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The Euler characteristic of the image of a stable mapping
from a closed n-manifold to a (2n — 1)-manifold

S.IzuMIYA AND W.L.MARAR

INTRODUCTION

One of the themes in the global theory of singularities of mappings f : N — P between
manifolds is to study the relationship among the topology of N, P and f(N ) in the case
when dim/N <dimP ([3]).

Recently, there appeared a considerable progress in the local theory of singularities of
mappings ([4],(5],(6],(7]) mainly due to the work of David Mond. In [4] a method has been
introduced to compute the Euler characteristic of the image of a stable perturbation of an
A-finite map-germ. Here we shall apply this method to compute the Euler characteristic
of the image of a stable mapping from a closed n-manifold to a (2n — 1)-manifold. We
also determine the set of Euler characteristics of images of stable mappings from a closed
n-manifold to a (2n — 1)-manifold as an application of our main theorem.

All mappings considered here are differentiable class C™ unless stated otherwise.

1. THE MAIN RESULT

It is well-known that a mapping f : N — P from an n-manifold to a (2n — 1)-manifold
is stable if and only if it is an immersion with normal crossings except at the isolated
singularities of cross-caps ([8], fig.1). It follows that the number of cross-caps is finite and
we denote it by C(f). There also exist finitely many three-to-one points in f(IV) at where _
three sheets of regular images are in general position. Such a point (fig.2) is called triple
point of f and the number of triple points is denoted by T'(f).

fig.1

We denote the Euler characteristic of a topological space X by x(X). Our main result
is the following:

THEOREM. (i) X(F(V)) = X(N) + T(f) + C(f)/2, if n. = 2.
(i) x(F(NV)) = x(N) + C(f)/2,if n 2 3.
PROOF: (i) Let us consider the following sets:
D*(f)=cl{z € S|#f1f(z) > 2},
D(f) = {z € D*(f)|#f " f(z) = 3} and

D*(f,(2)) = {z € D*(f)|#5 () = 1},
where clX is the topological closure of X. Then we have the following diagram:
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D*(f)
|®

D¥(£,(2)) —— D*()

l.-
¥y L syce

where i, j, k are inclusions. _ o

By the characterization of stable mappings ([8]), D*(f) is a union of closed curves on
the n-manifold N whose set of self-intersections is .D*(f), which is the inverse image of
triple points, and D?(f,(2)) is the set of cross-cap points of f. It follows that these are
immersed submanifolds of N with dim D?(f) = 1 and dim D3(f) = dim D?(f,(2)) =0, if
not empty. ' A

In order to prove the theorem, we consider the following problem: find real numbers «,
B, v and é such that

(11) X(F(V)) = ax(N) + B x(D*(£)) + v x(D(£,(2)) + & x(D*(f)).

We shall solve this by a purely combinatorial method.
Initially we construct a triangulation Ky of the set f(IV) as follows: we start to triangu-
late f(V) by including the image of D%(f,(2)) and the image of D*(f) among the vertices

of Ky. After this, we build up the one-skeleton K}l) of Ky so that the image of D?(f) is i

a subcomplex of K}l). We complete our procedure by constructing the 2-skeleton K)(}) of
K;y.

Since f and its restrictions to D?(f), D*(f,(2)) and D3(f) are proper and finite-to-one
mappings, then we can pull back K to obtain triangulations for N, D%(f), D*(f,(2))
and D®(f) respectively. Let C¥ be the number of i-cells in X, where X = f(N), N,
D*(f), D*(£,(2)) or D*(f). Then the equation (1.1) can be written by 32,(—=1)'c/™ =

. . 2 . ) . 3
o V(=1 +8 Tu(=1)'C7 Pty Ty (—1)C7 M 15 37 (~1)i0P" D), where CF = 0
if 2 > dimX. So, if we can find real numbers a, §, v and § such that

2 2 :3
for any ¢, then we have an answer for the problem. By the construction of the triangulation,
we may concentrate on solving (1.2) in the case when 7 = 0. We remark that f is 3 to 1
over the points in the image of D3(f), 1 to 1 over the points in the image of D?(f,(2)),

2 to 1 over the points in the image of D?(f) — (D*(f,(2)) U D3(f)), and 1 to 1 over the
points in the image of N — D?(f). It follows that the equation

2 2 3
C({(N) — acé\f +ﬂcé-7 (f) +’)’Cé) (£,(2)) +5C(? )
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- is equivalent to the system of linear equations :

1 100 0\ /a
1} (2 200)|(58
1711110~
1 3303/ \6

Then we have the solutions a =1, = -1/2,y=1/2 and § = —1/6 so that

(1.3) X(f(5)) = x(S) - x(D*(£))/2 + x(D*(£,(2)))/2 — x(D*(5)) /6.

By the definition, x(D?(f,(2))) = C(f) and x(D*(f)) = 3T(f). Since D?*(f) is a union of
closed curves on the surface N with 3T(f) crossings and circles, then we can triangulate
it with 3T(f) +n O-cells and 6T(f) + n 1-cells, where n is the number of circles. It follows
that x(D?(f)) = —3T(f). Finally, substituting these on the equation (1.3), we get

X(F(V)) = X(N) + T(f) + C(f)/2.

This completes the proof of (i).
(i) When n > 3 then D*(f) = 0, for any k > 3. So, following the same arguments as
above we get

X(F(N)) = x(N) + C(f)/2.

2. AN APPLICATION

In this section we shall determine the set of Euler characteristcs of images of stable
mappings from a connected closed n-manifold to a (2n — 1)-manifold as an application of
the theorem. '

We now define x(N, P) = {x(f(V))|f : N — P is stable}. Then we have the following :

PRrRoPOSITION 2.1. (1) Suppose that n = 2.
(i)If N is not homeomorphic to the connected sum of a projective plane and an orientable
surface, then
X(N, P) = {n € Zjn 2 x(N)}

(ii) If N is homeomorphic to the connected sum of a projective plane and an orientable
surface, then
X(N,P)={n€Zln > x(N) +1}.

(2) Suppose that n > 3, then
X(N,P) ={n € Z|n > x(N)}.

PROOF: (1) (i) In this case we can always construct an immersion f : N — P with normal
crossings without triple points. Then we have x(f(N)) = x(N ). We now define a stable
mapping g : D — P by g(z,y) = (z,y?, yz? +y° —r?y) in suitable local coordinates, where
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D is a disc centred at the origin of R? and r is any positive number smaller than the radius
of D. Then g has two cross-caps (fig.3).

@ &

fig.3
If we consider the connected sum of f and g, then we have a stable mapping f#g: N — P
with C(f#g) = 2 and T(f#g) = 0. It folows that X(f#9(N)) = x(N) + 1. By this
procedure, we can construct a stable mapping k : N — P such that X(h(N)) = n, for any
n 2 x(N).

(ii) It is enough to consider the case when N = P2, In this case we cannot construct
an immersion with normal crossings without triple points [1]. If we consider f(P?) as the
Boy surface, then the number of triple points is 1 ([2]) and x(f(P?)) = x(P?) + 1. Now,
by exactly the same procedure as that of case (i), we can get the result.

(2) By the immersion theorem [8], we have an immersion with normal clossing f : N — P.
~Since n > 3, then f has not triple points. Then, if we use the mapping

g:D" = P g(z1,...,z,) =(x1,z§,mé,...,mn,(x§+m§ —r)xz,xlzg,...,m;zn)

in suitable local coordinates like as in the case (1) (ii), we can complete the proof.
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