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Abstract. Toeplitz operators Té"’ are defined on invariant subspaces M of an
arbitrary uniform algebra A. We give a necessary and sufficient condition of uniformly
invertible Ti” with respect to some family F of invariant subspaces M. This condition is
the same to a classical one in case A is the disc algebra. In special uniform algebras, we
can choose a small family, in fact, if A is a disc algebra then F can be a single set. Then
this generalizes the Widom-Devinatz theorem. As an application, we study a F-union of
- spectrums of {T} ; M € F}.



§1. Introduction

Let X be a compact Hausdorff space, let C(X) be the algebra of complex-
valued continuous functions on X, and let A be a uniform algebra on X. Let 7 be a
nonzero complex homomorphism of A and let N, be the set of representing measures
for 7 whose support is contained in X and m € N,. The abstract Hardy space H? =
H?(m), 1 < p < 00, determined by A is defined to be the closure of A in L? = LP(m)
when p is finite and to be the weak* — closure of A in L™ = L°°(m) when p is infinite.
Put HS ={fe€ H?; [fdm =0}, K§={f € L?P; [fgdm =0forall g € A} and K? =
K;+ C. Then HY C K§ and Hf C K?. The abstract Hardy spaces somtimes coincide
with the concrete Hardy spaces or the concrete Bergman spaces.

A closed subspace M for A of L? = L?(m) is said to be invariant if fM is
contained in M for all f in A. lat A denotes the set of all invariant subspaces of A in L2,
For ¢ in L*°, the Toeplitz operator Té"[ is the operator on M defined by

TY(f) = Pu(éf)

where M € lat A and Py is the orthogonal projection onto M. If M = H? then we will
write Ty = Té"f . In this paper we are interested in the equivalence of the following four
statements.

(1) T, is invertible.

(2) For each M € lat A, TM is invertible.

(3) For each M € lat A, Ty! is invertible and sup {||(T})7!||; M € lat A}
is finite.

(4) ess.inf|@| > 0 and there exists a function g in (H*)~! such that Re(¢g) >
6 a.e. for some constant § > 0.

In the four statements, (3) = (2) and (2) = (1) are clear. If (4) is valid, then
.~ there exist positive constants € and €o such that |ledg — 1fle < 1 — €0. Hence T is
_ invertible for any M € lat A and

M - 1 1
||(T€¢y) 1” < 1-lIT gl < "

Thus sup {||(T}*)!|| ; M € latA} < co. This implies (3). In this paper we will show
(3) = (4) under a condition : H*® = H! N L*. This condition is satisfied by five natural
examples in §2.

When A is the disc algebra of Example 1 in §2, Devinatz and Widom (see
[4]) showed (1) < (4). Hence the four statements (1) ~ (4) are equivalent. When A is
the rational function algebra of Example 3 in §2, Abrahamse [1] showed (2) <(4) in case
the symbols of Toeplitz operators are unimodular. In §4 of this paper, we will show (2)
&»(4) without the condition on the symbols. Hence our result solves the problem which
was proposed by Abrahamse [1, p294]. When A is the subalgebra of the disc algebra
of Example 4 in §2, Anderson and Rochberg [2] gave a generalization of the theorem of
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Devinatz and Widom. Their definition of Toeplitz operators is different from ours but
their results are closed to (2) <(4). In §4, we will study their result in a more general
. setting. By Corollary 1 in §3, (3) & (4) is still true for Toeplitz operators in the Bergman
space (see Example 2 in §2) and in the Hardy space of the polydisc (see Example 5 in
§2). In Examples 2, 3 and 4, it is known that (1) does not imply (4).

In §5, as an application of the equivalence of (2) ~ (4) we will study U {o(T}}7) ;
M € lat A} where o(T}") denotes the spectrum of T, In this paper, we use the theory
of abstract Hardy spaces (see [3] and [6]). It is powerful to study the problem above.

§2. Concrete examples

(1) Let A be the unit disc of C and let A’ be an algebra consisting of all
functions with continuous extensions to the closure A of A which are analytic in A. Put
A= A|X and X = JA. A is called the disc algebra which is a uniform algebra on X.
Suppose 7(f) = f(0), where f denotes the holomorphic extension of f in A, then 7 is a
nonzero complex homorphism. The normalized Lebesgue measure m on the unit circle is a
representing measure for 7 and N, = {m}. H? is the classical Hardy space and HZ = K2,
sometimes we will write H? = HP(A).

(2) In (1), put A = A’ and X = A. Suppose 7(f) = f(0) and m is the
normalized area measure on A, then m € N, and dim N, = co. H? is the Bergman space.

(3) Let D be a bounded connected open subset of C whose boundary consists
of n + 1 non-intersecting, analytic Jordan curves and let A’ be an algebra consisting of
functions with continuous extensions to the closure D of D which are analytic in D. Put
A = A'|X and X = 0D. A is uniform algebra on X and it is called an annulus algebra
when D is an annulus. Suppose 7(f) = f(t), where f denotes the holomorphic exension
of fin A.and ¢t € D, then 7 is a nonzero complex homomorphism of A. If m is a harmonic
measure of ¢ then m is the unique logmodular measure of N, and dim N, = n < oo [6,
pl16]. Sometimes we will write H? = HP(D).

(4) Let A be the disc algebra and A be a subalgebra of A which contains the
the constants and which has finite codimension in A. If 7(f) = ]”(0) for fe Aand m is
the normalized Lebesgue measure on the unit circle A, then it is easy to check that m is
a core point of N;, dim N, < oo and N, has a lot of logmodular measures (see [7, p154]).

(5) The unit polydisc A™ and the torus (JA)"™ are cartesian products of n
copies of A and of 9A, respectively. A’ denotes the class of all continuous functions on
the closure A" of A™ with holomorphic restrictions to A" Let A = A’|X and X = (0A)™.
This is the so-called polydisc algebra. Let m be the normalized Lebesgue measure, then m
is a representing measure for 7 on X where 7(f) = f(0) and 0 € A". Then dim N, = co.



§3. The Inversion Theorem

Put L={v € L*®;v™! € L*® and v >0} and F = {vH%v € L}. Then F
is a subfamily of lat A. In [9, Proposition 7], the following theorem was proved when the
~ symbols are unimodular. In this section, we show it for arbitrary symbols using a lifting
theorem in a uniform algebra due to the first author and Yamamoto [11, Theorem 2']. In
fact we use Theorem 2’ in case u = (u;;) is absolutely continuous with respect to m.

Theorem 1. Let ¢ be a nonzero function in L*. For each M in F there exists
a nonzero positive constant £(M) such that

ITY fll2 > e(M)||fllo f € M

and inf {e (M) ; M € F} =¢ > 0if and only if there exists a function g in H* N L*
such that

8> 2 €* + 1[4+ ae.

Proof. If [T} f]l; > €||f]l; for all M € F then it is easy to see that |¢| >
¢ a.e. andforall M € F

(TPTY) 2 2
Put HY f = (I — Py)(¢f) for f € M. Since (TM)*T} + (HY)HY =T},
LY Flle < N(16F — €)' flles f € M
and hence |
csup {|(HY f,9) 5 g € M* and [|gPdm < 1} < [(|¢[* — €?)|f[*dm
where (, ) is an inner product with respect to m. Thus for f € M andg € M*t
| [ ¢fgdm|* < [(I8]* — )| f[Pdm [ |g[*dm.  (a)
Since M = vH? and M* = v~ K} for somev € £, for F € H?2and G € K}
| [ $FGdm® < [(|g]? — €%)|F[?v*dm [ |G[?v2dm.
Hence for F € H® and G € Kg
—2Re [ FGdm < 2| [ ¢FGdm)|
< 2{/(Ig]* = )| F[Pv*dm} /2 { [ |G]Pv~*dm}"/?

< [(I¢]* — )| F[*v*dm + [ |G[*v=2dm. (b)
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Let X be the maximal ideal space of L, then X is a compact Hausdorff space and L*
is isometrically isomorphic to C (X ) by the Gelfand fransform. Put B be the image of
H* by the transform and let % be the Radonization of m. Then the measure 7 on X is
multiplicative on B and H () or L?(rn) is isometrically isomorphic to HP(m) or
LP(m), respectively, where H?(7n) is the abstract Hardy space determined by B. The
inequality (b) implies that the measure matrices for allv € L

(v2(|¢I"’~62) ¢ )
| 3 v

are positive on H® x Ky as A = H® and Ko = K§° in [11, p93]. By the absolutely
continuous case of the lifting theorem [11, Theorem 2] and the isomorphism above, there
exists a nonzero function g in (K$°)t N L' = H! such that the measure martix

6> —e*  o+yg
6+g 1

is positive on L x L*. Therefore

g +gl2+e2< |92 ae.

Conversely suppose that for some € > 0 there exists a function g in H* N L*®
such that |¢|* > e* + |¢ +g|> a.e.. Then for arbitrary v € £

/qu@dm = /(¢ + g)Fv - Gv~ldm

where F € H* and G € K. Hence from the Schwarz’s inequality, (b) and hence (a)
follow. This implies (T})7)*(T}7) > > > 0forall M € F.

Corollary 1. Suppose H® = H! N L*. Let ¢ be a nonzero function in L.
T)" is invertible for every M in F and sup {|[(T3)7||; M € F} < oo if and only if
both

(1) ess.inf [ >0 and

(2) there exists a function g in (H*)~! such that Re(dg) > § a.e. for some
constant ¢ > 0.

Proof. We may assume [|¢]|c = 1. Suppose sup{||(T3")"!|| ; M € F} < oo,
then ‘

1T (A2 > ellfllzs feM

where ¢ = {sup||(T}")~!(|}~!. By Theorem 1, there exists a function g in H' N L> = H*®
such that |¢|* > &% + |¢ — g|> a.e.. Hence ess.inf|¢| > 0, and
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Redg >8>0 ae. and § =€2/2.
. Therefore there exist positive constants a and g such that
llagdg — 1]|oo < 1~ &o.

This implies Ty, is invertible. By hypothesis on Ty, T} is invertible. Hence gH? = H? and
g~! € L™ because Redg > 6§ >0 a.e.. Thus g~' € H> N L*® = H™,

In Corollary 1, if ¢ is unimodular then (1) and (2) hold if and only if to the
distance from ¢ to the invertible elements in H* is less than one. Results in this section
apply to Toeplitz operators in Examples 1, 2 and 5.

§4. Some special cases

In this section, assuming that the set of representing measures for 7 is finite di-

mensional, we give the inversion theorems. These appear to be more useful than Theorem

1 and Corollary 1. They apply to Toeplitz operators in Examples 3 and 4.

' Suppose n = dimN,; < co. Let m be a core point of N, and let N be the
real annihilator of A in LE. Then dimN® = n(cf.[6,p109]). Set £ = expN>, then £ is
a subgroup of £. Put F; = {vH?: v € £} then F; is a subfamily of F. Then it can be
shown that Theorem 1 and Corollary 1 are true for F; instead of F. These give inversion
theorems in Example 4 which are related to [2, Theorems 2 and 3]. If n» = 0 then £ = {1}
and hence F; = {H?}. Therefore if n = 0 then Corollary 1 shows the equivalence of
(1) ~ (4) in Introduction and gives the theorem of Widom and Devinatz (see [4]).

For any v in L. let P, be the projection operator which takes L? onto H?>
and is self-adjoint as an operator on the weighted Lebesgue space L?(v3dm). Define the
associated Toeplitz operator R} mapping H? to itself by RY(f) = P,(¢f). This definition
is due to Anderson and Rochberg [2]. ( , ), and ( , ) denote the inner products in
L*(v*dm) and L?, respectively. Put M = vH?. For any f and ¢ in H?,

(B5(£),9)v = (P*(9£),9)0 = (9f,9)v = ($vf,vg) = (PM(¢v[),vg) = (T} (vf),vg)

It is clear that R} is (left) invertible if and only if T)' is (left) invertible. Hence Theorem 2

and the remark above Theorem 3 in [2] show the equivalence of (2) ~ (4) in Introduction

when A is a subalgebra of the disc algebra in Example 4.

: If we assume that m is the unique logmodular measure for 7 then the linear
span of N*° Nlog|(H®) | is N* (cf. [6, p114]). Choose hy,~ — —, k, € (H*®)"! so that

{log|hj|}7, is a basis in N*°. Put u; = log|h;|(1 < j < n) and & = {ezp(T;=15;1;) :

0 <s; <1}. Then & C E. Put Fo = {vH?:v € £y} then Fy C F, C F C lat A. Note

that the unique logmodular measure is a core point of N, when N, is finite dimensional.



Abrahamse [1, Part 4] studied T for simply invariant subspaces M. F is a proper subset
of the set of simply invariant subspaces.

| Theorem 2. Suppose N, is finite dimensional and m is a core point of N,. Let
¢ be a nonzero function in L,
(1) For each M in F, there exists a nonzero positive constant €(M) such that

TS fllz = e(M)||fll2s  feEM

and inf{e(M); M € F;} =& > 0 if and only if there exists a function g in H* such that

8 2 e* + ] +gI°  ae.

(2) When m is the unique logmodular measure for 7, T3/ is left invertible for

~any M in Fj if and only if there exists a positive constant € and a function ¢ in H* such
that

4> > e’ + o+ g ae.

Proof. It is known that H* = H' N L* (cf. [6, p109]). (1) By Theorem 1 it

is sufficient to show that if inf{e(M) ;M € F1} > 0 then inf{e(M) ;M € F} > 0. In
order to prove it we will show that

inf{f-:(M);Mef}zinf{e(M);MEf;}. (c)

If v € £ then logv = u + u; where u; € N* and u is in the weak*—closure of ReA
(cf. [6, p109]). Then u = log |h| for h in (H*)"! and so v = |h|v; where v; = e* and
v; € €. Hence M = vH? = b(viH?*) = bN,M € F and N € F,, where b = |h|/h. Then
TM = M,TY My where M, is a multiplication operator on L?. This implies (c) because
M, is unitary. :

" (2) By (1) it is sufficient to show that if Té" is left invertible for every M in
Fo, then for any M in F;

T flla 2 (M) fll: feM
and inf{e(M); M € F1} > 0. We will show that
infle(M);M € Fr} =inf{e(M) ;M € Fo} (d)

and

inf{e(M); M € Fo} >0 ()



If v € £ then v = |h|vg for some h in (H*®)™! and some v, € €, by the remark above
Theorem 2. By the same argument as in the proof of (1), we can show (d). Suppose
vy € € and M, = v H? € F with ¢(M;) — 0. Since v, € Eg,vp = ezp(X7_;s50u;) and
0 < sje £1(1 €5 < n). By passing to a subsequence, if necessary, we can assume that
sj¢ converges to a constant s; for each j, and |s;| < 1(1 < j < n). Put t = exp(B7_,s5u;)
then t € & and &(t) = 0. This contradicts that T} is left invertible. Thus (e) follows.

Corollary 2. Suppose N, is finite dimensional and m is a core point of N,. Let
¢ be a nonzero function in L*.

(1) T} is invertible for every M in Fy and sup{||(TM)Y| ; M € F1} < oo if
and only if ess.inf|¢| > 0 and there exists a function g in (H*°)~! such that Re(¢g) >
§ a.e. for some constant § > 0.

(2) When m is the unique logmodular measure for 7, T}! is invertible for
every M in F if and only if both ess.inf|¢] > 0 and there exists a function g in (H*®)™?
such that Re(¢g) > § a.e. for some constant § > 0.

Proof. Since for any subset S of lat A

(inf{e(M) ; M € S}~ = sup{||(T}") ]| ; M € S},

both (1) and (2) are clear by Theorem 2.

If ¢ is unimodular, then (2) of Theorem 2 shows Theorem 4.1 in [1] and (2)
of Corollary 2 shows Theorem 4.6. in [1]. Our results apply to more general uniform
algebras than that of [1] by [7, p157]. (1) of Corollary 2 does not show Theorem 2 in 2]
for general functions ¢ in L. However by the remark above Theorem 2 in this paper we
can get the invertibility theorems about a family {R},v € £,}.

§5. Spectrums of selfadjoint Toeplitz operators

o(T}") denotes the spectrum of T for each M in lat A. Hartman and Wintner
[8] showed o(T4) = [ess.inf @, ess. sup ¢] for a real valued function ¢ in L* where A is the
disc algebra. This theorem is not valid in general. For example, it is not true in Examples
2 and 3. In the case of Example 2, if ¢ is a real valued continuous function on A and
¢ =0 on OA then Ty is compact (cf. [14, p107]). Hence o(Ty) # [ess.inf &, ess. sup 4]
In the case of Example 3, see [1, p295].

For each M in F, let e(M) = ¢(M, ¢) be the maximum of non-negative con-
stants ¢ such that

ITY fll2 > 81| fllz for all f € M.

Put £y ={s € C :infle(M,¢$ —s),M € F] =0}, then



Ed,USJ,Q U O'(Téw .
MeF.

The above two sets sometimes coincide.

Proposition 3. Let ¢ be a function in L°°.
(1) If Ais a uniform algebra in Example 4, then

U O‘(T(;W)= 2¢U2$.
MeF,

(2) If N, is finite dimensional and m is the unique logmodular measure, then

U O'(T;SW) = E¢Ui$.
MeFo
Proof. We have to prove that Xy U X3 C U{c(T)) ;M € S} for S = F; in
(1) and S = Fo in (2).
(1) Ifs ¢ U {o(TH); M € F1}, then for any M € F; T}, is invertible.
By the proof of (1) of Theorem 2, for any M € F there exists N € F; such that
T, is unitarily equivalent to T ,. Hence for any M € F T2, is invertible. By the
remark above Theorem 2, for any v € £ Rj_, is invertible. By Theorem 2 and the
remark above Theorem 3 in [2], inf|¢ — s| > 0 a.e., and there exists a function g in
. (H*®)™! such that Re(¢ —s)g > § a.e. for some constant § > 0. By Corollary 1,
sup{||(T},)~!|| ; M € F} < oo and hence s ¢ £4 U ;.
(2) s ¢ U {o(T) ;M € Fo} then Corollary 1 and (2) of Corollary 2
S ¢ E¢ U E;’g

. If ¢ is a real valued function in L* then by Theorem 1

[ess.inf ¢,ess.sup g] D T4 2 | O'(Tqﬁw).
MeF

The following theorem shows the relations of the three sets above.

Theorem 4. Let ¢ be a real valued function in L*. Then the following are
valid.
(1) X4 = [ess.inf @, ess. sup ¢).
-(2) If Ais a uniform algebrs in example (4) then

o(TM) = [ess.inf ¢, ess.sup ¢].
¢

MeFy
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(3) If N, is finite dimensional and m is the unique logmodular measure for ,
then

U o(T5) = [ess.inf ¢, ess.sup ).
MeF,

Proof. (1) Put a = ess.inf ¢ and b = ess.sup ¢. It is easy to see that
Y4 =Xy U X3 C [a,b]. In fact, if s is a non-real complex number, that is, s = z + 1y and
y # 0, then

|¢—3|25+|¢—S+(;S-—x)| a.e.

where ¢ is a positive number with e + 2¢||¢ — z|| < y*. Hence s ¢ £y by Theorem 1. If
s is a real number with s < a then |[¢ —s|=|a—s|+[p—s+ (s —a)| ae. andifs>b
then |¢ — s| = |s — bl + |¢ — s + (s — b)| a.e.. Hence s ¢ Xy by Theorem 1.

R(¢) C £4 by Theorem 1 where R(¢) is the essential range of ¢. We will prove
that {a,b] C L4. Suppose a < s < b and s ¢ X. Then we will get one contradition. Put
s, = ess.sup min (¢,s) and s, = ess.inf maz (¢,s), then s, < s < 3. Put

E.={zeX:a<¢(z)<s;}and By ={z € X :s, < ¢(z) < b}.

then m(E, U E;) = 1 and m(E, N E;) = 0. Since s € T4, by Theorem 1 there exist a
nonzero function g in H* and € > 0 such that

lp—s|>e+|d+gl ae.

Put S, = {t € R : dist(g(E,),t) < ¢/2} and S, = {t € R : dist(g(Es),t) < €/2} where
R is a real line and g(F,) is an essential range of ¢ in E, with £ = a, b. Then S, and S,
~ are compact subsets in R. If S, NS} is essentially nonempty then there exist z € E, and
2’ € Ejy such that |g(z) — g(2’ )| < e. Hence

¢(z' ) — ¢(z) = I¢(z) — 8(<" )]

< [¢(2) + g(2)] + [¢(z" ) + g(=" )| + lg(z) — (=" )]
<lg(e) — sl —e+1p(a" ) —s|—e+e

= ¢(z' ) — ¢(z) —e.

because ¢(r) < s, < s < 85 < ¢(z' ). This contradiction shows that S, NSy is essentially
empty. By a theorem of Runge we can show that xg € H*®. Thus m(E,) =0 or 1. This
contradiction shows that [a, b] C X4. (2) and (3) are results of (1) and (2) in Propsition
3 and (1) in this theorem.
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Widom [13] proved that o(T}) is connected for arbitrary symbol ¢ when A is
the disc algebra. This theorem is not valid in Examples 2, 3 and 4. Here we assume that
A is a uniform algebra in Example 3. Abrahamse [1, p295] announced without proof that
if ¢ is unimodular then U{o(T}?) ; M € S} is connected when A is an annulus algebra.
S denotes the set of simply invariant subspaces.

The universal covering surface of D is conformally equivalent to the open
unit disc A and an analytic projection map 7 from A onto D can be chosen so that
7(0) = t. Abrahamse [1, p294], using his inversion theorem, when ¢ is unimodular
and 55 = ¢om, if Té” is invertible for each M € S then Tj is invertible and hence
o(T;) € U{o(T}) ;M € S}. The following proposition generalizes the Abrahamse’s
result to arbitrary symbols. Recall that F is a proper subset of S.

Proposition 5. Suppose A is a uniform algebra in Example 3. Let ¢ be a
nonzero function in L*®. If Té"’ is invertible for each M in Fy,. then T} is invertible.
Hence ;

o(Tz)c U o(Ty).
MeF,

If n =1 then o(T3) = U {o(T}") ; M € Fo} and hence U o(T}?) is connected.

Proof. If Té"! is invertible for each M € F,, then by Corollary 2 there is
g € (H*)™" such that Re(dg) > 6 a.e. for some constant § > 0. This implies that
- Re(43) 2 6 ae. and § € H®(A)™'. By Corollary 2 T} is invertible. If n = 1, we will
show that the converse is valid. Suppose T} is invertible. By Theorem 2, there exists a
positive constant € and a function g in H*°(A) such that

B2 >+ [ +g[* ae.
If we can find A in H*® such that
B2 =+ [g+ R ae.

then by Theorem 2 T;Sw is left invertible for every M € F,. The same proof of the complex
conjugate ¢ shows that Té” is invertible for every M € F,.

We will show the existence of such an h in H®. We can regard H as the
closed subalgebra of H*°(A) consisting of those f € H*(A) which are invariant under a
certain group of conformal maps of A onto itself. This group, which we shall denote by G,
is in an infinite cyclic group. Put S = {g € H®(A): |§]? > e + ¢+ g|* a.e.} then S is
a convex subset of H*(A). We define a group operators {®.,},eg on H*(A) by means of
®,h = hoyforally € G. Let o be the topology of almost uniform convergence in H*(A).
Then ¢ is metrizable, and a normal families argument shows that S is o-compact. Since
they commute, the fixed point theorem of Markov and Kakutani ([5, p456]), [12, Theorem
2.1]) affirms the existence of k in S which is invariant under the group{®.},ec. Hence
k = h for some h € H*® and
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1° > e+ ¢+ A ae.
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