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Abstract. 	Despite exhaustive studies, molecular mechanisms governing blastocyst formation, implantation to the uterine 
endometrium and placentation have not been definitively characterized. GATA family proteins are a group of zinc finger 
transcription factors, for which gene ablations eventually result in embryonic death later in pregnancy. These findings 
suggested that GATA factors are not essential for early embryonic development. However, recent studies from our laboratory 
and others have revealed that GATA proteins are involved in the regulation of key genes expressed by the trophectoderm 
that underpin the transition from the morula to trophoblast, and trophectoderm maintenance. Consequently, it is important to 
consider the current understanding how GATA factors govern early trophectoderm development.
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In most mammals, conceptus implantation to the uterine endometrium 
consists of blastocyst hatching, migration, apposition/attachment, 

invasion, and subsequent placental formation. It is known that close 
to 50% of fertilized preimplantation embryos in mammals, including 
humans, fail to implant [1]. Although numerous transcription factors 
and their downstream genes involved in trophoblast development have 
been identified [2, 3], the regulation of trophectoderm (TE)-specific 
gene expression has not been definitively characterized. A lack of 
our knowledge on implantation mechanisms and TE-specific gene 
regulation may have limited the improvements in pregnancy success.

GATA transcription factors are so named for their highly conserved 
zinc finger domains that bind to the consensus DNA sequence 
W(A/T)GATAR(A/G) (GATA motif), resulting in transcriptional 
regulation of downstream genes [4, 5]. They have been found 
throughout the eukaryote spectrum, including fungi and plants as 
well as invertebrates and vertebrates [6]. In vertebrates, including 
mammals, six GATA factors (GATA1 through GATA6) have been 
identified, and based on sequence homology and tissue distribution, 
these GATA factors have been divided into two subfamilies. In mice, 
the mRNA and proteins of all six GATA factors were detected during 
the embryonic development process (Table 1). GATA1, GATA2 and 
GATA3 regulate development and differentiation of hematopoietic 
lineages [7–9], while GATA4, GATA5 and GATA6 are involved in 
cardiac development and endodermal derivatives [10–12]. In Gata 
gene ablation studies, with the exception of Gata5, lack of each 
Gata gene resulted in mid-gestation lethality [7–12] (Table 2). For 
these reasons, GATA factors had been considered not important for 
early embryonic and/or trophoblast development.

Over the past three years, GATA3 was found to assist TE dif-
ferentiation in mice [13, 14], while our laboratory was discovering 
that GATA2 and GATA3 regulate interferon tau (IFNT) and other 
TE-specific gene transcriptions in ruminants [15, 16]. Because of these 
findings, we believe that GATA factors play roles, yet unidentified, 
in peri-implantation development, including both species-specific 
functions and those universal across vertebrate species. This review 
details the currently ascribed functions of the GATA factors during 
the peri-implantation period with emphasis on the hematopoietic 
group of GATA1, GATA2, and GATA3 in TE development and 
TE-specific gene expressions.

Trophoblast Lineage Development

The trophoblast lineage, derived from the extraembryonic 
trophectoderm, is the first differentiated cells arising from the pre-
implantation embryos in mammals [17]. Trophoblast development and 
differentiation in the mouse have been well studied. The blastocyst 
hatches from the zona pellucida at 3.5 day post coitum (dpc) in mice 
[18], and trophectodermal cells that line the blastocoel cavity (mural 
trophectoderm) differentiate into trophoblast giant cells (TGCs) 
coincident with the implantation process around 5–6 dpc. Among 
numerous factors well studied in mice, a caudal-type homeodomain 
transcription factor Cdx2, expressed from 4-cell stage embryos 
predominantly in the outer blastomeres, has been characterized as 
the factor involved in the decision of TE cell lineage [13, 14, 19–21]. 
Recently, GATA3 was found to be capable of inducing trophoblast 
fate in embryonic stem cells and driving trophoblast differentiation 
in trophoblast stem cells (TS) [14]. In addition to these observations, 
we also confirmed that all six GATA mRNAs exist in bovine and/
or ovine conceptuses during the peri-implantation periods [15, 22 
and unpublished observations]. The presence of six GATA mRNAs 
in the bovine and/or ovine conceptuses suggests that these factors 
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may play roles other than those already known for erythropoiesis 
and heart formation.

GATA-regulated Cellular Events

The GATA factor is associated with differentiation processes in 
various cells and tissues. GATA1 is critical for terminal maturation of 
erythroid and megakaryotic cells [23, 24], the early stage of eosinophil 
differentiation [25], and the late stage of mast cell differentiation 
[26]. GATA2 is expressed in undifferentiated hematopoietic cells and 
is involved in the maintenance of these cells at the undifferentiated 
state, while GATA3 is involved in the differentiation of Th2 cells 
from immature T cells [27]. The demise of transgenic mice seems 
to be unrelated to apparent defects in early TE development (Fig. 
1, Table 2). However, since GATA factors have both distinct and 
overlapping expression and biological functions [7, 8, 28–31], it is 
possible that redundant expression and functions of other GATA 
factors might compensate for those inactivated in knockout mice.

GATA-regulated Genes

It is thought that GATA factors contribute to regulation of gene 
expression while balancing with an expression pattern and the 
expression level, and the expression level is important in GATAs’ 
functions [32]. A number of genes regulated by GATA2 and/or 
GATA3 in trophoblast cells and placental tissues are shown in Table 
3. GATA2 and GATA3 are expressed in TGC of the mouse placenta, 

and involved in placental development. Placentation sites lacking 
GATA2 have significantly less neovascularization compared with 
the wild-type placenta [33]. GATA2 was shown to contribute to both 
positive and negative regulation of mouse trophoblast cell-specific 
gene expressions [34]. GATA2 and GATA3 regulate trophoblast 
specific PL-1 (Prl3d1) and proliferin (Prl2c2) gene expression in 
vivo and in vitro in the mouse [33, 35], the rat [36] and the ovine 
[37]. We also found that GATA2 and/or GATA3 regulate TGC related 
factors such as PL-1, and HAND1 in bovine trophoblast CT-1 cells 
[16]. Furthermore, we examined whether or not GATA2 and GATA3 
directly regulated TE-specific genes such as IFNT, CDX2, and PL-1 
in bovine trophoblast CT-1 cells. Over-expression of GATA2 and/
or GATA3 effectively upregulated these TE-specific gene-reporter 
constructs, transfected into bovine non-trophoblast ear fibroblast 
(EF) cells [15, 16]. These results are similar to previous studies in 
which GATA2 and GATA3 induced PL-1 transcription in transfected 
mouse non-trophoblast (fibroblast) cells [35]. These studies indicate 
that forced expression of GATA2 and/or GATA3 in non-trophoblast 
EF cells conditions the non-trophoblast cells to support TE-specific 
gene transcription. This does not preclude the possibility of other 
functions; GATA factors may control many other genes. In fact, DNA 
microarray and/or chromatin immunoprecipitation (ChIP) assays 
revealed that GATA proteins are involved in transcriptional regulation 
of many genes in erythroid cells [38, 39]. For these reasons, GATA 
proteins should deserve deeper research into their ability to control 
TE differentiation and TE-specific gene transcription.

Table 2.	 Embryonic lethality of Gata gene knockout mice

GATA factors Lethality of knockout mouse Cause References
Gata1 E10.5 – E11.5 Embryonic erythropoiesis arrest [7]

E12.5 (Hematopoietic 
promoter-specific disruption)

95% reduction of Gata1 mRNA maturation arrest in proerythropoiesis [60]

Gata2 E10.5 Failure to develop all hematopoietic lineages (severe anemia) [8] 
Gata3 E11.0 – 12.0 Massive internal bleeding, marked growth retardation, severe deformities of the 

brain and spinal cord, and gross aberrations in fetal liver hematopoiesis
[9]

E12.0 Failure to give rise to thymocytes or mature peripheral T cells [61]
Gata4 E7.0 – E9.5 Lack primitive heart tube and foregut, developed partially outside the yolk sac [10]

E8.5 – E10.5 Defect in rostral-to-caudal and lateral-to-ventral folding [62]
Gata5 No embryonic lethality Abnormalities of genitourinary tract (female) [11]
Gata6 E6.5 – E7.5 Defects in visceral endoderm function and extraembryonic development [12]
Gata4+/– Gata6+/– E13.5 Abnormal vascular development [63]
Gata4+/– Gata5–/– E14.5 Cardiovascular defects [64]

Table 1.	 GATA Transcription factor mRNA and protein expression in mice

GATA factors RNA expression 
detected

Methods
utilized References Protein expression 

detected
Methods
utilized References

GATA1 E1.5 (2-cell) R [53] E6.75 Im [56]
GATA2 E1.5 (2-cell) R [54] E10.5 Im [57]
GATA3 E2.0 (4-cell) R [13] E3.5 (blastocyst) Im [13]
GATA4 E1.5 (2-cell) R [53] E4.0 Im [58]
GATA5 E7.0 ISH [55] E9.5 Im [59]
GATA6 E1.5 (2-cell) R [54] E4.0 Im [58]

Methods: Im, immunohistochemical staining; ISH, in situ hybridization; R, RT-PCR.
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Self-regulation of GATAs in Hematopoiesis

The GATA proteins share conserved zinc finger DNA-binding 
domains that recognize the same GATA motif, by which they can 
regulate multiple developmental processes by binding to GATA 
motif regulatory element, and thereby, these proteins can regulate 
multiple developmental processes [4, 5, 40]. GATA proteins have 
both distinct and overlapping biological activities, and changes 
in occupancy in GATA protein at its binding site often affect the 
degree of target gene transcription [7, 8, 28–31]. During erythroid 
differentiation in mice, GATA1 and GATA2 directly regulate Gata2 
transcription. GATA1 represses Gata2 transcription in association 
with four conserved GATA binding sites on the upstream region 
(–77, –3.9, –2.8, and –1.8 kb) along with an intron (+9.5 kb) region 
[41–44]. GATA2 is associated with these sites when Gata2 is in a 
transcriptionally active state [41–44]. The “GATA switch” is well 
stated by Brensnick et al. [45, 46].

Self-regulation of GATAs in Trophoblast Stem (TS) 
Cells and Trophoblast Cells

Besides this hematopoietic GATA switch, evidence of a GATA2/
GATA3 switch has been gathered through studies of mouse TS 
cells. It was reported that changes in GATA2 or GATA3 occupancy 
occur at the –3.9 kb and +9.5 kb regions of the Gata2 gene during 
the differentiation process from TS cells to TGCs [47]. Binding of 
GATA3 directly represses the Gata2 gene in undifferentiated TS cells, 
and a switch in chromatin occupancy between GATA3 and GATA2 
(GATA3/GATA2 switch) induces Gata2 transcription during TS cell 
differentiation. Recently, we also demonstrated that as bovine and/
or ovine conceptus attachment begins, GATA2 and GATA3 mRNAs 
decrease when GATA1 mRNA increases concurrent with erythroid 
development (Fig. 2). Because high GATA1 mRNA appeared to 
coincide with reduced GATA2 and GATA3 mRNA expression at 
this time period, the effect of GATA1 was examined through over-
expression of GATA1 in bovine trophoblast F3 cells, resulting in the 
down-regulation of endogenous GATA2 transcripts [22]. Although 
roles of GATA1 during conceptus attachment processes have not 

been characterized, these observations suggest that GATA1 is likely 
integral to conceptus development through the down-regulation of 
GATA2 transcription and possibly other developmentally important 
genes. Moreover, in situ hybridization studies revealed that both sense 
and antisense GATA1 [22] and GATA2 (unpublished observations) 
transcripts were present in trophoblast cells. It is now recognized that 
the natural antisense transcripts are important in governing cellular 
and organismal processes through transcriptional regulation [48] (see 
review, and references therein]. These natural anti-sense transcripts 
may be involved in the regulation of GATA gene transcriptions.

Because trophoblast cells are unique to mammalian species, we 
examined the existence of the –3.9 kb and +9.5 kb regions of the 
Gata2 gene in several species. Interestingly, although the +9.5 kb 
GATA binding site of the Gata2 gene is preserved in several mam-
malian species, birds (Gallus gallus), and Zebra fish (Danio rerio), 
the –3.9 kb regulatory element is found in humans and mice, but not 
in birds or Zebra fish (Table 4), suggesting that the –3.9 kb GATA 
site functions in a trophoblast cell-specific manner.

Ruminants as an Animal Model

Rodents have been used as the primary animal models to study 
implantation processes. In mice, implantation occurs soon after 
blastocyst hatching from the zona pellucida. Within a span of a 
few embryonic days that extends from implantation to placentation, 
several dramatic and concurrent events occur in rodents. Therefore, 
it is difficult in rodents to delineate the underpinning molecular and 
accompanying cellular changes during this time period. However, 
in ruminants, the peri-implantation period is prolonged compared 
to rodents (Fig. 2), and thus, identification of key gene expression 
changes and developmental progression can be determined in these 
species. Although the duration of peri-attachment periods and types 
of implantation (invasive vs. non-invasive) differ, processes leading 
to conceptus implantation into the maternal endometrium are similar 
in most mammalian species [49]. In addition, the integrity of the 
bovine conceptus can be monitored through measurement of IFNT, 
the major protein implicated in the process of maternal recognition 
of pregnancy in ruminants [50–52]. For these reasons, ruminants 

Table 3.	 Genes regulated by GATA factors in the trophoblast

GATA factors Target gene (Symbol) Species Methods References
GATA2 Proliferin (Prl2c2) m Im, ISH, NB [33]
GATA2 Placental lactogen-I (LOC44319) s D, E, L [37]
GATA2 Prolactin-like protein-A (Prl4a1) m ISH [34]
GATA2 P450 side chain cleavage (Cyp11a1) m, r C, E, L [65]
GATA2 Placental lactogen-I (Prl3b1) r L, E [36]
GATA3 17β-Hydroxysteroid dehydrogenase Type1 (HSD17B1) h C, E [66]
GATA3 Caudal type homeobox 2 (Cdx2) m Ch, Im, L, R, RI [13]
GATA2, GATA3 Placental lactogen-I (Prl3d1) m C, D, E, ISH, NB [35]
GATA2, GATA3 GnRH receptor (GNRHR) h D, E, L [67]
GATA2, GATA3 Syncytin (ERVW) h D, E, L [68]
GATA2, GATA3 GATA binding protein (Gata2) m Ch, D, L, NB, R [47]
GATA2, GATA3 Gonadotropin alpha subunit gene (CGA) h C, D, E, NB [69]

Species: h, humans; m, mice; r, rats; s, sheep. Methods: C, CAT assay; Ch, ChIP assay; D, DNase footprinting; E, EMSA; Im, 
immunohistochemical staining; ISH, in situ hybridization; L, Luciferase assay; NB, Northern blotting; R, RT-PCR; RI, RNA interference.



BAI et al.4

Fig. 2.	 Embryonic and extraembryonic development, and GATA transcription factor expression in the cow. In ruminant species (bovine, ovine, and 
caprine), the blastocyst is formed several days after fertilization, but placentation starts on day 21, approximately two weeks later than in 
mice. Upper: Bovine conceptus developments. One of the unique features seen in ruminant conceptus development is trophoblast elongation. 
The trophoblast elongates exponentially and reaches a length of more than 150–300 mm before the initiation of its attachment to the uterine 
epithelium. Lower: Developmental events associated with bovine conceptuses, and GATA transcription factor expression. Arrows indicate the 
presence or increase (bold) in GATA expression during bovine conceptus development.

Fig. 1.	 Embryonic and extraembryonic development, and GATA transcription factor expression in mice. Early development of the mouse 
embryo from 0.5 dpc to 10.5 dpc is shown. Upper: Mouse conceptus developments. Following the first lineage decision to trophectoderm 
(TE) and inner cell mass (ICM), the ICM differentiates into the primitive ectoderm, which gives rise to the embryo proper and the 
yolk sac. After implantation, the trophoblast differentiates into subtypes consisting of trophoblast giant cells, chorionic ectoderm, and 
ectoplacental cone. The yolk sac membranes consist of the parietal yolk sac (trophoblast giant cells and parietal endoderm) and the 
visceral yolk sac (visceral endoderm and extraembryonic mesoderm). The allantoic mesoderm forms the endothelial cell lining of fetal 
blood vessels in the labyrinth zone. Distinct regions of the placenta include the labyrinth, the spongiotrophoblast and a discontinuous 
layer of trophoblast giant cells. Lower: GATA transcription factor expression in mice. Expression of GATA transcription factors in 
mice is shown. Days on the right indicate days post coitus (dpc) when embryonic death occurs in mutant mice for various Gata genes.
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may provide major advantages in characterizing processes associated 
with peri-implantation periods, possibly allowing the identification 
of a phenomenon and/or its gene expression overlooked in rodents.

Conclusions

Significant improvements in reproductive success are unlikely 
without first characterizing the complex interactions leading to success-
ful implantation and eventual placentation. Because of mid-gestation 
embryonic loss in mouse gene ablation studies, GATA proteins have 
been considered not essential in mediating these processes. Recently, 
however, GATA proteins have emerged from scientific obscurity to 
be at the forefront of conceptus development studies. Although the 
various additional roles each GATA may undertake remain to be 
definitively established, the tantalizing insights into roles played 
by various GATAs provide strong impetus to clarify their effects 
on the peri-implantation process.

There are many factors involved in the maintenance, prolifera-
tion and differentiation of the trophoblast cells. We would like to 
emphasize the point that GATA factors regulate the expression of 
trophoblast-specific factors in many species including humans, 
mice and ruminants during several stages of their development. 
More importantly, insights gained from ruminants can be applied 
to elucidation of molecular mechanisms associated with conceptus 
implantation in other mammalian species. Further research into GATA 
factors may allow us to more accurately identify pathways separating 
pregnancy success or failure, and thereby, potentially improve fertility 
rates in humans and in agriculturally important animals.
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