
condition, then « = u, u, satisfies the (Az)a—condition.

(4) Suppose that f is a complex valued function in L' such that f #0

on D, f ' is in L', Fx(f ') is in L*, and largf|< 7 /2— ¢ for
some € >0. If u=1|f1, then « satisfies the (Az)a—condition. ’
(5) If wu satisfies the (,‘\2)a -condition, then x satisfies the (A,)-
condition.

Proof. ,.,(]) is trivial. By proposition 6.1.7 in [9;p108], we have . that

#(a)x(u 'Y (a) £ MO(u)(a)xMO(u Y(a)+1.



This implies that (2) is true. The Holder's inequality implies that (3)
is true. (5) follows from lemma 4.3.3 in [9;p60].

We show that (4) is true. Suppose that « =] f| and there exists & >0
such that largf 1<z /2— ¢ on D. Since largf1<z/2— e on D, there

bexists & >0 such that cos(argf)= & on D. Therefore, we have that
Ref = | flIxcos(argf) = I f1-6

= Ju.

For any e in D, it follows that

Su(a) gg Ref-lkal2 dm < | F(a)l.

Similarly, we have that

S(u 'Y (a) = ICF 'V Ca)l.
Thus,

Z(a)x(u 'Y(a)y = 6 *XIF(a)IxI(F 'V (a)l

for all ¢ in D, and hence (4) follows. }
We exhibit some concrete examples which satisfy the (Az)a—condition.

Proposition 5. If u is a function that is given by (1), (2), or (3),
then « satisfies the (Az)a—condition.

(1) For any —1<a<1, put u(z)=(1—-1z[2)=.

(2) Let {6;} be a finite sequence of complex numbers in DU9JD with
b:#6;(i #7) and let 0= a(j)<2 for all 57 or —2<a(j)=0 for
all j.Put u=Tp;*9 where p;(z)=lz—0b;]l.

(3) Let f{6;}, {p;} as in (2 and —1<a(j)<1 for all j. Put
U = TT p J a ) .
Proof. We suppose that w has the form of (1). For any a in D,

making a change of variable, we have that '

z?(a)x(u_lf(a): S (—lal®)(Q-1zl12)*l1—az|"2° dm(z)



X S (A-lal?)(1—-1z12)=ll—a z|?* dm(z)

=g (1—1z12)°11—a 2172 dm(z)

x S (I=1z125)*11— 3 z12* dm(z).

Since — 1< a <1, Rudin's lemma(cf.[9;p53]) implies that both factors of
the right hand side in the above equality are bounded. Hence u
satisfies the (A;) a—conditibn.

We show that = satisfies the (Az)a -condition when % has the form of
(2). Let a be a real number such that 0< a < 2. For any fixed & in D,
put p(z)=Ilz— b|. Firstly, we show that the Berezin transform of
p° is bounded. In fact, making a change of variable, 'e'lementary

calculations show that

(b 7V (a)s N—aol™ [1—azls xg 1 6.(6)—21 " am(z).

Since ¢.(b)— =z lies in 2D={2z3;z& D} for any a, z in D and an

area measure is translation invariant, we have that

, ("P_a)ﬁ'(a)é (A=161)° J1—a z]a X Szplwl_adm(w)

for all a in D. Hence we obtain that the Berezin transform of p ¢ is
bounded. Next, let & be in 8D and put p(z)=lz — b1. Then, as in

the proof of the above case, we have that
BV (a)s la—61" 16.(b)—2ls x g =Gzl dm(z),

and

(p7V(a)s la—b1"% [1—ad 215 X gwml"“dm(w).

Therefore, Rudin's lemma implies that p* satisfies the (/—\z).a ~condition.

For any 46, in D and &, in 8D, put p,(z)=lz—6,1 and
p:(z)=1lz—6,1. Fix 0<a(j)<2 for j=1, 2 and & >0. Because



b6,# b., there exist measurable subsets B; of D such - that
B,NBy,=¢ and p;=¢e¢ on B;° for j=1, 2. Set Bo=D\B,U B:,

then

(P2 M - p, @ T (a)x(p, =WV p, = ® ) (a)

_S_(p,““’-p,“‘z’)~(a) X ( E—a(l)-a(Z) SB |/t¢|_2 dm

+ 8—4(2) SB p,"‘“)lkalzdm + 8—-1(1) S pz—a(z)lka|2dm )
1

B,

< MoX g o=@ MeX e *®-(p, 2Dy (a)

+ MiX e WP Y (a)(p:* ) (),

where Me=p,° - p,*®|o and M,=|p,* ‘" |«. Hence we have that
P2V p,a®  satisfies the (Az)a -condition. If « has the form ' of
(2), then applying the same argument for finitely many factors of x and
u ~!, we obtain that " satisfies (Az) 5~ condition.

Apparently, (3) follows from (2) of this proposition and (3) of
proposition #. In fact, we let —1<a(j)<1 for all 7, and set
F(H)=t7s a(5)z0, j(=)={j; a(j)<0. Put u,=Tl;w p;*?
and .= Tl; - p;29?, fhen .2 and u.,? satisfy the (A"’)a -condition.
Hence, (3) of proposition & implies that =, X u., satisfies the

(Az)a-condition. ]
Corollary 1 is a partial result of [2], [7] and [8].

Corollary 1. (Oleinik-Pavlov-Hastings-Stegenga) Let v be a finite
positive measure on D. For any — 1< a <1, there is a constant C >0

such that

2 2 _ 23*
B SDIfI duéCngfl (1—-1z12%) dm

for all f in P if and only if there exist r >0 and ¢ >0 such that

v.(a) £ 7(Q—lal?)’



for all a in D.

Proof. Since [(1—1z12)" }(a) is comparable to (1—la 12y , by

theorem 3 and (1) of proposition 5 the corollary follows. i

Lemma 2. Let {6 ;} be a finite sequence of complex numbers in DU3D
with b6;%* 6;(7 #7), and let {a(j) be a finite sequence of real
numbers such that —2< a(j) when 5 is in A¢(the definition of A is
below). Put p;(z)=lz—6;1 and u=TIp;*9’, and let 0< r < oo,

then there are constants 7, >0 and 7. >0 such that

-~ a ()
7;ur(a)§,ﬂ la— b6;| ’

< “,(a
jEA 72 (a)

for all @ in D, here A={j3;b6; is in dD}.

Proof. For any fixed 0< 7 <, in general, lemma #.3.3 in [9;p60]

implies that there are constants L >0 and M >0 such that

L#,(a) SD (O)qu¢; dm < Mi,(a)

for all a in D, where u is a non-negative integrable function on D.
Let u=Illz—6;1°9, {6;}CDUBD, b;#* b;(i #3j), and a(j) be
real numbers. Then, by the same calculations in  the proof of (2) of

proposition 5, we have that

XD,(O) “o e dm
=Tlll—ab;l*9 S n|¢a(bj)—z|“(”'ll—c;ziza(j)dm(z).
Put D, (0) |
I(a) = XD gy TH#eC6)= 219 dm(),

then it is easy to see that |p, ) u°odpad m is equivalent to I (a)X

IT la—56;129),
1€ A

Firstly, we show that the lemma is true when 0 a(j) for all j. By

the above facts, it is enough to prove that the integration

I(a) = SD,(O) THea(b;)—2z129 dm(z)



is bounded below for all e  in D, because 0 a(j). Conversely,
suppose that there exists {fa.}C D such that I(a,.)<1/n. Here we can
choose a subsequence {a:}C{a.} such that ayi—a’(k—>>), where a’
may be in DUdD. Therefore, Fatou's lemma implies that I (a’)=0,
thus it follows that THH¢a(b;)—=2z192=0 on D,(0). This
contradiction implies that the assertion is true when 0< a(j) for all
7.

Next, we prove that the lemma is true when —2< a(7)<O0 for all j
in A¢ and —o<ag(j)X0 for all 5 in A. In fact, we claim that
I(a) is bounded for all a in D. If j is in A, then l¢.(b;)I=1
for all a .in D, therefore |¢.(b;)— =z |"! is bounded, because =z
belongs to D,(0). Analogously, if j is in A€, then [|¢.(6;)l—1
(lal—=1), therefore |¢.(b;)— =z | ' is bounded when a is nearby 9D,

because z belongs to D, (0). Thus, it is sufficient to prove that

s =\ b 1sen-2100 amia)
D, (0’ ,

is bounded for all e in U,,(O)={aED;IaI§77},» where 0< 7 <1 is a

constant vwhich is close to 1. Put
¢i9i(a)=l¢a(bi)_¢a(b:’)l (11 jEAcs GEU,,(O))-

For any fixed 7, j& A€, since &;,; is a continuous function on
U ,(0) and Mbbius functions are one-to-one correspondence on D, there
exists e(7,7)>0 such that &;:,;(a)=ze(7,j) for all a in U,(0)
when ¢ +# j. Put &=min{e(i,j)2 ;i{, jEA° such that 7+ j},
B;i(a)={z€D,(0xl¢pa(b;)—2zl<e} and Bo.(a)=D,(O\U B;(a).
For any j in A°U{0}, since |¢.(b:;)—zl=¢ when =z belongs to

Bj;(a) and 7 belongs to A° such that 7 # j, therefore we have that

J(a) £ X2 gee P

— a (f)
JE L5, cay 18:C80=21°9 dm2)

E*“ XBo(a) dm(z)



lwl*9? dm(w) + €°,

where

a =j§Aca(1).

Therefore, J is bounded on D,(0), and hence we obtain that I is
bounded on D.

Using the above facts, we can show that the assertion is true when wu
has the géneral form of the statement of this lemma. Let {a(j)} be a
finite sequence of real numbers such that —2< a(j)<o when j is in
A¢ and =< a(j)<e when j is in A. As in the proof of
proposition 5,  set J(+H)={jsa(j)=0 and F(=)={j:a(j)<0},
then we have that

DIFIES: a(f)g

I(a) £ 2 Il 19a(b;)—21°Y dm(z)

D, (0)

and

I(a) =2 2 Tl vy 19.Co;)—2z1°9 dm(z).

DA, a(j)g
D, (0)

Therefore, we obtain that 7 is bounded and bounded beloW on D. Hence;

this completes the proof. 1

Corollary 2. Let u be a non-negative function in L' that is given by
(2), or (3) of proposition 5 and v be a finite positive measure on D,

then there is a constant C >0 such that

SD 1 fl12 dyv £ CSD I f12 udm

for all f in P if and only if there exist » >0 and 7 =17, >0 such

that

-~ a (J)
v,(a) £ v 1T la—6;]|
( iea J

for all a in D, here A={j;b,; is in 8D}.



Proof. The corollary follows from theorem 3, proposition 5 and lemma

2. 1

We give a characterization of % which satisfies the (A;)-condition or
the (Az)a -condition when x is a modulus of a rational function or a
modulus of a polynomial, respectively. Let « be a non-negative
integrable function on D, then it is easy to see that if wu satisfies
the (Az) g-condition  then u ! is integrable on D. But, we claim that
the converse is true, when « is a modulus of a polynomial. As the
result, we show that the (Az)a -condition is properly contained in the
(Az)-condition. The essential part of the following theorem is proved in

proposition 5 and lemma 2.

Theorem 6. Let {6;} be a finite sequence of complex numbers such
that 6;# b;(7+ j) and {a(j)} be a finite sequence of real numbers.

Put pj(z)=lz—06;1 and u =TI p;*Y’, then the following are true.

() If a(j)=0 for all 7 or a(7j)=0 for all j, then u satisfies
the (Az)a -condition if and only if a(j)<2 or a(j)>—2 when &6, is
in DUJD, respectively.

(2) u satisfies the (A;)-condition if and only if —2< a(j)<2 when

b; is in D.

Proof. (1) By (2) of proposition 5 and the remark above this theorem,
it is enough to prove that = ~! is not integrable on D when a(j)=2
for some 6; in DUOJD. Suppose that there is a j such that &é; in
DUdD and a(j)z2, then there exists a L”-function 4 such that
u{z)=lz—6;1%2-h(z). It is easy to see that u~! is not integrable
on U={z€D:lz—0b6;I<dist(b;,0D)} when &b; is in D, therefore we

consider the case when 6 ;=1. Put M,=| £ |», then

—

g u 'dm = MZIX 27‘& l1— 7 e??] 2'd9/27[ dr

0 0



1
= M;'S 2r(1—7r2)"" dr

0

1
=M, S t 'dt.
1]
Hence we obtain that « ~! is not integrable.
(2) Suppose that —2< a(j)<2 when &6; is in D, then apparently

lemma 2 implies that « satisfies the (A,;)-condition. Conversely,

suppose that there exist » >0 and A, >0 such that

#,(a)x(u"'N(a) £ 4,

for all @ in D. Since %, is non-zero on D, therefore (' N(a)< o
for all a in D. By the same argument in (1), we have that a (j ) must
be less than 2 when b; is in D.‘ In fact, if a(j)=2 for some &; in
D, then there exists a function %2 such that u(z)=lz— b6;12-hr(2).
Put . v
e = min{ dist(6:,6;)/2 ;i # 7}
and ‘
U(j)={zeD;lz—06;1<¢e},
then obviously % is bounded on U(j). Since there exists a; such that
a center of the Bergman disk D,(a;) is just equal to & ;, therefore we
have that «~! is not integrable on D,(a;)NU(j), and thus, it
followsv that the average of %« ~! on D,’( a;) is infinite. This
contradicts the above fact. Consequently, we obtain that a(j) must lie
in (—=,2) when 6; is in D. Applying the same argument to u -!, we
have that a(j) must lie in (—2,0) when 6; is in D. Therefore, we

conclude that —2< a(7)<2 when 6, is in D. §

§ 4. Uniformly absolutely continuous

Recall that

e,(u) = sup (S lkal? dﬂ)x(g | kal2 du):l
aeD D\D,(a) D



where g is a finite positive measure on D(see lemma 1 and proposition
2). Using the quantity &,, we give a necessary condition on v and g

which satisfy the (v ,u )-Carleson inequality.

Theorem 7. Suppose that d v=v dm, £.(v)>0(t —>), and that v
satisfies the (A,)-condition, furthermore g and v satisfy the (g ,v)-

Carleson inequality. If there is a constant C >0 such that
lfl12 dv £ C S 1 f12 d
S D I ‘ D S u

for all F in P, then there exist » >0 and 7y >0 such that

-~

v,(a) £ v i,(a)

for all a in D.

Proof. By hypotheses on v and lemma 1, there exist ¢ >0, p >0 and
A >0 such that v

1 ~-1

v < p'{;t = AD‘(U~ Je

Moreover, lemma 4.3.3 in [9;p60] and the (u,v )-Carleson inequality

imﬁly that there exist L >0 and C” >0 such that
L-ge £ g £C”v.

* Thus, a desired result follows from (2) of proposition 2.

Luecking [5] shows the above theorem when v is. the Lebesgue area
measure m. It is clear that &,(m)>0 (r-—>o) and m satisfies the
(Az)-condition. Now, we are interested in measures g such that

er(u)<tor g,(g)s0(r —>o0).

Proposition 8. Suppose that d u=wu dm, and « is a non-negative
function in L!'. If « is the function such that (1) or (2), then there
exists 0< 7 < o such that ¢, ()< 1.

(1) « satisfies the (Az)a-condition.



(2) u(2)=(1—1z12)* for some 1< a <2.

Proof. If %« has the property in (1), then by the remark above

theorem 3, for any 7 >0 there is a positive constant p = p, such that

g(a)spu.,(a) for all @ in D and hence ¢,(g)<1 by lemma 1.
Suppose that u has the form of (2). For any fixed 1 a <2, put «(z)
=(1— 1z 12)*. Then, Rudin's lemma (cf.[9;p53]) shows that

u(a) = (1-lal?)- SD (I-1zl2)ll1—az|"2* dm(a)

£ r(1-lal?)s,

where 7 >0 is finite. On the other hand, lemma 4.3.3 in [9;p60] implies
that '

u,(a) = M“X(l—lalz)“g (A—=1zlI®)*ll—azl2* dm(z)
D, (0)
= M '%x(1—-la Iz)“(l—tanﬁzr)“XZ“z“,

therefore, by (3) of lemma 1, we obtain that &, (z)< 1. 1

Proposition 9. Suppose that d y=udm, and =« is a non-negative
function in L'. If %« is one of the following functions (1)~ (7), then

e,()>0(r —>o0).

(1) There exists €, >0 such that = ¢, on D,and {uo¢p,d m;a € D}
is uniformly absolutely continuous with respect to the Lebesgue area

measure .
(2) There exists €,>0 such that #= ¢, on D, and there is a
constant € >0 such that (#' ' <C on D for some B >0.

(3) « is in L*, and there exist r >0 and & >0 such that =& on
D\D, (0). '

(4) u=1pl, where p is an analytiq polynomial which has no zeros on
oD.
(5) u(z)=(1—12z12)* for some — 1< a 1.



(6) u=np,¢<_f>, where pi(z)=lz—06;1, b,%* b6;(i *j), and
0<a(j)2for b6; in DUBD, or —2< a(j)<O0 for b; in DUBD.

7)) u=TIp;=Y>, where p;(z)=lz—0b6;1, b:+b;(i+*3j) and
—1<a(j)<tfor b; in DUBD.

Proof. Firstly, we show that the assertion is true when u has the
property of (1). Since {wod.dms;ac D} is uniformly absolutely
continuous, for any e >0 there exists r >0 such that
fpr cvcuopadm< e,-e for all a in D. Therefore, making a change
of variable, let 7» be sufficiently large,then e,(yg)< éeo '-€0-€=¢.
Hence, we obtain that &, (g )>=0(» —0).

Next, we prove the implications (2)=>(1), (3)=(2), and #)=>(3). Then
e,(£)>0 when u is a function such that (2), (3) or (4. In fact,
suppose that there exists 8 >0 such that the Berezin transform of the
function x '*# is bounded, then a set of functions f{ue ¢p.3a €D} is
uniformly integrable (ct.[1;p120)), therefore it foliows that
fuop,dmsac D} is uniformly absolutely continuous with respect to
m. Hence, (2) implies (1). If there exist >0 and & >0 such that
=06 on D\D,(0), then

1}'(61)2 |kalz dm

6=9 SD,(O)
= 6[1—m(D,(a)]
= 6(l—tanhzr)

> 0.

Hence (3) implies (2) because (u# !*?)(a)<|u|='*? for all a in D
and any B8 >0. Next, let p be an analytic polynomial which has no zeros
on 8D, then there are 7 >0 and & >0 such that u=[pl=6 on
D\D, (0), therefore (4)=(3).

Wé prove that the assertion is true whén u has the form of (5). For
any fixed —1<a =1, put u(z)=(1—1=z12)* and making a change of

variable, then

e,(p)= sup (XD(I—IzIZ)“Il—a—zI‘z“ dm(z))



x SD\D'(O)(I—Iz 1211~ Z 212 dm(2)).

When 0 a =1, since‘O< 1—1z12<1, we have that
1-1zi2)ll—azl|2* dm
SD< )

= 272« —1zl1%) d
2 SD(I zl%2) dm

=constant.

If —1<a<0, then the familiar inequality between the harmonic and

arithmetic means shows that
(=1zi1®)ll—azl% dm
|o¢

-1

= (SD (I=1zl®)*ll—azl?* dm )

= constant.

Here, the last inequality follows from Rudin's lemma ( cf.[9;p53] ).
Again using Rudin's lemma, since — 1< a <1, there exists 8 >0 such
that a set of functions § [(I—1=z12)[1—a z|"2«]'*%35¢a €D } is
bounded in L!'. This implies that the set of these functions are
uniformly  integrable ( cf.[1;p120] ), therefore it follows that
er(p)>0(r —oco).

We show that e,(u)—>0 when u has the form of (6). As in the proof
of (2) of proposition 5, we only prove that &,(u)>0(r =) when
u=p, M. p,a where pi(z)=lz—-06,1, b(z)=lz—0b.l,
0<a(l), a(2<2, and b, is in D, b, is in 8D. We suppose that
B;, M., and & are as in the proof of (2) of proposition 5. By the

definition of & (1), we have that

e:(1)= sup (u xpwe) (a)xu(a) .



Moreover,

(% Xpgre) (a)xu(a)

< (uxo@e) (a)x(u 'Y(a)

§(uXDr(a)°>~(a) X gre)-ad2) KB lkal?2 dm

/]

+(u xp@e) (a) X £2®(p,* P (a)

+M, X g "2} S II_EZI—a(Z) a'm,
where ' D\ D, (0)
where
C = 16a(b)—212Px [1-7 212 x sz 101 ® am

Since u is bounded, therefore {u+ ¢,.;a €D} is uniformly integrable
(cf.[1;p120]), moreover applying the same argument in the proof of this

proposition when % has the form of (5), Rudin's lemma implies that a

set of functions {l1—a z|"*®;a& D} is also uniformly integrable,
hence we conclude that &,(y)—>0(r —>). The proof of the latter half
of (6) of this proposition is similar that in the above.

If « has the form of (7), thén by the similar arguments in the proof
of (3) of proposition 5, set j(+)={j;a(j)z0}, Jj(=)={j;a(Jj)
<0}. And put u =TI, oy p;°92, u,=TI; < p;°%, then

(% Xp@ey (a)xu(a)’
< (u xo@ey (a)x(u ' J(a)

= (w143 xp@el (@)X (ui' uz' Y (a).

Therefore, the desired result follows from the Cauchy-Schwarz's
inequality and (6) of this proposition. |
Corollary 3. Suppose that d v =v dm and there is a constant C >0

such that



2 2
XD lf12 dv éCXD V12 dp

for all @ in D, then the following are true.
(1) If v(z)=(1—1z12)* for some —1< a <1, and there exist [ >0

and 7’ = 7,.” >0 such that
ZiCa) £ 77 (A-lal?)"
for all a in D, then there exist » >0 and 7 = v, >0 such that
(1-1a1)" £ v i,(a) |

for all @ in D.

(2) If v=T1p,;*9, where p;(z)=lz—0b6,;1, b,#b6,;(i =+ ;) and
0<a(j)<2 for 6, in DUBD or —2< a(j)<0 for 6, in DUdD,
and if there exist / >0 and v’ = 7.’ >0 such that

-~ a (J)
a) £ v IT la—26;l
teCa) 7]'E/1 J

for all a in D, then there exist » >0 and 7 = 7, >0 such that

: (¢D]
ﬂ la—bjlu

< yi,(a)
9 | 7 ir(

for all a in D, where A={j;6; is in 8D}.

(3.) If v=[1p;=9, Where_ pi(z)=lz—06;1, b:;+6b6,;(i +j), and
—1< a (7)< 1 for 6; in DUdD, and if there exist [/ >0 and
v’ = 7:" >0 such that |

- a )
a) £ v 11 la—b;l
L ( 7j€./1 i
for all a in D, then there exist » >0 and 7 = v, >0 such that

J_TETAIa——bjlamé 7 ir(a)

for all @ in D, where A={j;b6; is in 8D}.
Proof. We show that (1) is true. By the fact in the proof of

corollary "1, and the fact that u(a)=(1—|z]2)* satisfies the (A;)-

condition for all a >—1 ( seel6] ), the hypothesis in (1) of the

—26—



corollary and proposition 1 imply the (g,v)-Carleson inequality.
Hence, theorem 7 and proposition 9 show that the assertion is true.
Similarly, (2) and (3) follow from proposition 1, lemma 2, (5) of

proposition #, theorem 6, theorem 7, and proposition 9. I
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