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Abstract: Chemometric amylose modeling for global calibration, using whole grain near 

infrared transmittance spectra and sample selection, was used in an artificial neural 

network (ANN), to assess the global and local models generated, based on samples of 

newly bred Indica, Japonica and rice. Global sample sets had a wide range of sample 

variation for amylose content (0 to 25.9%). The local sample set, Japonica sample, had 

relatively low amylose content and a narrow sample variation (amylose; 12.3 to 21.0%). 

For sample selection the CENTER algorithm was applied to generate calibration, 

validation and stop sample sets. Spectral preprocessing was found to reduce the 

optimum number of partial least squares (PLS) components for amylose content and 

thus enhance the robustness of the local calibration. The best model was found to be an 

ANN global calibration with spectral preprocessing; the next was a PLS global 

calibration using standard spectra. These results pose the question whether an ANN 

algorithm with spectral preprocessing could be developed for global and local calibration 

models or whether PLS without spectral preprocessing should be developed for global 

calibration models. We suggest that global calibration models incorporating an ANN 

may be used as a universal calibration model. 

 

Rice is consumed mainly as cooked 

whole-grain kernels. Consumers in northeast 

Asian countries prefer relatively low amylose in 

rice for cooking, and the physical properties of 

cooked rice are important from the viewpoint of 

its edibility. Genetic variations in amylose 

content are exhibited by native cultivars from 

various areas in Asia[8]. These physical 

properties of cooked rice can be characterized by 

the amylose content of milled rice[5],[10],[15] and 

amylose content is used as one of the indexes of 

rice quality, especially for its edibility.  

The potential of nonlinear multivariate 

calibration using artificial neural networks 

(ANN) has been reported[4],[7], as well as the 

reliability of common European ANN 

calibration for moisture and protein in 

whole-grain cereals using NIT, in terms of 

accuracy, stability, and transferability[2]. The 

chemometric models for measuring amylose 

content is necessary for the evalution of ANN 

calibration which defines calibration(training, 

stop) and validation sample sets based on global 

sample sets, such as, newly bred Indica, 

Japonica and rice.   

     A partial least squares (PLS) regression 

model employing near-infrared reflectance 

spectroscopy of whole-grain milled rice samples 

has been proposed[1],[3]. By combining several 

types of spectral measurement technique it has 



been found that amylose has an equally strong 

relationship to the vibrational spectra. 

Near-infrared transmittance (NIT) of 

whole-grain milled rices coupled with a PLS 

regression analysis has been used to develop a 

PLS calibration model for amylose content [13], 

and these models (wavelength 570 to 1000 nm; 

monochromator type spectroscopy) have been 

improved by using the visible/near-infrared 

region[14]. However, Shenk [12] commented that 

many studies have relied on calibration and 

validation sample sets that must be set by trial 

and error. The aim of this study was to develop 

chemometric amylose models employing global 

sample sets based on newly bred Indica, 

Japonica and rice or employing the local sample 

sets based on Japonica rice. 

This study examined the performance of ANN 

and PLS chemometric models developed for 

global and local samples in which entire 

samples were divided into calibration sample 

sets (training, stop) and validation sample sets 

using the CENTER algorithm. The application 

of spectral preprocessing to improve amylose 

determination was also assessed. 

1  Materials and Methods 

1.1 Samples and preparation  

Short-grain Japonica non-glutinous type rices 

(731 samples) harvested in 1996, 1997 and 1998 

were collected in prefectures throughout Japan. 

Short-grain Japonica glutinous type rices and 

Indica type rices (49 samples) harvested in 1996 

and 1997 were obtained from the National 

Agricultural Research Center, Ministry of 

Agriculture, Forestry and Fishers of Japan 

(MAFF), and five regional National Agricultural 

Experiment Stations (Hokkaido, Tohoku, 

Hokuriku, Chugoku, and Kyushu). Brown rice 

samples sacked on polyethylene bags (5kg) and 

stored in a chamber at 5C before milling. 

  Samples were milled up to a milling yield of 

90 to 91% with a VP-31T friction type rice miller 

(Yamamoto Co., Ltd., Japan). Determination of 

amylose content and spectra measurements 

were taken on from September to December in 

each crop year. 

1.2 Determination of amylose content  

The milled rice samples were ground with a 

3010-018 model cyclone grinder (Udy, Ft. 

Collins, CO, USA) equipped with a 50-mesh 

screen. Before amylose determination, the 

moisture content of the ground samples was 

determined in duplicate by oven drying 3g of 

rice powder at 135C for 1h. Amylose (%) was 

determined in duplicate on 50-mesh milled rice 

flour using the iodine colorimetric method[6]. 

1.3 Near-infrared spectra acquisition 

The whole-grain samples of milled rice were 

scanned using a scanning monochromator, 

which is the prototype of the Infratec 1241 

spectrometer (Foss-Tecator AB, Höganäs, 

Sweden). The Infratec 1241 contains a tungsten 

halogen lamp and a diffraction grating that 

irradiates monochromatic light. A silicon 

detector was used. Spectra were first recorded 

for each sample from 850 to 1048 nm, using 100 

wavelength points with 2 nm steps. Milled rice 

grains (300g) were supplied to the sample cell 

from the feeder. Each batch was scanned ten 

times. Ten spectra were averaged to form one 

spectrum (log (1/T)) for each sample. The 

coefficient of variation in absorbance among 

measurements for each sample was less than 

0.01. 

1.4 Spectral preprocessing 

The ANN and PLS were calibrated for 

amylose with and without spectral 

preprocessing, using appropriate software 

(Unscrambler V 6.11b; Camo ASA, Trondhein, 

Norway). The pretreated samples were 

computed with multiplicative scatter correction 

(MSC), the first derivative and the second 

derivative separately, and using a combination 

of MSC and the first and second derivative. The 

full MSC model was selected for computing 

using the new MSC model.  

1.5 PLS calibration models  

Unscrambler 6.11b (Camo ASA, Trondheim, 

Norway) was used to develop a PLS calibration 

model for amylose content determination. The 

optimum number of PLS components was 

cross-validated and selected.   

  Models were validated using a validation 

sample set. The performance of PLS calibration 



models and ANN calibration models (below) was 

evaluated using the standard error of prediction 

(SEP) and the ratio of the SEP to the standard 

deviation of the original data set (RPD)[16] 

(Williams and Sobering, 1993). 

1.7. ANN calibration models  

All NIT scans were subjected to proprietary 

mathematical processing before ANN 

calibrations were developed using the back 

propagation method. Back propagation used the 

Levenberg-Marquardt algorithm from the 

Neural Network Toolbox for use with MATLAB 

(v 5.2.0; The MathWorks, Natick, MA, USA).  

In general, ANN consists of an input layer, a 

hidden layer and an output layer of spectra data 

(Fig.1). The input and output nodes are linked 

by a hidden layer of nodes through connection 

weights. The weighted input signals are 

transferred to the hidden layer. Each node in 

the hidden layer computes the sum of its 

weighted inputs and transforms this sum by 

means of a linear and non-linear transfer 

function. The outputs from the hidden layer are 

weighted and then sent to the output node. 
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Fig. 1 Schematic diagram showing the 

architecture of a hypothetical ANN for 

spectroscopic calibration. 

 

2.  Sample selection 

The characteristics of all samples used in the 

calibration and validation are shown in Table 1. 

Global and local PLS calibration models were 

also developed and evaluated using calibration 

and validation sample sets based on the PLS 

and the ANN calibration. The ANN calibration 

model was also developed and evaluated using a 

training sample set, stop sample set and 

validation sample set (Table 2).   
 

Sample set        n        Max        Min        Mean        SD

global         780        25.9            0          15.5         2.4

local          731        21.0       12.3          15.8         1.5

Table 1 Ranges of amylose data for all samples 

used in calibration and validation sets.

 
 

PLS

Sample set     n    Max   Min   Mean  SD

calibration  684  25.9   0      15.7     2.2

global      

validation     96   21.0   0      15.3     2.6

calibration  649  21.0  12.3  15.8    1.5

local        

validation     82   20.0 12.3   15.8    1.6

Table 2 Ranges of amylose data for calibration 

(training, stop) and validation sample sets.

training     587    25.9    0      15.7     2.2

global    stop              97    20.0    0      15.3    1.5

validation    96    21.0    0      15.3    2.6

training     558    25.9   12.3   15.8    2.2

local     stop               91    20.0   12.3   16.1    1.7

validation    82    20.0   12.3   15.8    1.6 

ANN

Sample set     n    Max   Min   Mean  SD

 
 Each spectrum was transformed with a 

(1,4,4,1) derivative: the first number is the 

derivative, the second number is the gap 

(number of data points), and the third / fourth 

are smoothing (number of data points) and the 

use of Near-Infrared software (WINISI II, V 

1.02; Foss NIRSystems/Foss Tecator AB, Silver 

Springs, MD, USA). Every fourth data point 

from 4 to 97 (858 to 1042nm) was used, and, as 

a result, 93 data points for each spectrum were 

calculated using data at 93 wavelengths. 

For each product, the CENTER program was 

used to compute standardized H distances of 

each spectrum from the average spectrum and 

to reorder the spectra in the file from smallest 

to largest H. Every eighth sample was reserved 

from the first ordered files for validation of the 

PLS and the ANN calibration models used. 

Every seventh of the remaining seven-eighths of 

the samples was reserved from the second 



ordered files as stop sample sets of the ANN 

calibration models used. The remaining 

calibration set was used as the ANN and PLS 

calibration model sample (Fig.2).   
 

Pos Sample ID H distances

1 283 0.034

2 54 0.048

3 221 0.06

4 299 0.063

5 53 0.067

6 248 0.072

7 165 0.072

8 57 0.088

9 812-07 0.085

780 22g 2.611

Pos Sample ID H distances

8 283 0.078

16 55 0.097

24 345 0.115

32 215 0.126

40 210 0.138

  

   

   

776 406 2.3

Pos Sample ID H distances

1 283 0.076

2 246 0.107

3 248 0.127

4 17 0.155

5 59 0.157

6 57 0.161

7 24 0.162

8 218 0.163

9 53 0.176

683 56 31.812

Pos Sample ID H distances

7 24 0.162

14 74414 0.211

21 I-455 0.238

28 74203 0.246

35 351 0.262

  

   

   

679 13g 9.486

All data set

780 samples

Validation data set

96 samples
Stop data set

97 samples

Calibration data set

684 samples

 
Fig. 2 Sample selection diagram (global model). 

3. Results and discussion 

3.1. Ranges of amylose data for a cross 

validation sample set  

Table 1 summarizes the diversity of two 

cross-validation sample sets; the variation of 

the global sample set was from 0 to 25.9%, the 

mean value was 15.5% and the standard 

deviation (SD) was 2.4 (Fig. 3a). The results of 

genetic variation in amylose content (high (24 to 

30%), relatively low (16 to 22%), and low (8 to 

15%), glutinous) reflected those exhibited by the 

native cultivars from various areas in Asia[8]. 

Our samples represent a wide sample variation 

for amylose content of milled rice. This reflects 

the inclusion of newly bred rice, such as giant 

embryo, dull endosperm, and glutinous 

endosperm in our investigation. Their inclusion 

was not on the grounds of utilization suitability 

or advanced utilization, but rather the 

protection of genetic resources from a breeding 

and cultivation perspective, using genetic 

analysis[11]. This underpins the need for the 

development of calibration models able to 

measure a wide range of amylose content. 

The variation of the local sample set was from 

12.3 to 21.0%, the mean value was 15.8% and 

the SD was 1.5 (Fig. 3b). These varieties of 

Japonica generally provide the staple food in 

northeast Asian countries. They have relatively 

low amylose contents and a narrow sample 

variation.   
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Fig. 3 Frequency distribution of amylose data. 

(a); the global sample set, (b); the local 

sample set. 

3.2. Effect of spectral preprocessing on the PLS 

calibration results 

Table 3 shows the validation set of Mode A for 

the global and Mode B for the local sample sets. 

Mode A consisted of the global calibration sets 

with and without spectral preprocessing, as did 

Mode B. The optimum number of PLS 

components for Mode A ranged from 8 to 14, 

and those for Mode B from 8 to 11. The optimum 

number of PLS components using standard 

spectra was higher than those that used 

preprocessed spectra. Spectral preprocessing 

thus reduces the optimum number of PLS 

components. Spectral preprocessing (MSC, the 

first and second derivative), eliminates 

multiplicative scatter and additive effects from 

the standard spectra. Norris and Williams [9] 

reported that second derivative spectra also 

gave the highest accuracy for the testing of all 



types of wheat for protein and moisture. The 

reduction in the optimum number of PLS 

components for amylose content prediction in 

Mode B infers enhanced the robustness of the 

local calibration model. 

 
 

Table 3 Statistical results of the determination of amylose content in 

milled rice using a cross validation set with local and global sample sets.

Validation set statistics

Mode

Treatment* NC** R2 bias       SECv RPD

Standard                    11      0.72      -0.003        1.25            1.9

MSC*** 10      0.70      -0.012        1.30            1.8

1st Derivative               8      0.70      -0.002        1.29            1.8

2nd Derivative            11      0.75      -0.002        1.20            2.0

MSC+1st 14      0.74      -0.004        1.21            2.0

MSC+2nd 10      0.73      -0.000        1.22            1.9    

Standard                    11      0.52      -0.000        1.07            1.4

MSC*** 9      0.51      -0.001        1.07            1.4

1st Derivative               8      0.50      -0.001        1.09            1.4

2nd Derivative              9      0.55      -0.004        1.04            1.5

MSC+1st 9      0.51      -0.003        1.08            1.4

MSC+2nd 9      0.54      -0.001        1.05            1.5    

A,  global sample set (amylose; 0 to 25.9%);

B,  local sample set (amylose; 12.2 to 21.0%);

*, Mathematical pretreatment of the spectra;

**, Number of PLS components;              

***,Multiplicative scatter correction.

B

A

 
The performance of the SECv of global PLS 

models was found to be slightly higher than 

that of local PLS models. The global PLS model 

had a SECv of 1.2 to 1.3 and R2 of 0.7 to 0.75 

with a bias of –0.012 to 0.000 whilst that of the 

local PLS model had a  SECv of 1.04 to 1.09 

and R2 of 0.5 to 0.54 with a bias of –0.004 to 

0.000. This indicates that SECv was related to 

the extent of the amylose range for the sample 

set used. The improvement of models with 

spectral preprocessing was such that no 

significant differences were found between 

several spectrally preprocessed samples. Thus 

models employing the derivative were slightly 

superior to all others in terms of minimum 

SECv and bias, and maximum R2.  

3.3. Validation of global and local calibration 

using chemometric modeling (PLS, ANN)  

Table 4 presents the statistical results of 

validation for the PLS calibration models.  

Mode C was developed using the global 

calibration sample set (range 0-25.9%) and the 

global validation sample set (range 0-20.3%); 

Mode D was developed using the local 

calibration sample set (range 12.3-21.0%) and 

the local validation sample sets (range 

13.0-20.0%); and Mode E was developed using 

the global calibration sample set (range 

0-25.9%) and the local validation sample sets 

(range 13.0-20.0%). Global amlyose calibrations 

for Mode C had the highest R2 and RPD. In this 

part of the PLS calibration models, the global 

amylose model using a standard spectrum was 

found to have the highest R2 and RPD. This has 

the advantage of amylose estimation using a 

calibration model, without any spectral 

preprocessing from raw spectra of milled rice. 
 

Table 4 Statistical results of the validation sets for determining amylose

content in milled rice using the global and local PLS models.

Calibration and                                                        Validation set statistics

Mode              validation sample set

Calibration     Validation   Treatment*       NC** R2 bias     SEP        RPD

global              global

Standard               11      0.90         0.13        1.00          3.0

MSC*** 11      0.88         0.13        1.06          2.9

1st Derivative         10      0.89         0.13        1.02          3.0

2nd Derivative          6      0.85         0.08        1.14          2.7

MSC+1st 8      0.86         0.16        1.16          2.6

MSC+2nd 7      0.87         0.10        1.09          2.8    

local                local
Standard               13      0.62      -0.089       1.06           1.6

MSC*** 11      0.62      -0.093       1.07           1.6

1st Derivative         12      0.61      -0.082       1.08           1.6

2nd Derivative          9      0.61      -0.100       1.07           1.6

MSC+1st 11     0.61      -0.084       1.07           1.6

MSC+2nd 10     0.61      -0.064       1.07           1.6    

global             local

Standard               16      0.65       0.18         0.96           1.8

MSC*** 14      0.59       0.14         1.25           1.6

1st Derivative         12      0.61       0.16         1.02           1.7

2nd Derivative          9      0.61       0.17         1.03           1.7

MSC+1st 14     0.58       0.13         1.07           1.6

MSC+2nd 9     0.61       0.17         1.02           1.7    

*, Mathematical pretreatment of the spectra;

**, Number of PLS components;              

***,Multiplicative scatter correction.

C

D

E

 
  Table 5 presents the statistical results of 

the validation for the ANN calibration models. 

Mode F was developed using the global 

calibration sample set (training sample; range 

0-25.9%, stop sample; range 0-20.0%), and the 

global validation sample set (0-20.3%). Mode G 

was developed using the local calibration 

sample set (training sample; range 12.3-21.0%, 

stop sample; range 12.3-20.0%), and the local 

validation sample set (13-20.0%). Mode H was 

developed using the global calibration sample 

set (training sample; range 0-25.9%, stop 

sample; range 0-20.0%), and the local validation  
 

Table 5 Statistical results of the validation set for determining amylose

content in milled rice using the global and the local ANN models.

Calibration and                                                        Validation set statistics 

Mode              validation sample set

Training   Stop     Validation  Treatment* R2 bias      SEP        RPD

global      global global

Standard                   0.87       0.075        1.10            2.8

MSC*** 0.82      -0.037        1.30            2.3

1st Derivative             0.84      -0.13          1.30            2.3

2nd Derivative            0.85      -0.10          1.20            2.5

MSC+1st 0.89       0.03          1.00            3.0

MSC+2nd 0.89       0.00          0.96            3.2    

local         local local

*, Mathematical pretreatment of the spectra;

***,Multiplicative scatter correction.

global      global local

Standard                   0.56       0.057        1.12            1.5

MSC*** 0.57       0.045        1.14            1.5

1st Derivative             0.63      -0.006        1.04            1.6

2nd Derivative            0.63      -0.142        1.01            1.7

MSC+1st 0.64      -0.197        1.00            1.7

MSC+2nd 0.66      -0.239        0.99            1.7    

Standard                   0.74      -0.15          0.84            2.0

MSC*** 0.72      -0.14          0.87            2.0

1st Derivative             0.74      -0.13          0.85            2.0

2nd Derivative            0.73      -0.08          0.86            2.0

MSC+1st 0.75      -0.22          0.83            2.0

MSC+2nd 0.74      -0.10          0.83            2.0    

F

G

H

 
sample set (13-20.0%). In this part of the ANN 

calibration models, mode F had the highest R2 



and RPD; Mode H had the second highest R2 

and RPD. A combination of MSC and the first 

and second derivatives were superior to all 

others in terms of minimum SEP and bias and 

maximum R2 in Model F. Notably the statistical 

results of Mode H, the local validation sample 

set for the global calibration, had a higher R2 

and RPD compared with those of Mode E. 

  Figure 4 summarizes the performance of 

the global/local models used for ANN or PLS. 

The parameters (NC, R2, bias, SEP and RPD) 

were described with from minimum to 

maximum value of six treatments (spectral 

preprocessing) in each calibration mode (Mode 

C, D, E, F, G, H). These modes followed an RPD 

sequence. Mode F and C had the highest R2 and 

RPD. These models applied the PLS and the 

ANN algorithms to develop the calibration 

models. The range of amylose in the global 

calibration and the local validation sample sets 

was from 0 to 21.0%. Mode H had the third 

highest R2 and RPD. The range of amylose in 

the global calibration sample set was from 0 to 

25.9%; that in the local validation sample set 

was from 13 to 20%. Mode E and D had the 

fourth highest R2 and RPD. These models used 

the PLS algorithm for the development of 

calibration models. The ranges of amylose in the 

calibration sample sets for Mode E and D were 0 

to 25.9% and 12.3 to 21% respectively. The 

range of amylose in the local validation sample 
 Global 

model

Local

model

SEP         RPD

ANN      0.96          3.2

PLS       1.00          3.0

SEP         RPD

ANN      0.85          2.0

PLS       0.96          1.8

SEP         RPD

ANN      0.99         1.7

PLS       1.06         1.6

Global sample

Local sample

Algorithm   Range of calibration and                     Validation set statistics

Mode                             validation sample set

Calibration    Validation      NC          R2 bias          SEP         RPD

F                ANN             global            global 0.82-0.89  -0.13-0.08     0.96-1.30     2.3-3.2

C             PLS               global            global 6-11   0.85-0.90   0.08-0.16     1.00-1.16     2.7-3.0

H               ANN             global            local                         0.72-0.75  -0.22- -0.08   0.83-0.87         2.0

E                PLS              global            local              9-16   0.58-0.65   0.13-0.18      0.96-1.07     1.6-1.8

D               PLS               local              local 9-13   0.61-0.62   -0.1- -0.064  1.06-1.08         1.6

G               ANN              local              local 0.56-0.66  -0.24-0.057    0.99-1.14     1.5-1.7 
 

Fig. 4 The performance of the Global / Local 

models used for ANN or PLS algorithms. 

Global validation sample; amylose 0-25.9%, 

Local validation sample; amylose 12.3-21.0% 

set was from 12.3 to 20.0%. 

  Mode H, incorporating an ANN algorithm 

that developed both a global calibration sample 

set and a local validation sample set, was found 

to be the third highest statistical performer. 

This might reflect the superior modeling 

capability of the non-linear transfer function 

ANN for the deviation from linearity, compared 

to the linear approximations of the PLS models.  

  The best model was an ANN calibration 

combining the MSC and the second derivative 

in its spectra used to develop a global 

calibration and validation sample in Mode F 

(Fig. 5a);  
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(b)  

Fig. 5 The relationship between reference 

values and predicted values for a wide sample 

variation of amylose content of milled rice using.  

(a); ANN calibration combining the MSC and 

the second derivative of spectra in Mode F, (b); 

PLS calibration for standard spectra in Mode C 

the second best was a PLS calibration using 

standard spectra used to develop the global 



calibration and validation sample in Mode C 

(Fig. 5b). These results pose the question of 

whether an ANN algorithm combining spectral 

preprocessing could be developed for global and 

local calibration models or whether the PLS 

without spectral preprocessing should be 

developed for global calibration models. We 

suggest that global calibration models 

incorporating an ANN algorithm may be used 

as universal calibration models. 

4. Conclusion 

This study examined the performance of ANN 

and PLS chemometric models based on global 

and local samples, in which entire samples were 

divided into calibration sample sets (training, 

stop) and validation sample sets using the 

CENTER algorithm. The application of spectral 

preprocessing to improve amylose 

determination was also assessed. Training 

samples, stop samples and validation samples 

for the chemometric models (PLS, ANN) were 

determined using the CENTER algorithm. The 

best model was an ANN calibration combining 

the MSC and the second derivative in the 

spectra that used to develop global calibration 

and validation samples in Mode F. The second 

best model was a PLS calibration using 

standard spectra for the development of global 

calibration and validation samples in Mode C. 

Mode H, incorporating an ANN algorithm to 

develop a global calibration sample set and a 

local validation sample set, was found to be the 

third highest statistical performer. This may 

reflect the greater ability of the non-linear 

transfer function of ANN to model deviations 

from linearity, compared with the linear 

approximation of the PLS models. These results 

raise the question as to whether an ANN 

algorithm with spectral preprocessing could be 

developed for global and local calibration 

models or whether PLS without spectral 

preprocessing should be developed for global 

calibration models. We propose chemometric 

amylose modeling and sample selection for 

global calibration using ANN. Global 

calibration models incorporating an ANN may 

be used as universal calibration models. 
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