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Eddy Current Analysis of Litz Wire Using Homogenization-based 

FEM in Conjunction with Integral Equation 
 

Shingo Hiruma1, Yoshitsugu Otomo1, Hajime Igarashi1, Member, IEEE 
 

1Graduate School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Japan 

 

A new method is introduced to evaluate the macroscopic permeability of a litz wire which is composed of stranded conductors. In this 

method, an integral equation is solved for the complex magnetization in the litz wire generated due to the proximity effect. The 

macroscopic permeability computed from the magnetization is used in the homogenization-based finite element analysis of eddy currents 

in a litz-wire coil. It is shown that the wire twist has little effect on the complex permeability. 

 
Index Terms—Homogenization method, integral equation, litz wire, macroscopic permeability, Ollendorff formula 

 

I. INTRODUCTION 

 N electric machines and devices, materials which involve 

small structures such as litz wire, steel sheet, dust core, and 

so on, are widely used to reduce the eddy current loss. In recent 

years, analysis of eddy current losses in these materials has been 

required because of increase in speed of the switching 

frequency of power electronics devices. When analyzing those 

materials by the space-discretization method such as the finite 

element method (FEM), the resultant equation can be extremely 

large because they have to be discretized into huge number of 

elements that are smaller than the skin depth.  

The homogenization-based FEM has been shown effective to 

such analysis [1-7]. In [5], complex permeability has been 

introduced for the analysis of multi-turn coils. The macroscopic 

permeability of a coil region is obtained by substituting the 

complex permeability of a round conductor to the extended 

Ollendorff formula. The homogenization method allows us to 

avoid discretization of the components in fine-structured 

material into small finite elements because it is possible to treat 

it as uniform material. However, in the homogenization-based 

FEM, the stranded structure of a litz wire has been ignored. 

In [8], to consider the stranded structure, an integral equation 

method to analyze the eddy current losses in the stranded wire 

has been proposed by the authors. In this method, the integral 

equation is solved for the magnetization in the wire generated 

by the proximity effect. In this paper, we show that the 

macroscopic permeability of the litz wire can be evaluated 

using the integral equation method. To do so, uniform magnetic 

field is imposed to a litz wire, and the integral equation is solved 

to evaluate the eddy currents in the litz wire. Then, the 

macroscopic permeability is derived from the computed 

magnetic field for the following FE analysis.  We discuss 

validation of the proposed method by comparing the results 

obtained by the proposed method and conventional FEM for a 

litz wire. Using the proposed method, we evaluate the 

dependence of the macroscopic permeability on the pitch of the 

litz wire. Moreover, the numerical results are compared with 

measured values. 

II. COMPLEX PERMEABILITY OF STRANDED WIRES  

A. Complex permeability of a round wire 

When a wire is immersed in time-harmonic magnetic field 

which is perpendicular to the wire axis, anti-parallel eddy 

currents are induced along the wire. Because the eddy currents 

generate the diamagnetic field, the effective permeability of the 

wire becomes lower than its specific permeability. Moreover, 

the eddy currents give rise to Joule losses. These effects can be 

expressed by the complex permeability. The relative complex 

permeability of a round wire is given by [5] 

 

 
 zJz

zJ
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where 𝑧 = (1 − 𝑗)/𝛿   𝛿  denotes the skin depth  𝐽1(𝑧) 
represents the first-order Bessel function  and 𝜇𝑟 is the relative 

permeability of the wire. Using this permeability, we can 

consider the eddy currents losses due to the proximity effect 

without fine discretization of the wire cross section. 

B. Periodic integral equation 

The anti-parallel eddy currents along stranded wires induced 

by a uniform magnetic field can be obtained by the integral 

equation method in which a wire is modeled as one-dimensional 

curve [8]. Assuming that wires have periodic structure, the 

electromagnetic field around the wire can be obtained by 

considering a unit cell under the periodic boundary condition.  

The basic idea of the integral equation method is that the anti-

parallel eddy currents in the wire due to the proximity effect 

generate a dipole field. The source of the dipole field can be 

regarded as a magnetization in the wire. Therefore, if the 

distribution of the magnetization is obtained, the anti-parallel 

eddy currents in the wire can be determined. 

 In the following, we derive the integral equation for self-

consistently determining the distribution of the magnetization 

in stranded wires. Let us consider the complex magnetization 
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𝑴 perpendicular to the wire axis generated by the anti-parallel 

eddy currents. Considering the eddy currents, the magnetization 

is expressed in terms of the magnetic field 𝑯 and 𝜇̇ as 

 

 HM r 1   (2) 

 

The magnetic field 𝑯 is composed of the components due to the 

complex magnetization vector 𝑴 distributed along the wire and 

the uniform magnetic field 𝑯0. Then we obtain the following 

integral equation from (2) for 𝑴 [8]: 
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where Ω𝑐  is the wire domain in which the magnetization 𝑴 

exists, 𝒙 and 𝒙′ are the observation and source points in Ω𝑐, 𝝉 
is the tangential unit vector parallel to the wire axis at 𝒙, 𝑹 =
𝒙 − 𝒙′, 𝑅 =  |𝑹|, and G denotes the operator defined by (3b).  

Then, we consider the stranded wires which have periodic 

structure in the direction of the wire axis as shown in Fig.1. Due 

to the periodic structure, the magnetization satisfies 

 

   xMdxM  n  (4) 

 

where 𝑛 denotes integer and 𝒅 is the distance vector between 

the adjacent unit cells. The integral equation for the wire with 

periodic structure is, thus, can be expressed as 
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where  Ω𝑢𝑛𝑖𝑡  represents the repeating unit of Ωc , 𝑹𝑛 = 𝒙 −
𝒙′ − 𝑛𝒅, 𝑅𝑛 = |𝑹𝑛|. The summation in (5a) is terminated at 

adequate number considering both accuracy and computational 

time. In the following computations, we evaluate 11 terms. 

C. Macroscopic permeability 

To perform homogenization of a bundle of litz wires, we 

derive its macroscopic permeability from 𝜇̇𝑟. To do so, we use 

𝑴 obtained by solving (5a) as will be described below. 

Let the time-harmonic uniform magnetic field 𝑯0𝑒
𝑗𝜔𝑡 , 

angular frequency ω, be imposed on the unit cells as shown in 

Fig.1. We can obtain the distribution of 𝑴 along the wires by 

solving the periodic integral equation (5a). The uniform 

magnetic field 𝑯0 in (5a) can be regarded as Lorentz field 𝑯loc 
when we consider the unit cell which contains a bundle of 

stranded wire as shown in Fig.2. The following relation holds 

for the Lorentz field: 

 

aveloc N MHH   (6) 

 

where 𝑯  represents the external magnetic field, which is 

imposed on the entire cells, 𝑁 denotes the effective diamagnetic 

constant of a unit cell, and 𝑴𝑎𝑣𝑒 is the averaged magnetization 

over a unit cell.  The computation of 𝑁 is given in Appendix A. 

Then the averaged magnetic flux density over the unit cell can 

be written as 

 

 aveave MHB  0  (7) 

 

On the other hand, by introducing the macroscopic permeability 

〈𝜇̇〉, 𝑩𝑎𝑣𝑒  can be written as 

 

aveave MB r 0  (8) 

 

Eliminating 𝑯 from (6), (7), and (8), we have 
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Note that this permeability is valid under the assumption that 

the magnetic field imposed on the litz wire is uniform. 

III. NUMERICAL RESULTS 

A. Validation of the proposed method 

To validate the proposed method, a 3D model of a litz wire 

shown in Fig.3 is analyzed by conventional FEM and the 

 
Fig.1. Litz wire immersed in time-harmonic magnetic field. 

 
Fig.2. External magnetic field 𝑯 is imposed to a bundle of litz wires. If we 

remove a unit cell, there left Lorentz field which is generated by 𝑯 and the 

magnetization of the other unit cells. 
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proposed method. The model is composed of 16 wires  wire 

radius 𝑎 =0.15 mm  pitch 15 mm  conductivity σ = 5.76×107 
S/m  and relative permeability 𝜇r = 1.0. 

In the FE analysis, the uniform magnetic flux density is 

imposed to the unit cell. The boundary conditions are 

summarized in TABLE.1. The macroscopic permeability is 

computed from the following equation:  
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where 𝑩𝑎𝑣𝑒  denotes the averaged magnetic flux density over 

the domain. 
TABLE.1. BOUNDARY CONDITION OF FE MODEL 

boundary planes boundary condition 

𝑦𝑧  Dirichlet 

𝑥𝑧  Neumann 

𝑥𝑦  Periodic 

 

The results are shown in Fig.4. The horizontal axis is the wire 

radius normalized to the skin depth δ . We can see that 〈𝜇̇〉 
obtained by the proposed method is in good agreement with that 

obtained by 3D FEM when 𝑎 < 𝛿 . The ratio of the 

computational time of the proposed method to that of FEM is 

about 1.4×10−2 for one frequency sample. The proposed 

method is, therefore, more useful to evaluate the dependence of 

〈𝜇̇〉 on number of wires, wire pitch and strand structure. 

B. Dependence of 〈𝜇̇〉 on pitch 

The dependence of 〈𝜇̇〉 on the pitch of a litz wire is evaluated 

from (9a). We consider a litz wire composed of 49 wires, radius 

𝑎 = 0.15 mm , the conductivity 𝜎 = 5.76×107  S/m, relative 

permeability 𝜇r = 1.0. 

 The imaginary part of 〈𝜇̇〉 is plotted against frequency in 

Fig.4. It is found that 〈𝜇̇〉 scarcely depends on the pitch under 

the condition that 𝑎 < 𝛿  which holds for usual litz wires. In 

Fig.5, 〈𝜇̇〉 computed from Ollendorff formula [5][9] 
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in which wires are assumed to be in parallel is also plotted, 

where 𝜂  represents the filling ratio. From this result, we 

conclude that the proximity effect losses can be efficiently 

evaluated from (11) for the litz wire shown in Fig.3. Namely, 

the wire twist has little effect on 〈𝜇̇𝑟〉  when 𝑎 < 𝛿. 

IV. EXPERIMENTAL RESULT 

We consider the AC resistance of the wireless power transfer 

(WPT) coil composed of the litz wire shown in Fig.6(a). The 

parameters are summarized in TABLE.2. The AC resistances 

computed by FEM and measured values are plotted against 

frequency in Fig.6(b). The macroscopic permeability 

〈𝜇̇〉 obtained from (9a) is used in the FE analysis. We can see 

 
TABLE.2. PARAMETERS OF WPT COIL 

Strand number 50 

Radius [mm] 0.025 

Turn number 40 

Inner diameter [mm] 30 

Outer diameter [mm] 74 

Thickness [mm] 0.8 

 

the computed AC resistance agrees well with the measured 

values except at high frequencies where the capacitance among 

the wires would not be negligible. 

V. DISCUSSION 

In this paper, we have discussed the eddy currents losses due 

to the proximity effect. We find that wire twist has little effects 

on 〈𝜇̇𝑟〉 whose imaginary part represents the AC loss due the 

proximity effect when 𝑎 < 𝛿 . However, there exists other 

factors that can cause AC losses in the wires. The main factors 

are the skin effect and circulation currents. Here, we discuss the 

latter because the former can be sufficiently reduced when 

using litz wires. The latter effect has not been included in the 

analysis of eddy current losses of litz wire [10-12].  

The circulation currents are the currents which flow along 

 
Fig.3. A unit cell of litz wire model composed of 16 wires. 

 

  
Fig.4. Real (left) and imaginary (right) parts of macroscopic permeability 
〈𝜇̇〉 are plotted against the normalized wire radius. 

 

 
Fig.5. Imaginary part of macroscopic permeability of 49 stranded wires is 
plotted against the normalized wire radius. 
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two wire conductors electrically connected at their terminals. 

For example, we consider the twisted wires shown in Fig.7. 

When magnetic flux interlinkages across the wires, the 

circulation currents flow along the wires due to Faraday’s law. 

If the wires are ideally well twisted and the magnetic field is 

uniform, the circulation currents cancel out each other. In 

practice, however, the wires are not always ideally twisted and 

the magnetic field can vary along the wires. The circulation 

currents, therefore, can contribute to the AC losses. In [13], the 

current sharing has been determined by solving the circuit 

equation resulted from 2.5D PEEC method. This method leads 

to, however, a huge equation system when the litz wire contains 

a number of strands. 

The AC losses due to the circulation currents could be 

evaluated in the post-processing; the wire is modeled as a curve 

or segmented lines and the eddy currents along them are 

computed from the interlinkage flux. This remains for future 

work. 

VI. CONCLUSION 

In this paper, we have proposed a new method to obtain the 

macroscopic permeability 〈𝜇̇〉 of a litz wire using integral 

equation method. By using this method, we can evaluate 〈𝜇̇〉  
without heavy computational burden.  It has been shown that 

the macroscopic permeability of the litz wire obtained by the 

proposed method is in good agreement with that obtained by the 

Ollendorff formula. Thus, it is concluded that the eddy current 

losses due to the proximity effect can be accurately evaluated 

by the Ollendorff formula. This result has also been verified by 

experiment. We have also discussed the circulation current 

which gives rise to additional AC losses. The evaluation of the 

circulation current losses in the litz wire is our future work. 
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APPENDIX A 

We consider here the effective diamagnetic constant of a 

stranded wire. By definition, it would be expressed as 
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where 𝑯𝑎𝑣𝑒
𝒊𝒏  is the averaged magnetic field over the stranded 

wires. The averaged magnetic field is computed from 
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where 𝑴𝑎𝑣𝑒
𝑖𝑛  is the magnetization, computed by solving (5a) 

with real-valued permeability, averaged over the conductor.  

 

REFERENCES 

[1] A. D. Podoltsev, I. N. Kucheryavaya, B. B. Lebedev  “Analysis of 
Effective Resistance and Eddy-Current Losses in Multiturn Winding of 

High-Frequency Mangetic Components ” IEEE Trans. Magn., vol.39, 

no.1, January 2003. 
[2] Xi Nan  C. Sullivan  “An Equivalent Complex Permeability Model for 

Litz-wire windings,” in IEEE Ind. Appl. Soc. Ann. Meeting, 2005, 

pp.2229-2235. 

[3] J. Gyselinck  P. Dular  “Frequency-Domain Homogenization of Bundles 

of Wires in 2-D Magnetodynamic FE Calculations ” IEEE Trans. Magn., 

vol. 41, no. 5, pp. 1416-1419, May, 2005.  
[4] H. Waki, H. Igarashi, T. Honma  “Estimation of Effective Permeability of 

Magnetic Composite Materials Magnetics ” IEEE Trans.Magn., vol. 41, 

no. 5, pp. 1520 – 1523, 2005.  
[5] H. Igarashi  “Semi-Analytical Approach for Finite Element Analysis of 

Multi-turn Coil Considering Skin and Proximity Effects ” IEEE Trans. 

Magn., vol.53, no.1, January 2017.  
[6] Y. Sato, H. Igarashi, “Homogenization Method Based on Model Order 

Reduction for FE Analysis of Multi-turn Coils ” IEEE Trans. Magn., 
vol.53, no.6, June 2017. 

[7] Y. Sato, H. Igarashi, “Time-domain Analysis of Soft Magnetic Composite 

Using Equivalent Circuit Obtained via Homogenization ” IEEE Trans. 
Magn., vol.53, no.6, June 2017.  

[8] S. Hiruma, H. Igarashi, “Fast Three-Dimensional Analysis of Eddy 

Current in litz Wire Using Integral Equation ” IEEE Trans. Magn., vol.53, 

no.6, June 2017. 
[9] F. Ollendorff  “Magnetostatik der Massekerne ” Arch. f. Elektrotechnik., 

25, pp. 436-447, 1931.  

[10] Q. Deng, J. Liu, D. Czarkowski, M. K. Kazimierczuk, M. Bojarski, H. 

Zhou  W. Hu  “Frequency-Dependent resistance of Litz-Wire Square 
Solenoid Coils and Quality Factor Optimization fo Wireless Power 

Transfer ” IEEE Trans. Ind. Elec., vol. 63, no. 5, May 2016. 

[11] D. C. Meeker  “An improved Continuum Skin and Proximity Effect 
Model for Hexagonally Packed Wires ” Journal of Computational and 

Applied Mathematics, Volume 236, Issue 18, 2012, Pages 4635-4644, 

ISSN 0377-0427, http://dx.doi.org/10.1016/j.cam.2012.04.009. 
[12] C. R. Sullivan  R. Y. Zhang  “Analytical Model for Effects of Twisting 

on Litz-Wire Losses ” Control and Modeling for Power Electronics 

(COMPEL), 2014 IEEE 15th Workshop on. IEEE, 2014. 
[13] T. Guillod, J. Huber, F. Krismer J. W. Kolar, Litz Wire Losses: Effects of 

Twisting Imperfections, Proceedings of the 18th IEEE Workshop on 

Control and Modeling for Power Electronics (COMPEL 2017), Stanford, 
California, USA, July 9-12, 2017.  

 
(a) WPT coil                                            (b) AC resistance 

Fig.6. WPT coil and its AC resistance. 

 
Fig.7. Circulation currents in a pair of wires. 
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