Title	Invertible Toeplitz operators and uniform algebras
Author(s)	Nakazi, T.; Yamada, M.
Citation	Hokkaido University Preprint Series in Mathematics, 234, 1-14
Issue Date	1994-3-1
DOI	10.14943/83381
Doc URL	http://hdl.handle.net/2115/68985
Туре	bulletin (article)
File Information	pre234.pdf

Invertible Toeplitz Operators and Uniform Algebras

T. Nakazi and M. Yamada

Series **#234**. March 1994

HOKKAIDO UNIVERSITY

PREPRINT SERIES IN MATHEMATICS

- # 206: T. Hibi, Betti number sequences of simplicial complexes, Cohen-Macaulay types and Möbius functions of partially ordered sets, and related topics, 25 pages. 1993.
- # 207: A. Inoue, Regularly varying correlations, 23 pages. 1993.
- \$\pm\$ 208: S. Izumiya, B. Li, Overdetermined systems of first order partial differential equations with singular solution,
 9 pages. 1993.
- # 209: T. Hibi, Hochster's formula on Betti numbers and Buchsbaum complexes, 7 pages. 1993.
- # 210: T. Hibi, Star-shaped complexes and Ehrhart polynomials, 5 pages. 1993.
- # 211: S. Izumiya, G. T. Kossioris, Geometric singularities for solutions of single conservation laws, 28 pages. 1993.
- # 212: A. Arai, On self-adjointness of Dirac operators in Boson-Fermion Fock spaces, 43 pages. 1993.
- # 213: K. Sugano, Note on non-commutative local field, 3 pages. 1993.
- # 214: A. Hoshiga, Blow-up of the radial solitions to the equations of vibrating membrane, 28 pages. 1993.
- # 215: A. Arai, Scaling limit of anticommuting self-adjoint operators and nonrelativistic limit of Dirac operators, 35 pages. 1993.
- # 216: Y. Giga, N. Mizoguchi, Existence of periodic solutions for equations of evolving curves, 45 pages. 1993.
- # 217: T. Suwa, Indices holomorphic vector fields relative to invariant curves, 10 pages. 1993.
- # 218: S. Izumiya, G. T. Kossioris, Realization theorems of geometric singularities for Hamilton-Jacobi equations, 14 pages. 1993.
- # 219: Y. Giga, K. Yama-uchi, On instability of evolving hypersurfaces, 14 pages. 1993.
- # 220: W. Bruns, T. Hibi, Cohen-Macaulay partially ordered sets with pure resolutions, 11 pages. 1993.
- # 221: S. Jimbo, Y. Morita, Ginzburg Landau equation and stable solutions in a rotational domain, 32 pages. 1993.
- # 222: T. Miyake, Y. Maeda, On a property of Fourier coefficients of cusp forms of half-integral weight, 12 pages. 1993.
- # 223: I. Nakai, Notes on versal deformation of first order PDE and web structure, 34 pages. 1993.
- # 224: I. Tsuda, Can stochastic renewal of maps be a model for cerebral cortex?, 30 pages. 1993.
- # 225: H. Kubo, K. Kubota, Asymptotic behaviors of radial solutions to semilinear wave equations in odd space dimensions, 47 pages. 1994.
- # 226: T. Nakazi, K. Takahashi, Two dimensional representations of uniform algebras, 7 pages. 1994.
- # 227: N. Hayashi, T. Ozawa. Global, small radially symmetric solutions to nonlinear Schrödinger equations and a gauge transformation, 16 pages. 1994.
- # 228: S. Izumiya, Characteristic vector fields for first order partial differential equations, 9 pages. 1994.
- # 229: K. Tsutaya, Lower bounds for the life span of solutions of semilinear wave equations with data of non compact support, 14 pages. 1994.
- # 230: H. Okuda, I. Tsuda, A coupled chaotic system with different time scales: Toward the implication of observation with dynamical systems, 31 pages. 1994.
- # 231: A. Hoshiga, The asymptotic behaviour of radial solutions near the blow-up point to quasi-linear wave equations in two space dimensions, 8 pages. 1994.
- ‡ 232: Y. Giga, N. Mizoguchi, Existence of periodically evolving convex curves moved by anisotropic curvature, 12 pages. 1994.
- ‡ 233: C. Dohmen, Y. Giga, N. Mizoguchi, Existence of selfsimilar shrinking curves for anisotropic curvature flow equations, 13 pages. 1994.

Invertible Toeplitz Operators

and

Uniform Algebras

by

Takahiko Nakazi *

and

Masahiro Yamada

Department of Mathematics

Faculty of Science

Hokkaido University

Sapporo 060, Japan

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry Education.

AMS Subject Classification(1991): Primary 47 B 35, 47 A 10

Key Words And Phrases: Toeplitz operator, invertible, uniform algebra, spectrum

Abstract. Toeplitz operators T_ϕ^M are defined on invariant subspaces M of an arbitrary uniform algebra A. We give a necessary and sufficient condition of uniformly invertible T_ϕ^M with respect to some family $\mathcal F$ of invariant subspaces M. This condition is the same to a classical one in case A is the disc algebra. In special uniform algebras, we can choose a small family, in fact, if A is a disc algebra then $\mathcal F$ can be a single set. Then this generalizes the Widom-Devinatz theorem. As an application, we study a $\mathcal F$ -union of spectrums of $\{T_\phi^M \; ; \; M \in \mathcal F\}$.

§1. Introduction

Let X be a compact Hausdorff space, let C(X) be the algebra of complexvalued continuous functions on X, and let A be a uniform algebra on X. Let τ be a nonzero complex homomorphism of A and let N_{τ} be the set of representing measures for τ whose support is contained in X and $m \in N_{\tau}$. The abstract Hardy space $H^p =$ $H^p(m), 1 \leq p \leq \infty$, determined by A is defined to be the closure of A in $L^p = L^p(m)$ when p is finite and to be the weak* - closure of A in $L^{\infty} = L^{\infty}(m)$ when p is infinite. Put $H_0^p = \{f \in H^p ; \int f dm = 0\}, K_0^p = \{f \in L^p ; \int f g dm = 0 \text{ for all } g \in A\}$ and $K^p = \{f \in H^p ; \int f dm = 0\}$ $K_0^p + C$. Then $H_0^p \subset K_0^p$ and $H_0^p \subset K^p$. The abstract Hardy spaces somtimes coincide with the concrete Hardy spaces or the concrete Bergman spaces.

A closed subspace M for A of $L^2 = L^2(m)$ is said to be invariant if fM is contained in M for all f in A. lat A denotes the set of all invariant subspaces of A in L^2 . For ϕ in L^{∞} , the Toeplitz operator T_{ϕ}^{M} is the operator on M defined by

$$T_{\phi}^{M}(f) = P_{M}(\phi f)$$

where $M \in \text{lat } A$ and P_M is the orthogonal projection onto M. If $M = H^2$ then we will write $T_{\phi} = T_{\phi}^{M}$. In this paper we are interested in the equivalence of the following four statements.

- T_{ϕ} is invertible.
- (2) For each $M \in \text{lat } A$, T_{ϕ}^{M} is invertible. (3) For each $M \in \text{lat } A$, T_{ϕ}^{M} is invertible and sup $\{\|(T_{\phi}^{M})^{-1}\|; M \in \text{lat } A\}$ is finite.
- (4) ess.inf $|\phi| > 0$ and there exists a function g in $(H^{\infty})^{-1}$ such that $\text{Re}(\phi g) \geq$ δ a.e. for some constant $\delta > 0$.

In the four statements, $(3) \Rightarrow (2)$ and $(2) \Rightarrow (1)$ are clear. If (4) is valid, then there exist positive constants ε and ε_0 such that $\|\varepsilon\phi g - 1\|_{\infty} \leq 1 - \varepsilon_0$. Hence $T_{\varepsilon\phi g}^M$ is invertible for any $M \in \text{lat } A$ and

$$\|(T^M_{\varepsilon\phi g})^{-1}\| \leq \frac{1}{1-\|T^M_{\varepsilon\phi g-1}\|} \leq \frac{1}{\varepsilon_0}.$$

Thus sup $\{\|(T_{\phi}^M)^{-1}\|$; $M \in \text{lat}A\} < \infty$. This implies (3). In this paper we will show $(3) \Rightarrow (4)$ under a condition: $H^{\infty} = H^1 \cap L^{\infty}$. This condition is satisfied by five natural examples in §2.

When A is the disc algebra of Example 1 in $\S 2$, Devinatz and Widom (see [4]) showed (1) \Leftrightarrow (4). Hence the four statements (1) \sim (4) are equivalent. When A is the rational function algebra of Example 3 in $\S 2$, Abrahamse [1] showed $(2) \Leftrightarrow (4)$ in case the symbols of Toeplitz operators are unimodular. In §4 of this paper, we will show (2) \Leftrightarrow (4) without the condition on the symbols. Hence our result solves the problem which was proposed by Abrahamse [1, p294]. When A is the subalgebra of the disc algebra of Example 4 in §2, Anderson and Rochberg [2] gave a generalization of the theorem of Devinatz and Widom. Their definition of Toeplitz operators is different from ours but their results are closed to $(2) \Leftrightarrow (4)$. In §4, we will study their result in a more general setting. By Corollary 1 in §3, $(3) \Leftrightarrow (4)$ is still true for Toeplitz operators in the Bergman space (see Example 2 in §2) and in the Hardy space of the polydisc (see Example 5 in §2). In Examples 2, 3 and 4, it is known that (1) does not imply (4).

In §5, as an application of the equivalence of (2) \sim (4) we will study $\cup \{\sigma(T_{\phi}^{M}); M \in \text{lat } A\}$ where $\sigma(T_{\phi}^{M})$ denotes the spectrum of T_{ϕ}^{M} . In this paper, we use the theory of abstract Hardy spaces (see [3] and [6]). It is powerful to study the problem above.

§2. Concrete examples

- (1) Let Δ be the unit disc of C and let A' be an algebra consisting of all functions with continuous extensions to the closure $\bar{\Delta}$ of Δ which are analytic in Δ . Put A=A'|X and $X=\partial\Delta$. A is called the disc algebra which is a uniform algebra on X. Suppose $\tau(f)=\tilde{f}(0)$, where \tilde{f} denotes the holomorphic extension of f in A, then τ is a nonzero complex homorphism. The normalized Lebesgue measure m on the unit circle is a representing measure for τ and $N_{\tau}=\{m\}$. H^2 is the classical Hardy space and $H_0^2=K_0^2$, sometimes we will write $H^p=H^p(\Delta)$.
- (2) In (1), put A = A' and $X = \bar{\Delta}$. Suppose $\tau(f) = f(0)$ and m is the normalized area measure on Δ , then $m \in N_{\tau}$ and dim $N_{\tau} = \infty$. H^2 is the Bergman space.
- (3) Let D be a bounded connected open subset of C whose boundary consists of n+1 non-intersecting, analytic Jordan curves and let A' be an algebra consisting of functions with continuous extensions to the closure \bar{D} of D which are analytic in D. Put A=A'|X and $X=\partial D$. A is uniform algebra on X and it is called an annulus algebra when D is an annulus. Suppose $\tau(f)=\tilde{f}(t)$, where \tilde{f} denotes the holomorphic exension of f in A and $t\in D$, then τ is a nonzero complex homomorphism of A. If m is a harmonic measure of t then m is the unique logmodular measure of N_{τ} and dim $N_{\tau}=n<\infty$ [6, p116]. Sometimes we will write $H^p=H^p(D)$.
- (4) Let \mathcal{A} be the disc algebra and A be a subalgebra of \mathcal{A} which contains the the constants and which has finite codimension in \mathcal{A} . If $\tau(f) = \tilde{f}(0)$ for $f \in A$ and m is the normalized Lebesgue measure on the unit circle $\partial \Delta$, then it is easy to check that m is a core point of N_{τ} , dim $N_{\tau} < \infty$ and N_{τ} has a lot of logmodular measures (see [7, p154]).
- (5) The unit polydisc Δ^n and the torus $(\partial \Delta)^n$ are cartesian products of n copies of Δ and of $\partial \Delta$, respectively. A' denotes the class of all continuous functions on the closure $\bar{\Delta}^n$ of Δ^n with holomorphic restrictions to Δ^n . Let A = A'|X and $X = (\partial \Delta)^n$. This is the so-called polydisc algebra. Let m be the normalized Lebesgue measure, then m is a representing measure for τ on X where $\tau(f) = \tilde{f}(0)$ and $0 \in \Delta^n$. Then dim $N_{\tau} = \infty$.

§3. The Inversion Theorem

Put $\mathcal{L} = \{v \in L^{\infty}; v^{-1} \in L^{\infty} \text{ and } v \geq 0\}$ and $\mathcal{F} = \{vH^2; v \in \mathcal{L}\}$. Then \mathcal{F} is a subfamily of lat A. In [9, Proposition 7], the following theorem was proved when the symbols are unimodular. In this section, we show it for arbitrary symbols using a lifting theorem in a uniform algebra due to the first author and Yamamoto [11, Theorem 2']. In fact we use Theorem 2' in case $\mu = (\mu_{ij})$ is absolutely continuous with respect to m.

Theorem 1. Let ϕ be a nonzero function in L^{∞} . For each M in \mathcal{F} there exists a nonzero positive constant $\varepsilon(M)$ such that

$$||T_{\phi}^{M}f||_{2} \geq \varepsilon(M)||f||_{2}, f \in M$$

and inf $\{\varepsilon\ (M)\ ;\ M\in\mathcal F\}=\varepsilon>0$ if and only if there exists a function g in $H^1\cap L^\infty$ such that

$$|\phi|^2 \ge \varepsilon^2 + |\phi + g|^2$$
 a.e..

Proof. If $\|T_{\phi}^M f\|_2 \ge \varepsilon \|f\|_2$ for all $M \in \mathcal{F}$ then it is easy to see that $|\phi| \ge \varepsilon$ a.e. and for all $M \in \mathcal{F}$

$$(T_{\phi}^{M})^{*}(T_{\phi}^{M}) \geq \varepsilon^{2}.$$

Put $H_{\phi}^{M} f = (I - P_{M})(\phi f)$ for $f \in M$. Since $(T_{\phi}^{M})^{*} T_{\phi}^{M} + (H_{\phi}^{M})^{*} H_{\phi}^{M} = T_{|\phi|^{2}}^{M}$

$$||H_{\phi}^{M}f||_{2} \le ||(|\phi|^{2} - \varepsilon^{2})^{1/2} f||_{2}, f \in M$$

and hence

$$\sup \left\{ |(H_\phi^M f,g)|^2 \; ; \; g \; \in M^\perp \text{ and } \int |g|^2 dm \leq 1 \right\} \leq \int (|\phi|^2 - \varepsilon^2) |f|^2 dm$$

where $(\ ,\)$ is an inner product with respect to m. Thus for $f\in M$ and $g\in M^\perp$

$$|\int \phi f \bar{g} dm|^2 \le \int (|\phi|^2 - \varepsilon^2) |f|^2 dm \int |g|^2 dm.$$
 (a)

Since $M = vH^2$ and $M^{\perp} = v^{-1}\bar{K}_0^2$ for some $v \in \mathcal{L}$, for $F \in H^2$ and $G \in \bar{K}_0^2$

$$|\int \phi F \bar{G} dm|^2 \le \int (|\phi|^2 - \varepsilon^2) |F|^2 v^2 dm \int |G|^2 v^{-2} dm.$$

Hence for $F \in H^{\infty}$ and $G \in \bar{K}_0^{\infty}$

$$-2Re\int \phi F\bar{G}dm \le 2|\int \phi F\bar{G}dm|$$

$$\leq 2\{\int (|\phi|^2 - \varepsilon^2)|F|^2 v^2 dm\}^{1/2} \{\int |G|^2 v^{-2} dm\}^{1/2}$$

$$\leq \int (|\phi|^2 - \varepsilon^2) |F|^2 v^2 dm + \int |G|^2 v^{-2} dm.$$
 (b)

Let \tilde{X} be the maximal ideal space of L^{∞} , then \tilde{X} is a compact Hausdorff space and L^{∞} is isometrically isomorphic to $C(\tilde{X})$ by the Gelfand fransform. Put B be the image of H^{∞} by the transform and let \tilde{m} be the Radonization of m. Then the measure \tilde{m} on \tilde{X} is multiplicative on B and $H^{P}(\tilde{m})$ or $L^{p}(\tilde{m})$ is isometrically isomorphic to $H^{p}(m)$ or $L^{p}(m)$, respectively, where $H^{p}(\tilde{m})$ is the abstract Hardy space determined by B. The inequality (b) implies that the measure matrices for all $v \in \mathcal{L}$

$$\left(\begin{array}{ccc} \mathrm{v}^2(|\phi|^2-arepsilon^2) & \phi \\ & ar{\phi} & v^{-2} \end{array}
ight)$$

are positive on $H^{\infty} \times \bar{K}_0^{\infty}$ as $A = H^{\infty}$ and $K_0 = K_0^{\infty}$ in [11, p93]. By the absolutely continuous case of the lifting theorem [11, Theorem 2'] and the isomorphism above, there exists a nonzero function g in $(K_0^{\infty})^{\perp} \cap L^1 = H^1$ such that the measure martix

$$\left(\begin{array}{cc} |\phi|^2 - \varepsilon^2 & \phi + g \\ \bar{\phi} + \bar{g} & 1 \end{array}\right)$$

is positive on $L^{\infty} \times L^{\infty}$. Therefore

$$|\phi + g|^2 + \varepsilon^2 \le |\phi|^2$$
 a.e.

Conversely suppose that for some $\varepsilon > 0$ there exists a function g in $H^1 \cap L^{\infty}$ such that $|\phi|^2 \geq \varepsilon^2 + |\phi + g|^2$ a.e.. Then for arbitrary $v \in \mathcal{L}$

$$\int \phi F \bar{G} dm = \int (\phi + g) F v \cdot \bar{G} v^{-1} dm$$

where $F \in H^{\infty}$ and $G \in \bar{K}_0^{\infty}$. Hence from the Schwarz's inequality, (b) and hence (a) follow. This implies $(T_{\phi}^M)^*(T_{\phi}^M) \geq \varepsilon^2 > 0$ for all $M \in \mathcal{F}$.

Corollary 1. Suppose $H^{\infty}=H^{1}\cap L^{\infty}$. Let ϕ be a nonzero function in L^{∞} . T_{ϕ}^{M} is invertible for every M in \mathcal{F} and sup $\{\|(T_{\phi}^{M})^{-1}\| \; ; \; M \in \mathcal{F}\} < \infty$ if and only if both

- (1) ess.inf $|\phi| > 0$ and
- (2) there exists a function g in $(H^{\infty})^{-1}$ such that $Re(\phi g) \geq \delta$ a.e. for some constant $\delta > 0$.

Proof. We may assume $\|\phi\|_{\infty}=1$. Suppose $\sup\{\|(T_{\phi}^M)^{-1}\|\ ;\ M\in\mathcal{F}\}<\infty,$ then

$$||T_{\overline{\phi}}^M(f)||_2 \ge \varepsilon ||f||_2, \ f \in M$$

where $\varepsilon = \{\sup \|(T_{\phi}^M)^{-1}\|\}^{-1}$. By Theorem 1, there exists a function g in $H^1 \cap L^{\infty} = H^{\infty}$ such that $|\bar{\phi}|^2 \geq \varepsilon^2 + |\bar{\phi} - g|^2$ a.e.. Hence $ess.inf|\phi| > 0$, and

$$Re\phi g \ge \delta > 0$$
 a.e. and $\delta = \varepsilon^2/2$.

Therefore there exist positive constants a and ε_0 such that

$$||a\phi g - 1||_{\infty} \le 1 - \varepsilon_0.$$

This implies $T_{\phi g}$ is invertible. By hypothesis on T_{ϕ} , T_{g} is invertible. Hence $gH^{2}=H^{2}$ and $g^{-1} \in L^{\infty}$ because $Re\phi g \geq \delta > 0$ a.e.. Thus $g^{-1} \in H^{2} \cap L^{\infty} = H^{\infty}$.

In Corollary 1, if ϕ is unimodular then (1) and (2) hold if and only if to the distance from ϕ to the invertible elements in H^{∞} is less than one. Results in this section apply to Toeplitz operators in Examples 1, 2 and 5.

§4. Some special cases

In this section, assuming that the set of representing measures for τ is finite dimensional, we give the inversion theorems. These appear to be more useful than Theorem 1 and Corollary 1. They apply to Toeplitz operators in Examples 3 and 4.

Suppose $n = dim N_{\tau} < \infty$. Let m be a core point of N_{τ} and let N^{∞} be the real annihilator of A in L_R^{∞} . Then $dim N^{\infty} = n(cf.[6, p109])$. Set $\mathcal{E} = expN^{\infty}$, then \mathcal{E} is a subgroup of \mathcal{L} . Put $\mathcal{F}_1 = \{vH^2 : v \in \mathcal{E}\}$ then \mathcal{F}_1 is a subfamily of \mathcal{F} . Then it can be shown that Theorem 1 and Corollary 1 are true for \mathcal{F}_1 instead of \mathcal{F} . These give inversion theorems in Example 4 which are related to [2, Theorems 2 and 3]. If n = 0 then $\mathcal{E} = \{1\}$ and hence $\mathcal{F}_1 = \{H^2\}$. Therefore if n = 0 then Corollary 1 shows the equivalence of $(1) \sim (4)$ in Introduction and gives the theorem of Widom and Devinatz (see [4]).

For any v in \mathcal{L} . let P_v be the projection operator which takes L^2 onto H^2 and is self-adjoint as an operator on the weighted Lebesgue space $L^2(v^2dm)$. Define the associated Toeplitz operator R_ϕ^v mapping H^2 to itself by $R_\phi^v(f) = P_v(\phi f)$. This definition is due to Anderson and Rochberg [2]. (,)_v and (,) denote the inner products in $L^2(v^2dm)$ and L^2 , respectively. Put $M=vH^2$. For any f and g in H^2 ,

$$(R^{v}_{\phi}(f), g)_{v} = (P^{v}(\phi f), g)_{v} = (\phi f, g)_{v} = (\phi v f, v g) = (P^{M}(\phi v f), v g) = (T^{M}_{\phi}(v f), v g)$$

It is clear that R_{ϕ}^{v} is (left) invertible if and only if T_{ϕ}^{M} is (left) invertible. Hence Theorem 2 and the remark above Theorem 3 in [2] show the equivalence of (2) \sim (4) in Introduction when A is a subalgebra of the disc algebra in Example 4.

If we assume that m is the unique logmodular measure for τ then the linear span of $N^{\infty} \cap log|(H^{\infty})^{-1}|$ is N^{∞} (cf. [6, p114]). Choose $h_1, ---, h_n \in (H^{\infty})^{-1}$ so that $\{log|h_j|\}_{j=1}^n$ is a basis in N^{∞} . Put $u_j = log|h_j|(1 \leq j \leq n)$ and $\mathcal{E}_0 = \{exp(\Sigma_{j=1}s_ju_j): 0 \leq s_j \leq 1\}$. Then $\mathcal{E}_0 \subset \mathcal{E}$. Put $\mathcal{F}_0 = \{vH^2: v \in \mathcal{E}_0\}$ then $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F} \subseteq lat$ A. Note that the unique logmodular measure is a core point of N_{τ} when N_{τ} is finite dimensional.

Abrahamse [1, Part 4] studied T_{ϕ}^{M} for simply invariant subspaces M. \mathcal{F} is a proper subset of the set of simply invariant subspaces.

Theorem 2. Suppose N_{τ} is finite dimensional and m is a core point of N_{τ} . Let ϕ be a nonzero function in L^{∞} .

(1) For each M in \mathcal{F}_1 there exists a nonzero positive constant $\varepsilon(M)$ such that

$$||T_{\phi}^M f||_2 \ge \varepsilon(M)||f||_2, \quad f \in M$$

and $\inf\{\varepsilon(M); M \in \mathcal{F}_1\} = \varepsilon > 0$ if and only if there exists a function g in H^{∞} such that

$$|\phi|^2 \ge \varepsilon^2 + |\phi + g|^2$$
 a.e..

(2) When m is the unique logmodular measure for τ , T_{ϕ}^{M} is left invertible for any M in \mathcal{F}_{0} if and only if there exists a positive constant ε and a function g in H^{∞} such that

$$|\phi|^2 > \varepsilon^2 + |\phi + q|^2$$
 a.e.

Proof. It is known that $H^{\infty}=H^1\cap L^{\infty}$ (cf. [6, p109]). (1) By Theorem 1 it is sufficient to show that if $\inf\{\varepsilon(M):M\in\mathcal{F}_1\}>0$ then $\inf\{\varepsilon(M):M\in\mathcal{F}\}>0$. In order to prove it we will show that

$$inf\{\varepsilon(M); M \in \mathcal{F}\} = inf\{\varepsilon(M); M \in \mathcal{F}_1\}.$$
 (c)

If $v \in \mathcal{L}$ then $log v = u + u_1$ where $u_1 \in N^{\infty}$ and u is in the weak*-closure of ReA (cf. [6, p109]). Then u = log |h| for h in $(H^{\infty})^{-1}$ and so $v = |h|v_1$ where $v_1 = e^{u_1}$ and $v_1 \in \mathcal{E}$. Hence $M = vH^2 = b(v_1H^2) = bN$, $M \in \mathcal{F}$ and $N \in \mathcal{F}_1$, where b = |h|/h. Then $T_{\phi}^M = M_b T_{\phi}^N M_{\overline{b}}$ where M_b is a multiplication operator on L^2 . This implies (c) because M_b is unitary.

(2) By (1) it is sufficient to show that if T_{ϕ}^{M} is left invertible for every M in \mathcal{F}_{0} , then for any M in \mathcal{F}_{1}

$$||T_{\phi}^{M}f||_{2} \ge \varepsilon(M)||f||_{2} \quad f \in M$$

and $\inf\{\varepsilon(M); M \in \mathcal{F}_1\} > 0$. We will show that

$$inf\{\varepsilon(M); M \in \mathcal{F}_1\} = inf\{\varepsilon(M); M \in \mathcal{F}_0\}$$
 (d)

and

$$inf\{\varepsilon(M); M \in \mathcal{F}_0\} > 0$$
 (e)

If $v \in \mathcal{E}$ then $v = |h|v_0$ for some h in $(H^{\infty})^{-1}$ and some $v_0 \in \mathcal{E}_0$ by the remark above Theorem 2. By the same argument as in the proof of (1), we can show (d). Suppose $v_{\ell} \in \mathcal{E}_0$ and $M_{\ell} = v_{\ell}H^2 \in \mathcal{F}_0$ with $\varepsilon(M_{\ell}) \to 0$. Since $v_{\ell} \in \mathcal{E}_0$, $v_{\ell} = exp(\sum_{j=1}^n s_{j\ell}u_j)$ and $0 \le s_{j\ell} \le 1 (1 \le j \le n)$. By passing to a subsequence, if necessary, we can assume that $s_{j\ell}$ converges to a constant s_j for each j, and $|s_j| \le 1 (1 \le j \le n)$. Put $t = exp(\sum_{j=1}^n s_j u_j)$ then $t \in \mathcal{E}_0$ and $\varepsilon(t) = 0$. This contradicts that $T_{\phi}^{M_t}$ is left invertible. Thus (e) follows.

Corollary 2. Suppose N_{τ} is finite dimensional and m is a core point of N_{τ} . Let ϕ be a nonzero function in L^{∞} .

- (1) T_{ϕ}^{M} is invertible for every M in \mathcal{F}_{1} and $\sup\{\|(T_{\phi}^{M})^{-1}\| ; M \in \mathcal{F}_{1}\} < \infty$ if and only if $ess.inf|\phi| > 0$ and there exists a function g in $(H^{\infty})^{-1}$ such that $Re(\phi g) \geq \delta$ a.e. for some constant $\delta > 0$.
- (2) When m is the unique logmodular measure for τ , T_{ϕ}^{M} is invertible for every M in \mathcal{F}_{0} if and only if both $ess.inf|\phi| > 0$ and there exists a function g in $(H^{\infty})^{-1}$ such that $Re(\phi g) \geq \delta$ a.e. for some constant $\delta > 0$.

Proof. Since for any subset S of lat A

$$(\inf\{\varepsilon(M); M \in S\})^{-1} = \sup\{\|(T_{\phi}^M)^{-1}\|; M \in S\},\$$

both (1) and (2) are clear by Theorem 2.

If ϕ is unimodular, then (2) of Theorem 2 shows Theorem 4.1 in [1] and (2) of Corollary 2 shows Theorem 4.6. in [1]. Our results apply to more general uniform algebras than that of [1] by [7, p157]. (1) of Corollary 2 does not show Theorem 2 in [2] for general functions ϕ in L^{∞} . However by the remark above Theorem 2 in this paper we can get the invertibility theorems about a family $\{R_{\phi}^{v}, v \in \mathcal{E}_{1}\}$.

§5. Spectrums of selfadjoint Toeplitz operators

 $\sigma(T_\phi^M)$ denotes the spectrum of T_ϕ^M for each M in lat A. Hartman and Wintner [8] showed $\sigma(T_\phi) = [ess.inf \ \phi, ess. \, sup \ \phi]$ for a real valued function ϕ in L^∞ where A is the disc algebra. This theorem is not valid in general. For example, it is not true in Examples 2 and 3. In the case of Example 2, if ϕ is a real valued continuous function on $\bar{\Delta}$ and $\phi = 0$ on $\partial \Delta$ then T_ϕ is compact (cf. [14, p107]). Hence $\sigma(T_\phi) \neq [ess.inf \ \phi, ess. \, sup \ \phi]$. In the case of Example 3, see [1, p295].

For each M in \mathcal{F} , let $\varepsilon(M) = \varepsilon(M, \phi)$ be the maximum of non-negative constants δ such that

$$||T_{\phi}^{M}f||_{2} \geq \delta ||f||_{2}$$
 for all $f \in M$.

Put
$$\Sigma_{\phi} = \{s \in C : \inf[\varepsilon(M, \phi - s), M \in \mathcal{F}] = 0\}$$
, then

$$\Sigma_{\phi} \cup \bar{\Sigma}_{\bar{\phi}} \supseteq \bigcup_{M \in \mathcal{F}} \sigma(T_{\phi}^{M}).$$

The above two sets sometimes coincide.

Proposition 3. Let ϕ be a function in L^{∞} .

(1) If A is a uniform algebra in Example 4, then

$$\bigcup_{M \in \mathcal{F}_1} \sigma(T_{\phi}^M) = \Sigma_{\phi} \cup \bar{\Sigma}_{\bar{\phi}}.$$

(2) If N_{τ} is finite dimensional and m is the unique logmodular measure, then

$$\bigcup_{M\in\mathcal{F}_0}\sigma(T_\phi^M)=\Sigma_\phi\cup\bar{\Sigma}_{\bar{\phi}}.$$

Proof. We have to prove that $\Sigma_{\phi} \cup \bar{\Sigma}_{\bar{\phi}} \subset \cup \{\sigma(T_{\phi}^{M}) ; M \in S\}$ for $S = \mathcal{F}_{1}$ in (1) and $S = \mathcal{F}_0$ in (2).

(1) If $s \notin \bigcup \{\sigma(T_{\phi}^{M}); M \in \mathcal{F}_{1}\}$, then for any $M \in \mathcal{F}_{1}$ $T_{\phi-s}^{M}$ is invertible. By the proof of (1) of Theorem 2, for any $M \in \mathcal{F}$ there exists $N \in \mathcal{F}_1$ such that $T^{M}_{\phi-s}$ is unitarily equivalent to $T^{M}_{\phi-s}$. Hence for any $M \in \mathcal{F}$ $T^{M}_{\phi-s}$ is invertible. By the remark above Theorem 2, for any $v \in \mathcal{L}$ $R^{v}_{\phi-s}$ is invertible. By Theorem 2 and the remark above Theorem 3 in [2], $inf|\phi-s|>0$ a.e., and there exists a function g in $(H^{\infty})^{-1}$ such that $Re(\phi - s)g \geq \delta$ a.e. for some constant $\delta > 0$. By Corollary 1, $\sup\{\|(T_{\phi-s}^M)^{-1}\| ; M \in \mathcal{F}\} < \infty \text{ and hence } s \notin \Sigma_{\phi} \cup \bar{\Sigma}_{\bar{\phi}}.$ $(2) \text{ If } s \notin \cup \{\sigma(T_{\phi}^M ; M \in \mathcal{F}_0\} \text{ then Corollary 1 and (2) of Corollary 2}$

 $s \notin \Sigma_{\phi} \cup \bar{\Sigma}_{\bar{\delta}}$.

If ϕ is a real valued function in L^{∞} then by Theorem 1

$$[ess.inf \ \phi, ess.sup \ \phi] \supseteq \Sigma_{\phi} \supseteq \bigcup_{M \in \mathcal{F}} \sigma(T_{\phi}^{M}).$$

The following theorem shows the relations of the three sets above.

Theorem 4. Let ϕ be a real valued function in L^{∞} . Then the following are valid.

- (1) $\Sigma_{\phi} = [ess.inf \ \phi, ess. \ sup \ \phi].$
- (2) If A is a uniform algebre in example (4) then

$$\bigcup_{M \in \mathcal{F}_1} \sigma(T_{\phi}^M) = [ess.inf \ \phi, ess.sup \ \phi].$$

(3) If N_{τ} is finite dimensional and m is the unique logmodular measure for τ , then

$$\bigcup_{M \in \mathcal{F}_0} \sigma(T_{\phi}^M) = [ess.inf \ \phi, ess.sup \ \phi].$$

Proof. (1) Put $a = ess.inf \ \phi$ and $b = ess.sup \ \phi$. It is easy to see that $\Sigma_{\phi} = \Sigma_{\phi} \cup \bar{\Sigma}_{\bar{\phi}} \subset [a, b]$. In fact, if s is a non-real complex number, that is, s = x + iy and $y \neq 0$, then

$$|\phi - s| \ge \varepsilon + |\phi - s + (s - x)|$$
 a.e.

where ε is a positive number with $\varepsilon^2 + 2\varepsilon ||\phi - x|| \le y^2$. Hence $s \notin \Sigma_{\phi}$ by Theorem 1. If s is a real number with s < a then $|\phi - s| = |a - s| + |\phi - s + (s - a)|$ a.e. and if s > b then $|\phi - s| = |s - b| + |\phi - s + (s - b)|$ a.e. Hence $s \notin \Sigma_{\phi}$ by Theorem 1.

 $R(\phi) \subset \Sigma_{\phi}$ by Theorem 1 where $R(\phi)$ is the essential range of ϕ . We will prove that $[a,b] \subset \Sigma_{\phi}$. Suppose a < s < b and $s \notin \Sigma$. Then we will get one contradition. Put $s_a = ess.sup \ min \ (\phi,s)$ and $s_b = ess.inf \ max \ (\phi,s)$, then $s_a < s < s_b$. Put

$$E_a = \{x \in X : a \le \phi(x) \le s_a\} \text{ and } E_b = \{x \in X : s_b \le \phi(x) \le b\}.$$

then $m(E_a \cup E_b) = 1$ and $m(E_a \cap E_b) = 0$. Since $s \in \Sigma_{\phi}$, by Theorem 1 there exist a nonzero function g in H^{∞} and $\varepsilon > 0$ such that

$$|\phi - s| \ge \varepsilon + |\phi + g|$$
 a.e..

Put $S_a = \{t \in R : dist(g(E_a), t) \leq \varepsilon/2\}$ and $S_b = \{t \in R : dist(g(E_b), t) \leq \varepsilon/2\}$ where R is a real line and $g(E_\ell)$ is an essential range of g in E_ℓ with $\ell = a$, b. Then S_a and S_b are compact subsets in R. If $S_a \cap S_b$ is essentially nonempty then there exist $x \in E_a$ and $x' \in E_b$ such that $|g(x) - g(x')| \leq \varepsilon$. Hence

$$\begin{aligned} \phi(x') - \phi(x) &= |\phi(x) - \phi(x')| \\ &\leq |\phi(x) + g(x)| + |\phi(x') + g(x')| + |g(x) - g(x')| \\ &\leq |\phi(x) - s| - \varepsilon + |\phi(x') - s| - \varepsilon + \varepsilon \\ &= \phi(x') - \phi(x) - \varepsilon. \end{aligned}$$

because $\phi(x) \leq s_a < s < s_b \leq \phi(x')$. This contradiction shows that $S_a \cap S_b$ is essentially empty. By a theorem of Runge we can show that $\chi_E \in H^{\infty}$. Thus $m(E_a) = 0$ or 1. This contradiction shows that $[a, b] \subset \Sigma_{\phi}$. (2) and (3) are results of (1) and (2) in Proposition 3 and (1) in this theorem.

Widom [13] proved that $\sigma(T_{\phi})$ is connected for arbitrary symbol ϕ when A is the disc algebra. This theorem is not valid in Examples 2, 3 and 4. Here we assume that A is a uniform algebra in Example 3. Abrahamse [1, p295] announced without proof that if ϕ is unimodular then $\cup \{\sigma(T_{\phi}^{M}); M \in S\}$ is connected when A is an annulus algebra. S denotes the set of simply invariant subspaces.

The universal covering surface of D is conformally equivalent to the open unit disc Δ and an analytic projection map π from Δ onto D can be chosen so that $\pi(0) = t$. Abrahamse [1, p294], using his inversion theorem, when ϕ is unimodular and $\tilde{\phi} = \phi \circ \pi$, if T_{ϕ}^{M} is invertible for each $M \in S$ then $T_{\tilde{\phi}}$ is invertible and hence $\sigma(T_{\tilde{\phi}}) \subset \bigcup \{\sigma(T_{\phi}^{M}) : M \in S\}$. The following proposition generalizes the Abrahamse's result to arbitrary symbols. Recall that \mathcal{F} is a proper subset of S.

Proposition 5. Suppose A is a uniform algebra in Example 3. Let ϕ be a nonzero function in L^{∞} . If T_{ϕ}^{M} is invertible for each M in \mathcal{F}_{0} , then $T_{\bar{\phi}}$ is invertible. Hence

$$\sigma(T_{\tilde{\phi}}) \subset \bigcup_{M \in \mathcal{F}_0} \sigma(T_{\phi}^M).$$

If n = 1 then $\sigma(T_{\tilde{\phi}}) = \bigcup \{ \sigma(T_{\phi}^{M}) ; M \in \mathcal{F}_{0} \}$ and hence $\bigcup \sigma(T_{\phi}^{M})$ is connected.

Proof. If T_{ϕ}^{M} is invertible for each $M \in \mathcal{F}_{0}$, then by Corollary 2 there is $g \in (H^{\infty})^{-1}$ such that $Re(\phi g) \geq \delta$ a.e. for some constant $\delta > 0$. This implies that $Re(\tilde{\phi}\tilde{g}) \geq \delta$ a.e. and $\tilde{g} \in H^{\infty}(\Delta)^{-1}$. By Corollary 2 $T_{\tilde{\phi}}$ is invertible. If n = 1, we will show that the converse is valid. Suppose $T_{\tilde{\phi}}$ is invertible. By Theorem 2, there exists a positive constant ε and a function g in $H^{\infty}(\Delta)$ such that

$$|\tilde{\phi}|^2 \geq \varepsilon^2 + |\tilde{\phi} + g|^2 \quad \text{a.e..}$$

If we can find h in H^{∞} such that

$$|\tilde{\phi}|^2 \geq \varepsilon^2 + |\tilde{\phi} + \tilde{h}|^2 \quad \text{a.e.}$$

then by Theorem 2 T_{ϕ}^{M} is left invertible for every $M \in \mathcal{F}_{0}$. The same proof of the complex conjugate $\bar{\phi}$ shows that T_{ϕ}^{M} is invertible for every $M \in \mathcal{F}_{0}$.

We will show the existence of such an h in H^{∞} . We can regard \tilde{H}^{∞} as the closed subalgebra of $H^{\infty}(\Delta)$ consisting of those $f \in H^{\infty}(\Delta)$ which are invariant under a certain group of conformal maps of Δ onto itself. This group, which we shall denote by G, is in an infinite cyclic group. Put $S = \{g \in H^{\infty}(\Delta) : |\tilde{\phi}|^2 \geq \varepsilon^2 + |\tilde{\phi} + g|^2 \quad a.e.\}$ then S is a convex subset of $H^{\infty}(\Delta)$. We define a group operators $\{\Phi_{\gamma}\}_{\gamma \in G}$ on $H^{\infty}(\Delta)$ by means of $\Phi_{\gamma}h = h \circ \gamma$ for all $\gamma \in G$. Let σ be the topology of almost uniform convergence in $H^{\infty}(\Delta)$. Then σ is metrizable, and a normal families argument shows that S is σ -compact. Since they commute, the fixed point theorem of Markov and Kakutani ([5, p456]), [12, Theorem 2.1]) affirms the existence of k in S which is invariant under the group $\{\Phi_{\gamma}\}_{\gamma \in G}$. Hence $k = \tilde{h}$ for some $h \in H^{\infty}$ and

$$|\tilde{\phi}|^2 \ge \varepsilon^2 + |\tilde{\phi} + \tilde{h}|^2 \quad a.e.$$

References

- 1. M.B.Abrahamse, Toeplitz operators in multiply connected regions, Amer. J. Math. 96(1974), 261-297.
- 2. J.M.Anderson and R.H.Rochberg, Toepolitz operators associated with subalgebras of the disc algebra, Indiana Univ. Math. J. 30(1981), 813-820.
- 3. K.Barbey and H.König, Abstract analytic function theory and Hardy algebras, Lecture Notes in Math. Vol. 593, Spriger-Verlag, New York, 1977.
- 4. A.Devinatz, Toeplitz operators on H^2 spaces. Trans. Amer. Math. Soc. 112(1964), 304-317.
- N.Dunford and J.Schwartz, Linear Operators, Vol. I, General theory, Interscience, New York, 1958.
- 6. T.Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs New Jersey, 1969.
- 7. T.Gamelin and G.Lumer, Theory of abstract Hardy spaces and the universal Hardy class, Adv. Math. 2(1968), 118-174.
- 8. P.Hartman and A.Wintner, The spectra of Toeplitz's matrices, Amer. J. Math. 76(1954), 867-882.
- 9. T.Nakazi, Norms of Hankel operators and uniform algebras, Trans. Amer. Math. Soc. 299(1987), 573-580.
- 10. T.Nakazi, Norms of Hankel operators and uniform algebras, 2, Tohoku Math. J. 39(1987), 543-555.

- 11. T.Nakazi and T.Yamamoto, A lifting theorem and uniform algebras, Trans Amer. Math. Soc. 305(1988), 79-94.
- 12. E.L.Stout., Bounded holomorphic functions on finite Riemann surfaces, Trans Amer. Math. Soc. 120(1965), 255-285.
- 13. H.Widom, On the spectrum of a Toeplitz operator, Pacific. J. Math. 14(1964), 365-375.
- 14. K.Zhu, Operator Theory In Function Spaces, Marcel Dekker, Inc. New York and Basel, 1990.