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GINZBURG LANDAU EQUATION AND STABLE
SOLUTIONS IN A ROTATIONAL DOMAIN

SHUICHI JIMBO* AND YOSHIHISA MORITA**

* Department of Mathematics, Faculty of Science
Hokkaido University, Sapporo 060 Japan

** Department of Applied Mathematics and Informatics
Faculty of Science and Technology
Ryukoku University, Ohtsu 520-21 Japan

ABSTRACT. The Ginzburg Landau equations in a rotational domain in R? are studied. Rotational
solutions are constructed and proved to be stable by the spectral analysis on the linearized equation.

§1 Introduction.

We deal with the Ginzburg Landau (GL) equations and existence of stable solutions in a rota-
tional domain. GL equation is well-known as a model of the super-conductivity phenomena in a
low temperature (cf. {11]) and has been playing an important role in the mathematical physics.
Several important features arising in the super-conductivity phenomena have been understood
through the GL equations. The experiment in physics shows that in a ring shaped material
(superconductor) a permanent circular current of electrons exists with no energy dissipation
under no external magnetic field. Our purpose in this paper is to construct an adequate stable
solution describing this phenomenon.

There have been many mathematical works from the PDE point of view on the GL equations
in several situations. The GL equations have an important parameter (the Landau parameter)
which gives a crucial influence on the situations. Odeh [20] dealt with a bifurcation from zero
solution with respect to this parameter. Caroll and Glick [6] proved a unique existence of
solution in a certain range of the parameter by a fixed point theorem. Jaffe and Taubes [12]
gave a method to prove the magnetic screening effect and gave the quantization of the total
vorticies in R2, Moreover for the critical value of the Landau parameter, they constructed
a solution with the arbitrarily prescribed vortices in R?. Klimov [15], Bobylev [5] obtained
multiple solutions by a topological method in a large range of the parameter. Berger and Chen
[3] constructed a radially symmetric solution (vortex solution) in R? and obtained an elaborate
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asymptotic behavior when the parameter goes to co. Chen [7] constructed a nonsymmetric
solution in a 2-dim bounded domain with the boundary condition |®| = 1. Yang [25], [26]
constructed smooth solutions in R® and in a bounded domain with boundary conditions of
several kinds under an outer magnetic force. Monvel-Berthier, Georgescu and Pruce [19] gave
a detailed characterization of the configuration space with prescribed total vorticity under the
boundary condition |®| = 1 in 2 dimension. There are also studies on the zero set of the
solutions to the model without magnetic effect (cf. (1.6) ) for boundary condition of several
kinds (cf. Baumann, Carlson and Phillips [2], Elliot, Matano and Tang [9], Bethuel, Brezis and
Helein [4]). However, it seems to be still obscure about the stability of solutions for a general
domain. In our previous paper [13], we dealt with the GL equation without magnetic effect
(cf. (1.6) ) and consider the existence of stable non-constant solutions and proved that there
exist stable non-constant solutions in a thin annulus, while no stable one in any convex domain.
In this paper we will construct a rotational solution (non-constant) to the full GL equation in
a ring shaped domain (cf. Fig. 1) and prove their stability, which means that the solutions
correspond to realizable phenomena. :

I\

Figure 1 : Ring Shaped Domain

Now we formulate the problem. Let 2 be a bounded domain in R* with C? boundary and
consider the following functional:

(1.1) - H(®,4) = / {-1-|(V —1A4)®) + g(1 - l¢>|2)2} dz +/ l|rot.»4.|2da:.
012 2 s 2

a > 0 is a positive parameter and @ is a C valued function in © (which is the wave function of
the electrons) and A is a real vector valued function in R® (which is a vector potential of the
magnetic fleld). The first term corresponds to the energy of the electrons confined in Q and
the second term corresponds to that of the magnetic field which exist over R®. We suppose
A e L} (R%R3), VA € LER%R**®) and & € H'(Q;C). GL equation is the variational
equation of the above functional, that is,

(V—iA)234+a(1—-[2*)®2=0 in Q,
0%

1.2 9 e -
(1.2) 5 {A-v)@=0 on 09,

rotrot A + (i(8V® — V®)/2 + |324) Ag =0 in R3,

.2



where Aq(z) =1 for z € Q and Ag(z) =0 for z € R*\ Q. (-,-) is the standard inner product
in R®. A realizable physical state corresponds to a certain local minimizer of the above energy
functional. To see the stability of a critical point (®, A), we need to consider the second variation
of the functional,

&
(1.3) £(2,4,9,B) = Z5H(® + ¥, A+ eB)jmo.

However it is well known that H is invariant under the following (gauge) transformation: for a
real valued function p in R3,

(1.4) 3’ = e’ ®, A'=A+Vp  (Gauge transformation).

In view of this any critical point (@, A) of H can not be a “strict” local minimizer because
the above transformation makes a continuum containing (2, A) (co dimensional set) whose
elements give the same value as (@, A). This is a natural because all (@', A’')’s in this continuum
corresponds to one physical state and hence we need to compare the energy among only gauge-
distinct-states around (@, A). For this purpose we consider the tangent space to the continuum
at (®,A), which can be expressed as follows:

T(®,A) = {(i€®,VE) | £ : R valued function on R*}.

and choose a space N(®, A) which is transversal to T(®, A) such that T(®, A)NN (@, A) = {0}.
We will consider strong coercivity of the second variation (1.3) in N(®, A) to investigate the
stability of the solution.

In some situation of the superconductivity, the magnetic field is very small in the interior of 2
and the model without A is also used. We also deal with the following functional:

15 Ho(tI)):/Q{%|V<I>|2+%(1—|<I>|2)2}dz,

whose variational equation is also called the GL equation. It can be written as follows,

(1.6) o

— =0 on &N.

{ A®+a(1-]2*)®=0 in Q,
Ov

As in the case of (1.1)-(1.2), (1.5)-(1.6) has a similar invariance, that is, if ¢ € R, the transfor-
mation

(1.7) P’ = e'°d



leaves (1.5) and (1.6) invariant. We also consider the existence of stable solutions to (1.6) as
well as (1.2). The second variation of H; is defined by

d?
(1.8) Lo(2,70) = wHo(@ + 6‘1’)|€=0.

Similary to the case of (1.1), we prove the stability of solutions by taking account of the
invariance (1.7).

In §2 we give the definitions of several spaces for the formulation for the stability. In §3 we -
present our main results. In §4 ~ §6 we prove the theorems.

§2 Formulation.

In this section we will formulate T(®, A) and N(®,A), precisely. Let (®, A) be a solution
of (1.2) such that & € C}(©;C) and 4 € C*(R%;R®) and VA4 € L2(R3;R3%%), Acutually
the solution we will construct later satisfies this condition. For convenience, we also deal
with ®-component in terms of real functions by taking the real and imaginary parts. We put
® =u+vi and ¥ = ¢ + 1pi. Hereafter we identify H(®, A) and £(®, A, ¥, B) with H(u,v, A)
and L(u,v, 4, ¢,%, B), respectively. The tangent space T(®, A) can be expressed as follows,

(2.1) T(u,v, A) = {(—v€,u, VE) | € € LT, (R®), V& € HY(R%; R®)}

To define a subspace N(u,v,A) in an adequate form, we prepare the operators P and P. It is
known that exists an orthogonal decomposition L2(Q;R?) = X; @ X,, L*(R%;R3) =Y, 8 Y,
where : .

X1 ={V{| ¢ e L*(Q), VE € L* (4 R%)},

X, ={BeL*(Q;R%)|divB=0in H-}(Q), (B-v)=0in H-1/2(8Q)},
Y; = {VE| & € L},(R®), V¢ € LX(R% RY)},

Y, = {B € L*(R%R®) | divB = 0 in H™}(R%)}.

See [24]. Let P and P be the orthogonal projections of L*(Q; R®) and L%(R%;R?) onto X, and
Y3, respectively. We define

N(u,v,4) = {(gﬁ,z[),B) € HY(Q) x HY{(Q) x HY(R*;R®%) | /Q(qu—— up)dz =0, Bjg € Xg},
N(u,v,4) = {(¢,¢,B) € HY(Q) x H'(Q) x HY(R*;R®) | /Q(vqﬁ—uzﬁ)dm =0,B¢€ Y2}

Using the above, we have the following decomposition.

Proposition 1.

HY(Q) x HY(Q) x HY(R%;R®) = T(u,v, 4) + N(u,v, A).

4



(Proof of Proposition 1) Assume (u,v) # (0,0). Otherwise the proof is much easier. Let
(#,%, B) be any element in the left hand side. By Bjq = P(Bjq) + (I - P) (Bja), there exists

¢ € H*(Q) such that V¢ = (I — P) (Bja)- Let € be such that € € H2(R?) and Z'Q = {. Put
B; =B - V€ and

c= /(¢v —utp + E(u? + 1)2))d:1://(u2 + v?)dz.
Q Q

Hence if we define £ = — ¢, then we have a decomposition,
(¢,¢,B) = (—gv,gu, VE) + (¢ + Ev,t,!) - Eu, By) € T(u,v,A) + N(u,v,A). O |

Proposition 2.
(2.2) HY(Q) x HY(Q) x HY(R*;R®) = T(u,v,4) & N(u,v, A).

(Proof of Proposition 2) Assume (u,v) # (0,0). Otherwise the conclusion is known. Let

(¢,%,B) be any element in the left hand side. By the aid of the projection P we have the
decomposition B = V¢ + B; € Y; + Ya, hence

(¢7 ¢7B) = (_€v1£u1 Vﬁ) + (¢ + Evad} - €u) Bl)
We can adjust £ by adding an constant to £ as in the proof of Propostion 1 so that the second
term of the right hand side belongs to N(u,v, A). If (—¢v, fu, V&) belongs to N(u,v,B), £ is a
harmonic function in R® and so is 8¢/dz; (1 < 1 £ 3). Since if it is assumed to be in L2(R3),
and hence it is identical to 0 from the Liouville type theorem. This implies that ¢ is a constant
function in R®. On the other hand we have [,,(u? + v?)¢édz = 0, and so ¢ = 0. This deduces
that T'(u,v, A) N N(u,v,4) = {0}. O

By a direct calculation we can derive a concrete expression of the second variation (1.3).

Formula of second variation of .
23) L(u,v, A, 6,4, B) = -;—dil;-?{(u tedyv+ e, A+ eB)jsy =
{1987 + 1962 — a1 = 42 =) +97) + 20(ub + w)?) da
+/Q {4287 + %) - 2A$(Vp - A) — $(Vg - 4))} d
+ /R lrotBdz + /,, (u? + v?)Bdz
+4 /Q'(A - B)(u¢ + vip)dz — .2/n {#(Vv-B) —9p(Vu-B) + u(Vyp - B) —v(Vé- B)} dz

5



Remark. If divB =0in Q and (B:v) =0 on 0%, then

/ (w(Vyp-B) —v(V¢:B))dz = / (6(Vv - B) —¢(Vu - B))dxz.
Q Q

This equality will be used in §6. In the next proposition, we see that the second variation of H
does not depend on the tangential component T(u,v, A).

Proposition 3. If (¢, 4, B), (¢',¢', B') € H'(Q) x H1(Q) x H}(R3;R?), (46— ¢I Yp—¢',B—B')
€ T(u,v,A) , then

(2'4) £(u’v’A’ ¢,¢7B) =£(u,v,A7 ¢,, IPI’BI)'
Now let @ be a C? solution of (1.6). Similarly as above we put ® = u+vi and ¥ = ¢+1)s again
and denote Ho(®) and Lo(®, ¥) by Ho(u,v) and Lo(u,v, ¢, ), respectively. Let us define

To(u,v) = {(—tv, tu) € HY(Q) x H'(Q) | t € R},

Nofue,0) = {(6,#) € H'(@) x H'@) | [ (08 = wh)de =0},

Accordingly the next property holds.

Proposition 4.

HY(Q) x H(Q) = Ty(u,v) © No(u,v).
Formula of the second variation of H,

1 d?

(25) Lo(u,v,6,4) = 37

—Ho(u + 6,0 + e)jemo =

/Q {1V +VYI") = a1 = u? ~ 0*)(¢" +9%) + 2a(ué + v¥)*} da.

Proposition 5. If (¢, %), (¢',¢') € H'(Q) x H}(Q) and (¢ — ¢',¢ — ¥') € Ty(u,v), then

'CO(uv v, ¢’ ¢) = L:O(ua v, él, 11/)/)



83 Main Results.

In this section we will present the main results. Let D be a domain defined by

D={(r,z) €eR?|r >0}
and let & be a bounded domain in D with C? boundary (cf. Fig.2). Throughout this paper we
assume the next assumption on X.

Assumption. ¥ is convex and £ C D.

Now we give a domain Q C R? where we consider the equations (1.2) and (1.6) as follows,

(3.1) Q= {(rcosf,rsinf,z) eR®| (r,2) €L, 0S0<2r} 2T x S! (cf. Fig.1).

We will construct a rotational (stable) solutions to (1.2) and (1.6) in this domain 2 defined
above. In the present section and the later sections, we sometimes use the cylindrical coordinate
system (r,z,0) in R3. Considering the symmetry of the domain, we find a solution (&, 4) to
(1.2) in the particular form:

—siné cosf

(3.2) A(r,z,9)=Y(r,z)( : ,o), &(r,z,0) = W(r,z)e'™®

r T

which corresponds to a phenomena of rotational eternal current of electrons. Here W =
W(r,z) > 0and Y = Y(r,z) are real valued functions in ¥ and D, respectively.

D

Figure 2: X ¢ D



We present the main theorems of this paper.

Theorem 6. Let m be an integer. There exists a ag > 0 such that for any o 2 «p, there exists
a solution (®@q, Aq) to (1.2) with

T

@, (z) = Wy(r, z)eimo, Ay(z) = Yyo(r, 2) (-—s;né?, COSG,O)

where W, € C%(T) and Y, € C*(D) and

(3.3) lim sup |Wu(r,z)—1|=0.

&= (1,2)€T
Moreover it is stable in the sense that there exists a constant § > 0 such that
(3.4) L(®a,Aq,¥,B) 26 (||‘I’||2L=(n;cr:) +1BllZ2(0y + ||VB||%2(R3;R3><3))
for (¥, B) € N(®4,4,) and a 2 ay.

We can similarly find a stable solution to (1.6) in the form:
(3.5) &(z) = Z(r,2)e'™, (Z(r,z) > 0).
Theorem 7. Let m be an integer. Then there exists a constant a; > 0 such that for any

a 2 a;, there exists a solution ®4(z) = Z4(r, 2)e'™? to (1.6) with

(3.6) lim sup |Z4(r,z)—1|=0.

*T® (r,2)€T
Moreover @, is stable in the sense there exists a constant §; > 0 such that
(3.7) Lo(®@ar¥) 2 6l1¥]|72 0,0
for any ¥ € No(®,) and a 2 a;.

We will prove these results in the following sections.
Remark. We can obtain similar theorems for the 2 dimensional case, namely for an annulus.

The proof will be done in the same manner.

Remark. In our previous paper [13], we constructed a stable solution to (1.6) for a “thin”
annulus. Hence, Theorem 7 is in an extended line of the study in [13].



§4. Construction of solutions

In this section we will prove the existence of solutions to the GL equations (1.2) and (1.6) in
the forms of (3.2) and (3.5), respectively. We prove the asymptotic behaviors of solutions as
a — oo (cf. (4.2) and (4.4) ), which play essential roles to investigate the linearized eigenvalue
problems of the solutions in-§5 and §6. We deal with (1.6) first and (1.2) next in this section
and §4. By a direct calculation with (3.5), we get the equation for Z.

m‘2
LiZ-—5Z+aZ(1-2")=0 in 3,

07z
I =0 on 0%,

(4.1)

where

10,0, &
1= vor" or 0z2
and n is the outward unit normal vector on 8% in D.

The next proposition shows the existence of a positive solution and the asymptotic behavior of
it as o — oo.

Proposition 8. There exists ap > 0 such that there exists a unique solution Z = Z4(r,z) > 0
to (4.1) for any a 2 ay with the following asymptotic properties:

limsup sup @|Z4(r,2)—1| < oo, .limsup sup a|VZ,(r,z)| < oo,
a— 00 (T,Z)GE Qa—00 (T,Z)GE
(4.2) 2
lim sup |a(l— Zafr,2)?)— _m_2| =0.
a—=X (r,2)ET : r

Similarly we have the following equation (4.3) for (W,Y") from (3.2):

1 .
LW — —(m Y)W +aW(1-W?)=0 in I,
(4.3) LY+ (m—-Y)W?Az =0 in D,
£9—Iy-=0 on 0YX, Y=0 on 4D,
On
where
=2 186 _ &
2T 62 ror ' 922

and Ax(r,z) =1 for (r,z) € £ and Ag(r,2z) =0 for (r,z) € D\ Z.

We remark that in the case m = 0, (4.3) reduces to (4.1) if one puts ¥’ = 0. If (W,Y) is a
solution to (4.3), then (W, ~Y) with —m is a one to (4.3). Hence for a negative integer we

9



also have the same assumption provided that (W,Y") and m are replaced by (W, ~Y) and —m.
Hence in the proof of Proposition 9 (below), it is enough to to deal with the case m € N. For
m € N, (4.3) becomes a so-called cooperation system for functions as long as0 S W<,
0 £ Y £ m. Indeed because the nonlinear term in the former equation is in ¥ while so is the
one in the latter equation in W if W and Y is in the above region. We will make use of the
technique of the comparison method (upper-lower solution method). We have the next result.

Proposition 9. There exists a solution (W, Y’) = (Wa(r, 2), Ya(r, 2)) to (4.3) with the following
asymptotic properties: '

limsup sup a|W,(r,z) —1| < oo, limsup sup a|VW,(r,z)|< oo,

a—00 (r,z)€S a—oo (r,z)ET
(4.4)
lim sup |a(1l—Wa(r,z2)?) - 2(m —Yo(r,2))*| = 0.
Q=0 (r2)ET

In the rest of this section we prove these propositions after presenting several auxiliary lemmas.

Lemma 10. Let p be a real valued function which is C® in a open set E C R®. Then we have
(4.5) IVelA[Vp| 2 gradp(Ap) in {z € E||Vp(z)| # 0}

where grad p is the differential operator which is expressed as

sadp= 2t o

in terms of the orthogonal coordinate (z1, 22, ..., z,).

(Proof of Lemma 10) From a direct calculation
| 1/2 |
8 [~,00 i~ O O
dzy, (;(8:1:1') ) = [Vl Z < bz Bz Oz

92 -1 op &p =N 0%
Ba2 VPl =1Vel (Zaz,ax,axk ;(az,-azk)

- Op 0% a9 Op
3 > 1
= [Vel (Z Oz; Oz aa:k) Vol Z 33:1 6:1:_,6:8,C

Here we used the Schwarz’s inequality. Summing up the above in k = 1,2,...,n, we have the
desired inequality. [

10



Lemma 11. Let E C R" be a domain with C? boundary and I' is a relatively open subset of
OE. Let p € C?*(E) be a real valued function with 9p/dv = 0 on I where v is the unit outward
normal vector on 0E. Then

10 2
(4.6) 5 5—1;|Vp] = —h(gradp,gradp) on T
where h(-,-) is the second fundamental form of the inclusion 9E C R™ with respect to —uv. (cf.

[15 ; Chap. 7]).

By the Neumann boundary condition of p, grad p can be identified with a first order differential
operator on I' and also a vector field on I'.

(Proof of Lemma 11) First extend v(z) = (v1(z), ..., ¥n(z)) as a C? vector field on a neighbor-

hood of T'. \
1 8 Op 0%
-2—311 - _Zykax Z( ZZ k@x_, aa:Jaa:L

k=1 j=1

On the other hand we have Y }_, vx(z)9p/0z = 0 on I. Since grad p is a differential along T,
we can operate grad p to the above equation (recall Neumann B.C.):

, dp 9%p +6Vk dp dp
kamj O0z;j0zr  Ozj Ozj Oz

0= gradp(z vk(z)0p/0zk) = Z

k=1 k.,

Using this, we have oo B0
10 o 2_ vk 8p Bp
2 ulvPI B Z 9z ; Oz; Oz

- This completes the proof of Lemma 11. 0

Proof of Proposition 8

The equation (4.1) is a specific case dealt with in the classical work [1] and [23], and so we
briefly discuss the existence of the solution. Define two constant functions as follows:

d .
Ziyo(ryz)=1, Z_q(rz)=1-— ~ in Z.
It is easy to check that if d > 0 is large enough, Z_ o £ Z; o are lower-upper solutions pair of
(4.1) for a @ > d. Consequently there exists at least one solution Z, such that Z_ , £ Z4 <
Z4+ o in X. The uniqueness can be proved in the same manner as in that of Lemma 3.1 in {13],
so we omit it. The first estimate in (4.2) directly follows from this inequality:

B} d
(4.7) 1-=224(r,z)£1 in X

11



for any o > d. We will prove the remaning estimates of (4. 2) Rega.rdmg Zo as a function
defined in Q by Z(z) = Z(\/z? + z%,z3), we have

v mZZa 9 .
(48) AzZa - m + OlZa(l - Za) =0 in Q,

1

with the Neumann B.C. on 9Q. The nonlinear term in (4.8) is bounded in C%(Q) for a > d by
(4.7) and the Schauder estimate for the elliptic boundary value problem yields that {Z}qo>q is
bounded in C**7(Q) where v € [0, 1) is an arbitrary constant. This means |V Z4(z)| is relatively
compact in C%(Q) and hence it converges to 0 uniformly in Q as @ — co. Operating grad Z,,
on the equation (4.8) and applying Lemma 10, we obtain the following differential inequality:

(4.9)

|VZq ]A|VZ°,| +ga(z) 20 in QN G,
VZ, | |VZ | = —h(grad Za,grad Z,) S0 on 39 N Gg,

where

Go={z€ -Q-I [VZu(z)} > 0}

92, 2 o
ga(z) = 2+ a2 z (91:] 5s; Zo+a(l —3Z2)|VZa|*.

The first inequality in (4.9) is deduced by a direct calculation. The inequality of second one
follows from Lemma 11. Remember that grad Z, is normal to the longitudinal direction of
0Q (i.e. Zo = Zo(+/23 + 22, z3) is constant in the longitudinal d1rect10n) Considering the
sign of the second fundamental form and that the cross section ¥ of Q is convex, we obtain
h(grad Z,,grad Z,) 20 on 08Q.

Z4 is not a constant function and the set F, defined by

Fo = {z € 0] 0 < |VZa(a)| = mex|VZ4l},
Q

is not empty for a > d. By virtue of (4.7) there exists ¢ > 0 such that 0 £ a(1 - Z2) L cin
L for a > d. We will estimate |VZ,| in F, from the upper. We divide the argument into the
following two cases of « : (I) and (II).

(Case I) Fy ¢ 0. Take any point zq € Fy \ 0Q. We have A|VZ,| £ 0 at £ = 7o and
consequently we have go(z¢) 2 0. By a simple calculation, we get

Za+a(l1—3Z2)|VZe|*20 in F,

- 0:1:,( 2+ )3

z +a(l—2Z2)|VZs| 2 2022V Zs| in Fy,

12



1/2

20 22|V Z4| < Z(az, 2))2 + 20|V Z4|

For a 2 2d + 8¢,
1/2

N +2|VZ. in F,.

<
(4.10) alVZl 4 Z( 52

:z:1+:v2

(Case II) F, C 9Q. From Lemma 11,
(4.11) 0|VZy|/0v S0 on 8QNG,

First we show that go(z) 2 0 in Fo. If go(z0) < 0 for some zo € F,, we see that AlVZ4| >0
in some neighbood of z¢ and we have 0|VZ,|/0v > 0 at 2 = z, from the Hopf’s boundary
point lemma (cf. [21]). This is contrary to (4.11). We conclude that g, is non-negative in F,.
By this fact we can show (4.10) as in the case (I).

This completes the proof of the first two asymptotic properties of (4.2). From these estimates,
the C*(X) norm of the nonlinear term of (4.1) is bounded when a — co. Applying again the
Schader estimate to (4.1), we get that |[Zq lc24+(x) is bounded when o — oo for any fixed
0 £ v < 1. This implies that AZ, uniformly converges to 0 in ¥ as a@ — co and we obtain the
last one of (4.2). This completes the proof of Proposition 8. 0O

Proof of Proposition 9

As is mentioned before, we can assume without loss of generality that m is a positive integer.
Since (4.2) is a cooperation system, we can again use a comparison argument to construct a
solution. However, in this turn, we have a difficulty that D is a unbounded domain and the
coefficients of the equation of Y is singular on 8D. We deal with such difficulty by considering an
approximation problem by taking a bounded subdomain D, where the coefficients are bounded
and we can thereby get the desired solution in D by taking the limit p — co. First we introduce
some auxiliary comparison functions.

d
W](T Z) =1- 'a_la W2(Ta Z) = 1)
4.12 - dopemr=a =B y r’
(4.12) § Yi(r,2) = dar’e y Ya(r2) = T3 522
r :
k Y3(r,z) = Fx 2y Yy(r, z) = min(d3 Y, (r, 2), da¥3(r, 2), m)

where dy > 0, d3 > 0, d3 > 0 and 1 > 0 are positive constants and s is a constant such that
4s? =25 -1 <0, 1/2 < s (for instance s = 3/4) and (a,b) is an arbitrarily fixed point inXE. It

13



is easy to calculate and get

( LyYy(r,z) = dgnre"’((r‘“)2+(z_b)2) (4nr(r — a)? +4nr(z —b)? — 10r + 6a)
10r2 4 2r22% 4 2rt
(1472 + 22)3
(4% — 25 — 1)r? — 22
r(r2 + 22)°t1

@13) | hnz)=-

LY (r,z) =
\

Lemma 12. There are numbers d; > 0, d2 > 0, d3 > 0, n > 0, for which the following
inequalities are valid if o > 0 is large.

(4.14) O0<WSEW2S1 in &, 0<Y17 S, Sm in D,

L1W1 - %(m - },1)2W1 +C¥T’V1(1 - W12) g 0 in E,

(4.15) LY +(m — Y1)WiAs 20 in D,
oW,
On

=0 on 0L, Yj—-—O on 0D,

LW, — %(m - Yz)2W2 + OlVVz(l - W22) § 0 in %,

(4.16) LYs +(m—-Y:)WZAs £0 in D,
OW,

=0 on 0%, Yo=0 on 0D,
On

We remark that Y2 is not C%(D) and we take the differential inequality of Y3 in (3.16) in the
sense of distribution, that is,

(4.17) / (Y2L2S + (m — Y2)WZAsS)rdrdz £ 0
D

for any S = S(r,z) € C®(D) satisfying $ 2 0 in D and supp S C D.

(Proof of Lemma 12) By taking n > 0 large, we see
{(r,z) € D | 4nr(r — a)* +49r(z — b)* = 10r + 6a < 0} C Z.
We take dy > 0 so small such that 0 < Y; £ min D. Then

1 m?2
LW; - ﬁ-(m — }’1)2W1 + aWi(1 - VVlz) 2 Wi(dy — -r—z-) g 0

14



for large fixed d; > 0. We can retake d2 > 0 smaller such that the second inequality of (4.15)
is valid. Next we prove (4.16). The first inequality is trivial. We see that L,Y;(r,z) and
L,Y/(r,z) are negative in D. Taking d3 > 0 large so that Y, =m in X and ¥; £ Y, in D. The
first inequality in the sense of distribution is can be checked from the definition of ¥,. 0O

We approximate the domain D. Let D, = {(r,2) € D | 1/p <, r? + 22 < p?} where p € N is
a parameter. We consider the following boundary value problem of a elliptic system,

L1W—Ti2(m-—Y)2W+aW(1—W2)=O in %,

(4.18) LY+ (m—-Y)W?Az =0 in D,,

ow

—51-1—=0 on 0L, Y=Y on 08D,.
This is a cooporation system in the region 0 < W < 1,0 <Y < m. If we have a lower solution
and an upper solution, we can conclude that there exists a solution between them by using a
standard theory ( cf. [17], [18], [23]). In our case the situation is a little different from those
dealt with in the above literature because the domains of definition of W and Y are defferent.
However we can carry out a completely similar argument and get a solution (W,Y’) such that
Wi SWEW,inXand Yy £Y £ Y2 in D,. Thus we have the following approximation
sequence of solution to (4.2).

Lemma 13. For large p € N, there exists a solution (W, Y ) € C**+(T) x C**7(D,) to
(4.18) such that

{W1 (r,2) S WP (r,2) £ Wy(r,z) in I,

(4.19)
Yl(r)z) é Y(P)(r,z) é Y2(T,Z) in Dp7

where 0 S v < 1 is an arbitrarily fixed constant.

The Schauder estimates of the elliptic equations together with (4.19) yields that for any large k&
the set of approximate solutions {(W (¥, Y (?))} > k41 are relatively compact in C%(Z) x C*(Dy).
Applying the diagonal argument, we get a convergent subsequence and consequently a solution
(Wa, Ya) € C*}(Z) x CY(D) to the equation (4.2) with the same estimate as (4.19), that is,

(4.20) { Wi(r,z) £ Wa(r,z) S Wy(r,z) in 5,

Yi(r,z) S Yo(r,2) S Yo(r,2) in D,

for large @ > 0. The former estimate in (4.20) implies the first properties of (4.4). We will prove
the last one of (4.4). We remark that the nonlinear term of (4.2) is bounded uniformly in large
a from the estimate proved just now. Using the Schauder estimate of the elliptic equations, we
have a constant ¢ > 0 such that

(4.21) [VWal +|VYs| Sc in O (large ).
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We can carry out quite a similar argument as in the proof of Proposition 8. Return to the
original orthonormal coordinate (z1,z2,z3) and denote Wy(z) = Wa((2? + 22)1/2,23). The
former equation of (4.2) becomes

1 ) .
AWy — m(m ~ Yo ) P We+aWo(1-W2)=0 in Q,

(4.22) 1

oW,
5 = 0 on ON.

Applying grad W, to the above equation and using Lemma 10 and Lemma 11, we get
{ |[VWo|AIVWa| 4+ 9a(2) 20 in QNG

(4.23) 9
[VI/V,,|E|VWO,I S0 on 90N G,.

where G, = {v € Q| |[VW,| > 0} and

1 . m—Y,)?
ga(z) = R (m — Ya)}|[VWa|? — (VIV,V <(———)—>)Wa

1 a:'f + 3’%
+ oz|VWo,|2(1 - 3W§).

Consider the set
={2eN|0< |VW,u(z)| = maYIVT/V [}

and apply the same argument used to get the differential inequalities (4.23), we have go(z) 2 0
on F, for large o > 0. Thus we obtain a uniform bound for a|VW,| in Q. From this estimate,
CY() norm of the nonlinear term of (4.22) when a — oo and again from the Schauder estimate,
{Wa}a is bounded in C?*7 for 0 £ v < 1. Therefore AW, uniformly converges to 0 in Q as
a — oo and we obtain the desired convergence in the last property of (4.4). O

§5 Stability of &, in Theorem 7 _

In this section, we will complete the proof of Theorem 7. We will prove the stability of &
which was constructed through (4.1) by Proposition 8,

(5.1) Bo(x) = Zo(r,z)e'™?.

'To prove the stability of ®4 in (1.6) for large a > 0, we will show the positivity of Lo in No(®4).
For this purpose we consider the linearized eigenvalue problem of (1.6). Hereafter we will argue
in terms of real functions. Let u, and v, be the the real and the imaginary part of &, i.e.
uq(z) = Zo{r,z) cosmb, va(z) = Zu(r,z)sinmd. Thus we consider the following eigenvalue

problem,
( é 1—3u? -2 —‘7uava é
A<¢ ta —21:,1)0, 1—u? — 3v? Y

(5.2) +p<$>=<8> in Q,

- 99=$_0 on 01,
ov

\ Qv
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where
0? 9? ok 10, & _33_ 1 62

et el sl Tai g

and @, ¥ are real valued functions in Q. One can show that (5.2) is a self-adjoint eigenvalue
problem with the real (countable) eigenvalues {pe(a)}32, which are arranged in increasing
order (counting multiplicity). It is easy to see that the set of eigenvalues contain 0 because
(6,%) = (—va,uq) satisfies (5.11) with g = 0. This is due to the invariance (1.7). We will
prove that y;(a) = 0 and pp(a) > 0 is bounded away from 0 when a > 0 is large. We change
the variable as follows :

69 (5057) = mom ($53) v o= (520 7).

The eigenvalue problem is written in tems of a, {5 as follows.
/ ~ p o~ 2 ~
¢,> 2m ( a%/08 ) 2y ™ <¢>
ANl &) — — A 1-2.) — — -~
(5) -5 (Zg7ae) + -2 T (&

(5.4) \ | - —2a7% (g) + 1 (g) = (8) in Q,

{ E = .8_1/- =0 on BQ,
We express (g) in the form of the Fourier expansion as follows,
3(r,9,z) 1 —~ o
5.5 ((ﬁ(r, ’ ) = —=£o(r,2) + €x(r,z) cos k8 + (r(r,z) sin kb

where the vector valued functions

6 ama = (803) wen=(§03)

are defined in T. Substitute (5.5) into (5.4), we can decompose the eigenvalue problem into a
series of infinitely many elliptic eigenvalue problems.

2
Li& + (CY(l — Zﬁ) - %)50—-201ZZ (6(6:1) + péo = (8) inX,

) 8. (0 -
5;60——<0> on 82

17
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2 2
L1Ek— k—ﬁk—zr—nz,k- (_(_)1 é)(k+(a(1—Z§)—%)§k
—2aZ2 (5’81) + pér = (g) in%,
2 ' 2
65 {La-SarZE (0 Darea-2-D

—2aZZ (C"O’l> + plr = (g) in ¥,
0
%§k= a—n<k= (g) on 82 (kgl)-

(5.8) are rewritten as the sequences of the following 2 x 2 systems of elliptic eigenvalue problems.

(fkl) k? (5k,1)_2mk (0 1) (§k,1)

Ck,2 Ck,2 r2 \1 0/ \ k2
m? .\ (&, €k, €xa\ _ .

w22 52) -t () () - () o
\‘;in (g:;) - (8) on 8%, (k1)
(Ckl )_E( Ck,1 )__2"”"’(0 1)((1:,1 )

—€r2) 12\ =Ek2 r2 \1 0/ \ =&z
(510) { +a(1-22)-T )( Gk ) — 2072 (C'Sl) +p ( %:2) - (8) in¥,

()=o) = ez

We see that (5.9) and (5.10) are identical as an eigenvalue problem. We deal with at once in
the following form.

(()-50)-20 ()
+(a(1—Z§)——T2—2)<Z)—2aZg <6)+u<;>=<8) in %,
\%(;%(g) on .

where o and 7 are real valued functions in . We can regard (5.7) as the case k = 0 in (5.11).
We consider (5.11) for k 2 0. Let

\

(5.9)

N

(5.11)

v\

B\
(512) - {uP(@)}2, and {( (k))} C L*(Q) x L*(Q)
' =1

O¢c
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be the set of the eigenvalues arranged in increasing order (counting multiplicity) and the com-
plete system of the corresponding eigenfunctions orthonormalized in L?(Z) = L%(Z; rdrdz) to
(5.11). Thus we obtain

P-l (7)) L (ria(nz)cosks 1 (k)(r RIS
(0) o(72) V2T ag’ko)((r, z)sinkf ) V2« -0y )(r z)cos k6 =121
which form a complete orthonormal system of eigenfunctions of (5.4) in L2(2) x L2(Q).

We need to study the asymptotic property of these ’eigenvalues and eigenfunctions when a — co.

Lemma 14. For each non-negative integer k, we have

(5.13) lim pek)(a) =P (k20,¢21).

. k k
(5.14) Tim (V7 (@)l3ace) +alri (@2 ) = 0.
where { pgk) }§2, is the set of the eigenvalues arranged in increasing order (counting multiplicity)
of the following eigenvalue problem
le—r—2-0+ua=0 in X%,

do
s 0 on 0.

(5.15)

(Proof of Lemma 14. ) We prove this lemma by using the variational characterization of the

elgenvalues Let {ag )};’i be the orthonormal system of eigenfunctions of (5.15) corresponding

to {,uz )}e=1v ie., [5o; (k) (k)rdrdz =6;; fori,j 2 1. For glven k, we prove (5.13) and (5.14).

For simplicity of notation we drop the sufix £ and denote :“e , ,ufk)(a) 75(12, agko),, ‘Tz by e,

pe(@), Te,ar Ot,as T, Tespectively. We prove that for any sequence {@;}%2, which goes to oo
as j — o0, there exists a subsequence on which the limits in (5.13) and (5.14) hold for any £.
From (5.11) and the variational characterization of the eigenvalue of the selfadjoint operator
(cf. [22]), we have

(5.16) . p1(e) = inf{J4(1,0) | 0,7 € H(Z), /2(02 + )rdrdz = 1}
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where
a0\? [(80\® [or\® [or\® B2 Amk
1= [((5) +(F) +(5) +(5) +met+ 2o
2
+(a(1 - Zz) — T—2)(02 + 7'2) + 201227'2) rdrdz

Using test function (7,0) = (0, 01), we have p;(a) < J(0,01),

(5.17) limsup py(a) £ pa-

a—+00

On the other hand the eigenfunction (71,4, 01,o) satisfies

/ 010 2+ 0710 2+ﬁ , , 2mk
b3 or Oz r2 T1a ) 01,aT1,a

m? ‘
+(a(t = 22) = T)rb + 202202, Yrdrds = pa(@)lrsalfcey

o1a\>  [001a\> k2 omk
L(C2) + (%) + otr B erons
(5.19) |

m2
+ (a1 = 22) = Tt Jrdrds = (@ losallcey

(5.18)

From Proposition 8 and the boundedness of y;(a) (when o — 00), it follows that
Im1,allzz(zy ~ O1/e) (&= o).
Consdieripg this fact in (5.18), we obtain
allm,elliamy =0, IVreliag =0 as a— oo,

and
Jim flos,allLeqm = 1.

In view of (5.19), 01,4 is bounded in H(Z) and also relatively compact in the weak topology.
Thus there exists a subsequence {n;}; of {a;}; such that oy, weakly converges to a certain
o1 € HY(Z) and p1(n;) converges to a p' (£ p1). From the upper semicontinuity of the weak
convergence in H!(Z), we see

(6.20) [51llz2zy = 1, lijfgiololf Vo195 I22¢sy 2 IVG1lF2(x)-
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Taking the limit j — oo in the second component of (5.11) for & = 75; and the regularity
argument of the solution in the weak formulation yield that 7; belongs to C*(T) and satisfies
the Nemann boundary condition on 0X.

-~ kz/\ 1~ .
Llal——01+/.tal=0 in X,
60'1
on

(5.21)
—0 on OX.

This implies that y' is an eigenvalue of (5.15) and g’ = p; by (5.17). lim;j—co 1(n;) = p1 is also
true. Moreover we see from (5.19) that

Jim [1Vo1,5; 1 22z) 2 V81l 2()-

This concludes the first step of the induction. Next take an element & € L.h.[o;, 03] such that
(6-31)12(z) = 0 and ||7||2(x) = 1, where L.h.[G] is the subspace generated by the set G. Recall

pa(a@) = inf{Jo(7,0) | l|0||2L=(z) +7lZ2m) = 1, (001,0)12(5) + (T71,0) 12y = 0}
Taking the test function (7,0) = (0,7), we have

Jo(=(G * 01,0)12(8)T1,0,0 = (T * 01,0)12(8)T1,a)
= (@ oa)xmmalliag 116 — (G- 01,0) L2y 01,00l 72 (x

(2) (@) S

By the result obtained in the first step and taking the sequence a=7n;(=123,..), we get
by a dJrect calculation

lim sup p2(n;) < pa-

)0

The same arugument works in the equalities like (5.18) and (5.19) for (72,4, , 02,4; ) to show that
Nillmam 2y = 00 (Vremilliamy = 0 lloggliiem =1 as j— oo,

and that {024, }; is bounded in H'(Z). There exist a subsequence {#;}32; C {n;}121, p" £ e
and 7 € H!(X) such that

(5.23) Z2llz2ey =1, (G2,51)12¢s) = 0.

2
LG9 — —0'2 + ﬂ,’az 0 in X,
T

— 60’2
e =0 on OJX.

(5.24)
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By this we conclude that p" = /.z( 2 and
lim [|Voy,x )22y = V32)|22(x)-
J—c0

We can apply the similar argument inductively and as a consequense, for any #, there exists a
subsequence {a¢,;}52; C {a;}52; such that

(5.25) lim pe(ae,;) = pe.
j—oo
(5.26) Jim (Ve ) + @il I3am) =0

From the arbitrariness of the sequence {a;}52, (which goes to o0) it follows that (5.13) and
(5.14) hold. O

Now we in a position to prove the stability of @,.
Proof of Theorem 7
From (5.15) it is easy to see that
2
Ky < K
w2z = (k20),
where 79 = inf{r | (r,z) € £} > 0, and #(0) > 0. Hence, by Lemma 14, all ;12, except for /.L( )

are positive and bounded away from 0 when o — oco. We see that u( ) = 0 because we can
take (,0) = (0,Z,) in (5.11) with u = 0 and k = 0. Then there exists constants §, > 0 and
ax > 0 such that

Lo(¢, %) 2 8o (18l172¢0) + 1¥l1Z2¢0))

for (¢,%) € H'(Q) such that f9(¢va — Yuq)dz = 0 and a > a,. This completes the proof of
Theorem 7. [0

§6. Stability of (4, A4) in Theorem 6
In this section we will prove the stability of (4, 44), which we constructed in §4. Recall

—sinf 0
Aa(z) =Yo(r, 2) ( s;n , o8 ,0) ,

Bo(x) = Wo(r,2)e'™?.

(6.1)

As is the case in §5, we express @, in terms of real valued functions, i.e., we put uqo(z) =
Wa(r,z) cosmé, va(x) = Wo(r,z) sinmf. First we estimate the second variation £(g¢, v, B) on

N(@q, Ao) = N(ua,va, 4 o) from below. We change the variables ¢, into @, by

: (2) =r=m0) () (es. 53).
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Using the formula of the second variation of H (cf. (2.8)), we can express L(ua,Va, Aq, ¢, %, B)

in terms of ¢ z,b for the solution (@4, Aa) = (Yq) Vo, Aa) constructed in §4 (cf. Proposition 9).
If divB = 0 and (B - v) = 0 on 9Q (this is valid for (¢,%, B) € N(uqa,Va, Aqa) ), we have

L(¢7¢7B)=I1($a$)+I2(B)+I3($a$)B)
LGB0 = [ (G2 + (4 G0+ (L~ - WP + )+ 203
| (Yo — m) 2(Y —-m) ~ 2@7;: -
b [ (B2 4 2 Gor + G+ e mGZ 32,
Ig(B)=/ |rotB|2d:c+/QW§Bzdz
Ra

~ ~ V
I3(¢,¢,B)=4/Q((Y el ) 5,05+ 550 )ae

where we put
sin 8 cos b

_( Sl—-{-SgCOSe Sl

+ 52 sin 9, 53) .

To investigate the coerciveness of I;, we consider the e;genvalue problem.
( (d\ . 2R a@ae)_i 2<)
a(5)+B0e-m () - 0 -m

(Yo
(6.2) +a(1—TfV§)<g)—2aT/V§() <i> (o) nd

o6 op -
g9 _ 9 _ Q.
N O v 0 on &

~

¢

As in the proof of Theorem 7, we express ( A> in the Fourier expansion as follows,

P
(6.3) (é(”‘)’ ))

B(r,6,2) )f T,z +Z(§k (r,z)cos k8 + Ci(r,z) sin k)

v2 |

where the real vector functions:

60~ ama= (200 @20, aro=(B0) w2y
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satisfy

€k, €k, 2 k1
(Cu)—rz (CM)Ha(l_w ¥ m))( )
(6.5) ! - %(Ya —m)F (2:) — 2aW? (5’61) +u (g::) - (8) in %
9 (1) _ (0
\%(CL,;>_<O> on 62

( Gea K[ G 2y Lo oy Cra
L S) 5 () v eu-wo—goe-mm (42,
(6.6) { - %_éi(y;, —m)F <_C2L12> — 2aW? (CIBI) + (fg:q) = (8) ino
& (Ga\_ [0 |
\%(—fkl,g)_(0> on OX.

). Both of (6.5) and (6.6) are the same eigenvalue problem:

(L T k2 T +( (1—I’V2 _ I(Y )2 T
"Ne) "2 \o “ @/ 72 a=m)’) o

2k 0).
- 172-(Ya—7n)F<;) — 2aW? (6) +u (;) = (0) inX,
o0 (r 0
\5—5(0>_<0> on OJX.

(k) oo
{ui(e)}32; and {( ta (" ))} C L¥(Q) x LA()
=1

and

— O
(el ol

respectively, where F = (

(6.7)

N

Let

(I')(r z)

be the eigenvalues arranged in increasing order (with counting multiplicity) and the complete
. system of the corresponding orthonormal eigenfunctions of (6.7). We can apply the completely
similar argument as in Lemma 14 and obtain the following asymptotic behaviors of the eigen-
values and eigenfunctions.

Lemma 15. For cach non-negative integer k,

—

(6.8) lim py?(a) =p{? (k20,021).

aQ—C
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. 2) , k
(6.9) Jim (197 s, + allri2(@)l3xs, ) =0.

where { pgk)}?il is the set of the eigenvalues arranged in increasing order (with counting mul-
tiplicity) of the following eigenvalue problem

2

Lla—i?a-{-,ua:O in X,
6.1
(6.10) Oo

$=0 on 0.

Lemma 16. The family of functions

(6.11) L 70(,002(7', z) 1 Tl(,?(r, z)coskf\ -~ 1 -,-Z(,i)(r’ z)sin k6
. 27 05?0)'(7‘, Z) ’ \/2_77 Ug'ka)(r, Z) sin k@ ’ V2'IT —a‘g'ko){(r,z)cos k8

(k2 1,£ 2 1) form a complete orthonormal basis in L2(Q) x L%(R).

Now we can expand any (3}) € L*(Q) x L%(Q) in terms of the above basis:

-~ (k) (k) o
¢) 1 Z < T o COS k6 Ty o SIN kG )
6-12 ~ == e—— ClL " + d X 1 .
(6:12) (1/1 Var | e ag"o){ sin k4 b —ag"‘o)( cos k6

{9
gel ¢ | 96 cke die, € R

Ul,a

N

1
+.___
Var >

v

Here ge, ci¢, di ¢ are related with &, {b\ through

(1 2 (0) | 7. (0)
ge = Ton ((¢ *Tea )L @) + (¥ UZ,G)L’(Q)) ’

1 (2 & ~ ).
Cke = E ((¢ . Tl(,o? cos ke)Lz(Q) + (’lj) . O'E’o){ sin k@)zg(g)) s
6-13 ~ . -~ -

( ) (lk‘g = —]:-—- (((;5 . TLS,,;) sin ke)Lz(Q) - (1/) . O'g’ko){ COos ]\’.‘9)[,2(9)) y

Var
“5”22(9) + “"Z“%’(Q) = Zﬁ + Z Z(Ci,e + d ¢)-
=1

k=1 €=1

We prepare an auxiliary property concerning a complete orthonormal basis of a product of
Hilbert spaces, which we will use in the proof of Lemma 19.
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Lemma 17. Let H; and H; be two real Hilbert spaces with inner products (-,-)g, and (-, ) Has
respectively and Let H be the product Hilbert space H; x H; with inner product:

()-(), =mrowm o (§).(2)ex

o0
If there exists an orthonormal basis { (3" ) } C H, then
n n=1

> (¢, $n)H (¥, ¥n)H, =0 for any (g) € H,

(6.14) =l - -
613, =D (8:8n)hs 1613, = D (%, ¥a),-
n=1 n=1

(Proof of Lémmn 17) Take any <:Z) € H and expand with respect to the given orthonormal

basis. Then

615) (8) = S0+ v (§1)

P

e19  (($):(5)) =16+ i, = j;((qs, o)+ (b))’

Taking ¢ =0 € H, or p =0 € H,, we get the second and third equalities of (6.14), thh which
(6.16) yields the first equality of (6.14). O

The following lemma directly follows from the above lemmas.

Lemma 18. For any (¢, 12:) € L?(Q) x L*(Q),

Z(¢ T(’ O)L2(Q)(¢ U( a)L"’(Q) + Z (¢ Tz('l:;) CcOs ke)Lz(Q)({[;. O'g’ka) sin ke)L2(Q)
k,e21

- Z (qS 'r( )sm k6 Lz(g)({b\- ag'koz cos kf) 2y =0 (a 2 ap).

k021
1 (& * W
2 ~ 0)12 -~ . ~ g .
||¢“L2(Q) =3 <Z(¢ . Te(,i)om(m + Z (¢ Te,a €OS ke)iﬁ(n) + Z (6- Te,o SII ke)%’(ﬂ))
R Ve k21 k21
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~ 1 (o=, ~ ~ (k) 2 ~  (k
11220y = 3;(2@? oeN iyt Y (B a$9 sin k) aay + D (B0l cos ke)?ﬂ(m)
- t=1

&,k21 k21

(Proof of Lemma 18) Putt H; = Hy, = L*(Q), (,)u, = (-, )a, = (-, ")r2(q) and (¢ ¢)L2(Q)
= [y &(r, 2)%(r, z)rdrdzdé for é,% € L*(Q). Combining Lemma 16 and Lemma 17 yields the

conclusion. O

Il({f?, $) is expressed in terms the Fourier coefficients of 3, {L'\:

k=1 £=1

(6.17) L(3,9) =Y 1P+ 35 wP(a)(d + dle).
=1

We remark that ; (7 z) =0, a(o)( ,2) = eaT/V (r,z), ,u(o)(a) = #go) =0, #(0) >0,eq #0is
a certain real numbe1 which satisfies limo—o0 €2 = 1/|9].
We have the following coercive inequality.

Lemma 19. For any ¢ > 0 and 7 > 0, there exists a constant «; > 0 and ¢’ > 0 such that
(618)  L(8,%) 2 clldaqy + (min(u$”(0), 47(0)) = 1) 1Bl3a(q) = (B Wadlaqay

for any 4,9 € HY(Q) and o 2 «5.

(Proof of Lemma 19) In view of the eigenvalues of (6.10) and Lemma 15, given ¢ > 0, we can

take a natural number NV so that'ugk)(a) 2c+lfork+€>N,k20,£¢21 and for any large
a >0, _

%) 2 Z #(0)(0‘)% + Z u (@) )(ck,e + di.e)

k+eEN
+(c+ 1)(2 g+ Y. (Gt di,»)
¢>N k21,621,k+¢>N

Substituting (6.13), we have

27rI1 > Z /.L(O)(Cl ¢T(0))L2(Q) + Z 'U(L) ((¢ COSs kG)%z(Q) + (57_5,[2 sin ke)%z(n))
(=1 ~ k+EEN

+(c + 1){ Z(¢ (O))L’(Q) + Z ( que o cosLG)L,(Q) + ((],57'[ o Sin k9)Lz(Q)>}

(>N k>N
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N .
- -~ k ~ k -~ k .
+2 E ,ugo)(a')(éTgf’cz)Lz(Q)(‘(j’o’g?g)Lz(Q) +2 E ,ug )(a)(¢rl(,c3 cos kG)Lz(Q)(!‘Z)GE,O)I 301 ke)Lz(Q)

=1 L+2<N
=2y @) (@S sin k8) 2 ay (Do) cos k6) 1a(ay + 2(c + 1) > (BN Ly (Bo 3)L2(9)+
k+e<N SN

2(c+1) Z ((grt(,'g cos ke)L2(Q)($0'§,l\2 sin kQ)Lz(Q) - (art(,';) sin kH)Lz(Q)(zZag’kz cos kG)Lz(Q))
k+(’>N

+Z#( )(a)(¢0(0))L2(Q)+ > () ((Fo(lsin ks + (Bl cosk)iaay)

k+eEN
+(c + 1){ Z(Jag?c)y)%?(m + Z ( ot )sm k8)%a(ay + (d’ae o CO8 ke)Lz(n))}
(>N k+Eé>N
From Lemma. 18,
A - 1o © = (0)
(6.19) Ii(é %) 2 (e + DlI$llZ2¢a) + o Z(#e (@) —c=1)(87p 0)720)
=1

+ Z (¥ (a) = c - ((¢ M cos k8)72(q) + (‘37':(,,2 sin ke)%’(ﬂ))

k+CEN
1 N
t5- 26 (@) — ¢ = 1)(Bri ) ey (Bo i) 3¢y
l.—-
1 .
+5= Z Q(ugk)(a) - )(¢~ cos kﬁ)Lz(g)(dzal o Sink6)12(q)
2
KHEEN
1 .
+5- Z (—'2)(;4”(0') )(d) sm kﬁ)[,z(m(gbae o Cos k8)2(q)
- ]\+[§N

+min(,ug )( ) (1)( ) (”‘MIU(Q) W(‘Z’\Ug?c)x)b(ﬂ))'

We used ;L( )(a) =0, (0)(01) =0, a(o)(a) = eaWs. Apply Lemma 15 to the right hand side
of (6.19). Then the terms including T( ) can be abosrbed in the ones including ”5”2}4"’(9) and

”"/’”Lﬁ(ﬂ) by taking large o, so

L2 C”%H%um + (min(;cf, M(a) ;t( )(a Yy —1n) ||1,)||L2(0 - (%W, )Lz(p) for large «.
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This gives (6.18). O

Now we estimate £($, 1’5, B) from the lower.

Proof of Theorem 6
Assume that (¢,,B) € N(tasVay Aa)-

L($,%,B) = I;($,%) + I(B) + I;(4,%, B)
We prove that |I3($, b, B)] is dominated by I; and I.

@355 [ Fe ol +] [[(5:508+ S 5 B

S & -
g/ﬂﬁ_;_“ilczx+311p|vvva|/ 191(1S2] + |Ss])dz
(9} T Q Q

2, o2
§M( /——d +—/ d:z,)+suprW' |(/ % +S3)d

To

~ m -~ mie 52 S + S
= s [VWal Il + {7 18lcer + 7 [ e vanpivwe) [ 545
From |Bf? = S} /r? + S? + S? and Proposition 9, take ¢ > 0 so that ehlm|/ro = 1/2. Next take

c in Lemma 19 such that ¢ = |m|/(4ero) + 1. From Lemma 19 and Proposition 9, we can take
a; large so that the following inequality is true for § = min(,ugo)/2,,u§1)/2, 1) >0:

(6.20) L(p,¥,B) 26 <||$||%=(n) + ”"ﬂl%’(ﬂ) +1B||Z2 0y + ”rOtB”iz(Rs))

=6 (1911320 + 191320 + 1BInmey + ot Bl sqgagens))  for a2 an.

We used ({Z; Wa)r2 ) = 0 for (4,9,B) € N(ug, Vo, Aq). We will get a similar inequality on
N(uq, v, Aa). First we recall the following inequality:

/ o(z)? AT 4/ Vo ( ’c)[ dz (Vy € R, Vp € Hl(RS)) (cf. [16])
R

s fo —y|?

Since 2 C R? is a bounded domain, by fixing ¥ outside of Q, we see that there exists a constant
R; > 0 such that

(6.21) - R1/<p2dx§/ IVol?dz (Yo € HY(R?)).
. Q R3S
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From Propostition 9-(4.4), there exist a constant B2 > 0 and a; > 0 such that for any'a > as,

(6.22) R /Q Sz < /ﬂ Voo |2dz (V(,a € HY(Q); /Q (2 + v2) pdz = 0) .
It is also true that there exists a Rz > 0 such that

(6.29) | ¢SSR [ (6 + 196Nz (Vo € HH@)),

Take any (¢,%, B) € N(uq, Vo, Aa), and we have

(‘:’Sa P, B) = ("vﬁa‘“{:a Vf) +‘($v J)F) € T(uv v, A) + TV—(ua v, A)

and which is equivalently, ¢ = —v€ + b, b =uf+P, B=VE+ B and

(6.24) /Q(Uf, +v2)€(z)dz =0, Aé=0inQ, -aaé = (B-v) on 09.
From these equations \\}e see

(6.25) rotB=rotB in R®

(6.26) #+ 9 = (—vE+ B+ (P S AT +T) 426 i Q.
By (6.22) and (6.24) we obtain |

(6.27) R, /Q €2dz < /Q |VE|2da.

On the other hand (6.24) yields

0=/§26A€CI$%/<99 fggdS—[)lVﬂ?dm

subsequently,
’ 1
(6.28) /[\751%&-:/ §(B-v)dS < 5/ 52d5+9—/ |B|*dS
Ja a0 2 Jaa 2¢ Jaq
- <20 [(@ +1vePyde+ 32 (B2 + [VBP)ds.
2 Ja 2¢ Jo
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Combining (6.27) and (6.28) and taking € = ﬁ;('%:-i-_n’ we have

R2 1/R
[ ivepen s BELLR [ (157 4 vBP) de

Using (6.26), (6.27), (6.28), (6.29), we conclude that there exists a constant ¢ > 0, (which is
independent of (¢,v, B) € N(uq,va, Aa) ) such that

/(452 +2,b2)(l.7:+/ |B|2d:v+/ |VB|2dz < c/($2 +$2)da:+/ |§|2dm+/ |VB|*dz
Q Q R3 Q Q R3
On the other hand from divB = 0 in R?, it is true that

”VB”L:(Ra;]Rsxa) = “I‘OtB”Lz(Rs;Ra)

and £(¢,%, B) = L(4,%, B) (cf. Proposition 3). Hence we obtain the desired inequality (3.4)
from (6.20), which completes the proof of Theorem 6. O
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