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Classical reconstruction of interference patterns of position–wavevector-entangled
photon pairs by time-reversal method

Kazuhisa Ogawa,1, ∗ Hirokazu Kobayashi,2 and Akihisa Tomita1

1Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
2School of System Engineering, Kochi University of Technology, Tosayamada-cho, Kochi 782-8502, Japan

(Dated: January 29, 2018)

The quantum interference of entangled photons forms a key phenomenon underlying various
quantum-optical technologies. It is known that the quantum interference patterns of entangled pho-
ton pairs can be reconstructed classically by the time-reversal method; however, the time-reversal
method has been applied only to time–frequency-entangled two-photon systems in previous exper-
iments. Here, for the first time, we apply the time-reversal method to the position–wavevector-
entangled two-photon systems: the two-photon Young interferometer and the two-photon beam
focusing system. We experimentally demonstrate that the time-reversed systems classically recon-
struct the same interference patterns as the position–wavevector-entangled two-photon systems.

PACS numbers: 42.30.Kq, 42.50.St, 42.50.Xa

I. INTRODUCTION

Entangled photon pairs have been utilized for observ-
ing various quantum-optical phenomena that lie out of
the scope of classical optics. In most experiments, entan-
gled photon pairs are generated by spontaneous paramet-
ric down-conversion (SPDC). The generated photon pairs
can exhibit entanglement over several kinds of degrees
of freedom such as time–frequency, position–wavevector
[1], polarization [2], and orbital angular momentum [3].
Depending on the kind of entanglement, they exhibit dif-
ferent quantum-optical phenomena. For instance, time–
frequency-entangled photon pairs have been used for ob-
serving automatic dispersion cancellation [4, 5] in Hong–
Ou–Mandel (HOM) interference [6], Franson interference
[7, 8], and phase superresolution [9]. In other instances,
position–wavevector-entangled photon pairs have been
used for observing ghost imaging [10], two-photon Young
interference [11–15], two-photon focused beam spots [16],
and automatic aberration cancellation [17].

On the other hand, recent studies have shown that two-
photon detection patterns in an entangled two-photon
system can be reconstructed classically by use of its time-
reversed system. This method, which is called the time-
reversal method, is based on the time-reversal symme-
try of quantum mechanics: projection probabilities in
the time-reversed system are equal to those in the time-
forward system [18, 19]. Interestingly, with some inge-
nuity, the time-reversed system of a two-photon system
can be prepared by the use of completely classical op-
tical systems, with such a system including a classical
light source, optical intensity measurement, and non-
linear optical transform. In fact, the classical recon-
struction of two-photon detection patterns via the time-
reversal method has been experimentally demonstrated
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for certain quantum-optical phenomena caused by time–
frequency-entangled photon pairs, such as automatic
dispersion cancellation in HOM interference [20, 21],
dispersion-cancelled OCT [22–24], and phase superres-
olution [25, 26].

These previous studies have been conducted via
the application of the time-reversal method to time–
frequency-entangled two-photon systems; however, the
time-reversal method is supposed to be applicable to
all kinds of entangled two-photon systems in theory.
Here, for the first time to the best of our knowl-
edge, we apply the time-reversal method to position–
wavevector-entangled two-photon systems. We focus on
the two-photon Young interferometer [11–15] and the
two-photon beam focusing system [16], and we experi-
mentally demonstrate that the time-reversed versions of
these two systems classically reconstruct the same inter-
ference patterns as those in the time-forward systems.

This paper is organized as follows. In Sec. II, we
present the theory of the time-reversal method, partic-
ularly for two-photon systems. In Sec. III and IV, we
describe our two experiments. First, we demonstrate the
time-reversal method for the two-photon Young inter-
ferometer in Sec. III. Subsequently, we demonstrate the
time-reversal method for the two-photon beam focusing
system in Sec. IV. Finally, we summarize the findings of
our study in Sec. V.

II. TIME-REVERSAL METHOD

In this section, we present the theory underlying the
time-reversal method for two-photon systems. We begin
by reviewing the time-reversal symmetry of quantum me-
chanics. Let us consider the process where initial state
|i〉 evolves with unitary operator Û and is projected onto
final state |f〉 by a measurement apparatus. The projec-
tion probability is given by |〈f|Û |i〉|2. In its time-reversed
process, where initial state |f〉 evolves with Û−1 and is
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FIG. 1: (Color online) Schematics of two-photon system with
two-photon detection in a single output mode (upper panel)
and its time-reversed system (lower panel). Filter1 and filter2
function as pre-selection of |i〉 and post-selection of |f〉 in the
time-forward system, respectively. In the time-reversed sys-
tem, the two-photon detection and the single-photon input
state in the time-forward system are replaced by the two-
photon input state and the single-photon detection, respec-
tively; here, filter1 and filter2 function as post-selection of |i〉
and pre-selection of |f〉, respectively. The time-reversed sys-
tem can be prepared by the use of a classical optical system
in which classical input light and intensity measurement are
employed.

projected onto final state |i〉, the projection probability
is given by |〈i|Û−1|f〉|2. This probability is equal to that
of the time-forward process due to the conjugate trans-
position 〈f|Û |i〉 = 〈i|Û†|f〉∗ and unitarity Û† = Û−1.

We next consider the time-reversal symmetry of two-
photon systems including SPDC. In particular, here, we
here treat two-photon systems in which the initial state
is a pure pump-photon state and the final state is a
pure two-photon state in a single-output mode. The two-
photon Young interferometer and the two-photon beam
focusing system, which we address later in this paper,
fall under this case. Figure 1 shows the schematics of
such a two-photon system (upper panel) and its time-
reversed system (lower panel). In the time-forward sys-
tem, the initial state |i〉 = â†p(si)|0〉 is pre-selected by fil-
ter1, where â†p(s) denotes the creation operator of a pump
photon parametrized by parameter s, which can denote
position, wavenumber, time, or frequency. We assume
that â†p(s) satisfies the following commutation relation:
[âp(s), â†p(s′)] = δ(s− s′). The input photon is converted
into a photon pair by SPDC, and the photon pair passes
through the optical system. The overall time evolution
is denoted by unitary operator Û , with which creation
operator â†p(si) evolves into

Û â†p(si)Û† =
∫

ds
∫

ds′f(s, s′; si)â†(s)â†(s′), (1)

where â†(s) denotes the creation operator of a down-
converted photon parametrized by s. Coefficient
f(s, s′; si) satisfies the unitary condition Û†Û = 1̂; we
can assume that f(s, s′; si) = f(s′, s; si) because of the
exchange symmetry of bosons. If f(s, s′; si) cannot be
factorized in the form of g(s; si)g(s′; si), the two photons
are entangled. The photon pair is finally post-selected by
filter2 and detected by means of two-photon detection in
a single-output mode. This detection is interpreted as
the projection onto final state |f〉 = â†(sf)2|0〉/

√
2. The

detection probability is given by

|〈f|Û |i〉|2 =
1
2
|〈0|â(sf)2Û â†p(si)Û†|0〉|2

= 2|f(sf , sf ; si)|2. (2)

In the time-reversed system, the initial state is a two-
photon state |f〉 in the input mode corresponding to the
output mode in the time-forward system. The pair of
photons experience the optical system in reverse, and the
pair is converted into a single photon by sum-frequency
generation (SFG); the overall time evolution is Û−1. The
up-converted photon is finally projected onto final state
|i〉. The detection probability |〈i|Û−1|f〉|2 is equal to that
of the time-forward system expressed in Eq. (2) because
of the time-reversal symmetry.

Interestingly, the time-reversed system of a two-photon
system can be prepared by the use of a classical optical
system. To examine this possibility, here, we consider
a classical time-reversed system in which the input two-
photon state |f〉 is replaced by a coherent state |α, sf〉
defined as

|α, sf〉 := e−|α|2/2
∞∑

n=0

[αâ†(sf)]n

n!
|0〉, (3)

and the single-photon detection is replaced by an optical
intensity measurement. The result of the optical inten-
sity measurement is represented as an expectation value
of the photon number:

〈â†p(si)âp(si)〉 = 〈α, sf |Û â†p(si)âp(si)Û†|α, sf〉

=
∥∥∥Û âp(si)Û†|α, sf〉

∥∥∥2

=
∥∥∥∥∫

ds
∫

ds′f∗(s, s′; si)â(s)â(s′)|α, sf〉
∥∥∥∥2

=
∥∥α2f∗(sf , sf ; si)|α, sf〉

∥∥2

= |α|4|f(sf , sf ; si)|2, (4)

where we use the relation â(s)|α, sf〉 = αδ(s− sf)|α, sf〉.
As can be observed above, the measured intensity distri-
bution in the classical time-reversed system exhibits the
same pattern as the two-photon detection pattern in the
time-forward system.

We remark on the two following points regarding the
time-reversal method for two-photon systems. First, we
treat two-photon systems that allow two-photon detec-
tion in a single-output mode, such as the two-photon
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Young interferometer and the two-photon beam focusing
system. More general two-photon systems have multiple
output modes, and each of the two photons is detected
in a different output mode. In this case, time-reversed
classical systems need a conditional SFG, which elimi-
nates the two photons not corresponding to the entangled
photon pairs in the time-forward system. The details of
the time-reversal method for general two-photon systems
are provided in Appendix A. Second, although the time-
reversed classical system can reconstruct the two-photon
detection patterns in the time-forward system, this fact
does not mean that the quantum-optical phenomena are
realized classically. The time-reversed system is com-
pletely classical and merely exhibits the same intensity
pattern as the two-photon detection patterns. Finally,
output optical power in the time-reversed two-photon
systems can be relatively large, because the intensity of
sum-frequency light generated by SFG is proportional to
square of that of pump light. In the time-forward two-
photon systems, on the other hand, the generation rate of
photon pairs in SPDC is linear to intensity of pump light.
Moreover, the output photon-pair rate needs to be be-
low photon counting level because of coincidence count-
ing. For these reasons, the time-reversed two-photon sys-
tem can reconstruct the interference patterns with much
higher output power than the time-forward two-photon
system [20–26].

III. CLASSICAL RECONSTRUCTION OF
TWO-PHOTON YOUNG INTERFERENCE

In this section, we apply the time-reversal method
to the two-photon Young interferometer [11–15]. The
two-photon Young interference fringe has half the pe-
riod of classical Young interference fringes, which are
caused by position–wavevector entanglement of photon
pairs. In Sec. III A, we introduce the time-forward two-
photon Young interferometer, and in Sec. III B, we con-
struct its time-reversed system in accordance with the
time-reversal method. In Sec. III C, we experimentally
demonstrate that the two-photon Young interference pat-
tern can be reconstructed classically in the time-reversed
system.

A. Time-forward system

First, we introduce the time-forward two-photon
Young interferometer. Hereafter, we assume that cre-
ation operators parametrized by lateral position x and
lateral wavenumber kx are, respectively, described by
small letter â†(x) and capital letter Â†(kx). Two-
photon Young interference is typically realized as fol-
lows. We prepare the two-photon NOON state [â†(x1)2+
â†(−x1)2]|0〉 at a double slit, where ±x1 denote the lat-
eral positions of the left and right slits, respectively; here,
we ignore the normalization constant. Next, we focus two

Two-photon
detection

FIG. 2: (Color online) Schematics of (a) time-forward and (b)
time-reversed two-photon Young interferometers.

photons with incidence angles ±θ, respectively, and we
detect them with a two-photon detector positioned in the
focal plane. Upon moving the position of the two-photon
detector, the two-photon counting rate yields the inter-
ference fringe with period λ/(4 sin θ), where λ denotes
the wavelength of the incidence photons. On the other
hand, the classical Young interference with the same in-
cidence angles ±θ exhibits period λ/(2 sin θ); therefore,
the period of the two-photon Young interference fringe
is half of that of the classical one and can overcome the
diffraction limit.

Two-photon Young interference has been observed in
several experimental configurations [11–15], and we next
consider the setup shown in Fig. 2(a). Here, we con-
sider only the one-dimensional lateral distribution of the
wavefunctions. In this setup, initial state |i〉 is a single
pump photon state (wavelength λ/2) with a single lat-
eral wavenumber (kx = 0): |i〉 = Â†

p(0)|0〉, where Â†
p(kx)

denotes the creation operator of a pump photon with lat-
eral wavenumber kx. This state is first down-converted
into the position–wavevector-entangled two-photon state∫

dkxÂ
†(kx)Â†(−kx)|0〉 =

∫
dxâ†(x)2|0〉 by SPDC, in

which the lateral positions of the two photons are pos-
itively correlated. Next, the photon pair is subjected
to the first 2-f system and an optical Fourier transform
such as long-distance free-space propagation. In total,
the photon pair is subjected to a magnifying optical sys-
tem and the same two-photon state

∫
dxâ†(x)2|0〉 ap-

pears in front of the double slit (The reason we employ
this setup is to tightly focus the fundamental light into
the nonlinear crystal and to generate high-power sum-
frequency light in the time-reversed system [Fig. 2(b)] as
mentioned later). The photon pair after passing through
the double slit is represented by a two-photon NOON
state: [â†(x1)2 + â†(−x1)2]|0〉 [27]. Finally, the NOON
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state is Fourier-transformed by the second 2-f system.
Creation operator â†(x) is transformed into

F [â†(x′)]
(

2πx
fλ

)
=

∫
dx′â†(x′) exp

(
−i2πxx′

fλ

)
, (5)

where f represents the focal length of the second lens
and F [g(x′)](k) :=

∫
dx′g(x′)e−ix′k denotes the Fourier

transform. In total, initial state |i〉 is converted into

|i′〉 :=
∫

dx′
∫

dx′′ cos
[
2πx1(x′ + x′′)

fλ

]
â†(x′)â†(x′′)|0〉.

(6)

The photon pair is finally detected at lateral position
x = x0 on the focal plane. Final state |f〉 is represented as
|f〉 = â†(x0)2|0〉, and therefore, the two-photon counting
probability P (x0) is given by

P (x0) ∝ |〈f|i′〉|2 ∝ 1
2

[
1 + cos

(
8πx1x0

fλ

)]
. (7)

This probability distribution P (x0) has period
λ/(4 tan θ), where tan θ = x1/f . When θ � 1,
tan θ ' sin θ, and therefore, this period agrees with the
value λ/(4 sin θ) mentioned in the previous paragraph.
In this manner, the NOON states are prepared, and
two-photon Young interference is subsequently observed.

B. Time-reversed system

We next consider the time-reversed two-photon Young
interferometer. In accordance with the time-reversal
method, the classical time-reversed system is constructed
as shown in Fig. 2(b). In the time-reversed system, the
movable two-photon detector in the time-forward system
is replaced by the movable classical point light source
|α, x0〉. Further, the preparation of the pump photons
with a single lateral wavenumber in the time-forward sys-
tem is replaced by a pinhole at x = 0 as a lateral wavevec-
tor filter and optical intensity measurement, which is rep-
resented as 〈Â†

p(0)Âp(0)〉. Upon shifting lateral position
x0 of the point light source, the measured intensity dis-
tribution exhibits the same interference pattern as the
time-forward system Eq. (7) because of the time-reversal
symmetry. The detailed calculation of this interference
pattern is provided in Appendix B 1.

C. Experiments and results

We experimentally demonstrate that the time-reversed
two-photon Young interferometer reconstructs the same
interference patterns as the time-forward one. The ex-
perimental setup that implements the time-reversed sys-
tem is shown in Fig. 3. In the study, we used a pulsed
laser (Menlo Systems, C-Fiber 780; central wavelength

Funda-
SH light

light
mental

Dichroic
mirror

FIG. 3: (Color online) Experimental setup of time-reversed
two-photon Young interferometer.

780 nm, pulse width 120 fs, average power 120mW, repe-
tition rate 100MHz) as a light source. The beam was
collimated with a beam width of 7.4mm and was fo-
cused by lens1 (focal length f1 = 7.5 mm, diameter
D1 = 5 mm) to prepare a pseudo point light source (spot
size 1.49 µm, depth-of-focus 4.46 µm). The lateral posi-
tion x of the point light source can be changed by mov-
ing the stage mounting lens1. The second 2-f system
was implemented by lens2 (focal length f2 = 50mm,
diameter D2 =12.7mm). Beyond the 2-f system, the
double slit shown in Fig. 3 was inserted. The subse-
quent Fourier transform was realized via long-distance
(3240 mm) free-space propagation. The other 2-f sys-
tem was implemented by means of lens3 (focal length
f3 = 50 mm). The beam was focused into a 0.1-mm-
length β-barium borate (BBO) crystal for type-I SHG.
The fundamental and second-harmonic (SH) light passed
through a pinhole (diameter 1 mm), which allows trans-
mission of a narrow lateral wavevector component, and
were divided by a dichroic mirror. The optical powers
of the fundamental and SH light were measured by a Si
photodetector (Thorlabs, PDA100A) and a Si femtowatt
detector (Thorlabs, PDF10A/M), respectively. We mea-
sured the optical powers of the fundamental and SH light
at various lateral positions x of the point light source.

The experimental results for the fundamental and SH
light are shown in Figs. 4(a) and (b), respectively. The
solid curves represent fitting curves, in which fitting pa-
rameters are visibility, spatial period, offset x-position,
and width of the envelope. The dashed curves denote
the theoretical curves in the time-forward classical and
two-photon Young interferometers under the same ex-
perimental conditions as this set of experiments (dou-
ble slit and incidence angles). Both results show good
agreement with the theoretical curves of the time-forward
systems, and in particular, the result for the SH light
reconstructs the same interference pattern as the time-
forward system. Therefore, the time-reversal method for
the two-photon Young interferometer is demonstrated.
In the experimental results, visibility, spatial period, off-
set x-position, and width (full-width at half-maximum,
FWHM) of the envelope were respectively 94.4(2)%,
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FIG. 4: (Color online) Experimental results of the time-
reversed two-photon Young interferometer for fundamental
light (a) and second-harmonic light (b). The optical powers
in the longitudinal axes are normalized by the measured max-
imum powers of 22.4 µW (a) and 18.2 pW (b), respectively.
The solid curves represent fitting curves; the dashed curves
represent the theoretical curves in the time-forward classical
and two-photon Young interferometers with the same exper-
imental conditions as this set of experiments.

5.24(1)µm, −0.43(0)µm, and 16.91(2)µm for fundamen-
tal light case, and 79.1(4)%, 2.60(0)µm, −0.02(0) µm,
and 9.84(3)µm for SH light case [28]. The decline in
the visibilities is attributed to the difference between the
optical amplitudes transmitted passing through the left
and light slits. From the visibilities, the amplitude ra-
tios are estimated at 1.41 for fundamental light case and
1.43 for SH light case. The decline in the spatial peri-
ods is attributed to the fact that actual distance between
the two slits in the experiment is smaller than ideal one;
the actual distance between the two slits is estimated at
5.4mm for both fundamental and SH light cases. The
increase in the width of the envelope for SH light case is
attributed to a position shift of the BBO crystal in the
direction of light propagation.

IV. CLASSICAL RECONSTRUCTION OF
TWO-PHOTON FOCUSED BEAM SPOT

In this section, we describe our application of the time-
reversal method to the two-photon beam focusing sys-
tem [16]. The two-photon focused beam spot has sub-
diffraction-limited spot size and depth-of-focus, which
are caused by position–wavevector entanglement of pho-
ton pairs. In Sec. IVA, we introduce the time-forward
two-photon beam focusing system, and in Sec. IV B we
construct its time-reversed system in accordance with the
time-reversal method. In Sec. IV C, we experimentally
demonstrate that the two-photon focused beam spot can
be reconstructed classically in the time-reversed system.

SPDC

Two-photon
detection

Fourier transform2-f system 2-f system

Lens Lens

FIG. 5: (Color online) Schematics of (a) time-forward and
(b) time-reversed two-photon beam focusing system. (Inset)
Approximated 2-f system constructed by lens with finite di-
ameter D.

A. Time-forward system

Here, we introduce the time-forward two-photon beam
focusing system shown in Fig. 5(a). We consider the
two-dimensional lateral distribution of the wavefunctions
unlike in Sec. III A. The two-photon focusing beam spot
is realized by focusing the position–wavevector-entangled
photon pairs

∫
drâ†(r)2|0〉, where r = (x, y) denotes the

lateral position vector. This state is positively correlated
along the lateral position. This entangled two-photon
state can be prepared by using the same optical system
as that used for the two-photon Young interferometer
described in Sec. III. The difference between the system
shown in Fig. 5(a) and that in Fig. 2(a) is that the double
slit is removed and the two-photon detector can move
along the lateral (x) and axial (z) directions. We now
consider that the lens in the second (right) 2-f system has
a finite diameter D. If the beam is collimated sufficiently
at the back focal plane of the 2-f system, this 2-f system
can be approximated by a 2-f system constructed by a
lens with an infinite diameter and a circular aperture
with diameter D at the back focal plane, as shown in the
inset of Fig. 5. In the following discussion, we assume
this approximation for simplicity.

Next, we derive the distribution of the two-photon fo-
cused beam spot. Initial state |i〉 is the same as that
of the two-photon Young interferometer described in
Sec. IIIA: |i〉 = Â†

p(0)|0〉, where the parameter of Â†
p(k)
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is the lateral wavevector k = (kx, ky). This state is sub-
jected to the optical system shown in Fig. 5(a), and sub-
sequently, the two-photon state at the back focal plane
of the second (right) 2-f system can be represented as∫

|r|≤D
2

drâ†(r)2|0〉. (8)

After (2f + z)-distance propagation through the 2-f sys-
tem (z denoting the distance from the focal plane), â†(r)
is transformed into

(f + z) exp
(
−iπz|r|2

f2λ

)∫
dr′ exp

(
−i2πr · r′

fλ

)
â†(r′)

(9)

as per the Fresnel approximation. In total, the initial
state |i〉 is transformed into

|i′′〉 :=(f + z)2
∫
|r|≤D

2

dr exp
(
−i2πz|r|2

f2λ

)
×

[∫
dr′ exp

(
−i2πr · r′

fλ

)
â†(r′)

]2

|0〉. (10)

The photon pair is finally detected at lateral position
r = r0 and an axial position from the focal plane z = z0.
Final state |f〉 is represented as â†(r0)2|0〉 at z = z0, and
therefore, the two-photon counting probability P (r0, z0)
is given by

P (r0, z0) ∝ |〈f|i′′〉|2

∝

∣∣∣∣∣(f + z0)2
∫
|r|≤D

2

dr exp
(
−i2πz0|r|2

f2λ

)

× exp
(
−i4πr · r0

fλ

) ∣∣∣∣∣
2

. (11)

When z0 = 0, the two-photon counting probability is

P (r0, 0) ∝ somb2

(
2πD|r0|
fλ

)
, (12)

where somb(x) := J1(x)/x represents the sombrero func-
tion and Jn(x) denotes the n-th order Bessel function of
the first kind. FWHM of this distribution in the lateral
direction is given by 1.62λf/(πD). On the other hand,
the classical beam spot focused by the same focusing
lens has the intensity distribution of somb2[πD|r0|/(fλ)],
which corresponds to a spot size of 3.23λf/(πD) FWHM.
Therefore, the width of the two-photon focusing beam
spot in the lateral direction is half the classical one and
overcomes the diffraction limit.

When r0 = 0, the two-photon counting probability is

P (0, z0) ∝(f + z0)4sinc2

(
πD2z0
4f2λ

)
, (13)

where sinc(x) := sin(x)/x. Assuming that z0 � f and
(f + z0)4 can be zero-order-approximated by (f + z0)4 ∼

Funda-
SH light

light
mental
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FIG. 6: (Color online) Experimental setup of the time-
reversed two-photon beam focusing system.

f4, the FWHM of this distribution in the axial direc-
tion is given by 11.1λf2/(πD2). The classical beam spot
focused by the same focusing lens has the intensity dis-
tribution of (f + z0)4sinc2[πD2z0/(8f2λ)], which corre-
sponds to a depth-of-focus of 3.23λf/(πD) FWHM with
the same approximation. Therefore, the width of the
two-photon focusing beam spot in the axial direction is
also half the classical one and overcomes the diffraction
limit.

B. Time-reversed system

We next consider the time-reversed two-photon beam
focusing system shown in Fig. 5(b). As is the case in
the two-photon Young interferometer, the movable two-
photon detector and the preparation of the pump pho-
tons with a single lateral wavenumber in the time-forward
system are replaced by the movable classical point light
source |α, r0〉 at z = z0 and a pinhole followed by
optical intensity measurement, which is represented as
〈Â†

p(0)Âp(0)〉, respectively. The point light source can be
moved along the lateral (x) and axial (z) directions. Due
to time-reversal symmetry, the measured intensity distri-
bution for various x and z values shows the same pattern
as the time-forward two-photon beam focusing system
corresponding to Eq. (11). The detailed calculation of
this intensity distribution is provided in Appendix B 2.

C. Experiments and results

We experimentally demonstrate that the time-reversed
two-photon beam focusing system reconstructs the same
optical power distributions as the two-photon detection
patterns in the time-forward system. The experimental
setup is shown in Fig. 6. This setup is identical to that
shown in Fig. 3 except that the double slit is removed
and the stage mounting lens1 can move along the lateral
(x) and axial (z) directions. In this study, we measured
the optical power of the fundamental and SH light beams
at various lateral and longitudinal positions x and z of
the point light source.

The experimental results are shown in Figs. 7(a) to
(f). The upper and lower panels illustrate the results for
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FIG. 7: (Color online) Experimental results of the time-reversed two-photon beam focusing system for the fundamental light
(upper panels) and the second-harmonic light (lower panels). (a), (b) Optical power distributions at lateral and axial positions
x and z of the point light source. The optical power in the color bars is normalized by the measured maximum power of
0.205mW (a) and 539 pW (b), respectively. (c), (d) Optical power distributions at x when z = 0. (e), (f) Optical power
distributions at z when x = 0. The solid curves represent fitting curves; the dashed curves denote the theoretical curves
corresponding to the time-forward classical and two-photon beam focusing systems with the same experimental conditions as
this set of experiments.

the fundamental and SH light, respectively. Figures 7(a)
and (b) depict the measured optical power distributions
at various lateral and axial positions x and z of the point
light source. Each of the distributions is similar to that of
the focused beam spot in the time-forward system, and
the distribution of the SH light is smaller than that of
the fundamental light. Figures 7(c) and (d) show the
optical power distributions at lateral position x when
z = 0, and Figs. 7(e) and (f) show those at axial po-
sition z when x = 0. The solid curves represent fitting
curves, in which fitting parameter is a width of the dis-
tribution. The dashed curves represent the theoretical
curves of the time-forward classical and two-photon beam
focusing systems with the same experimental conditions
(diameter and focal length of lens2) as this set of exper-
iments. Each of the results shows good agreement with
the theoretical curves of the time-forward systems, and
in particular, the result for the SH light reconstructs the
same optical power distributions as the two-photon de-
tection patterns in the time-forward system. The time-
reversal method for two-photon beam focusing system
is thus demonstrated. In Figs. 7(a) and (b), the distri-
butions are not symmetric about the longitudinal axis
at z = 0 µm; this is because lens2’s numerical aperture
(NA) is large, and therefore, this system deviates from
the paraxial approximation condition. In Figs. 7(c), (d),
(e), and (f), FWHMs of the observed distributions were
3.72(1)µm, 2.06(1)µm, 110.0(4)µm, and 55.9(5)µm, re-
spectively. The experimental results exhibit a slightly

wider spread than the theoretical curves due to the aber-
ration effect of lens2.

V. CONCLUSION

We experimentally demonstrated the time-reversal
method for the two-photon Young interferometer and
the two-photon beam focusing system. These time-
reversed systems classically reconstructed the same in-
terference patterns as those of the time-forward systems.
To the best of our knowledge, our study is the first
to demonstrate the time-reversal method for quantum-
optical phenomena caused by two-photon entanglement
except for time–frequency entanglement; our study par-
ticularly addresses quantum-optical phenomena arising
due to position–wavevector entanglement. The theory
and experiments presented in this study can form the
basis for applying the time-reversal method to a wider
range of quantum-optical phenomena. It is expected
that the time-reversal method can provide the approach
to classically realize application techniques based on
quantum-optical phenomena, such as sub-Rayleigh imag-
ing [16, 29, 30].
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FIG. 8: (Color online) Schematics of general two-photon sys-
tem in which each of the two photons is detected in different
output modes (upper panel) and its classical time-reversed
system (lower panel). The time-reversed system can be pre-
pared by the use of a classical optical system in which classical
input light, conditional SFG, and intensity measurement are
employed.
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APPENDIX A: TIME-REVERSED METHOD FOR
GENERAL TWO-PHOTON SYSTEMS

In Sec. II, we introduced the time-reversal method
for two-photon systems with two-photon detection in
a single-output mode. Here, we present the theory
underlying the time-reversal method for general two-
photon systems, i.e., two-photon systems in which the
two output photons are generally detected in different
output modes. Figure 8 shows the schematics of such a
two-photon system (upper panel) and its classical time-
reversed system (lower panel). For example, the HOM
interferometer [6] has two output ports, and each of the
two photons is detected at each of the output ports.
Another example is the modified HOM interferometer
that exhibits an HOM peak [31]. This interferometer
has only one output port, but two photons with var-
ious time differences are detected at this port; there-
fore, it can be considered that each of the two photons
is detected in different time modes. Such a final pure
state is generally described as |f ′〉 = kâ†f1â

†
f2|0〉, where

â†fi :=
∫

dsψfi(s)â†(s) [ψfi(s) denotes a normalized wave-
function] for i = 1, 2, and k is the normalization fac-
tor given as k := [1 + |

∫
dsψ∗

f1(s)ψf2(s)|2]−1/2. When
ψf1(s) = ψf2(s), |f ′〉 denotes the two-photon state in a
single mode, as considered in Sec. II. The detection prob-

ability is given by

|〈f ′|Û |i〉|2 = 4k2

∣∣∣∣∫ ds1ψ∗
f1(s1)

∫
ds2ψ∗

f2(s2)f(s1, s2; si)
∣∣∣∣2 .

(A1)

The classical time-reversed system of the general two-
photon system can be constructed in the following man-
ner. First, we prepare the input coherent state |α;β〉,
which corresponds to |f ′〉, defined as

|α;β〉 := e−(|α|2+|β|2)/2
∞∑

m,n=0

(αâ′†f1)
m(βâ′†f2)

n

m!n!
|0〉, (A2)

where â′†fi :=
∫

dsψfi(s)â
†
i (s), for i = 1, 2, and â†i (s) satis-

fies the following commutation relation: [âi(s), â
†
j(s

′)] =
δ(s− s′)δij . The subscripts of creation operators â†1 and
â†2 are introduced in order to distinguish the two photons
from the different input modes. Next, the SFG is de-
signed such that the up-converted light includes only the
contributions of â†1(s)â

†
2(s); in other words, the contribu-

tions of two photons from the same input mode â†i (s)
2

are eliminated. For the case of polarization, for instance,
such a conditional SFG can be realized by type-II SFG.
Due to the conditional SFG, the overall time evolution
of this system is represented by Û−1

c = Û†
c , with which

the creation operator â†p(si) is transformed into

Ûcâ
†
p(si)Û†

c =
∫

ds1
∫

ds2f(s1, s2; si)â
†
1(s1)â

†
2(s2).

(A3)

In previous studies, such a conditional SFG has been re-
alized by utilizing the degrees of freedom of frequency
[20, 22, 23, 25] and polarization [21, 24]. The result of
the optical intensity measurement is represented as

〈â†p(si)âp(si)〉

= 〈α;β|Ûcâ
†
p(si)âp(si)Û†

c |α;β〉

=
∥∥∥Ûcâp(si)Û†

c |α;β〉
∥∥∥2

=
∥∥∥∥∫

ds1
∫

ds2f∗(s1, s2; si)â1(s1)â2(s2)|α;β〉
∥∥∥∥2

=
∥∥∥∥∫

ds1
∫

ds2f∗(s1, s2; si)αψf1(s1)βψf2(s2)|α;β〉
∥∥∥∥2

= |α|2|β|2
∣∣∣∣∫ ds1

∫
ds2f∗(s1, s2; si)ψf1(s1)ψf2(s2)

∣∣∣∣2 ,
(A4)

where we use the relation âi(s)|α;β〉 = αψfi(s)|α;β〉. We
note that the final expression above is proportional to
Eq. (A1). Therefore, the measured intensity distribution
in this system exhibits the same pattern as the time-
forward system.
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More generally, the initial and final states can be mixed
states. The detection probability in the case of mixed ini-
tial and/or final states can be reconstructed by summing
up the detection probabilities in the case of pure initial
and/or final states with appropriate weighting factors.
Therefore, we can reconstruct the same detection pat-
terns as the time-forward system including mixed states
by using the classical time-reversed system employing
pure initial and final states, and summing up these inten-
sity patterns with appropriate weighting factors [20, 21].

APPENDIX B: DETAILED CALCULATIONS OF
TIME-REVERSED SYSTEMS

We provide the detailed calculation of the time-
reversed two-photon Young interferometer in Sec. B 1,
and that of the time-reversed two-photon beam focusing
system in Sec. B 2.

1. Time-reversed two-photon Young interferometer

We consider the time-reversed two-photon Young in-
terferometer shown in Fig. 2(b). When the source’s lat-
eral position is x0, its electric field is represented as
E0(x) ∝ δ(x − x0). The beam propagates inversely in
the time-reversed system. Initially, the first 2-f system
transforms the electric field into

E1(x) ∝ F [E0(x′)]
(

2πx
fλ

)
∝ exp

(
−i2πx0x

fλ

)
, (B1)

where F [g(x′)](k) :=
∫

dx′g(x′)e−ix′k denotes the
Fourier transform. Beyond the 2-f system, the beam
passes through the double slit, and the electric field is
transformed into

E2(x) ∝ exp
(
−i2πx0x1

fλ

)
δ(x− x1)

+ exp
(

i2πx0x1

fλ

)
δ(x+ x1). (B2)

Next, the beam undergoes an optical Fourier transform
(here, we assume that the light propagates in free space
over a long distance L1), and then the beam passes
through the second 2-f system. In total, the beam is
transmitted through a magnifying optical system with
magnification factor −L1/f , and the electric field be-
comes

E3(x) ∝ E2

(
−L1

f
x

)
∝ exp

(
−i2πx0x1

fλ

)
δ

(
x+

x1f

L1

)
+ exp

(
i2πx0x1

fλ

)
δ

(
x− x1f

L1

)
. (B3)

The beam is focused onto the nonlinear crystal for
second-harmonic generation (SHG); consequently, the
fundamental electric field is up-converted into

E4(x) ∝ E3(x)2

∝ exp
(
−i4πx0x1

fλ

)
δ

(
x+

x1f

L1

)
+ exp

(
i4πx0x1

fλ

)
δ

(
x− x1f

L1

)
. (B4)

After SHG, the second harmonic (SH) beam propagates
in free space over a long distance L2, and the electric field
is Fourier-transformed into

E5(x) ∝ F [E4(x′)]
(

4πx
L2λ

)
∝ cos

(
4πx0x1

fλ
− 4πfx1x

L1L2λ

)
. (B5)

Finally, the SH beam is filtered by a pinhole at x = 0.
The subsequent measured intensity is given by

I(x0)|x=0 ∝ |E5(0)|2 ∝ 1
2

[
1 + cos

(
8πx1x0

fλ

)]
, (B6)

which is equivalent to Eq. (7). Therefore, we note that
the time-reversed two-photon Young interferometer ex-
hibits the same interference pattern as the time-forward
system.

2. Time-reversed two-photon beam focusing system

We next consider the time-reversed two-photon beam
focusing system shown in Fig. 5(b). When the point
light source’s lateral position is r0 and its axial posi-
tion from the focal plane of the first (right) 2-f system is
z0, its lateral distribution of the electric field is given by
E0(r) ∝ δ(2)(r − r0). The initial 2-f system transforms
the electric field into

E1(r) ∝ (f + z0) exp
(
−iπz0|r|2

f2λ

)
exp

(
−i2πr0 · r

fλ

)
.

(B7)

The electric field that is filtered by a circular aperture
with diameter D is further transformed into

E2(r) ∝ circ
( r

D

)
(f + z0) exp

(
−iπz0|r|2

f2λ

)
× exp

(
−i2πr0 · r

fλ

)
, (B8)

where

circ(r) :=

{
1 (|r| ≤ 1/2)
0 (|r| > 1/2)

(B9)
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represents an aperture function. Next, the beam un-
dergoes an optical Fourier transform (free-space prop-
agation over a long distance L1), and then the beam
passes through the second 2-f system. In total, the
beam is transmitted through a magnifying optical sys-
tem with magnification factor −L1/f , and the electric
field is transformed into

E3(r) ∝ E2

(
−L1

f
r

)
∝ circ

(
L1r

fD

)
(f + z0) exp

(
−iπz0L2

1|r|2

f4λ

)
× exp

(
−i2πL1r0 · r

f2λ

)
. (B10)

The beam is focused onto the nonlinear crystal for
SHG; consequently, the fundamental electric field is up-
converted into

E4(r) ∝ E3(r)2

∝ circ
(
L1r

fD

)
(f + z0)2 exp

(
−i2πz0L2

1|r|2

f4λ

)
× exp

(
−i4πL1r0 · r

f2λ

)
. (B11)

After SHG, the SH beam propagates in free space over
a long distance L2 and then the electric field is Fourier

transformed into

E5(r) ∝ F [E4(r′)]
(

2πr

L2λ

)
∝ (f + z0)2

∫
|r′|≤ fD

2L1

dr′ exp
(
−i2πz0L2

1|r′|2

f4λ

)
× exp

(
−i4πL1r0 · r′

f2λ

)
exp

(
−i2πr · r′

L2λ

)
. (B12)

Finally, the SH light is filtered by a pinhole at r = 0.
The subsequent measured intensity is given by

I(r0, z0)|r=0 ∝ |E5(0)|2

∝
∣∣∣∣(f + z0)2

∫
|r′|≤ fD

2L1

dr′ exp
(
−i2πz0L2

1|r′|2

f4λ

)

× exp
(
−i4πL1r0 · r′

f2λ

) ∣∣∣∣2. (B13)

After the variable transformation r′ → f
L1

r′, this in-
tensity distribution exhibits the same form as Eq. (11).
Therefore, the time-reversed two-photon beam focusing
system exhibits the same intensity distribution as the
time-forward system.
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