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BLOW-UP OF THE RADIAL SOLUTIONS
TO THE EQUATIONS OF VIBRATING MEMBRANE

AKIRA HOSHIGA

- Department of Mathematics
Hokkaido University
Sapporo 060, Japan

1. Introduction.

The vertical motion of a nonlinear vibrating membrane is governed by the equa-
tion: :

ug — div (i——) =0, (z,t) € Q x [0, 00), (1.1)

V1+|Vul?

subject to the initial condition at ¢ =0

u(z,0) = ¢(z), u(z,0)=9y(z), z €. (1.2)

The total energy E(t) at time ¢ has the form

E(t) = /n(u{*’ + /1 +|Vu]?)dz,

where 2 is a bounded domain in R? with smooth boundary 892. Let a solution u
to (1.1) satisfy Dirichlet or Neumann boundary condition, |

u=0 or n-Vu=0, (z,t) € 92 x [0,00), (1.3)

where n stands for the outer unit normal vector to 892. Then the conservation law
of the energy holds:
E(t) = E(0).

For the equation of nonlinear vibrating string corresponding to'one space dimension,
S. Klainerman and A. Majda [9] has proved that a smooth solution with small
initial data and with Dirichlet or Neumann boundary condition always develops -
singularities in the second derivatives at finite time. When the space dimensions
are greater than two and = R” (n 2 3), the results in S. Klainerman [7] guarantee
the global in time existence of classical solutions to the initial value problem (1.1),
(1.2) with small data of compact support.

‘Typeset by Ap8-TEX



2 ‘ VIBRATING MEMBRANE

The main aim of this paper is to show the following. Let 2 be a ball By centered
at the origin with radius R, and let the supports of initial data be contained in Bp.
Then a smooth radially symmetric solution to initial-boundary value problem (1.1),
(1.2) and (1.3) develops singularities in the second derivatives at finite time provided
that the initial data is small and the radius R is sufficiently large. The largeness
of R depends only on the initial data. More precisely, blow-up occurs before the
disturbances do not reach the boundary. For the purpose we rewrite (1.1) in the
radially symmetric form. Setting u(z,t) = u(r,t),r = |z|, we get

Ute — cz(y,)(u,.,. + %ur) = ’i‘urG(“r)’ (r,t) € (0,00) x (0,00), (1.4)
u(r,0) = ef(r), wu(r,0)=eg(r), r € (0,00), (1.5)

where g
(u,) =1~ -z—u,.2 + O(u, *),

G(u,) =u,? + O(Jur |3)’

and supports of f,g are contained in {z € R?| |z| £ M}. The term r~'u,G(x,) in
(1.4) corresponds essentially to the one satisfying strong null condition in (1.1).
When the coefficient ¢? of the Laplacian has the form

A(w) =1+au; +0(uw;®) a#0
and G(u,) =0, F. John [4], [5] and [6] has obtained in three space dimensions,

. 1
lim elog(1 +T¢) = T

where a
H, = —F"
1 r;lgg( 5 (),

and in two space dimensions, L. Hormander [2] and S. Alinhac [1] have shown
g 7, = (5-)
=0 T VH,

Here T. stands for the lifespan of the initial value problems and the Friedlander
radiation field F(p) depending on f,g will be defined later. Although Alinhac’s
result is more delicate with respect to the order of €, we do not mention further
details here. Concerning these results, we will prove for the hfespan of the m1t1al
value problem (1.4) and (1.5)

1
. 2 _
ehn(1)€ log(1+T,) = T
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where 3
— — ! }'II .
Ho = max(37"(p)7"(p))

This fact leads that if we take T' > 1/Hy, then for sufficiently small e > 0, we have
T
T., < exp(?).
0

Thus the solution of (1.3), (1.4) and (1.5) blows up when ¢ = eof,9¥ = €og and R
is greater than exp(T/e2) + M.

2. Statement of Results.

We consider more general initial value problem which involves the initial value
problem (1.4) and (1.5):

1 1
ugs — 2 (g, ur )(Upr + ;ur) = ;u,G(ut,ur), (r,t) € (0,00) x (0,00), (2.1)
u(r, 0) = ef(r), ut(rio) = eg(r), r € (0,00). (2.2)
Here we assume that ¢, G € C*(R?),
2 (us,up) =1 + agu? + agusu, + azu? + O(|ue]® + |u, |?),

G(uhur) =O(ut2 + uz), (2'3)

and assume f,g € C°(R?), || + lg| # 0,suppf,suppg C {z € R?| || < M} and
f = f(|=]),g = g(]z]). Moreover we assume a; — a3 + az # 0. To state our result,
we define the Friedlander radiation field F(p) by

r—00

F(p) = lim r3u®(r,t) for p=r—1t,

where u°(r,?) is the solution of linear wave equation:

Wl — ol — %u? =0, ()€ (0,00) x (0,00), (2.4)
WO(r,0) = f(r), wO(r,0)=g(r), re€(0,00), (2.5)
(e.g. L. Hormander [2]). F is explicitly expressed as '
70 = g5 || 0= 7o) - Ry,

where Rj(s) is the Radon transform of h € C§°[0,00), i.e.,

Ru(s) = “\/g%dg.



4 VIBRATING MEMBRANE

Moreover, F has the properties:

dk

a—T(P) SC(+lp)3* for peR, (2.6)

Flp)=0 for p2=M. (2.7)
Thus the quantity |

Ho = max(~(a1 ~ a3 + )P ()7 ()}

is well defined and non-negative. Our assumptions |f|+|g| £ 0 and a1 —a2+a3 # 0
guarantee that Hy > 0, which is shown in [3]. The lifespan T, of the solution u
to (2.1) and (2.2) means the supremumn of 7 such that the solution u exists in
C>=((0,7) x R?).

In this paper we will prove the following

Theorem. 1
limsupelog(l +7T:) £ —
Ho'

e—0
As a consequence of results in 3], we have
1
Hy

hmmfe log(1 +T) 2 —

Thus we obtain

Corollary.
1

o 2 ' . _*
eh_xge log(1-+T.,) =T
To prove Theorem, we have only to show the following lemma.

Main Lemma. For any A > Hy, there exists an €4 > 0 such that for 0 < € < g4,

e log(1+T.) § 1 (2.8)

holds.

We describe the outline of the proof of Main Lemma. First we fix a constant
B > Hp. Set p=r —1, s = e log(1 +t) and consider the Burgers’ equation:

a; —az +ag

U
st 6

)P =0, (p5) €RX[0, 5]

U(p,0) =F(p), prER

For the solutions U of the above Burgers’ equation and u of the initial value problem
(2.1) and (2.2), we will find that '

1

1 5 _1
|8 07 u(r, o) — er"%(-—l)mail,"""U(r —to, —E)I < Ceir 3
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for r—to>—§£€— and I,m e NU{0} (I+m #0),

where tp = exp(1/e2B) — 1, i.e., €2 log(1 + t9) = 1/B. Moreover, on characteristic .

curves A in (p, s)-plane, we can approximate U by the Friedlander radiation field F
for 0 < s £ 1/B. This gives us approximation for u at ¢ =1. Next we investigate
the behaviour of u after ¢t = 5. If we set v(r,t) = r/2u(r,t) and

wy (r’ t) = Cvrr2: vrt’
wa(ryt) = &5{'&'{’

the following a priori estimates hold:
lo(r,t)| < Ce%,  |vg(r,t)], |vr(r,2)] < Ck,

lwa(r,t)] < Ce?,

as long as u exists. Using these estimates, we will construct an ordinary differenial
equation with respect to w; along a pseudo-characteristic curve Z connected with A
at t = tg. Solving the ordinary differential equation, we will find that for0 < e < ey
wy blows up in ¢ = exp(1/e?4) — 1.

3. Approximation for u by the solution of Burgeré’ equation.

As we stated in the preceeding section, we consider the following Bergers’ equa-
tion: '

a1 —ay+a - 1
Ut T2V, =0,  (ps) ERx [0, ], (3.1a)
U(p,0) =F(p), pER, | (3.22)
or , n 1}
ag —a a
Ups + _L'—'g—s(UPVUPP =0, (p,g) €R x [0, E]’ (3.1b)
Up(p, O) =.7:’(p), p GR, (321))

where B > Hy and p =r —1, s = e2log(1 + ). We find that the Cauchy problem
(3.1a) and (3.2a) is equivalent to (3.1b) and (3.2b) because there exists a smooth
- solution U, to (3.1b) and (3.2b) and integral of U, satisfies (3.1a) and (3.2a). For
the solutions U of (3.1a) and (3.2a) and u of (2.1) and (2.2), we will prove

1
|0/} u(r,to) — er™ 3 (~1)" U (r — to, )| SCim,petr™?
. (3.3)
for r—to>—¥ and [+ m#0,

where we denote to = exp(1/Be?) — 1.
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The main task in this section is to prove (3.3). To do this, we introduce the
vector fields used in S. Klainerman [7] and state some results used through this

paper.
Lo =10; + 10,5, + 2205,, L; =2;0;+10;,, for i=1,2,
a.‘cz’ a:vg’ at’
named I'y, I';,--- ,T'¢ respectively. These operators satisfy commutation relations:
[[,0) =r,0-0r, = 26,0 for p=1,2,---,86,

[r,r]=3r, [I,d]= X9, (3.4)

where 0 = 8? — A and ¥ stands for a finite linear combination with constant
coefficients. For a € Z§ (Z+ = NU {0}) we write I = I'{'T'5? .- Tg® and define

the norms :
le@le = Y IT%0()||z2(r2)
falSk

p)le = Y IT*0() ||z me)-

lo]<E

In [3], we proved that
IT%8,u,|[T%0,u| £ Cape(1+1%)"% for 05t<ty, a€Zi.  (3.5)

For the solution u® to (2.4), (2,5), we set F(1/r,p) = r'/24%(r,t). Then L.
Hormander showed in [2] that '

1
10,67 F(2,p)| < Clm(1+ o) 5+™™ for 0<2S 50 (3.6)
and : i
afak _ = < %-—k 1 t -1
D20} F(z,p) = 25 F(0))| £ Camr(1+1p)F (1 +9) )

for »2ILt and t21.

Here M > 0 is the radius of support of initial data and L > 0. Furthermore,U(p, s)
satisfies ‘

1
(6107 U (0,8)| € Clmp(1+ o) 37147 for 0SsS S, (39)
1

U(p,s) =0 for ng’Oéség’ (3'9)

which will be proved in Appendix.
We choose a cut-off function y € C®(R) equal to 1 in (—o0,1) and 0 in (2, 00),
and define a function w(r,t) by

w(r,t) = ex(et)u(r,t) — e(1 = x(et))x(—3ep)r~2U(p, ).
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Using (3.5), (3.6); (3.7) and (3,8), we will prove
IT*w(t)| £ Cape(L+1)"3(1+|p])"F for 0=t <t (3.10)

NIT*T(@)]o € Cap(e2@ +1)"% + 41 +18)"1) for 0=t <t (3.11)

where ;
J(r,t) = Ow — (a1w? + agww, + azw?) Aw.

First we prove (3.10). Since the followmg decay estimate for u® (showed in L.
Hormander [2]) holds

TP, S Cal 49731+ o, (3.12)
we find that the first term of w satisfies (3.10). On the other hand, we get
t+1Z6r L6(t+ M),

in the support of (1 — x(et))x(—3ep)U(p, ). The second term of w satisfies (3.10)
if we prove

PP S cp1+9)F, (3.13a)
IT?(1 - x(et))| £ Cs, (3.13b)

7% (x(—3¢p))| £ Cp, (3.13¢)

I (U(p, 8))] S Cp(1 + |o])~ 3. | (3.13d)

Indeed, (3.13b) follows in principle from the inequalities

EJ
ILk(l—x(et))l<C DY Elal ()

j=01[=0
k
ZdtJlx(J)(gt
=0
< Ck for i=1,2,

where the last inequality holds since et < 2, in the support of xU)(et). (3.13¢)
follows from the inequalities '

J
x; t
S B 0 —aep)

=0

< G Zdlpl’lx")( 3ep)|

j=0

|L¥(x(—3ep))| £ C E

S,
- "M»
o
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where the last inequality holds since €p] £ 2/3 in the support of x/)(—3ep). (3.13d)
follows from (3.8) and a similar calculation as above

Next we show (3.11) by dividing the proof into three cases.
Case 1. 0 £ et £ 1. Since
w(r,t) = eu®(r,1),
we find

J(r,t) = —63(a1u?2 + agudul + asugz)Auo.
It follows from (3.12) that

[P (r,1)| € Ca®(1+4)"E.

. Since

t+M
/ D (r,)[2dz = 2n / D% (r,8)*rdr,
K3 0
-we get
IT2JT(r, )]0 S Coe®(L +1)~3(t + M)

< Caed(1+1)°%

< Couei(l41)74,
where the last inequality follows from the fact

el+t)Se+152.
This is what we wanted.
Case 2. 1 £ et £ 2. Since the same estimate holds for nonlinear term —(ayw? +
asw;w, + a;;w,)Aw, we have only to examine
: 1
Ow =e0[(1 ~ x(et)) {x(=3¢p)r~3U(p, 3) — u(r, )}
=e0{(1 — x(et))(x(3¢p) — 1)u}

+e0{(1 - x(e))x(=3ep)r= 3 (U pr0) — F(Z, o))}
=J1 + Jo,

where F(1/7,p) is the one in (3.6) and the last equality is the definition of J; and
J2. In the support of 1 — x(—3¢p), we have 6r < 5¢. Hence we find

720! u®(r,t)] £ Capm(1 +8)7171"™ for ¢21. (3.14)

Since

I@,’.@,m{(l - X(et))(x(——3ep) — 1)}' < Cl,m€l+m
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and the support of 4 is same as that of U, it follows from (3.13b), (3.13c) and
(3.14) that
IPeJy(ryt)| £ Ca(3(1+1)" 1 +2(1+1)72)

< Ca?(1 +1)2,
IT*71@®)llo £ Cae®(L +1)7*
< Cocf(1414)71.

On the other hand, in the support of J3, we have 1 +¢ < 67 < 6(t + M) and then
obtain (3.13). Moreover we prove that

1 - -
IT*(8;,U(py8) = 8, F (=, p))| £ Ci(1 + o) a1+ )72, (3.15)
for 0< s <1/B, r 2 1/(2M). Indeed,

1
d
OU(,5) = 80 (0,0)+ [ :0LU(p, As)aA

dl

1
= 277 0)+ < logla +1) [ 22,0(p, )

By (3.8), (3.13d), et £ 2 and the fact
P (elog(1 + )| < Cs,
we find that
|T*(? log(1 + %) /01 3;6,U(b, sA)dA)| € Cale? log(1 +£)(1 + [p]) = 5"%)
< Ca(l+l)3 (A +0)7"
Thus it follows from (3.7) that |
[P(@,0(p,5) = (-, )] S Cald + o) F (1 +1)7,
which implies (3.15). Now, since
Ov = r~3(62 - 82 = —5)(r}v),
4r?

we get ,
-1
Ja =er™2(8, — 8,)(0; + 8- ){(1 — x(t))x(—3ep)(U — F)}
+er™3 (1~ x(et))x(~3¢p) (U ~ F)
=J; + Jy,
where the last equality is the definition of J} and J¥. By (3.6), we have

I8 F(=, p)| € Ca(1+1ol) . (3.16)
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Then it follows from (3.13), (3.16) and 1+t £ 67 that
IT2JY| £ Caer™3(1 +1)” 2(14]p])75.
Since (6, + 8,)p = 0, we obtain
IP2J5] SCale?r5[T*{(8: — 8,)(x' (et)x(—3ep)(U — F))}|
+er (1 + )71+ o)),

where we have used (3.13), (3.16), 1 +1 < 6r £ 6(t+ M) and et £ 2. Moreover
using (3.13) and (3.15), we find that

IT*{(8: — 8:)(x' (et)x(—3ep)(U — F))}
SCale(1+8)7 1+ o) + (1 +8)"21 + o))~ 5) |
SCa(1+#)71(1 + o))~ 2.

Thus we get ‘ '
[P*J5] £ Caer™3(1+4)72(1 +|p) 3

and then we have

IT*J5| £ Caer™3(1 +1)"2(1 + |p]) 3,
IT=J3)lo £ Cae(1 +1)~(log(t + M))3
< Cuet(1+14)74,

which implies (3.11) for 1 Set £ 2. .
Case 3. 2 £ et £ etp. In this case, we have

w(r,t) er~3x(—3ep)U(p,5) = er~ 30 (p, 5).
We devide J into three parts
T = Q1+ Q2 + Qs,
where

Q1 =I'*(Ow + 2631"%17,,,),
Q2 =ra(_2€37'~%ﬁps —(a1—az+ a3)(ﬂp)2ﬂpp)’
Qs =I'*((a1 —az + a3)€3r'%(ﬁp)2ﬁpp — (ayw? + aqwiw, + azw?)Aw).

Thus our purpose is converted to

lQillo = O3 (1 + )~ + (1 +1)™1) for i=1,2,3.
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In the support of Q;, we have 1+t < 37 < 3(t+ M) and then we have (3.13). First
we consider Q;. We get .
T*Dw(r,t) =T*(er~3(8; — 8,)(8: + 8,)U (p, 5) + %er'%ﬁ(p,s))
=R; + R,,

where the last equality is the definition of R; and R;. Using (3.13) and 1+¢ < 3r,
we get
|Bal S Caer™3(1+0)7(1 + o))

and then L
[ Ballo £ Cae(1 +12)7(log(t + M))?

S Cuet(1+14)74.
Since (8; + 9,)p = 0, then we have |
By = T3 (9, — 0,){(L + )20, (p,8)))-

Moreover, by (3.8) and (3.13), we get ,

Ry + 2657 (=3 (L + )20, (p, 8))| £ Cac® ™3 (1 +1)72(1 + o))"

|Ry + 26°T%(r=30,,(p, 5))| £ Cue®r™3 (1 +1)2(1+ o))"

where we have used the fact -
| - T%(pUup (o1 )] S Cal1+10])73.

9
§’
4
§’

Thus we obtain
1Qullo £ || By + T*(2¢*r=30,,(p, 5))llo + [| Rallo
S Ca(P(1+1)72 +ei(1+1)7%) - (317)
< Chef(1+1)4,
Next we consider Q3. Using (3.13), we get
T (8007 w(r, t) — er™ 3(=1)'01™ U (p, 5))| £ Caymer™3(1+1)72.
This estimate yieldé
| |Qal £ Cas®r™3(141)7!
and then we get
1Qsllo £ Ca®(1 +1)7%(t + M)
< Ca&'%(l + t)”f‘.
Finally we estimate Q3. When x(—3ep) is equal to 1 or 0, we find Q2 = 0 by (3.1b).

Thus we can assume 1 £ —3ep £ 2, i.e., (1 + |p])~! £ 3e. Using (3.8), (3.12) and
1+t < 3r, we have

(3.18)

Q| € Cactr=3(1 4+ )71 (1 + |p|) "3,
[|Qzllo £ Cae*(1+1t)71.

Combining (3.17), (3.18) and (3.19), we find that (3.11) is valid for 2 £ et < etp
and then that is valid for 0 S ¢ £ ¢o.
To finish the poof of (3.3), we need the following propositions.

(3.19)



12 VIBRATING MEMBRANE

Proposition 3.1. Let v € C? satisfy a wave equation:

9 ,
Ov(z,t) = Z Yap(2,1)0a0pv(2,1) + h(z,1), (z,1) €R? x [0, 0),
a,f=0

where 3o’= 0, and
2 1
|7(t)|0 = Z I'Yaﬂ(t)lo < E for 0 é t<T.
a,f=0

Assume that for any fixed t, v vanishes for large |z|. Then we have for 0 St < T

12v(0)lo < 3Dl + | (e ldr)es( | 1D+(lod)

where ,

Dv = (8gv,01v,0;v) and |Dy(7)|o = Z [85Yap (T)]0-
’ a,8,6=0

Proposition 3.2. For a smooth function v(z,t)(z € R),
_n=-1 1
lo(z, 1) £ Ca(1 + o] + )T (1 + [t = ||~ Fllo(®llig141,
where [s] stands for the largest integer not exceeding s.

Proposition 3.1 is obtained integrating by parts and Gronwall’s inequality. Pro-
position 3.2 is so-called Klainerman’s inequality which has proved in S. Klainerman
[8] and F. John [6].

If we show that

IT*D(u(r,t) — w(r,t)|lo £ Co,pe? forany o €Zf, - (3.20)
we find that (3.3) is valid. Indeed, it follows from (3.20) and Proposition 3.2 that
1810 (u(r,t) — w(ryt))| € Crmpeir™? 05t<1g

for any I and m. Moreover when ¢ > 2/e and r—t = —1/3¢, w(r,t) = er~Y2U(p, s).
Then

310 w(r,t) = er~3(~1)™05™U(p, s) + O(er™3)
- holds. By combining above inequality and equality, the desired estimate is obtained.
Thus we have only to prove (3.20). If we set v(r,t) = u(r,t) — w(r,t), by (2.1) v
satisfies '

1
Ov =(ayu? + agusu, + azu? + O(|Dul?)) Au + —r-u,.G(u,, u) — J(r,t)
— (a1w} + aqw,w, + azw?)Aw 1 (3.21)
=(a14? + asusu, + azu?)Av + O(|Dul*|Au]) + ;u,G(ur,ut)

+ {a1(u + wi)ve + az(uv, + wrve) + az(uy +wp v, JAw = J(r,2).
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By (3.4), we have for sufficiently small € > 0

' 1
|a1ut2(t) + azu (t)u, (t) + azu?(t)|o £ T

Thus we can apply Proposition 3.1 to (3.21). Since v(r,0) = 0, we obtain for
0<t <t

IDv(®)llo SC / Il (Du(r)] + | Deo(r))| Do(r)]| | Dewl)] + |F(7)
+ |Du|4lD2u| + |4, G(7)] ||odT
- | D?u(7)|d7).
x exp(C / |Du(r)| - | D*u(r)|dr)
Tt follows from (3.5), (3.10), (3.11) and ?log(1 + o) = 1/B that

100l SC8 [ 314074640407 + (141Dl

t
<cei+c / (1 + )| Do(r)|od-
0
Gronwall’s inequality yields
t
1Du(t)]lo < Cetexp(C / e2(1 +£)~1dr) < Cet.
0 .

This implies that (3.20) is valid for & = 0. To prove (3.20) by induction, we assume
that (3.20) holds for |a| = s — 1. For any « (Ja| = 3), (3.3) admits ‘

Or% = Z I (Ov) + I*{(a14? + azu.u, + azu’)Av}
181<]e] '
+ T*{(ay(us + we)v: + az(ugv, + w,vg) + as(u, + w,)v, )Aw}

1
+ O(| Du|*|Au)) + ;u,G(u,.,u,) —-T*J
=(a1,ut2 + asusu, + azu?) AT'*v + O((| Dyl + | Dwl|)|Aw| - | DT *v]
+ |D*~1Do|(|T° Du|? + |T*+1w|?) + |T*J| + |T* Du|*|T* Ay]

-+ |I“'(;1_-u,G(Ur,ut))|)v

where Df = (8;f,0,f) and I'* = Z I'*. By Proposition 3.1, we get for 0 < ¢ < 1
|A]=s

1DE=s()llo SO [ 1| (Du(r)] +1Dw(r)D]Aw(r)| - [PEu(r)
+ [P Do(D|(I* Du(r)f? + I Du(r)P) + |1 (7)]
[T Du(r) 41 Do) + [0 (4, G(7) Hlodr

% exp(C /0 |Du(r)] - | D?u(r)]dr).
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Proceeding as above argument, by (3.5), (3.10), (3.11), e?log(1 + #9) = 1/B and
the assumption,

IDr=w(t)lo SC /0 t{e%(l +7) 41 +1)" + 22 +1)7Y|DI%o(7)||o}dr
<Cet + C’/: e2(1+ T)'IIIDI‘“v(T)HodT. |
Gronwall’s inéquality yields
|IDT*v(t)]]o £ Cﬁexp(C/J 1+ 7)ldr) £ Cef.

- Again using (3.4) and the assumption, we obtain
IL*Du(#)]lo < Cet,

for any o (|a| = s). This completes the proof of (3.20).

At the end of this section, we investigate the value of the solution U = U|(p, s)
at s =1/B i.e., t = t;. We assume that the maximum in the definition of Hy is
attained at p = po, i.e. o

0 = —(a.l —aq + a;;)f’(po)f"(po). | (322)

In (p, s)-plane, we consider a characteristic curve A,(g € R) which is defined by the
solution of the following differential equation:

dp a1—a2+a3(
ds 2

If we denote a point on A,, by (p(s),s), then we find

U,(p,s))? for s20, ‘p=q for s=0.

Up(p(-;;), %) = F'(po) (3.23)
1 1 1
a1 — az + a3)F (00)U,,(p(5), 5) T, B (3.24)

Indeed, by (3.1b) and (3.2b), we have along A,

ay —as+as 1

2 U,)*Upp =0 0=5sS

d.
'&:Up(l’(s)’s) =U,, +

Hence we have
’ 1
Up(p(s),8) = Up(p0,0) = F'(p0) 0=3S 5, (3.25)
3.25

which implies (3.23). Similarly, it follows from (3.1b) and (3.25) that

SUss(5(5),) =Uppa(p(s),5) + ‘“—“%ﬂ(vp(p(sxs))wppp(p(s), 5)

— (a1 — az + as)U,(p(s), 8)(Uy,(p(s), 8))°
= — (a1 — a2 + a3) F'(po)(Up, (p(3), 9))*
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Solving this equation , we obtain by (3.2b) and (3.22)

pp(p07 0)
Upo(p(s), s) 1+ (a1 — a3 + a3)F'(po)U,p(p0, 0)s’

i.e.,
1 1

Ups(p(s), 9) - F"(po) + (a1 — a3 + a3)F'(po)s,

t.e.,
1 1

~(a1 — a3+ a3)F (p0)U,p(p(s),5)  Ho
for 0 £ s £ 1/B. Thus (3.24) follows from this equality.

4. A priori estimates.

From now on, we investigate the behaviours of u after ¢ = #o. If we set v(r,t) =
r3u(r, t), the equation (2 1) can be written as

. 1
vyt — A (ug, 4, ) (vpr + Zr'zv,.) = r'%u,G(ut, u,). (4.1)

Moreover we define functions wq(r,t), wo(r,t) by

‘ CUpp — Lov
wl(r,t) — rrzc rt — 2ZCr ,
cv +'v . Ly
wg(r,t) = rrzc ri — ;Cr ,

where £, = 0¢ + ¢0,,Ly = 8; — cJ,. We find that w; and w; satisfy
wy + we = Yy, c(w2 - wl) = Urty

and these imply ‘
. 1 1

- -2
U =r"3v, — 3T
3 .
Upr =13 (wy + wy) — ™ 30, + Zr'%v, (4.2)
1 1

-1 _3
Upt =cr” 2 (wy — wy) — 57 3.

Then using (4.2), we obtain the equalities:

Liwy ={c(aru; + a?z“r) - gzzut — azu, + O(|Du|3)}r‘%w%

+ O({r~%|Du| - [wa] + r~3|Dv| - |Du| + r~ 3| Du| - |v|}w] (4.3)
+ 17 3|wg| - | Dul - [o] + 7~ F|ws] - | Du| - | Dv| + #2| Do| + r~3|v])
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Lywy =O({r~%|w;| - |Du| + r~3|Dul - |Dv| + r~ | Du| - |u]}|wi]|
+ =3 Du| - lwy|? +r~3|Du| - | Do| - |w| + r~ 5| Dwy| - | Du| - |o]  (4:4)
-+ r=2|Do| + r=3|v)).
In what follows, we assume that there exists a T (o < T' < exp(1/Ae?) — 1) such
that the Cauchy problem (2.1), (2.2) has a solution u(r,t) for 0 S ¢t £ T. In

(r,t)-plane, we consider pseudo-characteristic curves Z} and Zﬁ which are given by
solutions of differential equations:

d
Z}:é—:c(ut,u,) for t 21, r=A+1 for t=1t,,
, dr.
Z”:-E=—c(ut,u,) for t 2 1o, r=pu—1t for t=1,.

We set
D ={(1‘,t) I to étéT’ (rat) € Zi’ -N é A é M},

Di, =DN{(n?) [to St =t}
where the constant IV is sufficiently greater than |pg|. Moreover we define functions

ra(r)

I(t) = max |wy (7, 7)|dr,

toSTSt r1(r)

V(t) = (r,rf)éui), [v(r, 7)I,

V() = max (Io.(r7)]+ o, 7)),

Wy(t) = '
20 = max Jus(r, )
where (r1(7),7) € Z1 and (ry(7),7) € Z},. Then the purpose of this section is
following.

There exist a constant C > 0 (independent of A) and an €4 > 0 such that

I(t) < Ce, V()< Ce3,
141 (4.5)

V() < Ce, Wy(t) <Ce® r> 5

for (r,t) € D and 0 < € < e4.

To obtain (4.5) we just have to show:

(1) (4.5) holds at ¢ =1,

(2) If (4.5) holds for tg S t < t1, (4.5) also holds at ¢ = ¢;.
At first we prove (1). If (r,%9) € Z} N D, it follows that

7'='t0+/\, -Né/\éM, (4.6)

then we find that _
«to—Néréto'l'M.



AKIRA HOSHIGA 17

If we take e suﬁicientiy small as
to--exp( )—1>ma.x(M 2,2N + 1),

then we obtain 141
5 2 < r(to) < 2(1 +to)- (4.7)

For (r, o) € Z1, it follows from (3.5), (4.6) and (4.7) that

to+M
lu(r,20)] = |- / 9 S5 @0, to))d,\l

Slto+ M — Tl  Jur (t0)lo
SCe(1+10)" 3|\ + M|

SC(M + N)e(1 +10)"F
<V2C(M + N)er_% = Co‘er'f'%,

which implies V (to) < Cyel/2. It follows from (3.4), (4.7) and V(¢9) < Coel/? that
for (r,%9) € D,

1 1 _
lor (r,t0)| =|r3u,(r,%0) + —2-1' 1v(r,t0)|
§Cr%e(1 + to)“% + %C’or"le%

1 1
<V2Ce + —=Cge3 (1 + 1) L.
75 (1 +10)

If we take e sufficiently small, we obtain
(1+10)7? (exp(B Nl ée? (4.8)
Thus we find c
lvr (ry%0)] < —215.
Similarly we have ‘

C
v (ryt0) | < ‘51‘5-

Therefore we obtain V(tg) < Cie. Using (3.5), (4.8), V(t0) < Coc!/?, V(to) < Cie
and an equality

at + 6,. = (LO + —'Ll + _LZ)’
we have for (r,%y) € D,
’ Vir -+ CUry
lwa(r,t0)| = —t—'{c‘—"
_ Ivrt + Urrl

5 T O(lore| + |v,+ )| Dul?)
=0((to + r) v, (to)l1 + (|vre(to) o + v+ (t0)lo) | Du(to)I3)
=0(e(1+10) 1+ 31 +1)™?)
=0(e?).
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This implies W3(to) < Cy¢>. Finally we consider I(to). It follows from (3.5), (4.8)
V(to) < Co€1/2 and V(to) < Cje that for (T,to) €D,

Urt — CUry

|wi(ryt0)| = 3

Upt| + |Vpr o
glord ol | o((juyet + fors DU

<C"(e +€3(1 +10)™Y)
<Cle.

‘On the other hand, it follows from (r1(to),t0) € Z1 y, (r2(to),%0) € Z}; and (4.6)
that
» |1‘2(to)—1‘1(to)l=|t6+M-—to+N|=M+N.

Then we have

rg(to)
I(to) = / lwa(r,t0)|dr < C'(M + N)e < Cae.

rl(to)

If we take é >0 X
C > max{Cy, C1,C3,C3},

(4.5) is valid at ¢ =t for sufficiently small €. Thus we have proved (1). ,

To prove (2) we assume that for fixed ¢;, (4.5) holds for ¢ £ ¢ < ¢;. The
smoothness of the solution u guarantees that the inequalities which are altered <
by £ in (4.5) hold at ¢ = ¢;. First we show r > (1 +1;)/2 if ¢ < ea. By (4.5) and

- the assumption €? log(1 + T) < 1/4, we obtain for (r(t),t) € 25,80 St <t

d(rd;- t) =c—1=0(|Dul?) = O(}(1 + )™,
¢
r(¢) -t - Al éC/ e} (14 7)"ldr
to
<Ce’ log(1 +1) | (4.9)
<<
A
This leads . .
r(t1)§t1+/\—zgt1_M_z> - 1’

provioded tg > 2M +2C /A +1, which is attained for 0 < € < €4 if €4 is sufficiently
small. Next we estimate v(r,%;). By (4.5) and (4.9), we obtain for 0 < € < ¢4,

ti+ M
—/ Uy (A,tl)d/\

<Celty + M — 1|
-, C
C(Z+M+N)€

<é'€ ,

lo(r,21)| =

[7AY

[
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if eq < (C’/A+ M+ N)‘2 Thus V(t1) < Ce3 holds.
To prove I(t1) < Ce, we consider exteria derivatives of d1fferent1al forms wydr —
cwidt and wodr + cw,ydt:

d(w(dr — edt)) = —(Lyw; + g;wl)dr Adt, (4.10)
d(ws(dr + cdt)) = —(Lywy — %wg)dr Adt. (4.11)

We set
K= {(T,tl) € Dtllwl(r,tl) > 0},
K' = {('I‘,tl) € Dt1|w1(r,t1) < 0}.

Since these are open sets in R, K and K’ are the unions of at most denumerable
families {K;} and {K}} of open intervals, no two of which have common points.
Assume that K = {(r,;)|r1(t1) S £ 1'2(t1)} Then, integrating (4.10) over D,
and using Green’s formula, we obtain

// (£1w1 + wl)drdt
Dy,

r2(te)
=/ wqdr +/ wy (dr — edt) — / widr — / wy(dr — cdt).
ri(to) Z3 x z!

M . -N
Since :
/ wy(dr —cdt) =0 for any A,
1
A
we have
, ra(to) dc
/ ’w]_d'l' é / |'w1|dr + // E]_'w]_ + —w drdt.
K r1(to) D'l 61‘ )

Furthermore, assume that K' = {(r,#;)|r1(¢1) £ 7 £ r2(¢1)}. Then, the same
argument gives

. ra(to)
—/, w1dr§/ leldr+//
d ri(to) Dy,

Summing up such inequalities corresponding to K; and K!, we obtain

rg(h) rg(to)
/ |y |dr </' |w1|dr+//
r1(t1) r1(to) Dy,
~1(t)+ [
Dy,

It follows from (4.2), (4.3) and (4.5) that

£1w1 + —cwl drdt.

or

drdt

Liw + ——-w1
(4.12)

Jdc
Liwy + —wy| drdt.

or

5 _
Liwy + —é—gwl =O({1"%|Du|v - |wa| + r"%|Dv| - |Du| + r—%IDuI « [v| }wn|

+ 173 |wy| - |Du| - [o] + 1~ 3 |wy| - | Du| - | Do| + r=2| D] + r=3|v])
=O((e4(1 + t)'1 + 52(1 + t)-2)|w1| +e(1+ t)'2).
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Note that, from (4.9), we have

[r1(t) = r2(t)| E|r1(#) =t + N|+ |t —r2(t) + M|+ M+ N

2C
<_
+ M+ N.

Then it follows from (4.5), (4.8) and the assumption €?log(l + T) < 1/A that

Jh.

ra(t) t1 ra(t)
—o( [ (4 +1) + (1 + 1)t / lou|dr + / e(1+ )" 2dt / dr)
t

to r;(t ') rl(t)

drdt

Liwy + —-w1

—0(c3log(1 + 1) + (% + M+ N)e( +10)71)
e 2C “
‘O(X + (7 + M + N)e*).

Thus we obtain , i
I(t1) < Cze + O(£?) < Ce,

for € < €4 if €4 is sufficiently small.
Next we estimate v,. We fix a point (r,#;) € D;,, then there exist Ag and pg
such that (r,1;) € Z} N Z2 . Integrating the following equality

L1v; = vy + cvpp = 2cwy,

along Z} from o to t;, we find
t1 d
vr(ryt1) — v (Ao + 2o, t0) = E(vr (r(2),1))dt
to

= [ cauntrto, )

to

=2 /t1 cwa(r(t),t)dt

[}

131
=o( [~ jwar(t) 1),
to
where (r(t),t) € Z} . To estimate the last integral in the above equality, we set

E={(1‘,t)€Dt1|(1‘,'t)GZ}QZﬁ, Ao £A and u = po}

By the same argument to obtain (4.12), we get from (4.11)

/ |w2|(dr+cdt)_S_/ |w2|dr+//'
zZ} En{t=to} E

ﬁzwg - %wz drdt.
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It follows from (4.5) and (4.6) that

[ ki [ funldr S Wattoir(to) - rato)] = O(eY)
En{t to} t _

0

The same argument to estimate the integral of |Liwy + (8¢/d7)wy| over Dy, gives

y/i araes [,

On the other hand, we find

dc
Lawy — P

drdt = Oo(e?).

dc
Lawy — o2

/ g |(dr + edt) = / o (r(2) t)l( " )
=2 [ clun(r(t) )t
2 [ oatrto)

to

for sufficiently small €. These imply

t1
/ lwa(r(£),1)|dt = O(e?). \ (4.13)
to
Thus we obtain
| v (1) = v, (Ao + to, t0) + O(€?), (4.14)

and

A

Jor (s8] € Ste+0(e%) < 2.

Similarly we have
ve(ryt1) = vi(Xo + to, o) + O(?), (4.15)
and '

A

C
lvt(r,tl)l < EE.

Thus V(#;) < Ce holds. More precisely, we have for (r(t),1) € Zp(l/B)’

5

Ao u(r(t),f) = (~1)er~3 F'(po) + O(e3r~3) for I+m=1,  (4.16)
where p(1/B) is the one in (3.23) or (3.24). Indeed, if we write ro = p(1/B) + 1o,
(3.3) and (3.23) imply

407 u(royto) =e(~1)"T, (), ) + O(eH)

5 (4.17)
=(=1)"eF"(po) + O(e*).
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When m = 1 and ! = 0, using (4.15) with Ag = p(1/B) and (4.17) we obtain for
(r(8),%) € Z, 4, )
1
riuy(r(t),t) =rus(ro,to) + O(c?)
=— eF"(po) + O(e*).
The other case shall be obtained by using (4.14) and (4.17).
Finally we estimate ws(r,;). We fix a point (r,#;) € D;, and take a constant

p such that (r,t;) € Z3. Then, it follows from (4.4), (4.8) and the assumptmn
e?log(1+T)<1/A that for (»(t),t) € Z

t1 d
wa(ry 1) — wa(p — o, 10) =/ sz(r(t)’t)dt
. to

t
= szg(r(t),t)dt

to

o[ {147 + (1467 + (o), )})

to

=O(e4 +e7 /h lwl(r(t),t)ldt).

to

By the same argument to obtain (4.13), we have

/tl |wi (r(2),8)|dt = O(e)  for(r(t),t) € Z}.

. to
This implies
|lwz(r,t1)| =|wz(p ~ to,t0)| + O(?)
<Cse® + 0(e?)
<Ce3,

for € < 4 if €4 is sufficiently small. Thus we have finished proving (2) and then
(4.5).

5. Proof of Main Lemma.

The following lemma which corresponds to Lemma 1.4.1 in L. Hérmander [2]
play an important role in the proof of (2.8). '

Lemma. Let w be a solution in [0,T] of the ordinary differential equation:

dw 2
— = @0(®)w(t)’ + a1 (tu(t) + as(t),

where a; are continuous and g 2 0. Let.

T T
K= [ |a(t)|dtexp([ loa(2)]dt).

to to
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If w(to) > K, it follows that

T 1 T
| oottt < s exp( [l

0

By (4.3) and (4.5), we find that wy(r(2),t) = w;(¢t) satisfies

2 n(t) = coltun () + aa(wa(t) + a8,

along Z;(l /B)? where

ao(t) =c‘(a1ut + 92—2'

a(t) =O(A(L + )71 +e2(1+1)7?),
as(t) =0(e(1 +1)72).

az
u,) — ~ Ut — a3t

Thus it can be easily seen that K = O(e*). It follows from (4.5), (4.9) and (4.16)
that

‘@o(t) = — (a1 — a3 + ag)eF'(po)r~" + O(eir™)

1 1
= — (a1 —az + az)eF (po)(1+ )L+ O(e¥ (1 + 1)1 + (; - 17 t)e)
=— (a1 — a3 + a3)eF (po)(1 + 1)~ + O(e% (1 +¢)™1).
Since Ho = —(a1 — a2 + a3)F'(po)F"(po) > 0, we can assume without loss of

generality that —(a; — a3 + a3)F'(po) > 0 and F”(po) > 0. This assumption
guarantees ap(t) > 0 for sufficiently small e. On the other hand, by (3.5) and (4.5)

CUry (tO) — Ut (tO)

ta) =
w1 (to) 2c
1
=5 vrr(to) = vri(to) + O(|D*|| Duf’)
11 1 1 1 2 1 -1
- =570 rr(to) = 57g ure(to) + 51 * (f0) ~ 7o "us(to)
1 g 6
+ 270 ‘u+ 0(e°)
11 11 4
=370 trr(to) = 57¢ ure(fo) + O(%),
where rg = tg + p(1/B). Using (3.2b), we obtain
1.1 5
wy (to) = EUpp(P(E)a —B—) O(e*).

By (3.24), we have U, ,(p(1/B),1/B) > 0 and therefore w; ({g) > K. Thus, applying
Lemma to w = w;, we find that T' must satisfy

T 1 T
/t ao(t)it < s exp( [ loa(t)ldt).
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Using the estimates for ag, oy and wq, we have

(a1~ a2 +a3)F'(po)e(log(1 + T) — log(1 + to)) + O(e* log(1 +T))

1 2
<€Upp(p(%)’ %) + O(e%)(l + O(e%)),

which implies

1
~(a1 — a2 + a3) F'(p0) Uy, (p(5): 5)

e

2 1 1
e’log(1+T) 7 < +O(e A).

By (3.24) we have

1
2 - —
e‘log(1+T) 5 <

i.e.,

e?log(1+T) < % for 0<e<eq4.

This completes the proof of Main Lemma.

Appendix.

It remains to prove

lall)a;nU(Pa s)l < Cl,m,B(l + lpl)_%—l—‘im’ for 0555 —, (3.8)

|~

U(p,s)=0 for p=M, ' (3.9)

for the solution U(p, s) of the initial value problem (3.1a), (3.2a). Along the same
- argument to obtain (3.23) we get for (p(s),s) € A, ‘

Uy(p(s),5) = Up(g,0) = /(g), for 0SsS 2. (A.1)
Hence, by the definition of characteristic curves A4, p(s) can be written as
os) =g+ W(%»% for 05552, (4.2)
On the other hand, it has been known that F satisfies
d* =~ —1_k
0| SGa+IATE o peR, (4.3)
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F(p)=0  for p2 M, (A.4)
(e.g. L. Hormander [2]). Then we have
_ ~2
Lot | g m 2t alll _ g

where the last inequality is the definition of Cj. At first we prove (3.8) for l =1
and m = 0. When |p(s)| £ 2Cj, we find that for (p(s),8) € A,

U, (p(s),8)| =|F,(q)| S C1 £ Ci(1+2C})3(1 +207)~
<Ci(1+2C3)3(1+ o))~ 3.
When |p(s)| 2 2C} , it follows from (A.2) that

as + ag

lal = |o(s) — —2——(7"( 9))’s| 2 ol - C1 2 5ol

N =

Thus we obtain
[U,(p(5),8)| = |F'(@)] £ Co(1 + )~ % € 2v2C: (1 + o))~ 2.

Therefore if we take Cy 0.5 = Cy(1 + 2C})3/2 + 2¢/2C}, we find that (3.8) is valid
for ! =1 and m = 0. When ! =0 and m = 0, (3.1a) and (3.2a) imply that for any
(p,s) € Rx [0, l/B]v

U0,9) <000+ [ 5 "2 U(pys)ds
=(p) - 22222 [0, (p,0)P.

Thus we obtain

ap + asI
6B

1
Cl 0,8)(1 + lp])~=.

1U(p,8)] SCo(1 + o)~ + 1922 G3 o, 5(1+ o)~

—az+as|
6B

This implies that (3.8) is valid for / = 0 and m = 0 if we take

§(60 + I

lay —az +a3| 3
T Lo,5-

Next we prove (3.8) for general | 2 2 and m = 0. Let s (0 £ s £ 1/B) be fixed
arbitrary. Then for any point (p, s), there exist a smooth curve ¢ = g,(p) such that
(py8) € A;. Differentiating (A.1) with respect to p, we find that for I 2 2

Coo,B = Co+

2 -
20 (py5) = §:r—<f+l><q) 5> iy (GmO(E (T Lyt
dp - 9p
m(j)eX
(A.5)
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where

X = {m(j) € Z7Y| m1(§) + ma(§) + -+ - + my_1(§) = 4,
my(5) +2ma(f) + -+ -+ (I = )my—1(j) =1 —1}.

On the other hand, differentiating 8q/0p = (6p/6q)" with respect to p, we find
that for k& = 2

. k-1
Z 3 N(J)( )N“”( )Nﬁ(’)--(-a—-,;_—)Nk-l(” (A.6)
2 N(J)eY

where

Y = {N(j) € ZE~Y| M1(§) + No(§) + -+ + N1 (§) = § + 1,
N1(j) +2N3(j) + - + (k= 1)Npa(§) = k+1}

Moreover by (A.2), (A.3) a.nd the same argument in the case I =1 and m = 0, we
obtain

@ g él,
g
Iy (A7)
o | G+ o k22
Using (A.7), we get
% é al’
ak: (A.S)
rra SCu(l+]p))™2* for k22.
Thus it follows from (A.5) and (A.8) that
1-1 -1
10406, 5)1 £ Ciup Y1+ lo) =472 T[ (1 + o) +-9m)
i=2 - k=2
-1 '
< Cip Y (1 (o) T3+ |pl) " T B UM EiTy ),
j=1
Since ) _ . .
ma(j) +2ms(f) + -+ (1= 2)m_1(j) =1—-j -1,
ma(§) + ma(j) + -+ + mi-1(5) 2 0,
we have |

18U (p, s)| < Cio,8(1 + |p|) =29 -4+
< Cio,p(1+[p])=5"
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Next we assume that (3.8) holds for any ! and 0 £ m £ k — 1. Differentiating the
equation (3.1a), we have

00U (p, ) = 3 COL LU (p, 8)852 614530 p,5)05201+#5U p, 8),
where

oy +oy+az=1 and B +P2+pBs=k—-1.

Thus we have .
18,05U (p, 8)| S Cri,B(1 + |p|) "3~ 4(k-1)=3!

< Cra (1 + o) 3450

This comletes the proof of (3.8).
Finally we prove (3.9). If p 2 M and (p, s) € A,, we find ¢ 2 M because of the
uniqueness of A,. It follows from (A.2) and (A.4) that

1

Uplprs) = F(g) =0 for p2 M, 05sS 5.

Thus we have

) -

U(p,s)=10 for p

v
R
o
A
-
A

which implies (3.9).
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