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THE EULER NUMBER OF A TOPOLOGICALLY
STABLE SINGULAR SURFACE IN A 3-MANIFOLD

S. Izumiya and W. L. Marar

Abstract. A formula for the Euler number of a generic singular surface in a 3-manifold is
given. This formula not only unifies the previous results but also allows some new applications.

1. Introduction

One of the themes in the global theory of singularities of mappings f : N — P is tostudy .
the relationship between the topology of N, P and f(N) in the case when dim N < dim P
[8]. Recently, we have arrived at formulae for the Euler numbers of the wave front of a
generic closed Legendrian surface [5] and the Euler number of the image of a C'*-stable
mapping from a closed surface to a 3-manifold [6]. The proofs in both cases are similar.
Here we unify these results under the notion of topologically stable singular surfaces in a
3-manifold that is introduced below. We also give some new examples.

Let f: N — P be a C*°-mapping from a closed surface to a 3-manifold. We say that
[ gives a topologically stable singular surface if the image of f is locally homeomorphic to
the image of an immersion with normal crossing or cross-caps (Fig. 1). It follows that
the number of the points which are homeomorphic to cross-caps is finite and we denote
by C(f). There also exist finitely many three-to-one points in f(N) where three sheets of
regular image are in general position. Such a point (Fig. 2) is called triple point of f and
the number of triple points is denoted by T'(f).

Fig.1 Fig.2

We denote the Euler number of a topological space X by x(X). Our main result is the
following : ‘
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Theorem 1.1. Suppose that a C*®-mapping f : N — P gives a topologically stable
singular surface. Then we have

X(F(V)) = x(N) + T(f) + === C(f)

The proof of this theorem is given in the next section and follows the same steps as those
of the theorems in [5,6]. As an application of this theorem, we can estimate the number of
connected components of the complement of a topologically stable singular surface f(N) in
a 3-manifold P under some assumptions. We denote by fc.c(X) the number of connected
components of X.

Theorem 1.2. Let N be a connected closed surface and P be a connected closed 3-
manifold with H1(P,Z;) = 0. Suppose that f : N — P gives a topologically stable singular
surface. Then

(1) If there are topological cross-caps in each connected component of the double point
curve D%(f) of f in N, then we have

C(f)

fic.c(P — f(N)) <2+ ——=+T(f).

Furthermor, if D*(f) is homologous to zero then fic.c(P — f(N)) =2 + _(_ + T(f)
(2) C(f) =0 and T(f) =0, then we have

fe.c(P - f(N)) <2+ ﬂC-C(f(Dz(f))-
Furthermore, if D*(f) is homologous to zero , then the equality holds.
Here, the precise definition of D*(f) is given in §2.
We can give some examples which suggest the above result.

Example 1.3. (1) Let NV be the Klein bottle and P be the Euclidean space. Then we
can construct a smooth mapping f with C(f) = 2 and T(f) = 0, whose image looks like
the picture below (Fig. 3).
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Fig.3

In this case we have fc.c(P - f(N)) =2 <24+ 1L C(f) + T(f).
(2) Let N be the Torus and P be the Euchdean space The following mapping f whose
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image is shown in Fig. 4 has C(f) = 2 and T(f) = 1.

<&
N

In this case we have fc.c(P - f(N)) =4 =2+ # + T(f).
(3) Let N be the Torus and P be the Euclidean space. We can construct an immersion f
with T(f) = 0 and fc.c(f(D%(f)) = 2 as follows (Fig. 5) :

:

Fig.5

In this case we have fc.c(P — f(N)) = 3 < 2 + fe.c(f(D%(f)).

We remark that there is a lower bound estimate for fc.c(P — f(N )) In [17] Nuno
Barestellos and Romero Fuster showed that fc.c(P — f(N)) > 2 under a more general
assumption than in here.

We shall give some new examples in §3 : A formula of the Euler number of the image
of a stable mapping from a surface with boundary to a 3-manifold will be given. The
restriction to the singular set of a C'™-stable mapping from a closed 3-manifold to a 3-
manifold gives a topologically stable singular surface. This example contains the classical
dual of a generic closed space curve. The compactification of the tangent developable of a
generic closed space curve is also another example.

All maps considered here are class C* unless stated otherwise.

Acknowledgment. The main part of this work has been done during the authors’ stay
at the University of Liverpool. The authors would like to thank members of singularity
seminar in the department of Pure Mathematics for their kind encouragement and hospi-
tality. The first author acknowledges the financial support of JSPS and the second author
the financial support of CAPES. '



2. Proof of theorems

Firstly we shall give a proof of Theorem 1.1. We now define the following sets:

D2(f) =cl{z € Nlﬁf-lf(a:) > 2},
D¥(f) = {z € D*f)|#f "' f(z) = 3},
D*(£,(2)) = {z € D*(N)|#f " f(z) =1},

where c/X is the topological closure of X. Then we have the following diagram:

D*(f)

lh

D%(f,(2)) —— D)

lk
N L. fvyckp

where h, j, k are inclusions.

By the definition, D?(f) is a union of curves on N with self-intersection and circles,
D3(f) is the inverse image of triple points and D?(f,(2)) is the set of topological cross-caps
of f(N), if not empty. It follows that these are homeomorphic to immersed submanifolds
of N with dim D?(f) = 1 and dim D3(f) = dim D2(f,(2)) = 0 if not empty.

In order to prove the theorem, we need the following formula.

Lemma 2.1. x(f(N)) = x(NV) = 3x(D*(f)) + 3x(D*(£,(2))) - $x(D*(f)).
Proof. Consider the equation

(*) X(f(N)) = e x(N) + Bx(D*(£)) + 7 x(D*(£,(2))) + § x(D*(f)),

where o, 3,7 and § are unknown variables. We solve this by a purely combinatorial
method.

‘We now construct a triangulation K; of the stratified set f(N) as follows: We start
to triangulate f(N) by including the image of D?(f,(2)) and the image of D3(f) among
- the vertices of K;. After this, we build up the one-skeleton K §” of K; so that the image
of D%(f) is a subcomplex of K 1-(1) . We complete our procedure by constructing the two-
skeleton K §2).

Since f and its restrictions to D2(f), D?(f,(2)) and D3(f) are proper and finite-to-one
mappings, then we can pull back K; to obtain a triangulation for N, D*(f), D*(f,(2))
and D3(f). Let C’JX be the number of j-cells in X, where X = f(N), N, D%(f), D*(f,(2))
or D3(f). Then the equation (*) can be written by

Y=Y Cf W = o Y (-1yc + 83 (-1yeP
J J

. . 3 .
+./Z(_1)JC]P2(L(2)) + 52(_1)102_0 25
i j

J
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where CJ‘-Y =0if ¢ > dimX. So, if we can find real numbers «, 3, v and § such that

2 2 3
for any j, then we have solutions of the equation (*). By the construction of the triangula-
tion, we may concentrate on solving (**) in the case when j = 0. We remark that f is 3 to
1 over the points in the image of D3(f), 1 to 1 over the points in the image of D%(f,(2)),

2 to 1 over the points in the image of D?(f) — (D?*(f,(2)) U D3(f)), and 1 to 1 over the
points in the image of N — D2?(f). It follows that the equation

2 2 3
Cof(N) = acé\f +BCOD N +“7C0D (£.(2)) +6C0D (f)

is equivalent to the system of linear equations :

1 1 00 0\ /a
11 _(2 200} (5
151111 0 {~
1 3 3 0 3/ \§

We can easily solve this equation, so that « =1, 8 = —1/2, vy = 1/2 and § = —1/6. This
completes the proof.

Then we can prove Theorem 1.1.

Proof of Theorem 1.1. By definition we have x(D?(f,(2))) = C(f) and x(D*(f)) = 3T(f).
Since D?*(f) is a union of closed curves on the surface N with 3T(f) crossings, then we
can triangulate it with 3T(f) + n 0-cells and 6T(f) + n 1-cells, where n is the number of
circles in D?(f). It follows that x(D?(f)) = —3T(f). If we substitute these on the formula
in Lemma 2.1, then we have

X)) = X(N) + T(£) + 5C(1).

This corhpletes the proof.
Next we prdve Theorem 1.2.

Proof of Theorem 1.2. Throughout we assume that the homology groups considered here
are with Z,-coefficients. It is well-known that the number of connected components of
P — f(N) is given by 1+ f2(f(V)) under the assumption of the theorem (cf. [7] p205).
Then we have

fe.c(P — f(N)) = x(f(N)) + B1(f(N)),

where f; denote the ith Betti number. :

(1) We remark that 8;(f(NV)) < B1(N). Indeed, the mapping 7;(N,z) — =1 (f(N), f(z))
is an epimorphism ([13]). Thus, the mapping f. : H;(N) — H;(f(V)) is also an epimor-
phism.



By Theorem 1.1, we have #c.c.(P — f(N)) = x(f(N)) + B1(f(N)) = x(NY+ C(f)/2 +
T(f) + Bi(f(N)) £ x(N) + C(f)/2 + T(f) + B1(N). Since N is a closed, connected 2-
manifold then x(N) + B1(N) = 2. Therefore, #c.c.(P — f(N)) £ 2+ C(f)/2 + T(f).

Furthermore, by the above argument, we have the following equality:

#c.c.(P— f(N)) =2+ C(f)/2+ T(f) — rank Ker f.

Now, we consider the following commutative diagram:

H(DXf)) —2— H(N) —Z—  H(N,DXf))

(le’).l f.l ' lf'.
H(f(DX) —Lo B(f(V) —L Hi(F(N), (D),

where the horizontal sequences are exact and f, is an isomorphism. Then we have the
inclusion

Ker f. C i.(H1(D?(f))).

So, if D?(f) is homologous to zero, then Ker f, = 0. This completes the proof of (i).
(2) We now consider the following diagram :

D*(f)
N L. fwyce
It follows that we have the following diagram whose rows are exact sequences :

0 Hy(N) —T—  Hy(N,DXf)) —2— H(DXf)) —— Hi(N)

fxl le fsl fql
0 — Hi(f(N)) —Z— Hy(f(N), f(D*(f))) —2— H\(f(D*(f))) —— Hi(F(V)).
By the exactness of the sequences, we have
,Bg(N) = dimzzKer 31 = ﬂ2(N, Dz(f)) —rank 31

and

B2(f(N)) = dimg,Ker 8, = Bo(f(NV), f(D2(f))) — rank 9,.

Since f|N — D*(f): N — D¥(f) — f(N) - f(D?*(f)) is a homeomorphism, then we have

Ba(N, D(f)) = Ba(f(N), f(D*(f))), so that By(f(N)) — B2(N) = rank &) — rank ;. We
remark that dim Ker f3 = 1fc.c(D?*(f)), then we have ‘

dim £ (Image 8,) = rank 9, + %ﬂc.c(D2( ).
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Since f3(Image 8;) = Image 8,, then
rank 0; < rankd, + -;—ﬁc.c(D"’(f)).

It follows that 82(f(NV)) - ﬂé(N) < 3He.c(D?*(f)). Thus we have

BUF(N)) =Bol (V) + o F(V) - X(F(NV))
SBo(N) + Ba(N) + ghee(DA(f)) = x(N)

=82(V) + He.c(D¥().

On the other hand, by the first remark in this proof, we have fc.c(P — f(N)) = x(N) +
B1(f(N)). So,

fe.c(P — F(N) SX(N) + Bi(N) + He.e(DX(1)
=2+ Zhe.c(D¥(f))
=2 + foc(F(DX().

- If D?(f) is homologous to zero in N, then 8, is surjective, so that the equality holds

3 Examples

In this section we shall give some examples of our main results.

(3-1) The image of a C*™-stable mapping [5]. It is well known that a ma.pping
f+ N — P from a closed surface to a 3-manifold is C®-stable if and only if it is an
immersion with normal crossings except at the isolated singularities of cross-caps ([19]).
Then we can dlrectly apply Theorem 1.1 to this situation.

Theorem 3.1 [5] Let f : N — P be a C*™-stable mapping from a closed surface to a
3-manifold. Then we have

X)) = (W) + 1) + S,

In [5] we have determined the set of Euler numbers of i images of C'°°-stable mapping
from a closed surface to a 3-manifold as an application of this theorem.

As a corollary of the above theorem, we can also get a formula in the case when the
boundary of N is non-empty. In this case the stable mappings f : N — P we are going
to deal with are a slight variation of the so called completely semi-regular maps ([19)]) (see
Fig. 6). Here we shall require that if f(p) = f(q), p # ¢ is a double point of f then p € dN

7



if and only if ¢ € ON (see Fig. 7).

Fig.6 Fig.7

We denote the number of double points in 8f(N) by 8d(f). Then we can state the
following as a corollary of the above theorem.

Corollary. Let f : N — R? be a stable mapping such that if f(p) = f(q), p # ¢ is a
double point of f then p € ON if and only if ¢ € ON. Then we have

C(f) _ 8d(f)
. .

X(F(N)) = X(N) + T(f) + >

This assertion can be used to classxfy map germs f : (R%,0) — (R3,0) with good
perturbations [9]. :

Proof. Let us suppose that Af(N) has k connected components 9;f(N), fori = 1,...,k.
Each component is a closed curve with a certain number of normal crossings. Suppose
that 0;f(NN) has n; normal crossings. Then Ef;ln, = 0d(f). Now, triangulating each

component of Jf(N) taking the crossings as 0-cells, we get x(8f(N)) = Zf=1 x(0f(N)) =
iz (ni = 2n;) = —0d(f). |

- Let DN denote the double of the manifold N and consider the stable mapping h : DN —
P given by h|N = f. So, by Theorem 3.1, we have x(f(N)) = x(DN) + C(h)/2 + T(h).
- However, C(h) = 2C(f), T(h) = 2T(f) x('DN) = 2x(f(N)) — x(8f(N)). This completes
the proof.

(3-2) The wave front of a closed Legendrian surface [6]. Let 7 : E — M be a
Legendrian fibration over an (n + 1)-manifold (i.e. the total space E is furnished with a
-contact structure and its fibers are Legendrian submanifold). For a Legendrian immersion
t:L— E,mo1: L — M is called a Legendrian mapping and the image of 7 01 is called a
wave front of i. We denote by W(%) the wave front of i. We only consider the case of n = 2.
In this case it is well known that a generic wave front has (semi cubic) cuspidal edges (4,),
swallowtails (A;) and points of transversal self intersection (A14,, A1A,, AjA1A)) as
singularities ([1], see Fig. 8). We shall refer to the A;4; A;-type point as a triple point of

8
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Since the As-type point is homeomorphic to a regular point and the As-type point is
homeomorphic to a cross-cap, then a generic Legendrian mapping gives a topological stable
singular surface, so that we have the following :

Theorem 3.2. Let i : L — E be a generic Legendrian immersion of a closed surface.
Then we have
5@
2

x(W(i)) = x(L) + T(&) + ==
where S(i) is the number of swallowtails.

(3-3) The discriminant set of a C*®-stable mapping from a closed 3-manifold to
a 3-manifold. It is well known that a mapping f : N — P from a closed 3-manifold to
a 3-manifold is C*°-stable if the singular set L(f) is a closed surface and the discriminant
set D(f) = f(Z(f)) has (semi cubic) cuspidal edges (A;), swallowtails (A3) and points of
transversal self intersection (A;14;, A142, A1A4;A4;) as singularities ([10,11], see Fig. 8).
We shall refer to the A;4;A4,-type point as a triple point of f. Since N is compact, then
the singular set is a closed surface and the number of swallowtails and triple points are
finite. By the same reason as that of the case (3-2), f|Z(f) gives a topologically stable
singular surface, so that we have the following :

Theorem 3.3. Let f : N — P be a C*-stable mapping from a closed 3-manifold to a
3-manifold. Then we have

X(D(f)) = x(5(f) + 7() + ZL,

We have an application of Theorem 3.3 to the dual of a space curve. Let v : S! — R3 be
a simple closed C'°-regular curve. A tritangent plane of v is a plane in R?® which is tangent
- to v at exactly three points. 4 stall of v is a point of v at which the torsion of v is zero.
It is known that, generically, v is a curve with a finite number 7 () of tritangent planes
and a finite number S (7) of stalls with some other properties [2]. We can also consider the
classical dual surface v* in (IP3) consxstmg of all planes in R?® tangent to . Let P? be the
space of lines through the origin in R®, and let L(P?) be the tautological line bundle over
P2. For £ € P? let I, : C — ¢ be the restriction to C the orthogonal projection of R? to £,
where C = 4(S'). Define F¢ : C x P? — L(P?) by Fo(x,£) = (I¢(z),2). In [2], it has been

9



proved that for a generic curve v, F¢ is C™-stable, Z(f) = C x P! and D(Fg) = v*. It
has also been proved that a triple point of ¥* corresponds to a tritangent plane of v and a
swallowtail point of v* corresponds to a stall of 4. Since x(C x P!) = 0, then we have the
following :

Corollary. For a generic curve v, we have

x(7*)=T(v) + ﬁ(-;—)

(3-4) The tangent developable of a space curve. For a simple closed C*-curve
v: S — R? the tangent developable of v, D4, is defined to be the image of the mapping
D : ' x R — R? defined by D(s,t) = 7(s) + t7'(s). In [3,12,16,18], it has been shown
that the tangent developable of a generic space curve has (semi cubic) cuspidal edges (4;),
cuspidal cross-caps and points of transversal self intersection (4;4;, A1A42, A4; AjA,)) as
singularities (see Fig. 9). We shall refer to the A;A;A4;-type point as a triple point of D~.

ﬂ B

Fig. 9 .
In [16], J. J. Nuno Ballesteros has defined the compactification of the tangentdevelopable
D: §'xR* — P® as usual way, where R* = RU {c0} the extended real line. He has shown
that D is an immersion without triple points at the points (s,00) for generic curve . It

is known that the triple point of the tangent developable corresponds to the “pyramid” of
the curve (Fig. 10) and the cuspidal cross-cap corresponds to the stall of the curve.

Fig. 10

We denote the number of the pyramid of the curve v by P(7). Since the cuépidal cross-
cap is homeomorphic to the ordinary cross-cap and x(S! x R*) = 0, then we have the
following theorem.

10



Theorem 3.4. For a generic curve v, we have

St

x(Dr) = P(1) + 2

In relation to the tangent developable of a space curve, we give the following conjecture
which is “the dual” of Freedman’s conjecture on triple tangencies [4].

Conjecture. If there are no triple points on the tangent developable of a closed space
curve, then this curve is unknotted.

Counter examples to Freedman’s conjecture can be found in [14,15].
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