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Abstract

For general surfaces of finite type, probability measures for parallel transport are con- |
structed. Relations to the topology of the surface are pointed out. We also discuss possible
loop invariants.

1. Introduction.

In recent years there has been an increasing interest in stochastic differential geometry.
One reason for this is the construction of quantized Yang-Mills fields, in Euclidean space-
time. In the physics literature, see e.g. [DM] and [Sei], one studies lattice gauge theory,
and let the lattice spacing tend to zero to obtain the continuum limit.

In [AH-KH], for a two dimensional case, thecontinuum limit is constructed directly as
a particular case of Markov cosurfaces. The theory was expanded in [K], and similar ideas
later appeared in [D], [GKS], [S1,2]. In [Be], [Br] and [F1,2] expectations involving Wilson
loops have been studied. In [W], using some ideas in Atiyah'’s lecture notes [A], heuristic
arguments were employed to point out certain connections with topological invariants.

In the present paper we shall only consider the two dimensional case, presenting
the "basic construction” initiated in [AH-KH] from a different, simplicial, point of view.
(Simplicial approximations to construct Markov random fields on surfaces were considered
in [AZ].) This permits us to relate our work with the results of [W] and others.



2. Random Parallel Transport

Let G be a Lie group and let M be a manifold. The action of a connection (one form)
on the product bundle M x G is infinitesimally given by the associated parallel transport.
This can be described by a G-valued function, defined for curves in M, and satisfying

m(ciea) = m(er)m(ce), mlc™') =m(c)?,

where c1co designates that the curve cg is followed by ¢; and ¢! denotes ¢ with opposite
orientation.

To obtain quantised field theorles one way is to construct random fields satisfying,
sample wise, these two conditions. Below we shall sketch a general construction for surfaces
M of finite type.

The particularity of gauge theory in 2 dimensions makes this possible. This fact has
certainly been known among physicists for quite some time. The mathematical formulation
and construction goes back to [A, H-K, H|, and was given a detailed treatment in Kaufmann
[K]. Some of these ideas have appeared later in several papers [D], [F], [G,K,S], [S]. There,
the starting point, and the principal object, is the Yang-Mills action functional, and the
Feynman path integral formalism. It also appears, among several other subjects, in the
recent paper by Witten [W]. In this connection, see also Atiyah's Lincei Lecture Notes [A].

The construction presented below is based on certain inner invariant, or class, func-
tions, and partitionings of M. One also needs to “measure” the plaquettes. Except for
this feature, the theory is really “topological” (combinatorial; cf. the comment about
the “Hauptvermutung of topology” in Sengupta [S], and [W]), rather than based on the
differentiable structure of the manifold. Essentially, this is lattice gauge theory, but the
particular family of class functions (convolution semigroups), yields invariance under sub-
division. Hence, in physics terminology, the continuum limit is in fact realised.

We remark, finally, that in our 2-dimensional case, if in addition G is simply connected,
then E = M x G is the general principal G-bundle over M. In the general case, one must
take into account the topology of the bundle. As remarked in [S], [W], one has to sum
over all topologically inequivalent principal G-bundles E over M. For further discussions
on this point, refer to the latter article.

Basic construction Let G be a compact topological group, and let G/Ad G denote the
orbits under the inner automorphisms z — g~ 'xg, g € G. Functions that are invariant
under inner automorphisms (class functlons) are called i inner invariant. For such functions,
the convolution is commutative.

Let now M be an oriented surface which admits a finite triangulation K. The sets
of (non-oriented) vertices, bonds and plaquettes are denoted by V(K), B(X), and P(K),
respectively. It is understood that the plaquettes are polygons (rather than triangles),
hence simply connected. Denote by ¢ an assignment of orientation to each bond.

We start from a probability space (2, F,Py) (which may depend on the oriented
triangulation (K, o)) upon which a collection of random variables {X{¥:9)(c), ¢ € B(K)}
are i.i.d. with respect to the Haar measure on G. Each sample w € 2 describes a connection
on the product bundle M x G and X(¥:9) (¢, w) describes the parallel transport along the
oriented bond (¢,o) with respect to the connection w. (We may choose 2 as the product
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of n = #B(K) copies of G, Py as the n-fold product of Haar measure and realise the Xs
canonically.)

The gauge group G#V(X) is supposed to act on 2 by a measure preserving transfor-
mation as

(2.1) XN (e, w- g) = g(e(1)) X (c,w)g(c(0)),

where ¢(0) and ¢(1) denote the initial and endpoint of ¢ as given by o, and where g(c(0))
and g(c(1)) are the elements of the #V(K)-tuple g that correspond to these vertices.

Referring to the orientation of M, we form the oriented boundary A for A € P(K).
We write, for the appropriate bonds ¢y, ..., cx € B(K),

6A=<Cl"’ck,)

to indicate that each bond c¢; is given the orientation inherited from dA, and that no
specific initial vertex is preferred. We then consider the G/ Ad G-valued random variable

[(X D) (1)) (en) ... (X E) (g ))e(er],

Here, o(c;) = 1 if the orientations of ¢; given by o and that of A coincide, whereas
o(c;) = —1 otherwise. Furthermore, the brackets indicate the conjugacy class. Since it is
independent of the specific starting curve, it is denoted by Y{¥:9)(A). Due to (2.1), it is
gauge invariant:

YENA w-g)=YED A w), AePK) geGHE,

To each plaquette we assign its measure, written |A|. This could be the area obtained
from a Riemannian metric on M, but this is not at all necessary. We shall assume however,
that the measure of the closure and the interior of each plaquette coincide.

Let now (p1):>o0 denote a convolution semigroup of inner invariant probability mea-
sures on G, absolutely continuous w.r.t. Haar measure, and with continuous densities. The
same notation for the densities, which are looked upon as class functions, will be used. We
shall make use of the following consequence of our assumptions:

(2.2) / e (@y2) e @y )y = pioye(222').
G

We define the following measure on our probability space:

1

P = p(K9) —
Z(K,o0)

I ma@®a)) p,
AEP(K)

where Z(K, o) is a normalisation constant, and we put pa| = 1 if |A] is infinite.
Remarks 1. If the y; are symmetric, i.e. invariant under z — z~!, we can allow non-
oriented surfaces M. Then the Ys above take their values in G/ AdG/Z4,. Abusing
notation, this means that A and (9A)~! are identified.
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2. Consider the case where M is a compact oriented surface of genus p > 1 from which we
have removed s holes. Then

Z(K,o) = /Gz . ,u|M|(m1y1:1:1“1y1‘1 . --xpypx;ly;1z1 cee2g)dzidyy ... dzpdypdzy .. dzs.
p+s

Except for the area of M, this is a topological invariant. It is identically one if s > 1, i.e.
when M has a boundary, but not otherwise.

3. The construction is obviously invariant under area preserving homeomorphisms M —
M. ‘

Consistency under subdivision The system is stable under refinements. To explain
this, we have to elaborate a bit more. Suppose that K and K’ are two triangulations. We
write K < K’ if each bond in K is a product of bonds in K’. For such ordered pairs,
let ¢’ be an orientation for the bonds of K’. We can construct two systems (2, P) and
(€, P’), one for K and one for K’, together with a map 7 : £’ — Q so that P/ and =
induce the measure P, i.e. P = P’ on~l. Assume that the sample spaces are realised as
products of G, and the random variables X, X’ are realised canonically. Enlargement of
the triangulation K can be done inductively by the following two kinds of operations.

First, the number of vertices is unchanged, but we add a bond between two vertices.
If the variables in ' are w’ = (wy,...,Wn,Wn11), Where wy,1 refers to the new bond, we
simply cancel it, so that w(w’) = (w1,...,wy). This is the case if the other bonds have the
same orientation in both cases. Otherwise, we map those components w; corresponding to
bonds where the orientations ¢ and ¢’ are oppposite to Wy 1

* The second case is when a bond, say c;, corresponding to wy, is divided into two new

ones: ¢; = ¢19¢11. Then, assuming the orientations ¢’ at ¢y2 and ¢;; are inherited from o
at ¢ (it should be clear how to handle the general case), we map (wi1,w12,ws...,w,) to
(wiowi1,w2 . . . ,wy). This way, X(c1) o m = X’(c12)X’(c11), i.e. the 7 respects multiplica-
tion of curves.

In both cases one will find, due to (2.2), that = pushes out P’ to P.

Relations to homotopy Simple examples show that in general the distributions defined
above are not homotopy invariant. A general question is to what extent the distribution of
let’s say (X(e1),..-,X(cn)) depends on ¢y,...,c,. We are very far from an answer to this,
but already in simple cases very interesting features appear, and we shall look at some
examples on the torus M = T2. Let a and 8 be the homotopy generators. Consider two
immersed images of S?, a and b, representatives of « and 3, and the law of (X(a), X (b)).

If a is a simple loop and b a simple loop onto which a further simple loop is added, it
turns out that we get a contribution when the orientation of the extra loop is such that the
total curve has to cross itself (Fig 1.a). When the orientation is reversed (Fig. 1.b) we do
not get any contribution. In the first, but not in the second, case a “tie” is formed, so the
constructions separates untied formations from tied ones. (The curves studied are “plats”
in the sense of Jones [J].) To be more precise, we should exclude abelian, to obtain effects of
this kind. The situation, when b has one tie whose small loop is oriented counterclockwise
and a is simple, is described by Fig. 2.a, which is equivalent to the graph in Fig. 2.b,
provided that the small loops inscribe the same area.
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In this case
BU(X(@), XO)] = [ £, @mp-vlovea™ 2y™) dudyds,

and the word (t;2)(|M| — t;zyz—2x~12y~!) corresponds to Fig. 2. If we put the small
loop going around clockwise on the other side so that the loop b is tied in the different
way (Figs. 3) another word appears, namely, (¢t; z71)(|M| —t; zyz~lz~122y~1). This does
not give the same distribution as above, so there is also a difference between left and right
ties. We give some further examples with two ties. Figures 4.a ,b correspond to the word
(t1; 21)(t2; 22) (| M| — t1 — to; xyzy L2725l 2~ 1212097 1) | in that

B (X(@), XO)] = [ £(@0)p (alp ()

-1,-2,~1,-1
X M-ty (TY23 "2 25 T

212097 1) dzdydzidzs.

If instead a left tie and a right tie are simultaneously on the loop b, as in Fig. 5, we get the
non-equivalent word (t1; z1)(te; 25 1) (| M| — t1 — to; xyzy L2722~ 12021209~ 1). On the other
hand if both a and b have ties as in Fig. 6, we obtain the word (t1; 21)(¢2; 22)(| M| — t1 —
to; x27 2yzy tx L2y~ Y).

We can also form figures looking like the number eight in various ways. Asan example,
Fig. 7 corresponds to the word (t1; 27 )(te; 22)(| M| — t1 — to; xyzy t27 2y L2y~ 2 20y~ 1)
which is equivalent to (t1; 27 1) (t2; 22) (| M| — t1 — to; zyzy 25 L2125 Le L2921y~ 1). Finally,
the nested loops in Fig. 8, where the inner one gives the area t1, and the area between the
inner and the outer loop is t,, is associated with the word (t1; 21)(t2; 27 *22) (| M| — t1 —
to; xyzy tzg tr 21y L),

In general, it seems that we can simplify to certain types of graphs and corresponding
words. To find more invariant expressions, it would be desirable to get rid of the area
parameters above. We therefore propose to study the corresponding infinitesimal expres-
sions, i.e. to differentiate w.r.t. the area parameters, and put them all equal to zero,
to obtain infinitesimal Schwinger functions. Already in the case of SU(2), this leads to
complicated expressions involving the generator of the semigroup, and products of at least
three group characters. In principle, though, combinatorial invariants can be read off from
the Wigner-Racah 65 symbol (cf. Witten [W]).
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