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An improvement of level set equations via approximation

of a distance function

Nao Hamamuki ∗

February 2, 2018

Abstract

In the classical level set method, the slope of solutions can be very small or large,
and it can make it difficult to get the precise level set numerically. In this paper, we
introduce an improved level set equation whose solutions are close to the signed distance
function to evolving interfaces. The improved equation is derived via approximation of
the evolution equation for the distance function. Applying the comparison principle,
we give an upper- and lower bound near the zero level set for the viscosity solution to
the initial value problem.

Key words: level set method; improved level set equations; signed distance function;
viscosity solutions
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1 Introduction

Motivation. A level set method is a well-known technique to track a motion of an interface
{Γ(t)}t in Rn. The idea is that, given an initial interface Γ(0), we represent it as the zero
level set of some function u0(x), and then solve the initial value problem of a level set (partial
differential) equation associated with a surface evolution equation for Γ(t). Finally, we cut
out the zero level of the solution w(x, t):

Γ(t) = {x ∈ Rn | w(x, t) = 0}, (1.1)

which is considered as the desired motion. Wide application of this method includes, e.g.,
the mean curvature flow equation originally developed by [6, 3]. See also [8].

In this paper we study a level set equation given as the Hamilton-Jacobi equation:

∂tw(x, t) +H(x,∇w(x, t)) = 0 in Rn × (0, T ) (1.2)

with the initial condition

w(x, 0) = u0(x) ∈ BUC (Rn) in Rn. (1.3)

∗Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-
0810, Japan. E-mail: hnao@math.sci.hokudai.ac.jp
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Here H is a continuous Hamiltonian, ∇w = (∂xiw)
n
i=1 denotes the gradient of w with respect

to x and BUC (Rn) represents the set of bounded and uniformly continuous real-valued
functions in Rn.

Although mathematical formulation is great, in practice, it might become difficult to
compute the precise zero level set when the slope of a solution w near the zero level gets
close to 0 or goes to ∞ as time develops. This can happen even if the initial slope is chosen
suitably. To avoid such a bad (flat/steep) slope of solutions, one of famous methods is the
reinitialization, which is especially useful for fluid flows ([17, 16]). The usual idea is that
one stops the process of solving a level set equation after a little time and then modifies
the solution at the stopping time so that the modified function approximates the signed
distance function.

In this paper, however, we takes a different approach. We aim at keeping a good slope
for a long time by changing the original level set equation. Namely, we solve the equation
only once. We propose an improved level set equation of the form

∂tu(x, t) +H(x,∇u(x, t)) = u(x, t)G(x,∇u(x, t)) (1.4)

with a new continuous function G. (Hereafter we use w for the original equation (1.2) and
u for the improved equation (1.4).) Our goal is to demonstrate that, if we choose G in a
suitable way, the slope of the viscosity solution u of (1.4) is close to one globally-in-time
near the zero level set.

Another motivation of this work comes from [15]. There, an improved level set equation
was proposed for the transport equation:

∂tw(x, t) + ⟨X(x),∇w(x, t)⟩ = 0, (1.5)

where X : Rn → Rn is a vector field and ⟨·, ·⟩ denotes the standard inner product in Rn.
The improved equation proposed by Roisman is of the form

∂tu(x, t) + ⟨X(x),∇u(x, t)⟩ = u(x, t)
⟨X ′(x)∇u(x, t),∇u(x, t)⟩

|∇u(x, t)|2
. (1.6)

Here X ′(x) stands for the Jacobian matrix of X(x). This improved equation is derived
so that, for a smooth solution u of (1.4), the initial slope is preserved on the zero level
along each flow determined by the vector field X. In other words, G is chosen so that the
derivative of |∇u|2 is 0 along each flow. Our goals of this paper include justification and
generalization of this method in a suitable sense. It turns out that, although our approach
is different from [15], in the case of (1.5), our G introduced later agrees with the function
appearing on the right-hand side of (1.6) except in a small neighborhood of the singular
point |∇u| = 0.

Results. In order to introduce an improved level set equation, we focus on the equation
for the signed distance function d(x, t) to the interface, which is given by

d(x, t) =


dist(x,Γ(t)) if x ∈ D+(t),

0 if x ∈ Γ(t),

−dist(x,Γ(t)) if x ∈ D−(t).

(1.7)

Here dist(x,Γ(t)) = inf{|x − y| | y ∈ Γ(t)}, w is the solution to (1.2) with (1.3) and
D±(t) := {x ∈ Rn | ±w(x, t) > 0}. The distance function is known to be a solution of

2



the eikonal equation |∇d(x, t)| = 1 both in the almost everywhere sense and in the viscosity
sense. It is thus reasonable to use the signed distance function to guarantee that the slope
remains one. Later we derive an evolution equation (3.1) for d, and then approximating it
near the interface, we propose a suitable definition of G in (1.4). It turns out that, if the
initial data u0 is equal to d(·, 0) near the initial interface Γ(0) and if d is smooth near Γ(t),
then for every ε > 0,{

e−εtd(x, t) <= u(x, t) <= eεtd(x, t) if d(x, t) >= 0,

eεtd(x, t) <= u(x, t) <= e−εtd(x, t) if d(x, t) <= 0
near Γ(t). (1.8)

This is a comparison between u and slight modifications of d. In this sense, u approximates
d and the slope of u is kept to be one near Γ(t). We also give a numerical result for this.

Our result (1.8) gives a kind of gradient estimates for the solution u to (1.4) both from
above and below. Although an upper gradient estimate (Lipschitz estimate) has been well
studied for viscosity solutions (e.g., [2]), there is few result related to a lower gradient
estimate. In [13] the author gives a lower gradient estimate for first order equations with a
convex Hamiltonian. In our case, (1.4) is not convex even if the original H in (1.2) is convex.
For this reason, the same approach as [13] can not be applied. Recently, in [7] Fujita derived
a lower gradient estimate globally-in-space both for second and first order equations.

Motivated by the reinitialization mentioned above, in a joint work with Ntovoris [11] we
introduced another type of improved equations of the form

∂tu
θ(x, t) +H(x,∇uθ(x, t)) = θβ(uθ(x, t))h(∇uθ(x, t)). (1.9)

Here θ > 0 is a parameter and β : R → R and h : Rn → R are typically chosen as a
smooth approximation of the sign function such as β(r) = r/

√
r2 + ε2 and h(p) = 1 − |p|,

respectively. The equation (1.9) is obtained via the limit of the iterative procedure of solving
original (1.2) and a so-called corrector equation to yield a distance function. Among other
results, we proved in [11] that

lim
(y,s,θ)→(x,t,∞)

s<=t

uθ(y, s) = d(x, t) for all (x, t) ∈ Rn × (0, T ). (1.10)

In other words, uθ converges to d from below in time, Since a rate of convergence was not
derived in [11], we give a partial answer in this paper. This also gives a comparison and an
approximation of d like (1.8).

Organization. Section 2 provides a brief summary of the theory of viscosity solutions
and level set equations. In Section 3, after we explain how to choose G, we prove (1.8) for
a solution u of (1.4). Section 4 contains examples and numerical results. In Section 5 we
derive a new estimate for a solution uθ of (1.9).

This paper is not just a survey of [11] and [9, 10] ([9] is a dissertation and [10] is a
Japanese article), where the result (1.8) has been stated, but also shows some progress on
generalization and simplification of assumptions and discussions; (S2), (H2), (G1), Propo-
sition 2.5 and Lemma 3.3 etc. are related. Moreover, numerical tests and an estimate for
uθ in (1.9) are new contents.
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2 Preliminaries
–Viscosity solutions and level set equations–

This section gives a quick review of analytical tools needed in this paper. We first recall a
notion of viscosity solutions ([4] and [8, Chapter 2, 3]) and a comparison result for them,
which will play an important role in our study. We then describe basic facts of the level set
equation (1.2) together with some results related to our improved equation (1.4), for which
we refer to [8, Chapter 4] and [11].

We state a definition and a comparison result for (1.4). Clearly, those for (1.2) are
included as the case G ≡ 0. We assume that H,G : Rn ×Rn → R are continuous.

Definition 1 (Viscosity solution). We say that an upper semicontinuous (resp. lower
semicontinuous) function u : Rn × (0, T ) → R is a viscosity subsolution (resp. viscosity
supersolution) of (1.4) if

∂tϕ(z, s) +H(z,∇ϕ(z, s))− u(z, s)G(z,∇ϕ(z, s)) <= 0 (resp. >= 0)

for all (z, s) ∈ Rn× (0, T ) and ϕ ∈ C1(Rn× (0, T )) such that u−ϕ attains a local maximum
(resp. local minimum) at (z, s). Such a smooth function ϕ is called a test function for u at
(z, s) from above (resp. below). If u is both a viscosity sub- and supersolution, then it is
called a viscosity solution.

To guarantee the comparison principle we assume

(CP) (i) For both F = H and G, there exists a modulus ω (i.e., a nondecreasing func-
tion ω : [0,∞) → [0,∞) satisfying limr→0 ω(r) = ω(0) = 0) such that, for all
x, y, p, q ∈ Rn

|F (x, p)− F (y, q)| <= ω((1 + |p|+ |q|)|x− y|+ |p− q|); (2.1)

(ii) G is bounded in Rn ×Rn, i.e., ∥G∥ := supRn×Rn |G| < ∞.

Theorem 2.1 (Comparison principle [4, Section 8], [8, Chapter 3]). Let u, v : Rn× [0, T ) →
R, and assume that u and −v are upper semicontinuous and bounded from above in Rn ×
[0, T ). Assume that u and v are, respectively, a viscosity sub- and supersolution of (1.4). If
u(·, 0) <= v(·, 0) in Rn, then u <= v in Rn × (0, T ).

Throughout this paper we assume (CP). As is well-known, the comparison principle
implies uniqueness of viscosity solutions of the initial value problem.

Existence of viscosity solutions is shown by Perron’s method. In this paper we omit it;
see [4, Section 4] and [8, Section 2.4] for the detail. The unique viscosity solution of (1.4)
with (1.3) is continuous and bounded in Rn × [0, T ).

We turn to the case where (1.2) is a level set equation. The following geometricity (H1),
a notion originally introduced in [3], is a basic assumption on H in the sense that H derived
from the associated surface evolution equation always satisfies it.

(H1) H(x, λp) = λH(x, p) for all (x, p) ∈ Rn ×Rn and λ > 0.

Note that (H1) implies that H(x, 0) = 0 for all x ∈ Rn. One of important properties of
geometric equations is invariance under changes of dependent variables.
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Theorem 2.2 (Invariance [8, Theorem 4.2.1]). Assume (H1). Let θ : R → R be a nonde-
creasing and upper semicontinuous (resp. lower semicontinuous) function. If w is a viscosity
subsolution (resp. supersolution) of (1.2), then so is θ ◦ u.

This invariance implies a uniqueness result of evolutions. Namely, if two initial data u01

and u02 share the same zero level, then so do the solutions w1 and w2. For the details see
[8, Section 4.2.3, 4.2.4].

Another corollary of Theorem 2.2 is as follows. Let χS denote the characteristic function
of a set S, i.e., χs(x) = 1 if x ∈ S and χs(x) = 0 if x ̸∈ S. We abbreviate {(x, t) ∈
Rn × (0, T ) | w(x, t) >= 0} to {w >= 0} unless any confusion occurs.

Corollary 2.3. Assume (H1). If w is a viscosity subsolution (resp. supersolution) of (1.2),
then so is χ{w>=0} (resp. χ{w>0}).

Proof. Choosing an upper semicontinuous θ = χ[0,∞), we have χ{w>=0} = θ ◦ w. Similarly,
χ{w>0} = θ ◦ w for θ = χ(0,∞). Thus Theorem 2.2 gives the results.

We prepare a sub- and supersolution of (1.4) of a simple form.

Lemma 2.4. Assume (H1). Let c > 0, M >= ∥G∥ and define w±(x, t) = ce±Mt. Then w+

(resp. w−) is a classical supersolution (resp. subsolution) of (1.4), and −w+ (resp. −w−)
is a classical subsolution (resp. supersolution) of (1.4).

Proof. Recalling that H(x, 0) = 0 by (H1), we compute

∂tw
+ +H(x,∇w+) = MceMt +H(x, 0) = Mw+ + 0 >= w+G(x,∇w+),

and thus w+ is a supersolution. The rest assertions follow in the same manner.

The next proposition guarantees that the zero level set is not distorted by our improved
equation (1.4). This is, at least formally, expected to be true since (1.4) is the same equation
as (1.2) at the zero level {u = 0}.

Proposition 2.5 (Preservation of the zero level set). Assume (H1). Let w and u be,
respectively, a viscosity solution of (1.2) and (1.4) with the same initial condition (1.3).
Then we have {w = 0} = {u = 0} and {±w > 0} = {±u > 0}.

Here we do not impose a special structure on G in (1.4); we only need (CP). The proof
can be found in [11, Theorem 3.1], where the result is shown for more general equations
including (1.9). There, boundedness of β is assumed, but this is not a restrictive condition
when we study a bounded solution like the current case.

Since we have already known uniqueness of evolutions for (1.2), as a corollary of Propo-
sition 2.5, we obtain uniqueness of evolutions for (1.4) at the zero level.

3 Comparison with the signed distance function

We study an evolution of the zero level set {Γ(t)}t∈[0,T ) associated with (1.2) and (1.3). In
the following we assume

(S1) Γ(t) ⊂ Rn is bounded uniformly in t ∈ [0, T ). Here Γ(t) is given by (1.1), and w is
the unique viscosity solution to (1.2) with (1.3).
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This boundedness of Γ(t) is not an essential assumption but slightly weakens an assumption
on smoothness of H. For this, see the comment after (H2).

For the solution w in (S1), we define the signed distance function d : Rn × [0, T ) → R
as in (1.7). For later use we further set Γ := {(x, t) ∈ Rn × (0, T ) | w(x, t) = 0} and
D± := {(x, t) ∈ Rn × (0, T ) | ±w(x, t) > 0}.

We intend to prove that, under a suitable choice of G, a viscosity solution u of (1.4)
satisfies the estimate (1.8) involving d. This shows that the slope of u is close to one near
the zero level. For this purpose, we first derive the equation for d.

In this paper we assume that d is smooth near the zero level set, and so the derivatives
of d are interpreted in the classical sense. It is future work to extend the results below to a
non-smooth case. Our assumption concerning smoothness is

(S2) There exist a constant δ ∈ (0, 1) such that

(i) d ∈ C1(N ), where N := {(x, t) ∈ Rn × (0, T ) | |d(x, t)| < δ};
(ii) For every (x, t) ∈ N , we have x̄ := x−d(x, t)∇d(x, t) ∈ Γ(t), ∂td(x, t) = ∂td(x̄, t)

and ∇d(x, t) = ∇d(x̄, t).

Here x̄ represents the perpendicular foot on Γ(t) from x. It is known that (S2) is true if
Γ is smooth enough, e.g., if Γ is in C2,1-class (C2 in x and C1 in t). See [12, Theorem
3.8, Theorem 5.14] for instance. Instead of assuming sufficient smoothness of interfaces, we
assume (S2) which is really needed in discussions below.

Lemma 3.1. Assume (H1) and (S2). Then, for all (x, t) ∈ N ,

∂td(x, t) +H(x− d(x, t)∇d(x, t),∇d(x, t)) = 0. (3.1)

Proof. We need to prove ∂td(x̄, t)+H(x̄,∇d(x̄, t)) = 0 for x̄ = x−d(x, t)∇d(x, t). Consider
the characteristic function χ{w>0}, where w is the solution in (S1). By Corollary 2.3 this
χ{w>0} is a supersolution of (1.2). Now, since x̄ ∈ Γ(t), we have χ{w>0}(x̄, t) = d(x̄, t) = 0.
Moreover, d <= χ{w>0} in N . These facts show that d ∈ C1(N ) is a test function for χ{w>0}
at (x̄, t). By the definition of viscosity supersolutions, we obtain ∂td(x̄, t)+H(x̄,∇d(x̄, t)) >=
0. The opposite inequality is derived in a similar way by considering χ{w>=0} − 1.

Remark 1. Even if d is not smooth, it is known that d is a viscosity supersolution of (3.1)
in D+. Also, if ϕ is a test function for d at (x, t) ∈ D+ from below, then |∇ϕ(x, t)| = 1 See,
e.g., [5, Proof of Theorem 2.2, Step 1–3], [1, Proposition II.2.14] for them. In particular, if
d is differentiable at (x, t), then |∇d(x, t)| = 1.

Let us rewrite (3.1) as follows. We first insert H(x,∇d) and then apply Taylor (linear)
approximation to obtain

∂td+H(x,∇d) = H(x,∇d)−H(x− d∇d,∇d) (3.2)

= d⟨∇xH(x,∇d),∇d⟩+ o(d). (3.3)

If we drop the error term o(d), then (3.3) is of the form (1.4). For this reason it is reasonable
to define G(x, p) in (1.4) on the basis of ⟨∇xH(x, p), p⟩.

We shall give precise assumptions on H and G. Set Sn−1 := {x ∈ Rn | |x| = 1}.

(H2) For any compact set K ⊂ Rn there is a modulus ωK such that

|H(x, p)−H(x− hp, p)− h⟨∇xH(x, p), p⟩| <= |h|ωK(|h|) (3.4)

for all (x, p) ∈ K × Sn−1 and h ∈ (0, 1).
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This is true if H(·, p) ∈ C1(Rn) for all p ∈ Sn−1. For later use, we remark that

• We may assume that ωK in (H2) is increasing and limr→∞ ωK(r) = ∞. Denote the
inverse function of ωK by a = ω−1

K , which is a modulus too.

We use the function a in discussions below.
If a unbounded evolution is considered, one has to assume (H2) for K = Rn, or assume

H(·, p) ∈ C1(Rn) with ∇xH(·, p) ∈ UC (Rn) for all p ∈ Sn−1.
We next state how to define G : Rn × Rn → R in the improved equation (1.4). The

equation (3.3) tempts us to set G(x, p) as ⟨∇xH(x, p), p⟩; however, such a G does not
necessarily possess boundedness required in (CP). For this reason, we define G as a suitable
modification of the inner product; we replace p by p/|p|.

(G1) There exists some σ ∈ (0, 1) such that

G(x, p) =

⟨
∇xH

(
x,

p

|p|

)
,
p

|p|

⟩
for all (x, p) ∈ Rn ×Rn, |p| >= σ.

The constant σ > 0 is introduced to avoid a singularity at p = 0. Any conditions for |p| < σ
are not required in (G1). However, recall that we are now assuming that G satisfies the
continuity given in (CP) in the whole of Rn ×Rn.

For simplification we collect all the assumptions above.

(A1) H and G satisfy (CP), (H1), (H2) and (G1); moreover, (S1) and (S2) hold.

By the effect of the error term o(d), the distance function d itself is neither a subsolution
nor a supersolution of (1.4). To get such solutions, we set

d+(x, t) := eεtd(x, t), d−(x, t) := e−εtd(x, t). (3.5)

Proposition 3.2 (Sub- and supersolutions near zero level sets). Assume (A1). Choose
ε,K, a so that

ε ∈
(
0,− log σ

T

]
;K ⊂ Rn is a compact set such that N ⊂ K; a = ω−1

K , (3.6)

where σ is the constant in (G1) and ωK is the modulus in (H2). Let r > 0 and set δr :=
min{a(r), δ}. Then, for all (x, t) ∈ {|d| < δr},

|∂td+(x, t) +H(x,∇d+(x, t))− d+(x, t){G(x,∇d+(x, t)) + ε}| <= r|d+(x, t)|,
|∂td−(x, t) +H(x,∇d−(x, t))− d−(x, t){G(x,∇d−(x, t))− ε}| <= r|d−(x, t)|.

In particular, if r <= ε, then d+ is a supersolution (resp. subsolution) of (1.4) in {0 <= d <
δr} (resp. in {−δr < d <= 0}), and d− is a subsolution (resp. supersolution) of (1.4) in
{0 <= d < δr} (resp. in {−δr < d <= 0}).

Proof. Let us fix (x, t) ∈ {|d| < δr}. Then d is differentiable at (x, t) since δr <= δ. Using
(H1) and (3.2), we compute

∂td
± +H(x,∇d±) = ±εd± + e±εt∂td+H(x, e±εt∇d)

= ±εd± + e±εt{∂td+H(x,∇d)}
= ±εd± + e±εt{H(x,∇d)−H(x− d∇d,∇d)}. (3.7)

7



Now, the choice of ε gives e−εt > e−εT >= σ for all t ∈ (0, T ). Thus (G1) implies

G(x,∇d±) = G(x, e±εt∇d) = ⟨∇xH(x,∇d),∇d⟩. (3.8)

Here we used |∇d| = 1 (Remark 1). We next choose h = d(x, t) and p = ∇d(x, t) in (3.4).
Since |h| < δ < 1 and |p| = 1, these choices are possible. Then

|H(x,∇d)−H(x− d∇d,∇d)− d⟨∇xH(x,∇d),∇d⟩| <= |d|ωK(|d|) <= |d|ωK(a(r))

= r|d|.

We apply (3.8) to the left-hand side and multiply both the sides by e±εt to get

|e±εt{H(x, p)−H(x− d∇d,∇d)} − d±G(x,∇d±)| <= r|d±|. (3.9)

Finally, combining (3.9) and (3.7), we arrive at both the equations that we have to prove.
The remaining assertions for r <= ε are immediate consequences.

In order to derive the estimates (1.8) from the comparison principle, we need to extend
the local sub-/supersolution d± in Proposition 3.2 so that they become a sub-/supersolution
in the whole of Rn × (0, T ). To do this, we prepare

Lemma 3.3. Let f1, f2, ϕ ∈ C1(U) for U ⊂ Rn open, and define g := min{f1, f2}. Assume
that f1(z) = f2(z) at z ∈ U . If g − ϕ attains a local maximum at z, then ∇ϕ(z) =
λ∇f1(z) + (1− λ)∇f2(z) for some λ ∈ [0, 1].

Proof. By [1, Proposition II.2.13 and II.4.4], D+g(z), a superdifferential of g at z, is equal
to the convex hull of Y (z) := {∇f1(z), ∇f2(z)}. This gives the lemma.

Let c, L,M > 0. We set V (x, t) := (3L/c)e∥G∥td+(x, t) and define u± : Rn× [0, T ) → R,
which is shown in Figure 1, as

u+(x, t) =

{
min

{
max{d+(x, t), V (x, t)− L}, Le∥G∥t} if d(x, t) >= 0,

max
{
d−(x, t), −ce−Mt

}
if d(x, t) < 0,

(3.10)

u−(x, t) =

{
min

{
d−(x, t), ce−Mt

}
if d(x, t) >= 0,

max
{
min{d+(x, t), V (x, t) + L}, −Le∥G∥t} if d(x, t) < 0.

(3.11)

Proposition 3.4 (Extension of sub- and supersolutions). Assume (A1). Choose ε,K, a
as in (3.6). Let c, L,M > 0 be constants such that 0 < c <= min{a(ε), δ}, L >= c, M >=
2∥G∥/(1−σeεT ) and M > ε. Define d± as in (3.5). Then, u+ and u− above are, respectively,
a viscosity supersolution and a viscosity subsolution of (1.4) in Rn × (0, T ).

Proof. 1. We only prove that u+ and u− are, respectively, a supersolution and a subsolution
in {d >= 0}; the proof in {d < 0} is the same as that in {d > 0}.

On {d = 0} = Γ the viscosity properties are derived in the same manner as in the
proof of Lemma 3.1. In fact, a test function for u+ at (z, s) ∈ Γ is also a test function for
χ{w>0}. Therefore ∂tϕ(z, s) + H(z,∇ϕ(z, s)) >= 0 = u+(z, s)G(z,∇ϕ(z, s)). The proof for
u− is similar.
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x ∈ R
n

t > 0

u+

u−

Le‖G‖t

ce−Mt

d+ = eεtd

d− = e−εtd

3L

c
e
‖G‖t

d
+
− L

D+(t)

Figure 1: Definitions of u+ and u−.

In {d >= 0}, using L >= c, we see that u+ and u− are represented as follows:

u+(x, t) =


d+(x, t) if 0 <= d+(x, t) <= cL/(3Le∥G∥t − c),

V (x, t)− L if cL/(3Le∥G∥t − c) <= d+(x, t) <= c(1 + e−∥G∥t)/3,

Le∥G∥t if c(1 + e−∥G∥t)/3 <= d+(x, t),

u−(x, t) =

{
d−(x, t) if 0 <= d−(x, t) <= ce−Mt,

ce−Mt if ce−Mt <= d−(x, t).

When 0 <= d+(x, t) <= c(1 + e−∥G∥t)/3, we have

0 <= d(x, t) <=
c(1 + e−∥G∥t)e−εt

3
<

2

3
c <=

2

3
min{a(ε), δ}.

It thus follows from Proposition 3.2 with r = ε that d+ is a classical supersolution of (1.4)
in {0 <= d+ <= c(1 + e−∥G∥t)/3}. Similarly, if 0 <= d−(x, t) <= ce−Mt, then

0 <= d(x, t) <= ce(ε−M)t < c <= min{a(ε), δ}

since M > ε. Hence d− is a classical subsolution of (1.4) in {0 <= d− <= ce−Mt}.
2. u− is a viscosity subsolution of (1.4) in {d > 0}. Since we have M >= 2∥G∥/(1−

σeεT ) > 2∥G∥ >= ∥G∥, Lemma 2.4 implies that u(x, t) = ce−Mt is a subsolution in {ce−Mt <
d−}. What is left to show is that u− is a subsolution on {d− = ce−Mt}. To do this, take
a test function ϕ for u− at (z, s) ∈ {d− = ce−Mt}. Set (p, τ) := (∇ϕ(z, s), ∂tϕ(z, s)) and
α := d−(z, s) = ce−Ms. We want to deduce that I := τ +H(z, p)− αG(z, p) <= 0. Applying
Lemma 3.3 to u−, we see

p = λ∇d−(z, s) + (1− λ)∇(ce−Mt)(z, s) = λ∇d−(z, s),

τ = λ∂td
−(z, s) + (1− λ)∂t(ce

−Mt)(z, s) = λ∂td
−(z, s)−M(1− λ)α

9



for some λ ∈ [0, 1], and thus

I = λ∂td
− −M(1− λ)α+H(z, λ∇d−)− αG(z, λ∇d−)

= λ{∂td− +H(z,∇d−)} − αG(z, λ∇d−)−M(1− λ)α

<= λαG(z,∇d−)− αG(z, λ∇d−)−M(1− λ)α.

We now divide the situation into two different cases.

Case 1: |λ∇d−(z, s)| >= σ. Then G(z, λ∇d−(z, s)) = G(z,∇d−(z, s)) by (G1); thus

I/α = λG(z,∇d−)−G(z,∇d−)−M(1− λ) = (1− λ){−G(z,∇d−)−M}.

Recalling M >= ∥G∥, we see that I <= 0.

Case 2: |λ∇d−(z, s)| < σ. We first remark that λ < σ/|∇d−(z, s)| = σeεs < σeεT . Using
this estimate, we observe

I/α <= λ∥G∥+ ∥G∥ −M(1− σeεT ) <= 2∥G∥ −M(1− σeεT ).

The right-hand side is nonpositive by the choice of M , and therefore I <= 0.

3. u+ is a supersolution of (1.4) in {d > 0}. We first claim that, if K >= 1 and η > 0,
then V0(x, t) := Ke∥G∥td+(x, t)−η is a classical supersolution of (1.4) in {V0 >= 0}∩{d < c}.
Fix (x, t) such that V0(x, t) >= 0 and d(x, t) < c. Then |∇V0| = Ke∥G∥t|∇d+| >= |∇d+| >= 1,
and so G(x,∇V0) = G(x,∇d+) by (G1). Since d+ is a supersolution of (1.4), the following
computation shows the claim:

∂tV0 +H(x,∇V0) = K{∥G∥e∥G∥td+ + e∥G∥t∂td
+}+H(x,Ke∥G∥t∇d+)

= ∥G∥(V0 + η) +Ke∥G∥t{∂td+ +H(x,∇d+)}
>= ∥G∥(V0 + η) +Ke∥G∥td+G(x,∇d+)

= (V0 + η){∥G∥+G(x,∇V0)}
>= V0{∥G∥+G(x,∇V0)} >= V0G(x,∇V0).

Hereafter we choose K = 3L/c and η = L, so that V0(x, t) = V (x, t)− L.

Since we have already shown that d+, V0 and Le∥G∥t are supersolutions, we only need to
study u+ on {d+ = V0} and {V0 = Le∥G∥t}. On {V0 = Le∥G∥t} it is easily seen that there
is no test function for u+ from below, and so u+ is a supersolution.

We next assume that ϕ is a test function for u+ at (z, s) ∈ {d+ = V0}. Set (p, τ) :=
(∇ϕ(z, s), ∂tϕ(z, s)) and β := d+(z, s) = V0(z, s). Our goal is to show that J := τ+H(z, p)−
βG(z, p) >= 0. Similarly to Step 2, there is λ ∈ [0, 1] such that

p = λ∇d+(z, s) + (1− λ)∇V0(z, s) = λ∇d+(z, s) + (1− λ)Ke∥G∥s∇d+(z, s),

τ = λ∂td
+(z, s) + (1− λ)∂tV0(z, s)

= λ∂td
+(z, s) + (1− λ){∥G∥(β + η) +Ke∥G∥s∂td

+(z, s)}.

by Lemma 3.3. Set λ′ := λ+ (1− λ)Ke∥G∥s. Then

p = λ′∇d+(z, s), τ = λ′∂td
+(z, s) + (1− λ)∥G∥(β + η).
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Also, λ′ >= λ+ (1− λ) = 1, which gives G(z, λ′∇d+) = G(z,∇d+). Thus

J = λ′∂td
+ + (1− λ)∥G∥(β + η) +H(z, λ′∇d+)− βG(z, λ′∇d+)

= λ′{∂td+ +H(z,∇d+)}+ (1− λ)∥G∥(β + η)− βG(z,∇d+)

>= λ′βG(z,∇d+) + (1− λ)∥G∥(β + η)− βG(z,∇d+)

= −(1− λ′)βG(z,∇d+) + (1− λ)∥G∥(β + η).

The definitions of λ′ and β yield −(1− λ′)β = (1− λ)(Ke∥G∥sβ − β) = (1− λ)η, and so

J >= (1− λ)ηG(z,∇d+) + (1− λ)∥G∥(β + η)

= (1− λ)[η{G(z,∇d+) + ∥G∥}+ β∥G∥] >= 0.

This completes the proof.

Remark 2. Define

ρ0 := min

{
cLe−εT

3Le∥G∥T − c
, ce(ε−M)T

}
. (3.12)

Then, by the definitions of u+ and u− we see that

(u+(x, t), u−(x, t)) =

{
(eεtd(x, t), e−εtd(x, t)) if 0 <= d(x, t) <= ρ0,

(e−εtd(x, t), eεtd(x, t)) if − ρ0 <= d(x, t) <= 0.
(3.13)

We are now in a position to state our main theorem. There we take an initial data u0

which agrees with the signed distance function near Γ(0). Namely, we assume

there exists some m > 0 such that


u0(x) = d0(x) if |d0(x)| <= m,

u0(x) >= m if d0(x) > m,

u0(x) <= m if d0(x) < −m,

(3.14)

where we set d0(x) := d(x, 0).

Theorem 3.5 (Comparison with the signed distance function). Assume (A1) and (3.14).
Let u be a viscosity solution of (1.4) with (1.3). Then, for every ε > 0, there exists a positive
constant ρ(ε) > 0 such that

e−εtd(x, t) <= u(x, t) <= eεtd(x, t) if 0 <= d(x, t) <= ρ(ε),

eεtd(x, t) <= u(x, t) <= e−εtd(x, t) if − ρ(ε) <= d(x, t) <= 0.

Proof. We may take an ε > 0 small enough. Choose ε,K, a as in (3.6). Define

c := min{δ, a(ε), m}, L := ∥u0∥ = sup
x∈Rn

|u0(x)|, M := max

{
2∥G∥

1− σeεT
,
3ε

2

}
,

and let u± : Rn × [0, T ) → R be the functions in (3.10) and (3.11) with these constants.
We shall prove

u−(x, 0) <= u0(x) <= u+(x, 0) for all x ∈ Rn. (3.15)
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We give a discussion only in {d0(x) >= 0}; similar arguments work in {d0(x) < 0}. Let
x ∈ Rn satisfy d0(x) >= 0. By the definitions of u±, we notice that

u+(x, 0) = min

{
max

{
d0(x),

3∥u0∥
c

d0(x)− ∥u0∥
}
, ∥u0∥

}
,

u−(x, 0) = min {d0(x), c} .

If 0 <= d0(x) <= m, then u0(x) = d0(x) by (3.14) and hence

u+(x, 0) >= min {d0(x), ∥u0∥} = min {u0(x), ∥u0∥} = u0(x),

u−(x, 0) <= min{d0(x), m} = d0(x) = u0(x).

In the case where d0(x) > m, we estimate

u+(x, 0) >= min

{
3∥u0∥

c
d0(x)− ∥u0∥, ∥u0∥

}
>= min {2∥u0∥, ∥u0∥} >= u0(x),

u−(x, 0) <= min{d0(x), m} = m <= u0(x).

Thus (3.15) is proved. The comparison principle (Theorem 2.1) for (3.15) implies

u−(x, t) <= u(x, t) <= u+(x, t) for all (x, t) ∈ Rn × (0, T ). (3.16)

We set ρ(ε) := ρ0, where ρ0 is the constant in (3.12) with c, L and M given as above.
(Actually, ρ(ε) depends on T , ∥G∥, σ, a, m, and ∥u0∥ too.) Finally, combing (3.13) and
(3.16) gives the conclusion of the theorem.

4 Examples and numerical results

After giving examples of G = G(x, p) appearing in (1.4), we show numerical results.

Example 1. We consider the transport equation (1.5) with H(x, p) = ⟨X(x), p⟩. The
gradient of H with respect to x is ∇xH(x, p) = X ′(x)p, and so

G(x, p) =

⟨
∇xH

(
x,

p

|p|

)
,
p

|p|

⟩
=

⟨X ′(x)p, p⟩
|p|2

if |p| >= σ.

This is nothing but the function on the right-hand side of (1.6) by Roisman.

Example 2. Let H(x, p) = c(x)|p|. Then (1.2) is the eikonal equation:

∂tw(x, t) + c(x)|∇w(x, t)| = 0. (4.1)

Since the gradient of H is ∇xH(x, p) = |p|∇c(x), we see that

G(x, p) =

⟨
∇xH

(
x,

p

|p|

)
,
p

|p|

⟩
=

⟨∇c(x), p⟩
|p|

if |p| >= σ.

Example 3. We show a numerical comparison between solutions to the original (1.2) and
the improved (1.4) in the two dimensional case n = 2. The following computations are by
courtesy of Professor Norikazu Yamaguchi.
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We consider the eikonal equation (4.1) with c(x1, x2) = −f(x2) = − tanhx2 under the
initial data u0(x1, x2) = −x1; namely, the initial zero level is x2-axis. In this case, the slope
of the solution w of (1.2) goes to ∞ at the zero level as is shown in Figure 2, where five
black curves represent the levels of w at −0.2, −0.1, 0, 0.1, 0.2. On the other hand, for the
solution u of (1.4), we can see that the level sets have been well separated for a while as in
Figure 3.

The computations are done by the characteristic Galerkin method ([14]), in which we
rewrite the equations (1.2) and (1.4) as nonlinear transport equations:{

∂tw + ⟨v(w),∇w⟩ = 0,

∂tu+ ⟨v(u) +w(u),∇u⟩ = 0
with v(u) = −f(x2)

∇u

|∇u|
, w(u) = u

f ′(x2)

|∇u|
e2,

respectively. Here e2 = (0, 1) ∈ R2.

(a) t = 1.5 (b) t = 3.5

Figure 2: Level sets of the solution w of the original equation (1.2) in [−2, 2]× [−1, 1].

(a) t = 1.5 (b) t = 3.5

Figure 3: Level sets of the solution u of the improved equation (1.4) in [−2, 2]× [−1, 1].

5 Rate of convergence for (1.9)

For the solution uθ of (1.9), we shall derive a bound by the distance function d. The
conditions assumed in [11, Theorem 2.2] to show (1.10) are

(A2) u0 ∈ Lip(Rn) (Lipschitz continuous); H satisfies (CP) (i) with ω(r) = L1r (L1 > 0)
and (H1); β ∈ Lip(R) is non-decreasing and bounded in R with ±β(r) > 0 if ±r > 0;
h ∈ UC (Rn) and h(p) > 0 if |p| < 1, h(p) < 0 if |p| > 1.
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We emphasize that in [11] any regularities of d like (S2) are not needed for (1.10); d can be
discontinuous in t. Note also that the current assumptions on H guarantee

|H(x, p)−H(x− hp, p)| <= L1 min{3h, 2} for all x ∈ Rn, p ∈ Sn−1 and h > 0. (5.1)

In fact, (2.1) gives the bound 3hL1 while 2L1 is derived since |H| <= L1 in Rn × S1. This
comes from H(x, 0) = 0 and (2.1). Concerning β, we further assume

(B1) There exist some b1, µ1 > 0 such that b1|r| <= |β(r)| for all r ∈ [−µ1, µ1].

We now define functions g : [0, 1] → [0, g(1)] and g̃ : [0, g(1)] → [0, 1] as

g(r) := min{−h(p) | 1 + r <= |p| <= 2}, g̃(s) := inf{r ∈ [0, 1] | g(r) >= s}.

Then g(0) = 0, g > 0 in (0, 1], g is continuous and non-decreasing in [0, 1]. By these
properties we have g̃ > 0 in (0, g(1)], g ◦ g̃ = id and lims→0 g̃(s) = g̃(0) = 0.

Theorem 5.1. Assume (A2) and (B1). Let α ∈ (0, 1). Set ρ(θ) := g̃(θ−α) and vθ(x, t) :=
(1 + ρ(θ))d(x, t). Then vθ is a viscosity supersolution (resp. subsolution) of (1.9) in D+

(resp. in D−) for all θ > 0 sufficiently large. Moreover, if |u0| <= |d0| in Rn, then the unique
solution uθ of (1.9) with (1.3) satisfies |uθ| <= |vθ| in Rn × (0, T ) for such θ > 0.

Proof. We prove that vθ is a supersolution in D+; the discussion is similar in D−. Take a
test function ϕ for vθ at (x, t) ∈ D+, and set (p, τ) := (∇ϕ(x, t), ∂tϕ(x, t)). Then ϕ/(1+ρ(θ))
is a test function for d at (x, t). By Remark 1 we see that

τ

1 + ρ(θ)
+H

(
x− d(x, t)

p

1 + ρ(θ)
,

p

1 + ρ(θ)

)
>= 0 (5.2)

and that |p/(1 + ρ(θ))| = 1. Using (5.2) and (5.1), we observe

τ +H(x, p) = (1 + ρ(θ))

{
τ

1 + ρ(θ)
+

1

1 + ρ(θ)
H(x, p)

}
>= (1 + ρ(θ))

{
−H

(
x− d(x, t)

p

1 + ρ(θ)
,

p

1 + ρ(θ)

)
+H

(
x,

p

1 + ρ(θ)

)}
>= −(1 + ρ(θ))L1 min{3d(x, t), 2} >= −2L1 min{3d(x, t), 2}.

Since |p| = 1 + ρ(θ), we have −h(p) >= g(ρ(θ)) = g(g̃(θ−α)) = θ−α. Also, the monotonicity
of β gives β(d(x, t)) <= β(vθ(x, t)). Summarizing the above, we get

I := τ +H(x, p)− θβ(vθ(x, t))h(p) >= −2L1 min{3d(x, t), 2}+ θ1−αβ(d(x, t)).

If d(x, t) >= µ1, then I >= −2L1 ·2+ θ1−αβ(µ1). The right-hand side is non-negative for large
θ. In the case where 0 < d(x, t) <= µ1, (B1) implies that

I >= −2L1 · 3d(x, t) + θ1−αb1d(x, t) = d(x, t){−6L1 + b1θ
1−α},

and therefore I >= 0 for θ > 0 large. Hence we conclude that vθ is a supersolution.
The remaining assertion is a consequence of the comparison principle. In fact, it is easy

to see that vθ+, the plus part of vθ, is a supersolution of (1.9) in the whole Rn × (0, T ) as
is mentioned in [11, 1st paragraph of Section 3.2]. Thus uθ <= vθ+ in Rn × (0, T ), and in
particular 0 < uθ <= vθ in D+. Similarly, considering the minus part of vθ gives vθ <= uθ < 0
in D−. On Γ we have uθ = vθ.

Example 4. For our typical h(p) = 1 − |p|, we see that g(r) = r, g̃(s) = s, and so
ρ(θ) = g̃(θ−α) = θ−α. Theorem 5.1 thus yields |uθ| <= (1 + θ−α)|d| for any α ∈ (0, 1).
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