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PREFACE

This volume is intended as the proceedings of Sapporo Symposium on Partial

Differential Equations, held on August 19 through August 21 in 2015 at Faculty of

Science, Hokkaido University.

Sapporo Symposium on PDE has been held annually to present the latest devel-

opments on PDE with a broad spectrum of interests not limited to the methods of

a particular school. Professor Taira Shirota started the symposium more than 35

years ago. Professor Kôji Kubota and late Professor Rentaro Agemi made a large

contribution to its organization for many years.

We always thank their significant contribution to the progress of the Sapporo

Symposium on PDE.

S. Ei, Y. Giga, S. Jimbo, H. Kubo, T. Ozawa, T. Sakajo

H. Takaoka, Y. Tonegawa, and K. Tsutaya
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An integration by parts formula for Feynman path integrals
— Time slicing approximation method —∗†

Daisuke Fujiwara ‡

August, 2015

Abstract

We are concerned with rigorously defined, by time slicing method, Feynman path integral∫
Ωx,y

F (γ)eiνS(γ)D(γ) of a functional F (γ), cf. [6]. Here Ωx,y is the set of paths γ(t) in Rd starting

from a point y ∈ Rd at time s and arriving at x ∈ Rd at time s′, S(γ) is the action of γ and
ν = 2πh−1, with Planck’s constant h. If p(γ) is a vector field on the path space with suitable
property, we prove the following integration by parts formula for Feynman path integral:∫

Ωx,y

DF (γ)[p(γ)]eiνS(γ)D(γ) = −
∫
Ωx,y

F (γ)Div p(γ)eiνS(γ)D(γ)− iν

∫
Ωx,y

F (γ)DS(γ)[p(γ)]eiνS(γ)D(γ).

Here DF (γ)[p(γ)] and DS(γ)[p(γ)] are differentials of F (γ) and S(γ) evaluated in the direction of
p(γ), respectively, and Div p(γ) is divergence of vector fields p(γ). This formula is an analogy to
Elworthy’s integration by parts formula for Wiener integrals, cf. [1]. As an application, we prove a
semiclassical asymptotic formula of the Feynman path integrals which gives us a sharp information
in the case F (γ∗) = 0. Here γ∗ is the stationary point of the phase S(γ).

1 Feynman path integrals

Feynman’s path integral introduced by [2] is a method to construct the fundamental solution
k(s′, s; , x, y) of Schrödinger equation using Lagrangian of classical mechanics

L(t, ẋ, x) =
1

2
|ẋ|2 − V (t, x).

Here V (t.x) is the potential field and x is the position of the particle and ẋ is the velocity.
Let [s, s′] be a time interval. Action of a path, γ : [s, s′] � t → γ(t) ∈ Rd is

S(γ) =

∫ s′

s

L(t, γ̇(t), γ(t))dt.

Let x, y be arbitrary points of Rd. Let Ωxy = {γ; [s, s′] → Rd, γ(s) = y, γ(s′) = x} be the path
space starting from y at time s and arriving at x at time s′. Feynman’s path integral is the following
quite formal formula using S(γ).

k(s′, s;x, y) =
1

N

∑
γ∈Ωxy

exp

(
i

�
S(γ)

)
, N is the normalizing factor . (1)

Here summation
∑

γ∈Ω is summation over all paths in Ω. Since Ω is a continuum, it is customary
to use symbol of integration,i.e.,

k(s′, s;x, y) =
∫
Ωxy

exp

(
i

�
S(γ)

)
D[γ]. (2)

∗2010 Mathematics Subject Classifications: Primary 81S40; Secondary 35A08,46T12,58D30,81Q20.
†Keywords: Feynman path integrals, integration by parts,quantum mechanics,Feynman propagator,Schrödinger equa-

tion, semiclassical techniques, Wiener integrals.
‡Gakushuin university
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This is called Feynman path integral. More generally, one can discuss integration of the form∫
Ωxy

F (γ) exp

(
i

�
S(γ)

)
D[γ]

for functional F (γ) of γ.

1.1 Time slicing approximation for Feynman path integral

The formula (1) or (2) is quite formal. Feynman gave more solid formulation in [2] and we follow
him. We assume that d = 1 for simplicity.

Classical path is the solution of the variational problem,

δS(γ0) = 0, γ0(s) = y, γ0(s
′) = x.

Let Δ be an arbitrary division of the interval [s, s′]

Δ : s = T0 < T1 < · · · < TJ < TJ+1 = s′. (3)

We set τj = Tj − Tj−1, ( j = 1, 2, . . . , J + 1) and |Δ| = max1≤j≤J+1τj .
For j = 1, 2, . . . , J , choose an arbitrary point xj ∈ R. We set x0 = y, xJ+1 = x. Consider

classical path γ1 starting from (T0, x0) and ending at (T1, x1). Connect (T1, x1) and (T2, x2), by
classical path. Similarly, connect all pairs (Tj , xj) and (Tj+1, xj+1), j = 0, 1, . . . , J by classical
paths. Thus we get a long path γΔ(xJ+1, xJ , . . . , x1, x0) connecting (T0, x0) and (TJ+1, xJ+1) that
may not be smooth. It may have edge at (Tj , xj) ,j = 1, 2, . . . , J . Some time we abbreviate
γΔ(xJ+1, xJ , . . . , x1, x0) to γΔ.

The action S(γΔ) of γΔ(xJ+1, xJ , . . . , x0) is a function of (xJ+1, xJ , . . . , x1, x0) if Δ is fixed.

S(γΔ)(xJ+1, xJ , . . . , x0) =

∫ s′

s

L(t, ˙γΔ(t), γΔ(t))dt =
J+1∑
j=1

∫ Tj

Tj−1

L(t, γ̇j(t), γj(t))dt.

Similarly if a functional F (γ) of γ is given, F (γΔ) is a function of (xJ+1, xJ , . . . , x1, x0). For
the sake of brevity we often abbreviate F (γΔ) to FΔ and S(γΔ) to SΔ.

Feynman formulated:∫
Ωxy

F (γ) exp (iνS(γ))D[γ] = lim
|Δ|→0

I[FΔ](Δ; ν, b, a, x, y), (4)

where

I[FΔ](Δ; ν, s′, s, x, y) (5)

=
J+1∏
j=1

(
ν

2πiτj

)1/2 ∫
RJ

F (γΔ)(xJ+1, xJ , . . . , x1, x0) exp (iνS(γΔ)(xJ+1, xJ , . . . , x1, x0))
J∏

j=1

dxj .

Sice the integral on the right hand side of this does not converge absolutely, we regard this as
an oscillatory integral. We call I[FΔ](Δ; ν, s′, s, x, y) time slicing approximation of Feynman path
integral.

1.2 Our assumptions for Potential

For simplicity, we assume that the configuration space is R1.
Our assumption for potential V (t, x) is the following. cf. W.Pauli [7].

Assumption 1.1 1. V (t, x) is a real continuous function of (t, x) and of class C∞ in x.

2. ∀m ≥ 0 ∃vm ≥ 0 such that

max
|α|=m

sup
(t,x)∈[s,s′]×R

∣∣∂α
xV (t, x)

∣∣ ≤ vm(1 + |x|)max {2−m,0}.

One can prove the following

Proposition 1.2 Let δ0 > 0 be so small that
δ20dv2
8

< 1.

If |s′ − s| ≤ δ0, then ∀x, y ∈ R there exists a unique classical path γsuch that γ(s) = y and
γ(s′) = x.

2
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Let Δ be an arbitrary division of [s, s′] as (3).
Assume that |Δ| ≤ δ0. Let ∀xj ∈ R, j = 1, 2, . . . , J . We set x0 = y, xJ+1 = x. We can uniquely

define the piecewise classical path γΔ(xJ+1, . . . , x0) by Proposition 1.2. Let Γx,y(Δ) denote the
space of all piecewise classical paths associated with division Δ. Then Γx,y(Δ) is identified with
RJ , if |Δ| ≤ δ0.

2 Property of classical action

From now we always assume |s′ − s| ≤ δ0.
For any x, y ∈ R the classical path γ with γ(s) = y, γ(s′) = x is unique. We write

S(s′, s, x, y) = S(γ). (6)

Calculation shows:

Proposition 2.1 If |s′ − s| ≤ δ0, S(s
′, s, x, y) is of the following form:

S(s′, s, x, y) =
|x− y|2
2(s′ − s)

+ (s′ − s)φ(s′, s, x, y).

The function φ(s′, s, x, y) is a function of (s′, s, x, y) of class C1 and ∃C > 0 such that

|φ(s′, s, x, y)| ≤ C(1 + |x|2 + |y|2). (7)

Moreover, φ(s′, s, x, y) is a C∞ function of (x, y) and ∀m ≥ 2 we have

max
2≤|α|+|β|≤m

sup
(x,y)∈R2

∣∣∂α
x ∂

β
y φ(s

′, s, x, y)
∣∣ = κm < ∞.

In particular,

κ2 ≤ v2
2

(
1− v2δ

2
0

8

)−1

.

Let Δ be the division (3) of the interval [s, s′]
We discuss the time slicing approximation of path integral.

I[FΔ](Δ; ν, s′, s, x, y) =
J+1∏
j=1

(
ν

2πiτj

)1/2 ∫
RJ

FΔ(xJ+1, xJ , . . . , x1, x0)e
iνSΔ(xJ+1,xJ ,...,x1,x0)

J∏
j=1

dxj .

Consider J × J matrix Ψ whose (j, k) element is

Ψjk = ∂xj∂xk
SΔ(xJ+1, xJ , . . . , x1, x0).

Then we divide the matrix Ψ into two parts.

Ψ = HΔ +WΔ,

where

HΔ =

⎛⎜⎜⎜⎜⎜⎜⎝

1
τ1

+ 1
τ2

− 1
τ2

0 0 · · · 0 0

− 1
τ2

1
τ2

+ 1
τ3

− 1
τ3

0 · · · 0 0

0 − 1
τ3

· · · · · · · · · · · · 0
...

... · · · · · · · · · ... − 1
τJ

0 0 0 · · · 0 − 1
τJ

1
τJ

+ 1
τJ+1

⎞⎟⎟⎟⎟⎟⎟⎠
and

WΔ (8)

=

⎛⎜⎜⎜⎜⎝
∂2
x1
(τ1φ1 + τ2φ2) ∂x2∂x1τ2φ2 0 0 · · · 0 0
∂x1∂x2τ2φ1 ∂2

x2
(τ2φ2 + τ3φ3) ∂x3∂x2τ3φ3 0 · · · 0 0

0 ∂x2∂x3τ3φ3 · · · · · · · · · · · ·
...

... · · · · · · · · · ... ∂xJ
∂xJ−1

τJφJ

0 0 0 · · · 0 ∂xJ−1∂xJ τJφJ ∂2
xJ
(τJφJ + τJ+1φJ+1)

⎞⎟⎟⎟⎟⎠
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The matrix HΔ is a constant matrix with determinant

detHΔ =
τ1 + τ2 + · · ·+ τJ+1

τ1τ2 . . . τJ+1
=

(s′ − s)

τ1τ2 . . . τJ+1
.

It has it inverse H−1
Δ . Regarding WΔ as an perturbation, we write

Ψ = HΔ(I +H−1
Δ WΔ).

Proposition 2.2 Let 0 < δ1 be so small that δ1 ≤ δ0 and κ2δ
2
1 < 1 . Let |s′ − s| ≤ δ1. Then

∀(xJ+1, xJ , . . . , x1, x0) ∈ RJ+2

(1− κ2δ
2
1)

J ≤ det(I +H−1
Δ WΔ) ≤ (1 + κ2δ

2
1)

J .

Assume |s′− s| ≤ δ1. Let γ
∗ be the unique classical path starting from y at time s and reaching

x at time s′. Let x∗j = γ∗(Tj) for j = 0, 1, 2, . . . , J + 1 and W ∗
Δ = WΔ

∣∣∣
xj=x∗

j ,1≤j≤J
. We set

D(Δ; s′, s, x, y) = det(I +H−1
Δ W ∗

Δ) =

(
τ1τ2 . . . τJ+1

(s′ − s)

)
detHessx∗

J ,x
∗
J−1,...x

∗
1
SΔ(xJ+1, xJ , . . . , x1, x0).

HereHessx∗
J ,...x

∗
1
SΔ(xJ+1, xJ , . . . , x1, x0) is the Hessian matrix at (x∗J , . . . x

∗
1) of SΔ(xJ+1, xJ , . . . , x1, x0).

Proposition 2.3 If |t− s| ≤ δ1, then there exists the limit

lim
|Δ|→0

D(Δ; t, s, x, y) = D(t, s, x, y) (9)

and (
ν

2πi(t− s)
)1/2D(t, s, x, y)−1/2 satisfies the transport equation. Let (− d2

dt2 )
−1 be the green op-

erator of Dirichlet boundary problem. Then D(t, s, x, y) is the infinite dimensional determinant

D(t, s, x, y) = det

(
− d2

dt2
− ∂2

xV (t, γ∗)
)(

− d2

dt2

)−1

. (10)

3 Stationary phase method for integrals over a space of large
dimension

Let Δ be a division of interval [s, s′] as (3). We call a division Δ′ of the interval [s, s′] coarser than
the division Δ if Δ is a refinement of Δ′. Let 0 = j0 < j1 < · · · < jp < jp+1 = J + 1 be any
subsequence of {0, 1, . . . , J, J + 1}. Then

Δ′ : a = Tj0 < Tj1 < · · · < Tjp < Tjp+1 = b (11)

is a division of the interval [s, s′] coarser than Δ. There exists a natural embedding map Γx,y(Δ
′) ⊂

Γx,y(Δ). We shall write ιΔΔf : Γx,y(Δ
′) → C for the pull back of a function f : Γx,y(Δ) → C by

this embedding.
It is clear that

ιΔΔ′S(xJ+1, xjp , . . . , xj1 , x0) =

p+1∑
n=1

S(Tjn , Tjn−1 , xjn , xjn−1). (12)

The interval [a, b] itself is a particular division of [s, s′], which we write Δ(J+1). Then ιΔΔ(J+1)SΔ(xJ+1, x0) =

S(b, a, x, y).
For fixed Δ we discuss

I(Δ, S, aλ, ν)(xJ+1, x0) (13)

=
J+1∏
j=1

(
ν

2πiτj

)1/2 ∫
RJ

aλ(xJ+1, xJ , . . . , x1, x0)e
(iνSΔ(xJ+1,xJ ,...,x1,x0))

J∏
j=1

dxj .

Assumption for the amplitude aλ(xJ+1, xJ , . . . , x1, x0) is the following:

4
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Assumption 3.1 Let m be a nonnegative number. The amplitude function aλ = aλ(xJ+1, xJ , . . . , x1, x0)
may depend on a parmeter λ. For any negative integer K there exists a positive constant AK and
XK such that XK ≥ 1 such that

1. ∣∣∣(J+1∏
j=0

∂αj
xj

)
aλ(xJ+1, xJ , . . . , x1, x0)

∣∣∣ ≤ AKXJ+2
K (1 + |λ|+ |xJ+1|+ |xJ |+ . . .+ |x1|+ |x0|)m.

if |αj | ≤ K for all j = 0, 1, . . . , J + 1.

2. Let Δ′ be
Δ′ : s = Tj0 < Tj1 < · · · < Tjp < Tjp+1 = s′ (14)

any division coarser than Δ. Let 0 = j0 < j1− 1 < j1 < j2− 1 < · · · < jn < jn+1− 1 = J +1,
n = 1, . . . , J be any sequence of indices. Let {αj} be a sequence of indices which satisfies
|αj | ≤ K. Then for any (x0, xj1−1, xj1 , . . . , xjn−1 , xjn−1, xjn , xJ+1) ∈ R2n+2

∣∣∂α0
x0

∂αJ+1
xJ+1

(
p+1∏
k=0

∂
αjk
xjk

)
(ιΔΔ′aλ)(xJ+1, xjp , . . . , xj1 , x0)

∣∣
≤ AKX2p+2

K (1 + |λ|+ |xJ+1|+ |xjp |+ . . .+ |xj1 |+ |x0|)m.

Set T = |s′ − s|. For integers 1 ≤ k < l ≤ J + 1 we set

Sl,j(xl, . . . , xj−1) =
l∑

k=j

Sk(xk, xk−1)

and for any fixed (xl, xj−1) ∈ R2 let S∗l,j(xl, xj−1) be the stationary value of

(xl−1, . . . , xj) → Sl(xl, xl−1) + Sl−1(xl−1, xl−2) + · · ·+ Sj(xj , xj−1)

at the stationary point (x∗l−1, x
∗
l−2, . . . , x

∗
j ). Since x

∗
k, j ≤ k < l is a function of (xl, xj−1), we denote

it by x∗k(xl, xj−1). i.e.,

S∗l,j(xl, xj−1) = Sl(xl, x
∗
l−1) +

l−1∑
k=j+1

Sk(x
∗
k(xl, xj−1), x

∗
k−1(xl, xj−1)) + Sj(x

∗
j , xj−1). (15)

We understand that Sj,j(xj , xj−1) = Sj(xj , xj−1). Note that SJ+1,1(xJ+1, . . . , x0) = S(xJ+1, . . . , x0).
We use also the notation

Dx∗
l−1,...,x

∗
j
(Sl,j ;xl, xj−1) =

(
τl + · · ·+ τj

τl · · · τj

)
detHess(

l∑
k=j

Sk(xk, xk−1))
∣∣∣
xk=x∗

k,j≤k≤l−1
,

Here Hess means the Hessian at the critical point (x∗l−1, . . . , x
∗
j ). For any k = 1, 2, . . . , J + 1 we

define the division
Δ(k) : s = T0 < Tk < Tk+1 < · · · < TJ+1 = s′. (16)

Δ(1) = Δ and Δ(J +1) is Δ(J +1); s = T0 < TJ+1, i.e.,the interval itself without any intermediate
dividing poit. Then

Theorem 3.2 Suppose that T ≤ δ and aλ(xJ+1, xJ , . . . , x1, x0) satisfies Assumption ??. We fur-
ther assume that |Δ|T ≤ 1. Then

I(Δ;S, aλ, ν)(xJ+1, x0) (17)

=
( ν

2πiT

)1/2
eiνS

∗
J+1,1(xJ+1,x0)Dx∗

J ,...,x
∗
1
(SJ+1,1;xJ+1, x0)

−1/2
(
ιΔΔ(J+1)aλ(xJ+1, x0) + ν−1Tp(Δ, xJ+1, x0)

)
+ ν−1T 2|Δ|

( ν

2πiT

)1/2
eiνS

∗
J+1,1(xJ+1,x0)q(Δ, xJ+1, x0)

+ ν−2T 2
( ν

2πiT

)1/2
eiνS

∗
J+1,1(xJ+1,x0)r(Δ, ν, xJ+1, x0).
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Here

p(Δ, xJ+1, x0) (18)

= − i

2T

J∑
j=1

Tjτj+1

Tj+1
(ι

Δ(j)
Δ(J+1)Dx∗

j−1,...,x
∗
1
(Sj,1;xj , x0)

1/2∂2
xj
(Dx∗

j−1,...,x
∗
1
(Sj,1, xj , x0)

−1/2ιΔΔ(j)aλ))(xJ+1, x0).

q(Δ, xJ+1, x0) is independent of ν. And functions q(Δ, xJ+1, x0) and r(Δ, ν, xJ+1, x0) satifies the
following estimate. For any K ≥ 0 there exists an integer M(K) ≥ 0 and a constant CK > 0
independent of Δ such that

(1 + |λ|+ |xJ+1|+ |x0|)−m|∂αJ+1
xJ+1

∂α0
x0

q(Δ, xJ+1, x0)| ≤ CKAM(K) (19)

(1 + |λ|+ |xJ+1|+ |x0|)−m|∂αJ+1
xJ+1

∂α0
x0

r(Δ, ν, xJ+1, x0)| ≤ CKAM(K), (20)

if multi-indices α0, αJ+1 satisfies |α0| ≤ K and |αJ+1| ≤ K. [3], [5].

Remark 1 Tsuchida [8] treated the case of non-zero vector potential.

4 Convergence of Feynman integral

We discuss convergence of Feynman path integral. Our discussion is valid only for those F (γ) that
have rather restrictive properties.

Assumption 4.1 (N.Kumano-go’s condition) Let m be a non-negative constant. There exists
a bounded Borel measure ρ ≥ 0 on [s, s′]. For any non-negative integer K there exist positive
constants AK and XK such that for any division Δ and for any indices αj, j = 0, 1, 2, . . . , J + 1
satisfying |αj | ≤ K there holds the following inequlities.∣∣∣∣∣

(
J+1∏
k=0

∂αj
xj

)
F (γΔ(xJ+1, xJ , . . . , x1, x0))

∣∣∣∣∣ ≤ AKXJ+2
K (1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)m.

∣∣∣(p+1∏
n=0

∂αj
xj

)(
∂β
xk
FΔ

)
(xJ+1, . . . , xk+1, xk, xk−1, . . . , x0)

∣∣∣
≤ AKXp+2

K ρ([Tk−1, Tk+1])(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)m if |β| ≥ 1. (21)

Remark 2 F (γ) ≡ 1 clearly satisfies this assumption.

Example 4.2 Let ρ(t) be a function of bounded-variation on [s, s′] and f(t, x) be a continuous
function of (t, x) ∈ [s, s′]×R and infinitely differentiable in x. Suppose that for any α there exists
a positive constant Cα such that

|∂α
x f(t, x)| ≤ Cα(1 + |x|)m, (22)

with some m ≥ 0 independent of α and (t, x). Then the following functional satisfies Assumptions
(4.1).

F (γ) =

∫ s′

s

f(t, γ(t)) dρ(t). (23)

The next theorem was proved by Kumano-go [6], while the case F (γ) ≡ 1 had been known [4].

Theorem 4.3 Assume that the integrand F (γ) satisfies Assumption 4.1 and Assumption ?? above
and |s′ − s| is so small that |s′ − s| ≤ δ0. Then the limit

K[F ](ν, s′, s, x, y) = lim
|Δ|→0

I[FΔ](Δ; ν, s′, s, x, y) (24)

exists in B(m)(R
2). K[F ](ν, s′, s, x, y) is of the form

K[F ](ν, s′, s, x, y) =
(

ν

2πi(s′ − s)

)1/2

eiνS(γ∗)k(F ; ν, s′, s, x, y). (25)
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k(F ; ν, s′, s, x, y) can be written as

k(F ; ν, s′, s, x, y) = D(s′, s, x, y)−1/2
(
F (γ∗) + ν−1R[F ](ν, s′, s, x, y)

)
. (26)

More precisely, for any non negative K there exist a positive constant Cαβ and an integer
M(K)such that

|∂α
x ∂

β
yR[F ](ν, s′, s, x, y)| ≤ CKAM(K)|s− s′|(|s− s′|+ ρ([s, s′]))(1 + |x|+ |y|)m,

Remark 3 We may write ∫
Ω

eiνS(γ)F (γ)D[γ] = K[F ](ν, s′, s, x, y). (27)

Remark 4 Equality (26) together with (??) imply semi-classical asymptotic formula.

Theorem 4.4 In the case F (γ) ≡ 1, K[1](ν, s′, s, x, y) =
∫
Ωx,y

eiνS(γ)F (γ)D[γ] is infact the fun-

damental solution of Schrödinger equation.

5 An integration by parts formula

1 We set s = 0 and s′ = T for simplicity. Let X = L2([0, T ]) and H = H1([0, T ]) be the real
L2-Sobolev space of order 1. For any x, y ∈ R, we write Hx,y = {γ ∈ H : γ(0) = y, γ(T ) = x}. Hx,y

is an infinite dimensional differentiable manifold. Its tangent space at γ ∈ Hx,y is identified with
the Hilbert space H0 = H1

0 ([0, T ]) = {γ ∈ H; γ(0) = γ(T ) = 0} equipped with the inner product

(h1, h2)H0 =

∫ T

0

d

dt
h1(t)

d

dt
h2(t) dt.

We denote the norm in H0 by‖h‖H0 for h ∈ H0.
Let ρ̃ : H → X be the canonical embedding and ρ : H0 → L2(0, T ) be its restriction to H0 and

ρ∗ : L2(0, T ) → H0 be its adjoint. We use the symbol L(X ) for the Banach space of all bounded
linear operators in L2(0, T ) equipped with operator norm.

5.1 m-smooth functional

We use the following notation : Let Y be a Banach space with norm ‖ ‖Y . Let Δ be a division of
[0, T ], γΔ and {xJ+1, xJ , . . . , x1, x0} be as before. Assume that F (γΔ) is a map F : Γ(Δ) � γΔ →
F (γΔ) ∈ Y and is infinitely differentiable with respect to (xJ+1, . . . , x0). Let K be a nonnegative
integer, m be a nonnegative constant and X ≥ 1 be a constant. Then we define a norm of F (γΔ)
defined on Γ(Δ):

‖F (γΔ)‖{Y;Δ,m,K,X,} (28)

= max
α0≤K,...αJ+1≤K

sup
xj∈R,for 0≤j≤J+1

(1 + |xJ+1|+ · · ·+ |x0|)−m

∥∥∥∥∥∥
J+1∏
j=0

X−|αj |∂αj
xj
F (γΔ)

∥∥∥∥∥∥
Y

,

where max is taken over all multi-indices α withm(α) ≤ K and sup is taken over all (xJ+1, . . . , x0) ∈
RJ+2. Moreover if F (γ) is defined on H, then we define

‖F‖{Y;m,K,X} = sup
Δ

‖F‖{Y;Δ,m,K,X}, (29)

where sup is taken over all divisions Δ of [0, T ]. If Y = R or C, we simply write ‖F‖{Δ,m,K,X,} or
‖F‖{m,K,X}.

Suppose that a functional F (γ);Hx,y → C is Fréchet differentiable at γ. Then DF (γ) denotes
its differential. For h ∈ H0,

DF (γ)[h] = (DF (γ), h)H0 ∀h ∈ H0.

1cf. [9]
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Moreover, if there exists a density fγ(s) ∈ L2(0, T ) such that

DF (γ)[h] =

∫ T

0

fγ(s)ρh(s) ds, for ∀h ∈ H0, (30)

then we often denote fγ(s) by
δF (γ)

δγ(s)
or

δ

δγ(s)
F (γ).

Definition 5.1 Let m ≥ 0 be a constant. We call F (γ) a m-smooth functional if F (γ) satisfies
the following conditions.

F-I F (γ) is an infinitely differentiable map from Hxy to C.

F-2 ∀x, ∀y ∈ R and γ ∈ Hxy the differential DF (γ) has its density
δF (γ)

δγ(s)
, that is, ∀γ ∈ Hx,y∀h ∈

H0

DF (γ)[h] =

∫ T

0

δF (γ)

δγ(s)
ρh(s)ds,

F-3 Functional
δF (γ)

δγ(s)
is a continous functional of Hx,y × [0, T ] � (γ, s) −→ C. It is infinitely

differentiable with respect to γ ∈ Hx,y if s is fixed.

F-4 For any integer K ≥ 0 there are constants AK > 0 and XK ≥ 1 such that ∀K = 0, 1, 2, . . . ,,

AK = ‖F (γ)‖{m,K,XK} + sup
s∈[0,T ]

∥∥∥∥δF (γ)

δγ(s)

∥∥∥∥
{m,K,XK}

< ∞. (31)

Remark 5 Let δ be so small that v2δ
2 < 4 and v2δ < 1. If T ≤ δ, a m-smooth functional satisfies

condition of N. Kumano-go 4.1 and its Feynman path integral converges.

5.2 Some Operators of trace class

Let B : X → X be a bounded linear operator with operator norm ‖B‖L(X ).

Proposition 5.2 Linear operators ρ∗Bρ : H0 → H0 and ρρ∗B : X → X are of trace class. Their
traces are equal.

Let ∃k(s, t) ∈ L2([0, T ]× [0, T ]) be such that ∀f ∈ L2(0, T )

ρρ∗Bf(s) =

∫ T

0

k(s, t)f(t)dt. (32)

In particular, the kernel function of ρρ∗ is the Green operator for the Dirichlet boundary value
problem.

Proposition 5.3 k(s, t) has the properties

1. For ∀s ∈ [0, T ] k(s, t) is well defined function of t in L2(0, T ).

2. [0, T ] � s → k(s, ∗) is a strongly continuous mapping from [0, T ] to L2([0, T ]).

3. For almost every t ∈ [0, T ] k(s, t) is in the image of ρ as a function of s.

Proposition 5.4 For ε > 0 define

kε(s, t) = ε−1

∫ t+ε

t−ε

k(s, t)dt. (33)

Then kε(s, t) is continuous on [0, T ]× [0, T ]. Moreover,

Trace(ρρ∗B) = lim
ε→0

∫ b

a

kε(s, s) ds. (34)
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6 admissible vector field

Let p : Hxy � γ → p(γ) ∈ H0. Then p(γ) is a tangent vector field on Hxy. We write as usual
p(γ, s) = ρp(γ)(s). We have ∂sp(γ, s) ∈ L2(0, T ).

Definition 6.1 (Admissible vector field) We say that p(γ) is an admissible vector field if p(γ)
has the following properties:

1. There exits a C1 map q : H → L2(0, T ) such that

p(γ) = ρ∗q(γ), (γ ∈ Hx,y).

2. When we restrict q(γ) to Hx,y, the Fréchet differential Dq(γ) : H0 � h → Dq(γ)[h] ∈ L2(0, T )
can be boudedly extended to a bounded linear map B(γ) in L2(0, T ), that is, for any h ∈ H0,

Dq(γ)[h] = B(γ)ρh.

We often write
δq(γ)

δγ
for B(γ).

Let Dp(γ) : H0 → H0 be Fréchet differential of p(γ) restricted to Hx,y at γ ∈ Hx,y. Then it is
clear that for all h ∈ H0,

Dp(γ)[h] = ρ∗B(γ)ρh.

That is, for all h1, h2 ∈ H0,

(Dp(γ)[h1], h2)H0 =
(
B(γ)ρh1, ρh2

)
L2(0,T )

.

Definition 6.2 (Divergence of a vecor field) Suppose that p(γ) is an admissible vector field.
We define its divergence Div p(γ) at γ ∈ Hx,y by the follwing equality:

Div p(γ) = trρ∗B(γ)ρ = trρ∗
δq(γ)

δγ
ρ.

Definition 6.3 Let p(γ) be an admissible vector field. The map ρρ∗B(γ) is an operator of trace

class. We denote its kernel function by
δp(γ, s)

δγ(t)
, i.e.,

ρ (Dp(γ)[h]) (s) =

∫ T

0

δp(γ, s)

δγ(t)
ρh(t) dt.

It is clear that for any h ∈ H0,∫ T

0

δp(γ, s)

δγ(t)
ρh(t) dt = Dp(γ, s)[h].

As a result of discussions in the previous subsection we have the following proposition.

Proposition 6.4 Assume p(γ) is an admissible vectorfield. Then

Div p(γ) =

∫ T

0

δp(γ, t)

δγ(t)
dt.

The notion of admissible vector field defined above is an analogy to infinitesimal version of ”
admissible transformation” in the case of Wiener integral.
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6.1 Integration by parts formula

Definition 6.5 Let m′ be a nonnegative number. We say that the vector field p(γ) is an m′-
admissible vector field if it has all the following properties:

P1 p is an infinitely differentiable map p : H � γ → p(γ) ∈ H0 of which the restriction to Hxy

is admissible for any fixed x, y ∈ R, that is, there is a C∞ map q : H → X such that
p(γ) = ρ∗q(γ) for γ ∈ Hx,y and that for all h ∈ H0, Dq(γ)[h] = B(γ)ρh, where B(γ) ∈ L(X ).

P2 The map H � γ → B(γ) ∈ L(X ) is infinitely differentiable. For any non-negative integer K
there exists a positive constant YK such that

BK = ‖q(γ)‖{X ,m′,K,YK} + ‖B(γ)‖{L(X );m′,K,YK} < ∞. (35)

We often write
δq(γ)

δγ
for B(γ).

Let δ0 be as in (1.2). Our main theorem is the following [9]:

Theorem 6.6 (Integration by parts) Let T ≤ δ. Suppose that F (γ) is an m-smooth func-
tional and that p(γ) is an m’-admissible vector field. We further assume that two of DF (γ)[p(γ)],
F (γ)Divp(γ) and F (γ)DS(γ)[p(γ)] are F-integrable. Then the rest is also F-integrable and the
following equality holds.∫

Ωxy

DF (γ)[p(γ)]eiνS(γ)D(γ) (36)

= −
∫
Ωxy

F (γ)Div p(γ)eiνS(γ)D(γ)− iν

∫
Ωxy

F (γ)DS(γ)[p(γ)]eiνS(γ)D(γ).

Remark 6 cf. N.Kumano-go [6]. If p(γ, s) is independent of γ, i.e., p(γ, s) = h(s) then
Divp(γ) = 0 and the above formula reduces to∫

Ωx,y

DF (γ)[h]eiνS(γ)D(γ) = −iν

∫
Ωx,y

F (γ)DS(γ)[h]eiνS(γ)D(γ). (37)

7 Application to semiclassical asymtotic behaviour of Feyn-
man path integrals

7.1 A sharper asymptotic formula.

We always assume T < δ0. Let F (γ) be an m-smooth functional. Then semiclassical asymptotic
formula was proved by Kumano-go [6].

What happens if F (γ∗) = 0 ? Integration by parts formula enables us to get a sharper infor-
mations even in this case.

Assumption 7.1 1. F (γ) is a real valued m-smooth functional. For fixed γ ∈ Hx,y,
δF (γ)

δγ(s)
is

a function in L2(0, T ), which we write
δF (γ)

δγ
. The map Hx,y � γ → δF (γ)

δγ
∈ L2(0, T ) is a

C∞ map. There exists a C∞ map Hx,y � γ → A(γ) ∈ B(L2) such that for any h ∈ H0,

D
δF (γ)

δγ
[h] = A(γ)ρh. (38)

2. Linear ator A(γ) has integral kernel kγ(s, t) which is continous in (s, t) ∈ [0, T ] × [0, T ] and
we have for any K = 0, 1, 2, . . .

sup
(s,t)

‖kγ(s, t)‖{m,K,XK} < ∞. (39)
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Suppose F (γ) satifies above conditions and F (γ∗) = 0. Let γθ = θγ + (1− θ)γ∗ for 0 ≤ θ ≤ 1.
We define an element ζ(γ) ∈ L2(0, T ) by

ζ(γ, t) =

∫ 1

0

δF (γ)

δγ(t)

∣∣∣
γ=γθ

dθ. (40)

Define a vector field
p(γ) = ρ∗(I − W̃ (γ)ρρ∗)−1ζ(γ). (41)

Theorem 7.2 Suppose F (γ) is an m-smooth functional with some m ≥ 0 and it satisfies the
additional assumption 7.1. Asume further that F (γ∗) = 0. Define ζ(γ, t) and p(γ) as above. Then
we have ∫

Ωxy

F (γ)eiνS(γ)D[γ] = −(iν)−1

∫
Ωxy

Divp(γ)eiνS(γ)D[γ]. (42)

Apply Kumano-go’s theorem of semiclassical asymptotics, c.f. [6], to (42), we have the following
theorem.

Theorem 7.3 Under the same assumption as in Theorem7.2 the following asymptotic formula
holds:∫

Ωxy

F (γ)eiνS(γ)D[γ] =

(−iν

2πT

)1/2

D(T, 0, x, y)−1/2eiνS(γ∗)(− (iν)−1Divp(γ∗) + ν−2r(ν, T, 0, x, y)
)
.

where the remainder term r(ν, T, 0, x, y) has the property such that for ∀α, β there exists a positive
constant Cαβ ∣∣∂α

x ∂
β
y r(ν, T, 0, x, y)

∣∣ ≤ Cαβ(1 + |x|+ |y|)m. (43)

Let Gγ∗(t, s) be the Green function of differential equation of Jacobi field:

−
(

d2

dt2
+ ∂2

xV (t, γ∗(t))
)
u(t) = f(t), u(0) = 0 = u(T ). (44)

Calculation shows:

Theorem 7.4 Under the same assumption as in Theorem7.3

Divp(γ∗) =
1

2

∫ T

0

∫ T

0

δ

δγ(t)
(Gγ∗(t, s)

δF (γ∗)
δγ(s)

) dsdt

=
1

2

∫ T

0

∫ T

0

δGγ∗(t, s)

δγ(t)

δF (γ∗)
δγ(s)

dsdt+
1

2

∫ T

0

∫ T

0

Gγ∗(t, s)
δ2F (γ∗)
δγ(s)δγ(t)

dsdt.

Example: – the moment of degree 2–.
Let a(s, t) be a smooth function uniformly bouded with its all derivatives. Consider the functional

F (γ) =

∫ T

0

∫ T

0

(γ(s)− γ∗(s))(γ(t)− γ∗(t))a(s, t) dsdt

and its integral ∫
Ωx,y

F (γ)eiνS(γ) D[γ]. (45)

This is an analogue of ”the moment of degree 2” of Wiener integral:∫
Ω

(γ(s)− (
s

T
x+ (1− s

T
)y))(γ(t)− (

t

T
x+ (1− t

T
)y))a(s, t)W[γ].

Notice that F (γ∗) = 0. We can apply our method. The semi-classical asymptotic formula of
(45) is ∫

Ωx,y

F (γ)eiνS(γ) D[γ] =
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=
( ν

2πiT

)1/2
D(T, 0;x, y)−1/2eiνS

∗(γ)

×
(
−(iν)−1

∫ T

0

∫ T

0

Gγ∗(s, t)a(s, t) dsdt+ ν−2R(ν, T, 0, x, y)

)
.

Here Gγ∗(s, t) is the Green function for the Jacobi differential equation of Euler equation.
This means that the semiclassical asymptotic of the ”covariance matrix” equals Gγ∗(s, t).
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Geometric interfacial motion:

Coupling surface diffusion and mean curvature motion

A. Novick-Cohen
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Abstract

Mean curvature motion as well as surface diffusion both constitute
geometric interfacial motions which have received considerable atten-
tion. However in many applications a complex coupling of surfaces
occurs whose evolution may be described using both these types of
motion. In my lecture, a variety of such physical problems will be de-
scribed. While sometimes an anisotropic formulation might seem to be
preferable, often an isotropic formulation is helpful to consider. Some
analytic and numerical results will be presented, in addition to some
supporting experimental evidence.

I shall discuss some problems in which various evolving interfaces appear,
with some interfaces evolving by mean curvature motion and some by surface
diffusion. My interest in this direction is reflected collaborations with J.
Cahn, Y. Kanel, L. Peres-Hari, R. Dal Passo, L. Giacomelli, Vilenkin, [9,
8, 27, 10, 22, 18, 19, 20, 21, 29, 28] with special thanks my students V.
Derkach, O. Zelekman-Smirin, and A. Zigelman [30, 13, 35, 11, 12, 31, 34].

Below is a partial list of some of the problems which we have in mind.

1. Polycrystalline films are material layers composed of a number of in-
dividual crystals, or grains. When these films are thin, the effects of
their exterior surface can affect the stability of the film. Since thin
films are in common use in numerous technological applications, the
interest in their stability is considerable.

2. Sintering is a technology with a long history, but which still in active
use to this day. In this process, a collection of metallic particles,
produced previously by evaporation and condensation, are placed into
a mold. Under pressure, the collections of particles combines to yield
one solid metallic block with some desired shape.

3. Under appropriate compositional conditions, ordering can been in-
duced in a previously homogenous material. If the composition dif-
fers slightly from these conditions, the excess composition can emerge
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as droplets along the boundaries between the ordered regions. This
phenomena can be modelled with some success by a coupled Allen-
Cahn/Cahn-Hilliard system of equations with degenerate mobilities.

In all of the above applications, the coupled motion of surface diffusion
with motion by mean curvature appears quite naturally. In each of these
applications, there are additional effects have been neglected and which
arguably should be included. However, the coupled motion, in and of itself,
is not overly well understood or studied, so it is reasonable to isolate it
and study it, even given its limitations. So let us define motion by mean
curvature and motion by surface diffusion, then to return to see how we
should like to coupled the motions.

1 Motion by mean curvature

For simplicity, let us consider

Γ(t) := {X(α, t) : [0, 1] × [0, T ] → R2}, (1)

to be a smooth (and smoothly parameterized) embedded curve in R2. For
α ∈ (0, 1), we may define n̂, the unit normal to Γ(t) at α, and we may define
κ, the mean curvature of Γ(t) at α via the inscribed circle at α. Then,
setting V̂ := ∂

∂tX for (α, t) ∈ (0, 1)× (0, T ), the motion known as motion by
mean curvature is given by

Vn = Aκ, (2)

where Vn := n̂ · V̂ is the normal velocity, and A is a dimensional pa-
rameter, known as the reduced mobility whose dimensions are given by
[A] = L2/T . It is straightforward to extended the above definition to smooth
(and smoothly parameterized) embedded hypersurfaces in R3, taking now κ
to be the sum of the principle curvatures.

An early reference, if not the earliest reference, to motion by mean cur-
vature is Mullins 1956 [24]. In the mathematical literature, early references
are Brakke 1978 [7], Huisken 1984 [16], Grayson 1987 [14]. For a survey, see
Bellettini 2013 [6].

2 Motion by surface diffusion

To define motion by surface diffusion, we may proceed as above and consider
first, for simplicity, Γ(t) := X(α, t) to be a smooth and smoothly parame-
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terized embedded curve in R2 prescribed as in (1), with n̂, κ, V̂ , Vn defined
as above for (α, t) ∈ (0, 1) × (0, T ). Taking s(= s(t)) to be an arc-length
parametrization of Γ(t), e.g. s :=

∫ α
0 | ∂

∂αX(α̃, t)| dα̃, the motion known as
motion by surface diffusion is given by

Vn = −B∂2κ

∂s2
, (3)

where B is a dimensional kinetic coefficient with dimensions [B] = L4/T .
The above definition may be extended to smooth (and smoothly parameter-
ized) embedded hypersurfaces in R3, by defining κ as the sum of the principle

curvatures and by replacing the operator ∂2

∂s2 with the Laplace-Beltrami op-
erator �s. The Laplace-Beltrami operator on a smooth hypersurface may
be defined as �s :=

∑2
i=1

∂2

∂s2i
, where si i = 1, 2 are locally defined arc-length

parameterizations in the directions of the principle curvatures, so �s indeed
generalizes ∂2

∂s2 .
An early reference, if not the earliest reference, to surface diffusion in the

literature is Mullins 1957 [25]. Some more recent references include [23, 3].

3 Coupling the two motions

Why should one wish to couple the two motions discussed above? Let us fo-
cus on the first problem in the list given earlier, that of polycrystalline films.
Because the microstructure of polycrystalline materials, namely the way in
which the individual crystals or grains are arranged within the specimen,
strongly influences the material properties, it has attracted many studies
since Mullins’ 1956 [24] work on the dynamics of grain boundaries, and ear-
lier static discussions by Smith [33] and Herring [15]. Much emphasis has
been on considering grain boundaries within the material, with much em-
phasis on larger systems and and grain boundary distributions. Additional
effects have been included, such anisotropy, elastic effects, and defects.

When a polycrystalline specimen is thin enough to be considered a film,
or more specifically a thin film, the exterior surface is nowhere too far from
the grain boundaries within, and the effects of the dynamics of the exterior
surface on the structural stability of the specimen needs to be taken into
account. A classical model though somewhat simplistic model for the evolu-
tion of the exterior surface, due to Mullins 1957 [25], predicts that it evolves
by surface diffusion. While many of the grain boundaries lie totally within
the interior of the material, some continue on until they intersect the exterior
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surface. This gives rise a system in which numerous grain boundaries, which
for simplicity are being taken to evolve by mean curvature, are coupled with
the exterior surface, which for simplicity is being taken to evolve by surface
diffusion. As there is much to be studied in regard to these coupled motion,
a possible simplification is to consider some special simple geometries.

4 Some special geometries

In polycrystalline specimens with bamboo structure, the specimen is one
grain thick throughout. Accordingly all of the grains intersect the exterior
surface at least twice, above and below. Within the interior of the specimen,
triple junctions form where three grain boundaries intersect. On the exterior
surface, where three intersecting grain boundaries intersect with the exterior
surface, quadruple junctions form. So although though this situation is
simpler, it still is quite complicated. A further simplification is to consider
the 2D symmetric thermal grooving geometry proposed by Mullins [25],
described below. Other special geometries are possible to consider, some of
which will be described a bit further on.

5 A phase field approach

One approach to modeling this type of coupled motions is to embed the
problem description within a phase field approach, and one way to accom-
plish this is to consider some type of Allen-Cahn/Cahn-Hilliard system with
degenerate mobility. Such a system was derived to describe the dynamics
of simultaneous order-disorder and phase transitions, as the formal contin-
uum limit of discrete lattice dynamics, in the context of the Krzanowski
instability described earlier [9]. For the resultant system, it was possible to
formally derive the coupled motion by mean curvature and surface diffusion
by considering an appropriately defined long time asymptotic limit [28, 29].

6 The Mullins’ sharp interface approach

Mullins considered a geometrically simple exterior surface-grain boundary
configuration with important experimental implications and outlined a dy-
namic problem for its evolution [25], following the general thermodynamic
framework outlined by Gibbs. The geometry which he considered consisted
of an initially flat exterior surface of infinite extent, coupled with an initially
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flat grain boundary of semi-infinite extent which intersected the exterior sur-
face perpendicularly. The exterior surface was assumed to evolve by surface
diffusion, and the grain boundary, which in theory could evolve by motion
by mean curvature, could be expected to remain flat due to symmetry con-
siderations. Although this reflects a 3D problem because of the uniform
cross-section of the its geometry, its dynamics reduce to a 2D problem. To
obtain a 2D problem formulation, boundary conditions are required at the
triple junction, in addition to far-field and initial conditions. The follow-
ing conditions were proposed by Mullins: 1) persistence, meaning that the
grain boundary remained attached to the exterior surface, 2) balance of me-
chanical forces, known also as Herring’s law or Young’s law for isotropic
systems, 3) continuity of the chemical potential, which, based on thermo-
dynamic considerations of Gibbs, implies continuity of the mean curvature,
4) balance of mass flux along the exterior surface, assuming that there is
no mass flux along the grain boundary. Following the problem description
above, assuming asymptotic planarity, and fixing the initial location of the
exterior surface along the x−axis and the initial location of the grain bound-
ary along the negative y−axis, yields the following problem formulation for
the evolution of the exterior surface,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt = −B
(

κx√
1+y2x

)
x
, κ = yxx

(1+y2x)
3/2 ,

x ∈ (−∞, 0) ∪ (0,∞), t ∈ (0,∞),

y(0+, t) = y(0−, t), t ∈ (0,∞),

arctan(yx(0
+, t)) = arctan(yx(0

−, t)) + 2 arcsin(m2 ), t ∈ (0,∞),

κ(0+, t) = κ(0−, t), t ∈ (0,∞),

κx√
1+y2x

|(0+,t) =
κx√
1+y2x

|(0−,t), t ∈ (0,∞),

y(±∞, t) = yx(±∞, t) = 0, t ∈ (0,∞),

y(x, 0) = 0, x ∈ (−∞, 0) ∩ (0,∞),

(4)

where m = γexterior surface/γgrain boundary and γexterior surface, γgrain boundary

are, respectively, the surface free energies of the grain boundary and the
exterior surface.

Mullins assumed that 0 < m 	 1, which is physically reasonable, and
linearized the system in (4) about y ≡ 0. For the resultant linear system
he found self-similar solutions of the form y(x, t) = m(Bt)1/4Y (ξ) where
ξ = x/(Bt)1/4, and derived a series formula for Y (ξ), which allowed him to
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predict that y(0, t) = a0 m(Bt)1/4 with a0 ≈ −.78. The quantity y(0, t) is
known as the depth of the thermal groove, since B increases with temper-
ature. Based on the linearization of the equation in (4), he also identified
a traveling wave solution [26] describing a groove which steadily translates
along the exterior surface with speed V0 = B(m/d)3, where d is the groove
depth. In this solution, no attachment of the groove to a grain boundary is
prescribed and d is not fixed.

Despite the years which have passed, many question remain regarding
the nonlinear problem formulation given in (4). For example, it is not known
whether or not it possesses self-similar solutions, although a positive answer
has been demonstrated for (4) with partially linearized boundary conditions.
In the next two sections we will outline some of what is known regarding
traveling wave solutions for problem formulations related to (4).

7 Travelling wave solutions

In [22, 18, 19, 20] we considered a configuration in which a grain boundary
is attached at a thermal groove to an exterior surface in quarter loop geom-

etry. The quarter loop geometry refers to a two grain system which may be
assumed to be of semi-infinite extent, in which the exterior surface is asymp-
totically flat, with one internal grain boundary, which intersects the exterior
surface and partitions the specimen into two grains, then asymptotes to one
side, say to the right, to some specific depth below the exterior surface, say
−H. If we assume that the profiles of both the exterior surface and the
grain boundary can be described by graphs of functions, say by h = h(x, t)
and u = u(x, t), then we may obtain a problem formulation, much as in
(4) above, except that now we need to consider x ∈ (−∞, s(t)) ∪ (s(t),∞),
where s = s(t) with s(0) = 0 since the groove can move, and we need to
amplify the resultant equations with the equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Aκ, κ = uxx

(1+u2
x)

3/2 , x ∈ (−∞, s(t)) ∪ (s(t),∞), t ∈ (0,∞),

y(s(t)−, t) = u(s(t)+, t), t ∈ (0,∞),

arctan(ux(0
+, t)) = −π

2 + arctan(yx(0+,t))+arctan yx(0−,t))
2 , t ∈ (0,∞),

u(∞, t) = −H, t ∈ (0,∞),

u(x, 0) = u0(x), x ∈ (0,∞),
(5)
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where u0(x) needs to be prescribed. In [19] it was demonstrated that there
indeed exists a travelling wave solution to the resultant system if 0 < m is
sufficiently small. Energetic considerations imply that at least in theory, m
may assume values throughout the range 0 ≤ m < 2.

It turns out that the restriction on m resulted from looking for travel-
ling wave solutions which could be described as graphs of functions. The
restriction could be removed by formulating the travelling wave problem in
terms of the angles, Φ(s1) and Ψ(s2), where Φ(s1) and Ψ(s2) denote respec-
tive the angles between the tangent to the grain boundary and the exterior
surface and the x−axis, and where s1, s2 are respective arc-length param-
eterizations for Φ(s1) and Ψ(s2), with s1 ∈ (0,∞), s2 ∈ (−∞, 0) ∪ (0,∞),
and with the thermal groove is taken to be located at s1 = s2 = 0. Setting
s = (V/B)1/3s2, the problem to be satisfied by Ψ could be formulated as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψsss = sinΨ, s ∈ (−∞, 0) ∪ (0,∞),

Ψ(0+) = Ψ(0−),

Ψs(0
+) = Ψs(0

−) + 2 arcsin(m/2),

Ψss(0
+) = Ψss(0

−),

Ψ(±∞) = 0.

(6)

Based on this formulation and using a shooting argument, the following
could be proven:

Theorem [22] For all m ∈ [0, 2), there exists a travelling wave solution to
the coupled exterior surface and grain boundary problem for the quarter
loop geometry. For 0 < m 	 1, there exists a travelling wave solution which
can be described via graphs of functions.

For all 0 ≤ m < 2, given a solution Ψ to (6), Φ can be prescribed in term
of Ψ, and the wave speed is given by V = B(λ/B))3 where λ is the unique
real solution to the following algebraic equation

λ3 + λ2Ψss(0+)− AH2

B
[π
2
− 1

2
(Ψ(0+) + Ψ(0−)

]
= 0. (7)

The existence of nonclassical travelling wave solutions could be demon-
strated numerically for m ∈ (0, 2) sufficiently large. For the case of classical
travelling wave solutions for 0 < m 	 1 sufficiently small, advective stability
of the travelling wave solution could be demonstrated [5]. Further stability
results are possible [17].
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8 Estimating the reduced mobility

The equation for motion by mean curvature, (2), contains a kinetic param-
eter, A, the reduced mobility. In the context of evolution of microstructure,
it is not so obvious how to estimate this parameter. Shvindlerman and col-
leagues developed a methodology based on the half-loop geometry [2, 4]. The
half loop geometry refers to a bi-crystal with bamboo structure. It consists
of a layer with finite height and with infinite lateral extent, containing two
crystals. One crystal is embedded within the other, and the grain bound-
ary which separates them is U-shaped, with ends which are asymptotically
parallel. They found grain boundaries in the laboratory, which fitted the de-
scribed above and which appeared to move with constant speed. Neglecting
the effects of the exterior surface and assuming the grain boundary within
its interior to move by mean curvature motion, it was reasonable to look
for travelling wave solutions with this shape. Such solutions, which they
referred to as U-shape solutions, were already known to exist [24] and could
be prescribed explicitly by Y±(x− V0t), where

V0 =
Aπ

4Q
, Y±(x) = ±

(
Q− (2Q/π) arcsin (e−

π
2Q

x)
)
, x ∈ R+, (8)

and 2Q is the asymptotic width of the embedded crystal, far from the ”nose”
of the U-shaped profile. Later in the mathematical literature, these solutions
came to known as grim reaper solutions [1]. These solutions could be used to
estimate the reduced mobility A, using the formula for V0 in (8), [2, 4, 32].

Based on our discussions up to now, it is clear that if the exterior surfaces
evolve by surface diffusion, then they should have some effect of the motion,
and hence on the process of estimation or measurement of A. Accordingly,
Anna Zigelman set out to estimate this effect in her MSc and PhD theses [31,
34, 35]. To simplify the analysis, she considered the effect of surface diffusion
only in the neighborhood of the thermal groove. She derived equations
for the leading order corrections to the shape of the exterior surface, the
grain boundary profile, the shape of the thermal groove, as well as to the
traveling wave velocity, using asymptotic analysis based on the assumption
that 0 < m 	 1 in two distinguished limits:

(i) L/Q = m1/3, (ii) L/Q = O(1). (9)

Limit (i) can be considered as a thin film (thin specimen) limit [31, 34],
and limit (ii) better models the conditions of Shvindlerman’s original ex-
periments [34]. In both cases, the exterior surface could be shown at leading

8

－20－



order to satisfy a fourth order parabolic problem which decouples from the
rest of the system describing the motion. The leading order perturbation
to the shape of the thermal groove could be described by a second order
parabolic equation with forcing which depended on the angle of inclination
of the exterior surface along the thermal groove, as well as on V1, the pertur-
bation to the velocity, V0 at the nose. After some analysis, the perturbation
to the velocity, V1, could be prescribed in the form:

V1(t) =
d

dt
(r ∗ B)(t), r(t) = L−1

[ 1

ωL[G](ω)
]
(t), (10)

where L, L−1 denote, respectively, the Laplace transform and its inverse,
∗ denotes the convolution operator, B depends on the inclination of the
exterior surface along the thermal groove, and G is a weighted integral of an
appropriately defined heat kernel.

Since in experiments the motion was viewed from above, measurement
were made not of Vn and κ, but rather of (Vn)effective, the projection of the
normal velocity at the nose on the plane of observation, and κeffective, the
curvature at the nose of the projection of the shape of the groove root on the
plane of observation. Assuming that the measurements were made based on
the formula

(Vn)effective = Aeffective κeffective, (11)

our results could prescribe a correction to the reduced mobility measurement
due the influence of motion of the exterior surface as follows:

Aeffective

A
=

(Vn)effective
Vn

· κ

κeffective
, (12)

with Vn, κ being approximated via their zeroth order description and the
leading order corrections.

9 Parametric surfaces

Vadim Derkach, in his MSc. and PhD Theses considered some special ge-
ometries, containing a small number of grains, and undertook numerical
analysis based on finite differences, parametric surfaces, and staggered grids,
studying pitting, annihilation, dewetting, and void formation [11, 12, 13].
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Abstract

We propose a simple method to obtain sharp upper bounds for the
interpolation error constants over the given triangular elements. These
constants are important for analysis of interpolation error and especially
for the error analysis in the finite element method. In our method, in-
terpolation constants are bounded by the product of the solution of cor-
responding finite dimensional eigenvalue problems and constant which is
slightly larger than one. Guaranteed upper bounds for these constants
are obtained via the numerical verification method. Furthermore, we in-
troduce remarkable formulas for the upper bounds of these constants.

Keywords: Interpolation error constant, Numerical verification method, finite
element method

1 Introduction

The analysis of interpolation error is important in a lot of applications such as
the approximate theory and the error estimation for the solution of finite element
method. In order to estimate the interpolation errors, we have to obtain the
upper bounds of the constants which appear in some kinds of norm inequalities.
These are called interpolation error constants.

Let T be given triangle in R
2 and define function spaces V 1,1(T ), V 1,2(T ), V 2(T )

as follows:

V 1,1(T ) =

{
ϕ ∈ H1(T )

∣∣∣ ∫
T

ϕdxdy = 0

}
,

V 1,2(T ) =

{
ϕ ∈ H1(T )

∣∣∣ ∫
γk

ϕds = 0, ∀k = 1, 2, 3

}
,

V 2(T ) =
{
ϕ ∈ H2(T )

∣∣∣ ϕ(pk) = 0, ∀k = 1, 2, 3
}
,

1
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where p1, p2, p3 and γ1, γ2, γ3 are vertices and edges of T , respectively. Un-
der these settings, it is known that the following interpolation error constants
C1(T ), C2(T ), C3(T ) and C4(T ) exist:

C1(T ) = sup
u∈V 1,1(T )\0

‖u‖L2(T )

‖∇u‖L2(T )
, C2(T ) = sup

u∈V 1,2(T )\0

‖u‖L2(T )

‖∇u‖L2(T )
,

C3(T ) = sup
u∈V 2(T )\0

‖u‖L2(T )

|u|H2(T )
, C4(T ) = sup

u∈V 2(T )\0

‖∇u‖L2(T )

|u|H2(T )
.

where | · |Hk(Ω) means Hk semi-norm defined later. Here, C1(T ) is known as the
Poincaré constant whose existence is assured by Poincaré-Friedrichs inequality
[20]. The existence proof of C3(T ) and C4(T ) are found in [3] and the existence
of C2(T ) is proved by the same way as [3, Lemma2.1]. Besides that, there is a
plenty of literature on these constants, such as [7, 12] on C1(T ), [14] on C2(T ),
[1] on C3(T ) and [1, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 17, 18, 22] on C4(T ) and its
application to the finite element method.

Nevertheless of the importance for the practical applications, it is very diffi-
cult to obtain sharp upper bounds for these constants. In this paper, we present
a simple method to obtain explicit and sharp upper bounds for them. Further-
more, we obtained the following remarkable formulas for the upper bounds:

C1(T ) < K1(T ) =

√
A2 +B2 + C2

28
− S4

A2B2C2
,

C2(T ) < K2(T ) =

√
A2 +B2 + C2

54
− S4

2A2B2C2
,

C3(T ) < K3(T ) =

√
A2B2 +B2C2 + C2A2

83
− 1

24

(
A2B2C2

A2 +B2 + C2
+ S2

)
,

C4(T ) < K4(T ) =

√
A2B2C2

16S2
− A2 +B2 + C2

30
− S2

5

(
1

A2
+

1

B2
+

1

C2

)
,

where A,B,C are the edge lengths of triangle T and S is the area of T .
Numerical results shows that the upper bounds obtained by these formulas

are sharp enough for the practical applications. Moreover, K1(T ) ∼ K4(T ) is
convenient for practical calculations since these formulas consists of just four
arithmetic operations and the square root. We have to note that, by our method,
we can only prove these formulas for the “given” triangles. To prove the for-
mulas for “any” triangle, we need some continuation techniques and asymptotic
analysis. We indeed succeeded to prove these formulas for “any” triangle, but
we will show it in another paper because of the space limit.

2 Application to the finite element method

Interpolation constants can be applied to the error estimates for the finite ele-
ment method. There are two kinds of error estimates: a priori error estimate

2
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and a posteriori error estimate. In this section, we only introduce the simple
case, that is, a priori error estimate for Poisson’s equation with homogeneous
Dirichlet boundary conditions. For more general case, see [4, 5, 3, 13, 17, 14]
for a priori error estimate and [4, 8, 14] for a posteriori error estimate.

Let Ω be convex polygonal domain in R2. Then we consider the following
Poisson’s equation: {

−Δϕ = f in Ω,

ϕ = 0 on ∂Ω,
(1)

We divides Ω into finite triangular subregions and denote them by τ1, τ2, · · · , τn.
Let Sh be the set of continuous functions on Ω which is linear in each τk and
vanishes at ∂Ω. Then we obtain the finite element solution ϕh ∈ Sh by

(∇ϕh,∇η)L2(Ω) = (f, η)L2(Ω), ∀η ∈ Sh.

For the finite element solution, the following error estimates holds:

Theorem 1. Assume f ∈ L2(Ω). Then, for ϕ the exact solution of (1) and the
finite element solution ϕh,

‖∇(ϕh − ϕ)‖L2(Ω) ≤ max
1≤k≤n

C4(τk)‖f‖L2(Ω),

‖ϕh − ϕ‖L2(Ω) ≤ max
1≤k≤n

C4(τk)
2‖f‖L2(Ω),

holds.

Proof. For ϕ, we define interpolation function ϕ∗h ∈ Sh by

ϕ∗h|τk = Π(P1)
τk

ϕ,

where Π
(P1)
τk is a linear interpolation which coincides with ϕ at the vartices of

τk. Then, from Céa’s lemma [4, 5],

‖∇(ϕh − ϕ)‖L2(Ω) = min
w∈Sh

‖∇(w − ϕ)‖L2(Ω) ≤ ‖∇(ϕ∗h − ϕ)‖L2(Ω)

holds.
It is known that ϕ the solution of (1) belongs to H2(Ω) when Ω is bounded,

convex and polygonal domain [6]. Therefore, from the definition of C4, we have

‖∇(ϕh − ϕ)‖L2(Ω) ≤ ‖∇(ϕ∗h − ϕ)‖L2(Ω) =

√√√√ n∑
k=1

‖∇(ϕ∗h − ϕ)‖2L2(τk)

≤
√√√√ n∑

k=1

C4(τk)2|ϕ|2H2(τk)
≤ max

1≤k≤n
C4(τk)

√√√√ n∑
k=1

|ϕ|2H2(τk)

= max
1≤k≤n

C4(τk) |ϕ|H2(Ω).
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It is also known that if Ω is bounded polygonal domain,

|ϕ|H2 = ‖Δϕ‖L2

holds [6, 11]. Therefore, we have the following a priori error estimate:

‖∇(ϕh − ϕ)‖L2(Ω) ≤ max
1≤k≤n

C4(τk) |ϕ|H2(Ω) ≤ max
1≤k≤n

C4(τk) ‖f‖L2(Ω).

We can also obtain L2 error estimate

‖ϕh − ϕ‖L2(Ω) ≤ max
1≤k≤n

C4(τk)
2‖f‖L2(Ω)

by Aubin-Nitsche’s technique [5, 2, 19].

3 Definitions and preliminaries

For given triangle T , let p1(T ), p2(T ), p3(T ) be vertices of T and γ1(T ), γ2(T ), γ3(T )
be edge p2(T )p3(T ), p3(T )p1(T ), p1(T )p2(T ), respectively. Let n(T ) be the
outer normal unit vector on ∂T , ν(T ) be the direction vector which takes coun-
terclockwise direction through ∂T and ds(T ) be the line element on ∂T . We
omit “(T )” if there is no possibility of confusion. We use Cartesian coordinates
(x, y) and use the usual notation for L2 norm and define Hk semi-norm | · |Hk(T )

by |u|2Hk(Ω) =
∑k

j=0

(
k
j

) ∥∥∥ ∂ku
∂xj∂yk−j

∥∥∥2
L2(Ω)

. Ta,b denotes triangle whose vertices

are (0, 0), (1, 0) and (a, b). We use subscripts to indicate partial derivatives.
Let Qα and Qβ denote the following polynomial spaces:

Qα =
{
a1(x

2 + y2) + a2x+ a3y + a4

∣∣∣ a1, · · · , a4 ∈ R

}
,

Qβ =
{
a1x

2 + a2xy + a3y
2 + a4x+ a5y + a6

∣∣∣ a1, · · · , a6 ∈ R

}
.

Note that both Qα and Qβ are invariant under constant shifts and rotations
and thus they are independent of the choice of the coordinates. Let τ be the

given triangle and we define two kinds of second order interpolation Π
(α)
τ ϕ for

ϕ ∈ H1(τ) and Π
(β)
τ ϕ for ϕ ∈ H2(τ) on triangle τ as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Π(α)
τ ϕ ∈ Qα∫

γk

Π(α)
τ ϕds =

∫
γk

ϕds, k = 1, 2, 3,∫∫
τ

Π(α)
τ ϕdxdy =

∫∫
τ

ϕdxdy,⎧⎪⎪⎪⎨⎪⎪⎪⎩
Π(β)

τ ϕ ∈ Qβ

Π(β)
τ ϕ(pk) = ϕ(pk), k = 1, 2, 3,∫

γk

∇Π(β)
τ ϕ · nds =

∫
γk

∇ϕ · nds, k = 1, 2, 3.

In the rest of this section, we prepare some preliminary lemmas.

4

－28－



Lemma 1. If ϕ ∈ V 2(τ) satisfies∫
γk

∇ϕ · nds = 0, k = 1, 2, 3,

then
ϕx, ϕy ∈ V 1,2(τ)

holds.

Proof. From ϕ(p1) = ϕ(p2) = ϕ(p3) = 0, we have∫
γk

∇ϕ · ν ds = 0, k = 1, 2, 3.

Then, together with the assumption,∫
γk

∇ϕ · w ds = 0, k = 1, 2, 3,

holds for any fixed vector w, which proves the lemma.

On the interpolations Π
(α)
τ and Π

(β)
τ , the following orthogonal properties

hold:

Lemma 2. For ϕ ∈ H1(τ),

‖∇Π(α)
τ ϕ‖2L2(τ) + ‖∇(ϕ−Π(α)

τ ϕ)‖2L2(τ) = ‖∇ϕ‖2L2(τ).

Lemma 3. For ϕ ∈ H2(τ),

|Π(β)
τ ϕ|2H2(τ) + |ϕ−Π(β)

τ ϕ|2H2(τ) = |ϕ|2H2(τ).

Proof of Lemma 2. Since Π
(α)
τ ϕ does not depend on the choice of the coordi-

nates, we consider the x-axis to be aligned with the edge γ1 and take p1 =
(0, 0), p2 = (h, 0), p3 = (ah, bh) and

Π(α)
τ ϕ = a1(x

2 + y2) + a2x+ a3y + a4.

Then, the divergence theorem yields

‖∇ϕ‖2L2(τ) − ‖∇Π(α)
τ ϕ‖2L2(τ) − ‖∇(ϕ−Π(α)

τ ϕ)‖2L2(τ)

= 2

∫∫
τ

∇(ϕ−Π(α)
τ ϕ) · ∇Π(α)

τ ϕdxdy

= 2

∫∫
τ

div
(
(ϕ−Π(α)

τ ϕ)∇Π(α)
τ ϕ

)
dxdy − 2

∫∫
τ

(ϕ−Π(α)
τ ϕ)ΔΠ(α)

τ ϕdxdy

5
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= 2

∮
∂τ

(ϕ−Π(α)
τ ϕ)∇Π(α)

τ ϕ · nds− 8a1

∫∫
τ

(ϕ−Π(α)
τ ϕ) dxdy

= 2

∮
∂τ

(ϕ−Π(α)
τ ϕ)

(
2a1x+ a2
2a1y + a3

)
· nds

= 4a1

∮
∂τ

(ϕ−Π(α)
τ ϕ)

(
x

y

)
· nds

= 4a1

∫
γ1

(ϕ−Π(α)
τ ϕ)

(
x− h

y

)
· nds+ 4a1

∫
γ2

(ϕ−Π(α)
τ ϕ)

(
x− ah

y − bh

)
· nds

+ 4a1

∫
γ3

(ϕ−Π(α)
τ ϕ)

(
x

y

)
· nds

= 4a1

∫
γ1

√
(x− h)2 + y2 (ϕ−Π(α)

τ ϕ) ν · nds

+ 4a1

∫
γ2

√
(x− ah)2 + (y − bh)2 (ϕ−Π(α)

τ ϕ) ν · nds

+ 4a1

∫
γ3

√
x2 + y2 (ϕ−Π(α)

τ ϕ) ν · nds = 0

Proof of Lemma 3. Same as previous lemma, we take p1 = (0, 0), p2 = (h, 0), p3 =
(ah, bh) and

Π(β)
τ = a1x

2 + a2xy + a3y
2 + a4x+ a5y + a6.

Then, the divergence theorem yields

|ϕ|2H2(τ) − |Π(β)
τ ϕ|2H2(τ) − |ϕ−Π(β)

τ ϕ|2H2(τ)

= 2

∫∫
τ

(
(ϕ−Π(β)

τ ϕ)xx(Π
(β)
τ ϕ)xx + 2(ϕ−Π(β)

τ ϕ)xy(Π
(β)
τ ϕ)xy

+ (ϕ−Π(β)
τ ϕ)yy(Π

(β)
τ ϕ)yy

)
dxdy

= 2

∫∫
τ

div

(∇(ϕ−Π
(β)
τ ϕ) · ∇(Π

(β)
τ ϕ)x

∇(ϕ−Π
(β)
τ ϕ) · ∇(Π

(β)
τ ϕ)y

)
dxdy

= 2

∮
∂τ

(∇(ϕ−Π
(β)
τ ϕ) · ∇(Π

(β)
τ ϕ)x

∇(ϕ−Π
(β)
τ ϕ) · ∇(Π

(β)
τ ϕ)y

)
· nds

= 2

∮
∂τ

∇(ϕ−Π(β)
τ ϕ) · ∇(∇Π(β)

τ ϕ · n) ds

= 2

∮
∂τ

∇(ϕ−Π(β)
τ ϕ) ·

(
2a1 a2
a2 2a3

)
nds.

Here, Lemma 1 yields∫
γk

(ϕ−Π(β)
τ ϕ)x ds =

∫
γk

(ϕ−Π(β)
τ ϕ)y ds = 0, k = 1, 2, 3,

which leads us to the conclusion.
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Figure 1: Divide T into n2 congruent small triangles

4 Our method to bound the constants

We divide triangle T into n2 congruent small triangles τ1, · · · , τn2 (Fig. 1). We
assume that each τk is open set, namely, does not contains its boundary and
define

T ′ =
n2⋃
k=1

τk.

Then we define Π(α)u for u ∈ H1(T ) and Π(β)u for u ∈ H2(T ) as follows:

Π(α)u|τk = Π(α)
τk

u, Π(β)u|τk = Π(β)
τk

u.

Note that Π(α)u and Π(β)u are not always continuous on T .
By solving finite dimensional generalized eigenvalue problems, we can obtain

following constants:

C
(n)
1 (T ) = sup

u∈V 1,1(T )\0

‖Π(α)u‖L2(T ′)

‖∇Π(α)u‖L2(T ′)
, C

(n)
2 (T ) = sup

u∈V 1,2(T )\0

‖Π(α)u‖L2(T ′)

‖∇Π(α)u‖L2(T ′)
,

C
(n)
3 (T ) = sup

u∈V 2(T )\0

‖Π(β)u‖L2(T ′)

|Π(β)u|H2(T ′)
, C

(n)
4 (T ) = sup

u∈V 2(T )\0

‖∇Π(β)u‖L2(T ′)

|Π(β)u|H2(T ′)
.

With respect to these constants, we have the following theorem:

Theorem 2.

C1(T ) ≤
√

n2

n2 − 1
C

(n)
1 (T ), C2(T ) ≤

√
n2

n2 − 1
C

(n)
2 (T ),

C3(T ) ≤
√

n4

n4 − 1
C

(n)
3 (T ), C4(T ) ≤

√
n2

n2 − 1
C

(n)
4 (T ),

C4(T ) ≤
√

C
(n)
4 (T )2 +

C2(T )2

n2
,
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Proof. From Lemma 2, for u ∈ V 1,j(T ), j = 1, 2, we have

‖u‖L2(T ) ≤ ‖Π(α)u‖L2(T ′) + ‖u−Π(α)u‖L2(T ′)

= ‖Π(α)u‖L2(T ′) +

√√√√ n2∑
k=1

‖u−Π
(α)
τk u‖2L2(τk)

≤ C
(n)
j (T ) ‖∇Π(α)u‖L2(T ′) +

Cj(T )

n

√√√√ n2∑
k=1

‖∇(u−Π
(α)
τk u)‖2L2(τk)

≤
√

C
(n)
j (T )2 +

Cj(T )2

n2

√√√√ n2∑
k=1

(
‖∇Π

(α)
τk u‖2L2(τk)

+ ‖∇(u−Π
(α)
τk u)|2L2(τk)

)

=

√
C

(n)
j (T )2 +

Cj(T )2

n2

√√√√ n2∑
k=1

‖∇u‖2L2(τk)

=

√
C

(n)
j (T )2 +

Cj(T )2

n2
‖∇u‖L2(T ).

Furthermore, from Lemma 3, for u ∈ V 2(T ),

‖u‖L2(T ) ≤ ‖Π(β)u‖L2(T ′) + ‖u−Π(β)u‖L2(T ′)

= ‖Π(β)u‖L2(T ′) +

√√√√ n2∑
k=1

‖u−Π
(β)
τk u‖2L2(τk)

≤ C
(n)
3 (T ) |Π(β)u|H2(T ′) +

C3(T )

n2

√√√√ n2∑
k=1

|u−Π
(β)
τk u|2H2(τk)

≤
√

C
(n)
3 (T )2 +

C3(T )2

n4

√√√√ n2∑
k=1

(
|Π(β)

τk u|2H2(τk)
+ |u−Π

(β)
τk u|2H2(τk)

)

=

√
C

(n)
3 (T )2 +

C3(T )2

n4

√√√√ n2∑
k=1

|u|2H2(τk)

=

√
C

(n)
3 (T )2 +

C3(T )2

n4
|u|H2(T )

and

‖∇u‖L2(T ) ≤ ‖∇Π(β)u‖L2(T ′) + ‖∇(u−Π(β)u)‖L2(T ′)

= ‖∇Π(β)u‖L2(T ′) +

√√√√ n2∑
k=1

‖∇(u−Π
(β)
τk u)‖2L2(τk)

8
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≤ C
(n)
4 (T ) |Π(β)u|H2(T ′) +

C4(T )

n

√√√√ n2∑
k=1

|u−Π
(β)
τk u|2H2(τk)

≤
√

C
(n)
4 (T )2 +

C4(T )2

n2

√√√√ n2∑
k=1

(
|Π(β)

τk u|2H2(τk)
+ |u−Π

(β)
τk u|2H2(τk)

)

=

√
C

(n)
4 (T )2 +

C4(T )2

n2

√√√√ n2∑
k=1

|u|2H2(τk)

=

√
C

(n)
4 (T )2 +

C4(T )2

n2
|u|H2(T )

holds. Using Lemma 1, we can also evaluate ‖∇(u − Π(β)u)‖L2(T ′) in the first
line of the previous expression by

‖∇(u−Π(β)u)‖L2(T ′) =

√√√√ n2∑
k=1

(
‖(u−Π

(β)
τk u)x‖2L2(τk)

+ ‖(u−Π
(β)
τk u)y‖2L2(τk)

)

≤ C2(T )

n

√√√√ n2∑
k=1

(
‖∇(u−Π

(β)
τk u)x‖2L2(τk)

+ ‖∇(u−Π
(β)
τk u)y‖2L2(τk)

)

=
C2(T )

n

√√√√ n2∑
k=1

|u−Π
(β)
τk u|2H2(τk)

.

From above evaluations, we have the following:

C1(T ) ≤
√

C
(n)
1 (T )2 +

C1(T )2

n2
, C2(T ) ≤

√
C

(n)
2 (T )2 +

C2(T )2

n2
,

C3(T ) ≤
√

C
(n)
3 (T )2 +

C3(T )2

n4
, C4(T ) ≤

√
C

(n)
4 (T )2 +

C4(T )2

n2
,

C4(T ) ≤
√

C
(n)
4 (T )2 +

C2(T )2

n2
,

which leads us to the conclusion.

This result shows that we can bound the constants C1(T ) ∼ C4(T ) by means

of C
(n)
1 (T ) ∼ C

(n)
4 (T ). We can compute C

(n)
1 (T ) ∼ C

(n)
4 (T ) numerically and

also, obtain guaranteed results via the numerical verification method. The nu-
merical results show that the sharp and explicit upper bounds are obtained by
our method and the formulas introduced in Section 1.
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5 Circumradius and C4(T )

In Section 1, we claimed that the following estimate holds for the interpolation
constant C4(T ):

C4(T ) < K4(T ) =

√
A2B2C2

16S2
− A2 +B2 + C2

30
− S2

5

(
1

A2
+

1

B2
+

1

C2

)
,

where A,B,C are the edge length of triangle T and S is the area of T . Since
the circumradius of T is given by

R(T ) =
ABC

4S
,

we have the estimation
C4(T ) < R(T ).

This fact is full of interesting suggestions for the error analysis in the finite
element method. See [9, 10] for the details.

6 Conclusion

We present a simple method to obtain sharp upper bounds for the interpola-
tion error constants over the given triangular elements. These constants are
important for analysis of interpolation error and especially for the error analy-
sis in the finite element method. Guaranteed upper bounds for these constants
are obtained via the numerical verification method. Furthermore, we introduce
remarkable formulas for the upper bounds of these constants. By the method
explained in this paper, we can only prove these formulas for the given trian-
gles. However, using some continuation techniques and asymptotic analysis,
we can prove the formulas for any triangle. We will explain the details in the
presentaion.
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ESTIMATES FOR RADIAL SOLUTIONS OF THE HOMOGENEOUS

LANDAU EQUATION WITH COULOMB POTENTIAL

MARIA GUALDANI, NESTOR GUILLEN

1. Introduction

We consider the Cauchy problem for the homogeneous Landau equation: such equation takes
the general form

∂tf(v, t) = Q(f, f), f(v, 0) = fin(v), v ∈ R
3, t > 0, (1.1)

where Q(f, f) is a quadratic operator known as the Landau collisional operator

Q(f, f) = div

(∫
R3

A(v − y) (f(y)∇vf(v)− f(v)∇yf(y)) dy

)
. (1.2)

The term A(v) denotes a positive and symmetric matrix

A(v) := Cγ

(
Id− v ⊗ v

|v|2
)
ϕ(|v|), v 	= 0, Cγ > 0,

which acts as the projection operator onto the space orthogonal to the vector v. The function
ϕ(|v|) is a scalar valued function determined from the original Boltzmann kernel describing how
particles interact. If the interaction strength between particles at a distance r is proportional
to r−s, then

ϕ(|v|) := |v|γ+2, γ =
(s− 5)

(s− 1)
. (1.3)

Any solution to (1.1)-(1.2) is an integrable and nonnegative scalar field f(v, t) : R3× [0, T ] →
R
+. Equation (1.1) describes the evolution of a plasma in spatially homogeneous regimes, which

means that the density function f depends only on the velocity component v. Landau’s original
intent in deriving this approximation was to make sense of the Boltzmann collisional operator,
which always diverges when considering purely grazing collisions.

The Cauchy problem for (1.1)-(1.3) is very well understood for the case of hard potentials,
which correspond to γ ≥ 0 above. Desvillettes and Villani showed the existence of global
classical solutions for hard potentials and studied its long time behavior, see [3, 4, 11] and
references therein. In this case there is a unique global smooth solution, which converges
exponentially to an equilibrium distribution, known as the Maxwellian function

M(v) =
1

(2π)3/2
e−

|v|2
2 .

Analyzing the soft potentials case, γ < 0, has proved to be more difficult: using a probabilistic
approach, the authors in [12, 5, 1] show uniqueness and existence of weak solutions for γ ∈
[−2, 0]. For γ ∈ [−3,−2] it is known (i) existence for small time or (ii) global in time existence
with smallness assumption on initial data [1, 2].

1

－37－



2 MARIA GUALDANI, NESTOR GUILLEN

Villani [10] introduced the so called H-solutions, which enjoy (weak) a priori bounds in a
weighted Sobolev space. However, the issue of their uniqueness and regularity (i.e. no finite
time break down occurs) has remained open, even for smooth initial data: see [11, Chapter 1,
Chapter 5] for further discussion.

Guo in [8] employs a completely different approach based on perturbation theory for the
existence of periodic solutions to the spatially inhomogeneous Landau equation in R

3. He
shows that if the initial data is sufficiently close to the unique equilibrium in a certain high
Sobolev norm then a unique global solution exists. Moreover, as remarked in [8], this approach
also extends to the case of potentials (1.3) where γ might even take values below −3.

Due to the lack of a global well-posedness theory, several conjectures about possible finite-
time blow up for general initial data have been made throughout the years. In [11] Villani
discussed the possibility that (1.1)-(1.3) could blow up for γ = −3. Note that for smooth
solutions (1.1)-(1.3) with γ = −3 can be rewritten as

∂tf = div(A[f ]∇f − f∇a[f ]) = Tr(A[f ]D2f) + f2, (1.4)

where

A[f ] := A(v) ∗ f =
1

8π|v|
(
Id− v ⊗ v

|v|2
)
∗ f, Δa = −f.

Equation (1.4) can be thought of as a quasi-linear nonlocal heat equation. Supports for blow-
up conjectures were given by the fact that (1.4) is reminiscent of the well studied semilinear
heat equation

∂tf = Δf + f2. (1.5)

Blow up for (1.5) is known to happen for every Lp norm, p > 3/2, see [6].
However, despite the apparent similarities, equation (1.4) behaves differently from (1.5).

The Landau equation admits a richer class of equilibrium solution: every Maxwellian M solves
Q(M,M) = 0 which holds, in particular, for those with arbitrarily large mass.

From a different perspective, Krieger-Strain [9] considered an isotropic version of (1.4)

∂tf = a[f ]Δf + αf2, (1.6)

and showed global existence of smooth radial solutions starting from radial initial data when
α < 2/3. This range for α later was expanded to any α < 74/75 by means of a non-local
inequality obtained by Gressman, Krieger and Strain [7]. Note that when α = 1, the above
equation can be written in divergence form,

∂tf = div(a[f ]∇f − f∇a[f ]). (1.7)

These results put in evidence how a non-linear equation with a non-local diffusivity such as
(1.7) behaves drastically different from (and better than) (1.5).

Our main results in this manuscript are twofold. The first one gives necessary conditions
for the finite time blow up of solutions to (1.4). The second (unconditional) result says that
solutions to (1.7) do not blow up at all, and in fact become instantaneously smooth (even for
initial data that might be initially unbounded).
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Both theorems deal only with radially symmetric, decreasing initial conditions, in general we
assume that {

fin ≥ 0,
∫
R3 fin dv = 1,

∫
R3 fin|v|2 dv = 3,

H =
∫
R3 f log(f) dv < ∞, and |v| ≤ |w| ⇒ fin(v) ≥ fin(w).

(1.8)

The normalization of the initial data is standard and follows a standard change of variables.
The main results are the following.

Theorem 1.1. Let fin be as in (1.8) and such that fin ∈ L∞. Then there exists T0 > 0 and
f : R3 × (0, T0) → R+ such that f is smooth and solves (1.4) for t ∈ (0, T0), with f(·, 0) = fin.

Moreover, T0 is maximal in the sense that either T0 = ∞ or else the L3/2 norm of f accumulates
near v = 0 as t → T−0 , in particular

lim
t→T−

0

‖f(·, t)‖Lp(B1)
= ∞, ∀ p > 3/2.

In fact, the above theorem is a consequence of the following sharper result.

Theorem 1.2. There is a constant ε0, with ε0 ≥ 1/96, such that if above T0 < ∞ then

lim sup
r→0+

sup
t∈(0,T0)

{
r2

∫
Br

f(v, t) dv∫
Br

a[f ](v, t) dv

}
≥ ε0.

Neither of the above theorems are enough to guarantee long time existence of classical solu-
tions to (1.4). However, Theorem 1.2 suggests that (1.4) is in some sense “critical” for regularity.
It can be shown (see Proposition ??) that for any nonnegative f ∈ L1(R3)

r2
∫
Br

f(v) dv∫
Br

a[f ](v) dv
≤ 3, ∀ r > 0.

In particular, if the ε0 in Theorem 1.2 could be shown to be at least 3 (or in general if the upper
bound in the last inequality could be improved to something less than ε0) it would immediately
follow that solutions to the Landau equation (1.4) cannot blow up in finite time. It is not clear
if this can be guaranteed for general f without at least using some partial time regularization.

On the other hand, methods used in the proof of Theorem 1.1 and Theorem 1.2 yield long
time existence for the isotropic Landau equation (1.7) (again, in the radial case).

Theorem 1.3. Let fin be as in (1.8) and such that for some p > 6,

fin ∈ Lp
weak(R

3)

Then, there exists a function f : R3 × R+ → R, smooth for positive times, with f(·, 0) = fin,
and which solves (for t > 0),

∂tf = a[f ]Δf + f2.

We approach the analysis from the point of view of nonlinear parabolic equations. The
nonlocal dependence of the coefficients on the solution prevents the equation from satisfying a
comparison principle: if v0 is a contact point of two functions f and g, i.e. f(v0) = g(v0) and
everywhere else f(v) ≤ g(v), it does not follow that Q(f, f)(v0) ≤ Q(g, g)(v0). More precisely,
for the case where Q(f, f) corresponds to (1.2) one cannot expect an inequality such as

Tr(A[f ]D2f)(v0) ≤ Tr(A[g]D2g)(v0).

In fact due to the nonlocality of A one only has A[f ](v0) ≤ A[g](v0). Equality A[f ](v0) =
A[g](v0) holds only when f ≡ g for every v ∈ R

3. The maximum principle is not useful either,
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since at a maximum point for f we only obtain ∂tf ≤ −fΔa[f ], which does not rule out growth
of the maximum of f . The same observations apply to Q(f, f) corresponding to (1.7).

On the other hand, if one could construct (using only properties of f that are independent
of t) a function U(v) such that

Tr(A[f ])D2U) + fU ≤ 0 in R
3

( respectively, a[f ]ΔU + fU ≤ 0 in R
3 ),

then the comparison principle (for linear parabolic equations) would guarantee that f ≤ cU for
all times provided f(t = 0) ≤ cU . Our main observation is that (under radial symmetry) the
above can be made to work with U(v) = |v|−γ , γ ∈ (0, 1). From here higher local integrability of
f can be propagated, and from there higher regularity follows by standard elliptic regularization.

2. Radial symmetry

Proposition 2.1. Suppose fin and g(·, t) are both radially symmetric, and let Q(·, ·) denote
either QL or QKS . Then any solution of the linear Cauchy problem

∂tf = Q(g, f), f(v, 0) = fin(v),

is radially symmetric for all t. Furthermore, if fin and g are radially decreasing, then so is f .

Let h : R3 → R+, define

A∗[h](v) := (A[h](v)v̂, v̂), v 	= 0, v̂ := v|v|−1. (2.1)

There are two useful expressions for A∗[h] and a[h] when h is radially symmetric.

Proposition 2.2. Let h ∈ L1(R3) be radially symmetric and non-negative. Then

A∗[h](v) =
1

12π|v|3
∫
B|v|

h(w)|w|2 dw +
1

12π

∫
Bc

|v|

h(w)

|w| dw, (2.2)

a[h](v) =
1

4π|v|
∫
B|v|

h(w) dw +
1

4π

∫
Bc

|v|

h(w)

|w| dw. (2.3)

The second formula above is simply the classical formula for the Newtonian potential in
the case of radial symmetry; the formula for A∗[h] is new and the proof can be found in the
Appendix.

Lemma 2.3. Let h ∈ L1(R3) be a non-negative, decreasing radial function.

(1) If ∫
BR1

\BR0

h dv ≥ δ > 0,

for some δ > 0 and 0 < R0 < R1 then,

A[h](v) ≥ δR2
0

12π(1 +R3
1)

1

1 + |v|3 I. (2.4)

(2) If h is bounded, i.e. if ‖h‖L∞(R3) = h(0) < +∞, it holds

A[h](v) ≤ a[h]I ≤ 2

(‖h‖L∞(R3) + ‖h‖L1(R3)

1 + |v|
)

I. (2.5)
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Proof. (1) Let A∗[h] be as in (2.2). If |v| ≥ R1, then

A∗[h](v) ≥ 1

12π|v|3
∫
BR1

h(w)|w|2 dw ≥ 1

12π|v|3
∫
BR1

\BR0

h(w)|w|2 dw

≥ R2
0

12π|v|3
∫
BR1

\BR0

h(w, t) dw ≥ δR2
0

12π|v|3 .

Note that Proposition (2.2) guarantees that A∗[h] is radially decreasing. Thus,

A∗[h](v) ≥ δR2
0

12πR3
1

, ∀ v ∈ BR1 .

Combining both estimates, we conclude that

A∗[h](v) ≥ δR2
0

12π(1 +R3
1)

1

1 + |v|3 .

(2) If h ∈ L∞, we may use (2.2) to obtain the estimate

A[h] ≤ a[h](v)I ≤
(

h(0)

4π|v|
∫
B|v|

dw +
1

4π

∫
Bc

1

h(w) dw +
1

4π

∫
B1

h(w)

|w| dw

)
I

≤ (‖h‖L∞(R3) + ‖h‖L1(R3)

)
I, if |v| ≤ 1,

and

A[h] ≤ a[h](v)I ≤
(
‖h‖L1(R)

2π|v|

)
I, if |v| ≥ 1.

�

Proposition 2.4. Let h be a positive and radially symmetric and decreasing function. For any
γ ∈ (0, 1) define Uγ(v) as

Uγ(v) := |v|−γ .
Then, for Q = QL or Q = QKS

Q(h, Uγ) ≤ Uγ

(−1
3γ(1− γ)a[h]|v|−2 + h

)
.

3. Pointwise bounds and proof of Theorem 1.1

3.1. Conditional pointwise bound. The first lemma of this section (Lemma 3.2) is the key
argument for the proofs of Theorem 1.1 and Theorem 1.3. It consists of a barrier argument based
on the observation that the function U(v) = |v|−γ is a supersolution for the elliptic operator
Q(f, ·) under certain assumptions on f (this is where the radial symmetry and monotonicity is
needed). It affords control of certain spatial Lp-norms of the solution, and from these higher
regularity will follow by standard elliptic estimates (Lemma 3.3).

First, we prove an elementary proposition that will be of use in proving the key lemma.

Proposition 3.1. If h is a non-negative, radially symmetric and decreasing function,

h(v)

a[h](v)
≤ 8 sup

r≤|v|

{
r2

∫
Br

h(w) dw∫
Br

a[h](w) dw

}
|v|−2, ∀ v ∈ R

3.
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Lemma 3.2. Suppose f : R3 × [0, T ] → R+ is a classical solution of (??). Let γ ∈ (0, 1),
suppose there exists some R0 > 0 such that

r2
∫
Br

g(w, t) dw∫
Br

a[g](w, t) dw
≤ 1

24γ(1− γ), ∀ r ≤ R0, t ≤ T. (3.1)

Then,

f(v, t) ≤ max
{

3
4πR

γ−3
0 , ( 3

4π )
γ/3‖fin‖L3/γ

weak

}
|v|−γ , in BR0 × [0, T ].

In particular, the conclusion of the lemma holds for some R0 > 0 whenever there is a modulus
of continuity ω(r) and some R1 > 0 such that

sup
r<|v|

sup
t∈[0,T ]

{
r2

∫
Br

g(w, t) dw∫
Br

a[g](w, t) dw

}
≤ ω(|v|), ∀ 0 < |v| ≤ R1. (3.2)

The next lemma says that any solution f to (1.4) or (1.7) is a bounded function for all times
provided f satisfies (3.2).

Lemma 3.3. Let f : R3 × [0, T ] → R be a radially symmetric, radially decreasing solution to
(1.4) (or (1.7)) with initial data as in (1.8) and such that for some R0 > 0 we have

r2
∫
Br

f(w, t) dw∫
Br

a[f ](w, t) dw
≤ 1

24γ(1− γ), ∀ r ≤ R0, t ≤ T.

Or, assume that there is some modulus of continuity ω(r) such that,

sup
r<|v|

sup
t∈[0,T ]

{
r2

∫
Br

f(w, t) dw∫
Br

a[f ](w, t) dw

}
≤ ω(|v|), ∀ 0 < r ≤ R0. (3.3)

Then,

sup
t∈[ 12T,T ]

‖f(·, t)‖L∞(R3) ≤ C0. (3.4)

For some constant C0 depending only on fin, T and R0.

4. Mass comparison and proof of Theorem 1.3

In this section we apply the ideas from previous sections to construct global solutions (in the
radial, monotone case) for equation (1.7), namely

∂tf = a[f ]Δf + f2.

In view of Lemma 3.3, the fact that T0 = ∞ in Theorem 1.1 results from a bound of any
Lp(R3)-norm of f , with p > 3/2. For (1.7) the bound of any Lp(R3)-norm of f , with p > 3/2
will be proven by a barrier argument done at the level of the mass function of f(v, t), which is
defined by

Mf (r, t) =

∫
Br

f(v, t) dv, (r, t) ∈ R+ × (0, T0).

Depending on which problem f solves, the associated function Mf (r, t) solves a one-dimensional
parabolic equation with diffusivity given by A∗[f ] or a[f ].
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Proposition 4.1. Let f be a solution of (1.4) (resp. (1.7)) in R
3 × [0, T0], then M(r, t) solves

∂tMf = A∗∂rrMf +
2

r

(
Mf

8πr
−A∗

)
∂rMf in R+ × (0, T0) (4.1)(

resp. ∂tMf = a∂rrMf +
2

r

(
Mf

8πr
− a

)
∂rMf in R+ × (0, T0)

)
. (4.2)

Define the linear parabolic operator L in R+ × (0, T ) as

Lh := ∂th− a∂rrh− 2

r

(
Mf

8πr
− a[f ]

)
∂rh.

The above proposition simply says that LMf = 0 in R+×(0, T ). The next proposition identifies
suitable supersolutions for L.

Proposition 4.2. If m ∈ [0, 2] and h(r, t) = rm then Lh ≥ 0 in R+ × (0, T ).

Proof of Theorem 1.3. Assume fin ∈ L∞. As the bound for f(v, t) will not rely on the L∞
norm of fin but a Lp

weak norm of fin the existence of a solution for unbounded initia data in Lp

(p > 6) will follow by a standard density argument.
Since p > 6, there is some α > 0 and some C0 > 0 (depending only on ‖f‖Lp

weak
) such that

Mfin(r, 0) =

∫
Br

fin dv ≤ C0r
1+α.

Moreover, since f(·, t) has total mass 1 for every t > 0, we also have

Mf (r, t) ≤ 1, ∀ r > 0, t ∈ (0, T ).

Proposition 4.2 says that h = Cr1+α is a supersolution of the parabolic equation solved by
Mf in R+ × (0, T ). Then, choosing C := max{C0, 1} the comparison principle yields

Mf (r, t) ≤ h(r) = Cr1+α for r ∈ (0, 1), t ∈ (0, T ). (4.3)

Since f(v, t) is radially symmetric and decreasing, bound (4.3) implies that f(|v|, t) ≤
3C
4π

1
|v|2−α for v ∈ B1 and t ∈ (0, T ); hence there is some p′ > 3/2 and some Cp′ > 0 such

that

‖f(·, t)‖Lp′ (B1)
≤ Cp′ , ∀ t ∈ (0, T ).

Then Lemma 3.2 says that f(v, t) is bounded in R
3 × (0, T0). By Lemma 3.3 it follows that

T0 = +∞ so the solution is global in time. �
The method of the proof for Theorem 1.3 fails short in preventing finite time blow up for

(1.4). In any case, it at least gives another criterium for blow-up, the proof of which is essentially
the same as that of Theorem 1.3.
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1 Introduction

In this talk we consider the two dimensional motion of a viscous incompressible fluid flowing down an
inclined plane with an angle of inclination α (0 < α < π

2 ) under the effect of gravity. The fluid motion
is governed by the Navier-Stokes equations

∂tu+ (u,∇)u− 1

RΔu+
1

R∇p =
1

F2
fe,

div u = 0 in 0 < x2 < 1 + η(x1, t), t > 0,

with the boundary conditions

u = 0 on x2 = 0,

∂tη + u1∂1η − u2 = 0 on x2 = 1 + η(x1, t),

pnj − (∂kuj + ∂juk)nk + 2σ cscα
∂2
1η(

1 + (∂1η)2
) 3

2

nj = panj , j = 1, 2,

on x2 = 1 + η(x1, t),

where fe = (sinα,− cosα) is the external force and (n1, n2) is the outward unit normal of the free
surface at (x1, 1 + η(x1, t)). For physical background see [3]. This problem is written in dimensionless
variables (see [4] for nondimensionalization). Here R is the Reynolds number and F is the Froude
number. The nondimensionalization constants σ and pa denote the surface tension and the atmospheric
pressure respectively. From now on we consider disturbances which are periodic in the streamwise
coordinate x1 from the stationary flow

U = (2x2 − x2
2, 0), P = pa − 2 cotα(x2 − 1) in 0 < x2 < 1.

Set u = v +U , p = q + P , then we derive the equations governing disturbances.

∂tη + (v1 + 1− η2)∂1η − v2 = 0 on x2 = 1 + η(x1, t), x1 ∈ T,

∂tv − 1

RΔv + (U ,∇)v + (v,∇)U +
1

R∇q = −(v,∇)v,

div v = 0 in 0 < x2 < 1 + η(x1, t), x1 ∈ T.

Here T = R/( 2π� Z) denote the torus for periodicity. The boundary condition are

v = 0 on x2 = 0

and

(q − 2 cotαη)

(
n1

n2

)
−
(

2∂1v1 ∂1v2 + ∂2v1 − 2η
∂1v2 + ∂2v1 − 2η 2∂2v2

)(
n1

n2

)
+2σ cscα

∂2
1η

(1 + (∂1η)2)
3
2

(
n1

n2

)
=

(
0
0

)
on x2 = 1 + η(x1, t).

1Sasaki was supported by Grant-in-Aid for Young Scientists (B), Number 25800273, JSPS.
2Tomoeda was supported by Grant-in-Aid for Young Scientists (B), Number 24740060, JSPS.
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We transform the problem in the unknown domain

Ω(t) = {(x1, x2) ; 0 < x2 < 1 + η(x1, t), x1 ∈ T}, t ≥ 0

to the one in the fixed domain

Ω = {(x′1, x′2) ; x′1 ∈ T, 0 < x′2 < 1}
by use of the unknown function η(x′1, t). For each t ≥ 0 we define Θ : Ω → Ω(t) by

Θ(x′1, x
′
2 : t) = (x′1, x

′
2 + x′2η̃(x

′
1, x

′
2, t)), 0 < x′2 < 1.

Here η̃ is the extension of η to T× (−∞, 0) defined by

η̃(x′1, x
′
2, t) =

∑
ξ∈Z0

η(ξ)(t)

1 + |ξ|2(x′2 − 1)2
exp(iξ · x′1),

where η̃(t) are the coefficients of the Fourier series expansion of η(·, t). We assume that the velocity v
on Ω(t) is given by

vj =
1

J
θj,kv

′
k

in terms of v′ defined on Ω. (θj,k) is the Jacobian matrix of Θ and J is the Jacobian det(θj,k). We
set q′(x′1, x

′
2, t) = q(Θ(x′1, x

′
2, t)). This transformation is defined as in a same way as in [4]. With these

definitions we derive the equations for η,v′, q′ in Ω :

∂tη + ∂1η − v2 = η2∂1η on SF = {(x1, 1) ∈ Ω̄ ; x1 ∈ T}, t > 0, (1.1)

∂tv − 1

RΔv + (U ,∇)v + (v,∇)U +
1

R∇q = F0(η,v) +
1

RQ∇q, (1.2)

div v = 0 in Ω, t > 0, (1.3)

where

Q =

( −∂2(x
′
2η) −∂1(x

′
2η)

0
∂2(x

′
2η)

J

)

and

F0.j =
∂2(x2∂tη̃)

J
vj − δj2

J
v�∂�(x2∂tη̃) + (x2∂tη̃)

(
− ∂2

2(x2η̃)

J2
vj +

δj2
J2

v�∂
2
�2(x2η̃) +

1

J
∂2vj

)
−(2x2(1− x2)η̃ + (x2η̃)

2
)
∂1v1

−(x2 + x2η̃)(2− (x2 + x2η̃))

(
− ∂1(x2η̃)

J
∂2vj − ∂2

12(x2η̃)

J
vj +

∂1(x2η̃)∂
2
2(x2η̃)

J2
vj

)
+2δj1x2η̃v2

−2(1− x2(1 + η̃))

(
δj1vm∂m(x2η̃)− δ2j

∂1(x2η̃)

J
(v2 + vm∂m(x2η̃))

)
+

1

R
(
(ζ�cζmc − δ�cδmc)∂

2
�mvj + ζ�c∂�ζmc∂mvj + 2Jζjkζ�cζmc∂�

(
θkn
J

)
∂mvn

+Jζjkζ�c∂�ζmc∂m

(
θkn
J

)
vn + Jζjkζ�cζmcvn∂

2
�m

(
θkn
J

))
− 1

J
vm∂mvj − ζjkvmv�∂m

(
θk�
J

)
, j = 1, 2. (1.4)

Here we omit primes and collect linear term in the left hand side. By (1.1), we replace ∂tη in (1.4) by
v2+η2∂1η. The 2×2 matrix (ζj,k) denotes the inverse of the Jacobian matrix (θj,k). The explicit forms
of their components are

θjk = δjk + δ2j∂k(x2η̃), ζjk = δjk − δ2j
J

∂k(x2η̃).
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The boundary condition on the bottom is

v = 0 on SB = {(x1, 0) ∈ Ω̄ ; x1 ∈ T}, t > 0. (1.5)

The conditions on the upper boundary SF = {(x1, 1) ∈ Ω̄ ; x1 ∈ T} are written as follows

∂2v1 + ∂1v2 − 2η = F1(η,v) on SF , t > 0, (1.6)

q − 2∂2v2 − (2 cotα− σ cscα∂2
1)η = F2(η,v) on SF , t > 0, (1.7)

where

F1 = −∂1

(
1

J
vm(θ2m − Jδ2m)

)
− (ζk1 − δk1)∂k

(
vm

θ2m
J

)
−∂2

(
1

J
vm(θ1m − Jδ1m)

)
− (ζk2 − δk2)∂k

(
vm

θ1m
J

)
+2∂1η

(
ζk1∂k

(
vm

θ1m
J

)
− ζk2∂k

(
vm

θ2m
J

))
+(∂1η)

2

(
ζk1∂k

(
vm

θ2m
J

)
+ ζk2∂k

(
vm

θ1m
J

)
− 2η

)
,

F2 = 2σ cscα

(
1− 1

(1 + (∂1η)2)
3
2

)
∂2
1η +

1

1 + (∂1η)2

{
− 2(∂1η)

2∂2v2

+∂2

(
1

J
vm(θ2m − Jδ2m)

)
+ (ζk2 − δk2)∂k

(
vm

θ2m
J

)
−2∂1η

(
ζk1∂k

(
vm

θ2m
J

)
+ ζk2∂k

(
vm

θ1m
J

)
− 2η

)
+(∂1η)

2ζk1∂k

(
vm

θ1m
J

)}
.

The full nonlinear equations (1.1) – (1.7) are solved numerically. The detail of the result of this simulation
will be submitted for publication elsewhere, we summarize the method of numerical calculations as
followed. In order to satisfy the solenoidal condition (1.3), the stream function ψ(x1, x2, t) are introduced
as follows:

v1 = −∂2ψ, v2 = ∂1ψ.

The actual time integrations are performed using the equations given in terms of ψ with spectral
transform method. The v1, v2, η, q, ψ are expanded x1 direction by Fourier expansion and x2 direction
by the Chebychev polynomials. The time integration is performed using Adams predictor-collector
scheme.

2 Linearized problem

In this section we deal with the linearized problem of (1.1)– (1.7) as follows.

∂tη + ∂1η − u2 = g0 on SF , (2.1)

∂tu− 1

RΔu+
1

R∇p+ (U ,∇)u+ (u,∇)U = f0 in Ω, (2.2)

div u = 0 in Ω, (2.3)

u = 0 on SB (2.4)

∂2u1 + ∂1u2 − 2η = 0 on SF , (2.5)

p− 2∂2u2 − (2 cotα− 2σ cscα∂2
1)η = 0 on SF . (2.6)

To eliminate the pressure from (2.2) we use the orthogonal projection onto the L2 orthogonal complement
of the space of gradients. We introduce the projection orthogonal to the following space

G0 = {∇φ ; φ ∈ H1(Ω), φ = 0 onSF }.

Define the orthogonal projection by P
0 : L2(Ω) → (G0

)⊥
.
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Lemma 2.1. Let r ≥ 0, i) P
0 is a bounded operator on Hr(Ω). ii) Suppose φ ∈ H1(Ω). Then

P
0(∇φ) = ∇ψ, where ψ satisfies

ψ = φ on SF , ∂2ψ = 0 on SB , Δψ = 0 in Ω.

See [1], page 369 for the proof of Lemma 2.1.
We proceed to formulate the linearized problem (2.1)–(2.6). Applying P

0 to (2.2) we have

∂tu− 1

RP
0Δu+

1

RP
0∇p+ P

0((U ,∇)u+ (u,∇)U) = P
0f0.

Using Lemma 2.1 and finding p on SF from (2.6), we can write this as follows

∂tu− 1

RP
0Δu+

1

R∇p1 +
1

R∇p2 + P
0((U ,∇)u+ (u,∇)U) = P

0f0 (2.7)

with

Δpj = 0 in Ω, ∂2pj = 0 on SB , j = 1, 2,

p1 = 2∂2u2 on SF ,

p2 = (2 cotα− 2σ cscα∂2
1)η on SF .

Collecting the terms depending on u in (2.7), we define the operator A by

Au = − 1

RP
0Δu+ P

0((U ,∇)u+ (u,∇)U) +
1

R∇p1.

For u ∈ P
0H0(Ω), set R : u → u2|SF

, the restriction of the second component of u to SF . The formal
adjoint R∗ with respect to L2 inner is given the gradient ∇ψ of the solution

∇ψ = 0 in Ω, ψ = φ on SF , ∂1ψ = 0 on SB

for a given φ ∈ H1/2(T). By this notation we can rewrite (2.1), (2.7) and (2.6) as follows.

∂tη + ∂1η − u2 = g0

∂tu−Au+
1

RR∗((2 cotα− 2σ cscα∂2
1)η) = P

0f0.

We now introduce the 2× 2 matrix of operators

G

(
η
u

)
=

( −∂1 R
1

RR∗(−2 cotα+ 2σ cscα∂2
1) −A

)(
η
u

)
.

Then the above system is rewritten as

d

dt

(
η
u

)
−G

(
η
u

)
=

(
g0

P
0f0

)
.

For r ≥ 0 we set

Hr
0 (T) =

{
φ ∈ Hr(T) ;

∫
T

φ(x)dx = 0

}
.

For the domain of the operator G, we set

D(G) =
{
(η,u) ∈ H

3
2
0 (T)× P

0H0(Ω) ; η ∈ H
5
2
0 (T) , u ∈ H2(Ω),

u = 0 on SB , ∂1u2 + ∂2u1 − 2η = 0 on SF

}
.

The operator G has the sectorial property stated as follows.

Theorem 2.2 ([5]). There is a γ > 0 such that, if λ ∈ C satisfies Reλ ≥ γ there exists the inverse
(λ−G)−1 in X with (λ−G)−1 X = D(G) and its operator norm satisfying∣∣(λ−G)−1

∣∣
X

≤ C1

|λ| ,

where X = H
3
2
0 (T)× P

0H0(Ω).
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Remark 2.3. We can give the same result by considering the linear problem in the slab T × (0, 1), in
order to get accurate estimates.

From this we see that the resolvent operator G is compact in X. As a consequence we can show

Corollary 2.4 ([5]). We can take θ ∈ (π2 , π) so that, for λ ∈ C with |arg(λ− γ)| ≤ θ, (λ−G)−1 exists
and satisfies ∣∣∣∣(λ−G)−1

∣∣∣∣
X

≤ C2

|λ| .

We will give the sketch of the proof of Theorem 2.2 in this talk. For the detailed proof of Theorem
2.2 and Corollary 2.4, see [5]. If the data from X is more regular, the solution gets higher regularity.

Proposition 2.5 ([5]). Let s ≥ 2. Assume that λ satisfies the same condition as in Corollary 2.4.

Suppose that f ∈ P
0Hs−2(Ω), g0 ∈ H

s− 1
2

0 (T). Then the solution(
η
u

)
= (λ−G)−1

(
g0
f

)
satisfies

‖u‖Hs(Ω) + |λ| s2 ‖u‖H0(Ω) + ‖η‖
Hs+1

2 (T)
+ |λ| s2+ 1

4 ‖η‖H0(T)

≤ C3

(
‖f‖Hs−2(Ω) + |λ| s2−1‖f‖H0(Ω) + ‖g0‖

Hs− 1
2 (T)

+ |λ| s2− 1
4 ‖g0‖H0(T)

)
.

This is proved in the same way as in section 4 of [2].
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On an approximate scheme for a distance function of evolving

interfaces

Nao Hamamuki ∗

1 Introduction

Distance function and eikonal equation. A distance function to a set is a well-known and
fundamental tool to measure how close a point is to the given set. When Ω ⊂ Rn is open, it is
known that the distance function to its boundary, i.e., dist(x, ∂Ω) = infy∈∂Ω |x − y| is a unique
non-negative viscosity solution of the eikonal equation

|∇u(x)| = 1 in Ω (1.1)

under the homogeneous Dirichlet boundary condition u = 0 on ∂Ω. See, e.g., [1, Corollary 3.4.5
(i)(ii), Remark 5.6.1] for properties of a sub- and superdifferential of the distance function and [4]
for the comparison principle.

We next consider evolving interfaces Γt ⊂ Rn and the (signed) distance function d = d(x, t) to
the interfaces. In this case, how can we characterize d as a solution of a time-dependent partial
differential equation? A big difference from the stationary case is that d can be discontinuous
with respect to the time variable. As is known, if we fix a time, d(·, t) is a Lipschitz continuous
function, whereas d is not continuous in general as a function of (x, t). Indeed, when the interface
has an extinction point, the distance to the nearest interface becomes instantaneously large near
the extinction point (Example 2.3). For this reason, it is impossible to get d via any problem whose
unique solution is continuous.

The goal of this work is to present an approximate scheme for a possibly discontinuous distance
function by continuous viscosity solutions of a certain Hamilton-Jacobi equation with a parameter.
An evolving interface Γt we study is given as the zero level set of the solution w of the initial value
problem of

wt(x, t) = H(x,∇w(x, t)) in Rn × (0, T ). (1.2)

To approximate the distance function d to the interface, we introduce a new equation of the form

uθt (x, t) = H(x,∇uθ(x, t)) + θβ(uθ(x, t))(1− |∇uθ(x, t)|) in Rn × (0, T ). (1.3)

Here θ > 0 is a parameter and β(r) is a smooth approximation of the sign function such as
β(r) = r/

√
r2 + δ2 with δ > 0. Roughly speaking, the limit θ → ∞ forces (1 − |∇uθ(x, t)|) to be

close to 0 except on the zero level set of uθ, i.e., |∇uθ(x, t)| ≈ 1 for θ > 0 large. If we further know
that the zero level set of uθ is the same as that of the solution w of (1.2) and hence is equal to Γt,
then we would get a convergence of uθ to the distance function d, which is known to be a solution of
(1.1) with the homogeneous Dirichlet boundary condition on the interface. We aim to justify this
formal observation by using the theory of viscosity solutions especially when the distance function
has a discontinuity. This talk is based on the paper [3].

∗Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810,
Japan. E-mail: hnao@math.sci.hokudai.ac.jp
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Reinitialization. This work was originally motivated by the reinitialization algorithm for level
set equations ([6, 5]). In the literature “reinitialization” usually refers to the idea of stopping the
process of solving a level set equation such as (1.2) regularly in time and changing its solution at
the stopping time so that we obtain a function which approximates the signed distance function to
the zero level set of the solution. In the numerical study of (1.2), when the gradient of the solution
is close to zero, it becomes difficult to compute precisely the zero level set of it. The reinitialization
is used to overcome such an issue since the gradient of the distance function is 1 and thus away
from 0.

We briefly explain the main idea of the reinitialization algorithm. Consider the corrector equa-
tion

ut(x, t) = sign(u(x, t))(1− |∇u(x, t)|), (1.4)

where sign(·) is the sign function defined as sign(r) = 1 if r > 0, sign(r) = −1 if r < 0 and
sign(r) = 0 if r = 0. The solution of this equation asymptotically converges to its steady state
(1.1), a characteristic property of the distance function. Also, the relation sign(0) = 0 guarantees
that the initial zero level set is not distorted by solving (1.4) since ut(x, t) = 0 on the zero level.

A corrector equation we use is a slight modification (continuous version) of (1.4), that is,

ut(x, t) = β(u(x, t))(1− |∇u(x, t)|). (1.5)

As in [6], the idea is to solve (1.2) and (1.5) periodically in time. We first solve (1.2) for a period
of k1Δt and then (1.5) for k2Δt, where k1, k2 and Δt are positive constants. One period will be
completed at a time step of length ε = (k1 + k2)Δt. We are thus led to the following combined
Hamiltonian

H12(x, τ, r, p) :=

⎧⎪⎨⎪⎩
H(x, p) if i < τ <= i+

k1
k1 + k2

,

β(r)(1− |p|) if i+
k1

k1 + k2
< τ <= i+ 1

(i = 0, 1, . . . ),

and the associated equation

uεt (x, t) = H12

(
x,

t

ε
, uε(x, t),∇uε(x, t)

)
in Rn × (0, T ). (1.6)

One would expect that solving the two equations infinitely often would force the solution of the
reinitialization algorithm to converge to the signed distance function. Therefore we study the limit
of the solutions uε as ε → 0. This is a homogenization problem with the Hamiltonian H12 being
1-periodic and discontinuous in the fast variable τ = t/ε. Since the limit above is taken for Δt → 0
(and consequently ε → 0), two free parameters still remain; namely k1 and k2. In fact, it turns out
that ([3, Theorem 2.3]) the solutions uε of (1.6) converge, as ε → 0, to the solution ūθ of

ūθt (x, t) = H̄(x, ūθ(x, t),∇ūθ(x, t)) in Rn × (0, T )

with

H̄(x, r, p) :=
1

1 + θ
{H(x, p) + θβ(r)(1− |p|)}.

Here θ = k2/k1 is the ratio of length of the time intervals in which the equations (1.2) and (1.5) are
solved. After rescaling uθ(x, t) = ūθ(x, (1+ θ)t), we obtain (1.3). If we solve the corrector equation
(1.5) in a larger interval than the one we solve the original (1.2), we can expect a convergence to
the steady state. For this reason we study the limit as θ → ∞ of the solutions of (1.3).
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2 Hamilton-Jacobi equations

Let u0 : R
n → R be a Lipschitz continuous initial datum, and we study (1.2) and (1.3) under this

fixed initial condition. The function H : Rn ×Rn → R in (1.2) called a Hamiltonian is assumed
to satisfy

• Continuity:

|H(x, p)−H(y, p)| <= L1(1 + |p|)|x− y|, |H(x, p)−H(x, q)| <= L2|p− q|

for some L1, L2 > 0;

• Geometricity: H(x, λp) = λH(x, p) for all λ > 0.

The continuity assumption guarantees well-posedness of the initial value problems of both (1.2) and
(1.3) in the usual viscosity sense, and the unique viscosity solution is continuous. For the viscosity
solution w of (1.2) we define

Γt := {x ∈ Rn | w(x, t) = 0}, D±t := {x ∈ Rn | ±w(x, t) > 0} for t ∈ [0, T ),

which represent an interface and the inside/outside of the interface respectively. The signed distance
function associated with this interface is

d(x, t) :=

{
dist(x,Γt) if x ∈ D+

t ,

−dist(x,Γt) if x 	∈ D+
t .

Remark 2.1. The Lipschitz continuity of H with respect to p guarantees the property of finite speed
of propagation of the interface, and then the constant L2 gives the maximal speed. This property
implies that there is no emerging point of the interface, whereas an extinction point can appear
and lead to discontinuity of d; see Example 2.3.

For numerical purposes, it will be useful that the distance function possesses different signs
across the interface. However, since d is decomposed as d = d+ − d−, where d+ and d− stand for
the plus and the minus part of d respectively, we may assume that d is non-negative. For this
reason, in what follows we assume that the initial datum u0 is non-negative, so that w is also
non-negative by the comparison principle. This implies D−t = ∅ and d(x, t) = dist(x,Γt) >= 0. In
the general case where d can take negative values, we apply the theorems below to d+ and d−.

We now prepare barrier functions, which control the behavior of the solutions uθ.

Proposition 2.2 (Barriers). There exist some ε, L > 0, independent of θ > 0, such that

εw <= uθ <= Ld in Rn × (0, T ). (2.1)

In the proof we show that εw and Ld are, respectively, a viscosity subsolution and a vis-
cosity supersolution of (1.3) to get the above inequalities by the comparison principle. Since
Γt = {w(·, t) = 0} = {d(·, t) = 0}, the inequalities (2.1) imply that Γt = {uθ(·, t) = 0} for ev-
ery θ > 0. In other words, the solution uθ of (1.3) preserves the zero level set of the solution w of
(1.2).

The following example shows that the distance function can be discontinuous when the interface
has an extinction point.
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Example 2.3 (Discontinuity of the distance function). We study (1.2) with H(x, p) = |p|. This
describes a phenomenon where the interface moves at a uniform speed 1. In this case the viscosity
solution of (1.2) is represented as

w(x, t) = max
|x−y|<=t

u0(y). (2.2)

This formula is derived from the corresponding optimal control problem. We now let the dimension
n be 1 and take the initial datum as u0(x) = max{(1−|x−2|)+, (1−|x+2|)+}. Then (2.2) implies

w(x, t) = min{max{(t+ 1− |x− 2|)+, (t+ 1− |x+ 2|)+}, 1}.

We therefore have

Γt = {w(·, t) = 0} =

{
{|x| >= t+ 3} ∪ {|x| <= 1− t} if t <= 1,

{|x| >= t+ 3} if t > 1

and

d(x, t) =

{
max{(t+ 1− |x− 2|)+, (t+ 1− |x+ 2|)+} if t <= 1,

(t+ 3− |x|)+ if t > 1.

See Figure 1 for the graph of d. Thus d is discontinuous on � := {(x, 1) | −2 < x < 2}; more
precisely, d is not upper semicontinuous but lower semicontinuous on �. In this example, 0 ∈ Γ1 is
an extinction point of the interface.

O x

d(x, t)(t > 1)

d(x, 1)

4

d(x, 0)

Figure 1: The graph of d.

3 Convergence results

Continuous distance function. To illustrate the idea of the proof, we first present a convergence
result to a continuous distance function d, which is much easier to handle than a general (possibly
discontinuous) distance function. When d is continuous, it is uniformly approximated by the
solutions uθ of (1.3).

Theorem 3.1. If d is continuous, then uθ converges to d locally uniformly in Rn×(0, T ) as θ → ∞.

In the proof we compare the distance function d and the half-relaxed limits of uθ, which are
weak notions of the limit for a sequence of functions defined as

u(x, t) := lim sup
(y,s,θ)→(x,t,∞)

uθ(y, s), u(x, t) := lim inf
(y,s,θ)→(x,t,∞)

uθ(y, s).
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Then u(·, t) and u(·, t) are, respectively, a viscosity subsolution and a viscosity supersolution of
the eikonal equation (1.1) in D+

t . To apply the comparison principle to these limits and d, we
need to further know the boundary data of the limits. Despite the fact that the zero level set
of uθ is Γt for every θ > 0, it is not clear if the same relation holds for the limits of uθ. Now,
thanks to the existence of barrier functions (2.1) together with the continuity of d, it follows that
Γt = {u(·, t) = 0} = {u(·, t) = 0}.

The comparison principle is thus applicable, and we obtain u <= d and d <= u. Since we always
have u <= u by the definitions of them, combining these three inequalities, we conclude the locally
uniform convergence of uθ to d.

General distance function. If the distance function d is discontinuous, we cannot expect that
the continuous solutions uθ of (1.3) will converge locally uniformly to d. Among three inequalities
in the previous paragraph, d <= u and u <= u still hold even if d is discontinuous, but u <= d is not
true. This is because the zero level set of u is not necessarily Γt, which prevents us to apply the
comparison principle for (1.1). We can however show a weaker notion of convergence to d; namely
a convergence to d from below in time as follows:

Theorem 3.2. lim
(y,s,θ)→(x,t,∞)

s<=t

uθ(y, s) = d(x, t) for all (x, t) ∈ Rn × (0, T ).

This result is shown by introducing a notion of a half-relaxed limit from below in time:

u′(x, t) := lim sup
(y,s,θ)→(x,t,∞)

s<=t

uθ(y, s).

The reason why this notion of the limit is successful is that d is always continuous from below in
time; see, e.g., [2, Proposition 2.1 (ii)] for the case of a motion by mean curvature. Due to this we
have Γt = {u′(·, t) = 0}.

The following lemma guarantees that the new limit u′ still satisfies the viscosity inequality,
which enables us to apply the comparison principle between u′ and d.

Lemma 3.3. u′(·, t) is a viscosity subsolution of (1.1) in D+
t .

The main tool of the proof is the fact that the viscosity inequality can be extended up to the
terminal time. This fact is used for the upper half-relaxed limit of uθ on (0, t̂], which is equal to
u(x, t) if t < t̂ and u′(x, t) if t = t̂. Since Lemma 3.3 yields u′ <= d, we conclude Theorem 3.2. As
byproducts of this proof, we also get

• for every t ∈ (0, T ), uθ(·, t) converges to d(·, t) locally uniformly in Rn as θ → ∞;

• u = d in Rn × (0, T ).

The former means a locally uniform convergence at a fixed time while the latter is a convergence
in the sense of the lower half-relaxed limit.

Another equation. Finally, we propose another equation whose solution has a gradient bound
away from 0 on the zero level set. Consider

uθt (x, t) = H(x,∇uθ(x, t)) + θβ(uθ(x, t))(1− |∇uθ(x, t)|)+ in Rn × (0, T ). (3.1)

Here we have replaced (1 − |∇uθ(x, t)|) in (1.3) by its plus part (1 − |∇uθ(x, t)|)+. Although the
solutions uθ of (3.1) do not converge to d, we have the following estimate:
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Theorem 3.4. d <= sup
θ>0

uθ <= Ld in Rn × (0, T ) for some L > 0.

This is derived from the inequality d <= u and the monotonicity of the solutions with respect to
θ, i.e., uθ1 <= uθ2 if θ1 <= θ2.
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A Degenerate Isoperimetric Problem and Traveling Waves to a
Bi-stable Hamiltonian System
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Abstract:
We examine here a non-standard type of isoperimetric problem. Given a continuous function

F : R2 → [0,∞) vanishing at two points, p+ and p− in the plane, we seek a curve γ : [0, 1] → R2

that minimizes the distance between these two points in the metric having F as its conformal

factor, subject to a constraint associated with Euclidean area. That is, we seek a solution to the

variational problem

inf
γ

E(γ) with E(γ) :=

∫ 1

0

F(γ)
∣∣∣γ′∣∣∣ dt, (0.1)

where competitors γ : [0, 1] → R2 must satisfy γ(0) = p−, γ(1) = p+ as well as the constraint

∫
γ

ω0 = const. with ω0 given by the 1-form ω0 = −p2dp1. (0.2)

Since dω0 is just the standard Euclidean area form dp1 dp2, the isoperimetric nature of the min-

imizing curve becomes evident. What makes this particular isoperimetric problem non-standard

is both the degeneracy of the conformal factor at the two “wells” p− and p+ and the fact that

length is measured with respect to a metric given by F while area is measured with respect to the

Euclidean metric. There is a vast literature on isoperimetric problems with assorted assumptions

on the conformal factor or “density,” though to our knowledge none address this combination of

degeneracy and mixture of metrics. We mention, for example, [5, 6, 7, 9, 12] but of course there

are many, many others.

One motivation for our investigation is the connection between such isoperimetric curves–

should they exist–and the existence of traveling wave solutions to a Hamiltonian system associ-

ated with the energy functional

H(u) :=

∫
1

2
|∇u|2 +W(u) where W(u) = F2(u).

The theory of heteroclinic connections to bi-stable gradient-type reaction-diffusion systems in

the form of standing or traveling waves is by now very well-developed in both the scalar and

vector-valued settings, including for example, [1, 2, 3, 4, 8, 10, 11, 14] to name but a few studies.

Here, however, rather than seeking traveling wave solutions to a gradient flow ut = −δH(u), we

pursue traveling wave solutions to a Hamiltonian flow associated with H, namely,

Jut = Δu − ∇uW(u) where J =

(
0 1

−1 0

)
and u =

(
u(1)(x, t), u(2)(x, t)

)
, (0.3)

which conserves the value of H over time. Such a solution would take the form u = u(x, t) =
U(x1 − νt) for some wave speed ν with U : R→ R2 then required to solve

−ν JU′ = U′′ − ∇uW(U) on (−∞,∞) with U(±∞) = p±. (0.4)
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This problem is itself variational in nature. At least formally, solutions are critical points of the

constrained minimization problem

inf
u

H(u) among competitors u : R→ R2 satisfying:

U(±∞) = p± and the constraint −
∫
R

u(2)(u(1))′ = A (0.5)

for some A ∈ R, with the wave speed arising as a Lagrange multiplier associated with the con-

straint. It turns out that minimizers of this problem can be found if one identifies minimizers of

the isoperimetric problem (0.1), very much in the spirit of [13, 14].

This talk then is primarily devoted to the study of (0.1). Our main result here is the existence

of a minimizing curve under certain assumptions on the behavior of W near its minima p+ and

p−. We deal with the degeneracy of the conformal factor by first focusing on the problem of

finding a constrained minimizer of E joining a non-degenerate point in the plane to either of the

wells of W. This one-well isoperimetric problem is solved uniquely for W taking the form of a

non-negative quadratic vanishing at the well. For convenience, in this one-well setting we take

the zero of W to be at the origin. Somewhat surprisingly, the optimal curves are spirals in some

cases.

To illustrate how the spiral shape arises, we give a simple derivation of their form for the

one-well problem with a radial quadratic potential, W(p) = |p|2, with p = (p1, p2). Suppose

we wish to join (1, 0) to the origin and we make the assumption that the optimal curve can be

parametrized by polar radius r ∈ (0, 1) in the form z(r) = reiθ(r), and we normalize θ(1) = 0.

Then the problem reduces to minimizing the length functional

E(z) =

∫ 1

0

r
√

1 + r2[θ′(r)]2 dr subject to the constraint

∫ 1

0

r2

2
θ′(r) dr = A,

for given A. By defining w = z2(r) = r2ei2θ(r) = ρeiφ(ρ), ρ ∈ (0, 1), the problem is further reduced

to minimizing

L(w) :=

∫ 1

0

|w′(ρ)| dρ =
∫ 1

0

√
1 + ρ2[φ′(ρ)]2 dρ, with

1

4

∫ 1

0

ρφ′(ρ) dρ = A.

By Jensen’s inequality (applied with the convex function h(x) =
√

1 + x2), we obtain an isoperi-

metric inequality of the form,

L(w) ≥
⎛⎜⎜⎜⎜⎜⎝1 +
[∫ 1

0

ρ φ′(ρ) dρ
]2⎞⎟⎟⎟⎟⎟⎠

1
2

= (1 + 16A2)
1
2 ,

for any such w(ρ) = z2(r), with equality holding exactly when ρφ′(ρ) = 4A. Integrating and

returning to the original parametrization, the optimal curve is the spiral

z(r) = rei4A ln r, r ∈ (0, 1).

The rigorous derivation of the minimizing curve without the assumption that θ = θ(r) and for

more general quadratics, follows substantially different methods, using calibrations.
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We now describe the result for general quadratic W a bit more precisely. We suppose that

F(p) =
√

W(p) where W : R2 → R is given by the quadratic of the form

W(p) = pT HW p. (0.6)

Here HW is a constant, real, symmetric, positive definite 2 × 2 matrix. We denote by λ2
1 and λ2

2

the two positive eigenvalues of the matrix HW and express all points in R2 and all curves in the

plane with respect to the orthonormal basis {v1, v2} of eigenvectors of HW . In particular, then F
takes the form

F(p) =

√
λ2

1
p2

1
+ λ2

2
p2

2

and we let

E(γ) :=

∫ 1

0

F(γ)
∣∣∣γ′∣∣∣ dt (0.7)

For any A ∈ R and any p0 ∈ R2, we introduce the admissible class

SA,p0
:=
{
γ : [0, 1] → R2 : γ locally Lipschitz, γ(0) = p0, γ(1) = (0, 0), P(γ) = A

}
, (0.8)

where

P(γ) := −
∫ 1

0

γ(2)(γ(1))′ dt, and where we write γ = (γ(1), γ(2)).

We then cast the one-well isoperimetric problem as

m0 := inf
SA,p0

E(γ). (0.9)

To state the result we recall the definition of the 1-form ω0 := −p2dp1 and introduce another

1-form

ω1 :=
1

λ1 + λ2

(−λ2 p2dp1 + λ1 p1dp2) . (0.10)

We observe that

P(γ) =

∫
γ

ω0 and that dω0 = dω1 = dp1dp2. (0.11)

We fix any reference curve γ0 starting at (0, 0) and ending at p0 (for instance, a line segment or

the geodesic joining these points in the degenerate metric). Then for any curve γ ∈ SA,p0
we

conclude from (0.11) that ∫
γ∪γ0

(ω0 − ω1) = 0

and consequently,

P(γ) = A if and only if

∫
γ

ω1 = A −C(γ0,p0) =: Ã (0.12)

where C(γ0,p0) :=
∫
γ0

(ω0 − ω1).

We can then establish:
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Theorem 1. The unique solution to the minimization (0.9) within the class SA,p0
is the curve γβ

defined as the integral curve of the vector field

Vβ(p) := (cos β)Θ(p) − (sin β) R(p) (0.13)

that joins p0 to the origin. Here

R(p) :=
(λ1 p1, λ2 p2)

F(p)2
, Θ(p) :=

(−λ2 p2, λ1 p1)

F(p)2
,

and β is selected so that
r̃(p0)

λ1 + λ2

cot β = Ã. (0.14)

We remark that while in general, a (constrained) geodesic associated with a critical point of

(0.9) should satisfy a second order system of ODE’s, it is noteworthy that here the optimal curve

satisfies a first order system.

We can broaden the one-well existence result to cover certain W that are analytic near the

well and whose Taylor development begins with the kind of quadratic considered above. We

won’t state this generalization precisely here. The existence proof for an isoperimetric curve in

this more general setting also comes through a type of calibration argument.

We next comment on the need for an assumption of non-degeneracy of the potential W at the

wells. It turns out that if the Taylor development of W at a well (i.e. at the origin in the one-well

setting) vanishes to quadratic order (i.e. if λ1 = λ2 = 0), then there will not exist a solution to

(0.9). In short, the cost of length in the metric having density F =
√

W is so cheap near the

origin that minimizing sequences tend to simply wrap more and more tightly around the origin

in accumulating the requisite area. In light of this phenomenon, some kind of non-degeneracy

assumption for D2W is seen as a necessary ingredient for existence.

With existence of a solution to the one-well isoperimetric problem in hand for appropriate

W, we can then establish the existence of curves solving the two-well problem (0.1)-(0.2). Es-

sentially, the approach for existence of such a minimizer comes via the Direct Method. When

an element of a minimizing sequence approaches a well, it can be replaced by the solution to

the one-well problem described above, satisfying an appropriate area constraint. This one-well

solution satisfies a bound on its Euclidean arclength and since a Euclidean arclength bound on

a minimizing sequence is easy away from the wells, using that F is strictly bounded away from

zero, one obtains the needed compactness to pass to a subsequence.

We now return to one of the motivation for our study of the two-well isoperimetric problem,

namely the pursuit of traveling wave solutions to (0.3) solving (0.4). For this purpose, it turns

out we need to know our isoperimetric curve does not “visit” either of the wells too soon. That

is, we must be sure there is no bubbling event, whereby a minimal curve passes through p+ or p−
more than once. One way to guarantee this is to pick an area constraint sufficiently close to that

which corresponds to the geodesic γ0 joining the two wells. In other words, one proves:

Theorem 2. Assume W is given by a non-degenerate quadratic near the two wells p+ and p−.
Let γ0 be an unconstrained minimizer of E(γ) among locally Lipschitz curves γ : [0, 1] → R2

satisfying γ(0) = p− and γ(1) = p+. Then there exists a number ε0 > 0 such that for any ε with
0 < |ε| < ε0, any solution γ∗ to

inf
{
E(γ) : γ : [0, 1] → R2 locally Lipschitz, γ(0) = p−, γ(1) = p+, P(γ) = P(γ0) + ε

}
(0.15)
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satisfies γ∗(t) � {p−,p+} for all t ∈ (0, 1). That is, γ∗ has no bubbles.
With this “well-behaved” isoperimetric curve in hand, we let y : (0, 1) → R be defined

through

y(t) :=
1√
2

∫ t

1
2

|γ′(τ)|√
W(γ(τ))

dτ =
L√
2

∫ t

1
2

1√
W(γ(τ))

dτ. (0.16)

Then we define say U = U(y) mapping R to R2 via U(y) = γ(t(y)) so that U will satisfy the

condition ∣∣∣U′(y)
∣∣∣ = √

2
√

W(U(y)). (0.17)

Now we can make a connection between isoperimetric curves and traveling waves as stated

(loosely) below:

Theorem 3. For ε0 given by Theorem 2 and for any non-zero ε ∈ (−ε0, ε0), let γ∗ = γ∗(t) be any
minimizer of (0.15). We take this curve to be parametrized by constant velocity

∣∣∣γ′∗(t)∣∣∣ = L, where
L is its Euclidean arc length so that γ∗ : [0, 1] → R2. Let U∗ : R→ R2 given by U∗(y) := γ∗(t(y))

be the reparametrization of γ∗ given by (0.16). Then we have:

(i) The function U∗ solves (0.5) with A = P(γ0) + ε.
(ii) Let C denote the set of all heteroclinic connections between p− and p+. Then for all non-zero
ε ∈ (−ε0, ε0) such that

P(γ) � P(γ0) + ε for all γ ∈ C, (0.18)

the function U∗ solves (0.4) with non-zero speed ν.
This is joint work with Stan Alama and Lia Bronsard of McMaster, Andres Contreras of New

Mexico State and Jiri Dadok of Indiana University.
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Abstract

We introduce a notion of the mathematical entropy for hyperbolic systems
of balance laws with (not necessarily symmetric) relaxation. As applications, we
deal with the dissipative Timoshenko system, the Euler-Maxwell system and the
Euler-Cattaneo-Maxwell system. Also we observe that the dissipative structure of
each system is of the regularity-loss type and investigate the corresponding decay
property. Furthermore, we prove the global existence and asymptotic stability of
solutions for small initial data.

1 Introduction

We consider hyperbolic systems of balance laws

wt +
n∑

j=1

f j(w)xj
= g(w). (1.1)

Here w is the unknown m-vector valued function of time t and space variable x =
(x1, · · · , xn) ∈ R

n, f j and g are given m-vector valued smooth functions of w ∈ Ow,
where Ow is a convex open set in R

m.
The notion of the mathematical entropy was first introduced by Godunov [6] (cf.

[5]) for hyperbolic systems of conservation laws. This notion was then extended in
[11] (cf. [9, 10]) to hyperbolic-parabolic systems of conservation laws. Also, a similar
extension was done in [13] (cf. [2, 26]) for hyperbolic systems of balance laws (1.1) with
symmetric relaxation.

On the other hand, recently, several interesting model systems which are written
in the form of (1.1) but with non-symmetric relaxation attract our attention. Among
them, we mention the dissipative Timoshenko system, the isentropic Euler-Maxwell
system, and the Euler-Cattaneo-Maxwell system. Our first aim of this note is to refine
the definition of the mathematical entropy in [13] such that it covers those systems with
non-symmetric relaxation.
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Our second aim is to review the recent mathematical theory developed in the above
interesting model systems with non-symmetric relaxation. Especially, we observe that
the dissipative structure of these systems is of the regularity-loss type which is charac-
terized by

Reλ(iξ) ≤ −c|ξ|2/(1 + |ξ|2)2 (1.2)

and then investigate the corresponding decay property; here λ(iξ) denotes the eigen-
values of the linearized system in the Fourier space. Furthermore, we report the results
on the global existence and optimal decay of solutions for small initial data in Sobolev
(or Besov) spaces with less regularity.

Finally, we emphasize the importance of our Euler-Cattaneo-Maxwell system. There
are several models of the Euler-Maxwell system with thermal effects, which usually in-
clude thermal damping (cf. [4]). However, such models may not have the mathematical
entropy and hence they may not be consistent with the classical thermodynamics. We
believe that the thermal effect described by our Cattaneo law will give a positive answer
to such a difficulty.

2 Mathematical entropy and symmetrization

We give a definition of the mathematical entropy for hyperbolic balance laws (1.1) with
not necessarily symmetric relaxation. To this end, we set

M = {ψ ∈ R
m; 〈ψ, g(w)〉 = 0 for any w ∈ Ow},

where 〈·, ·〉 denotes the inner product in R
m. Then M is a subspace of Rm such that

g(w) ∈ M⊥ for any w ∈ Ow, where M⊥ denotes the orthogonal complement of M.
Also we introduce the set E of equilibrium states:

E = {w ∈ Ow; g(w) = 0}.

The following definition of the mathematical entropy was given in [12] as a refinement
of the one introduced in [13].

Definition 2.1 (Mathematical entropy [12] (cf. [13])). Let η = η(w) be a smooth
function defined in a convex open set Ow. Then η(w) is called a mathematical entropy
for hyperbolic balance laws (1.1) if the following four conditions hold true:

(a) η(w) is strictly convex in Ow in the sense that the Hessian D2
wη(w) is positive

definite for w ∈ Ow.

(b) Dwf
j(w)(D2

wη(w))
−1 is symmetric for w ∈ Ow and j = 1, · · · , n.

(c) For w ∈ Ow, w ∈ E holds if and only if u := ((Dwη(w))
T ∈ M.

(d) For w ∈ E , the matrix −Dwg(w)(D
2
wη(w))

−1 is (not necessarily symmetric but)
nonnegative definite such that its kernel space coincides with M.

We remark that our Definition 2.1 just removes the ”symmetric” property of the
matrix −Dwg(w)(D

2
wη(w))

−1 for w ∈ E , which was required in the previous definition in
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[13]. This small modification enables us to use the notion of the mathematical entropy
for hyperbolic balance laws (1.1) even with non-symmetric relaxation.

Next we consider a diffeomorphism w = w(u) from an open set Ou onto Ow. By
using w = w(u), we rewrite (1.1) in the form

A0(u)ut +
n∑

j=1

Aj(u)uxj
= h(u), (2.1)

where A0(u) = Duw(u), Aj(u) = Duf
j(w(u)) = Dwf

j(w(u))Duw(u), and h(u) =
g(w(u)). Let us define

L(u) := −Duh(u) = −Dwg(w(u))Duw(u) (2.2)

and call this matrix L(u) the relaxation matrix.

Definition 2.2 ([12] (cf. [13])). The system (2.1) is called symmetric dissipative if the
following four conditions hold true:

(a) A0(u) is symmetric and positive definite for u ∈ Ou.

(b) Aj(u) is symmetric for u ∈ Ou and j = 1, · · · , n.
(c) For u ∈ Ou, h(u) = 0 holds if and only if u ∈ M.

(d) For u ∈ M, the relaxation matrix L(u) is (not necessarily symmetric but) nonneg-
ative definite such that its kernel space coincides with M.

We know that the symmetrization of hyperbolic balance laws is characterized by
the existence of a mathematical entropy.

Theorem 2.3 ([12] (cf. [13])). The following two statements are equivalent.

(i) The system (1.1) has a mathematical entropy.

(ii) There is a diffeomorphism by which (1.1) is transformed to a symmetric dissipative
system (2.1).

Here we briefly show that (i) implies (ii). Let η(w) be the mathematical entropy in
the sense of Definition 2.1 and set

u := (Dwη(w))
T . (2.3)

As was shown in [11, 13], this gives a diffeomorphism u = u(w) from Ow onto its range
Ou. We denote by w = w(u) the inverse mapping. Then it becomes a diffeomorphism
from Ou onto Ow. Since Duw(u) = (D2

wη(w(u)))
−1 by (2.3), we see that the associated

system (2.1) becomes a symmetric dissipative system in the sence of Definition 2.2 such
that

A0(u) = (D2
wη(w))

−1, Aj(u) = Dwf
j(w)(D2

wη(w))
−1,

L(u) = −Dwg(w)(D
2
wη(w))

−1,

where the right hand side is evaluated at w = w(u).
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Finally in this section we derive the equation of the mathematical entropy η(w):

η(w)t +
n∑

j=1

qj(w)xj
= 〈u, g(w)〉, (2.4)

where qj(w) is the corresponding entropy flux given by qj(w) = 〈u, f j(w)〉 − q̃j(u) with
u in (2.3); here q̃j(u) is the potential function satisfying (Duq̃

j(u))T = f j(w(u)) with
w(u) being the inverse of the mapping defined by (2.3).

3 Dissipative Timoshenko system

We consider the dissipative Timoshenko system{
ϕtt − (ϕx − ψ)x = 0,

ψtt − σ(ψx)x − (ϕx − ψ) + γψt = 0,
(3.1)

which describes the vibration of a beam (Timoshenko beam). Here x ∈ R denotes a
point on the center line of the beam, and ϕ and ψ are the transversal displacement and
the rotation angle of the beam, respectively; ϕ and ψ are unknown functions of time
t > 0 and space variable x ∈ R. We assume that γ is a positive constant and σ(z) is a
given smooth function of z satisfying σ′(z) > 0 for z ∈ R.

As in [7, 8], we introduce new unknown functions v = ϕx − ψ, u = ϕt, z = ψx and
y = ψt, and transform (3.1) into a hyperbolic system of balance laws:⎧⎪⎪⎪⎨⎪⎪⎪⎩

vt − ux = −y,

yt − σ(z)x = v − γy,

ut − vx = 0,

zt − yx = 0.

(3.2)

This is exactly in the form of (1.1) with n = 1, namely, we have

Wt + F (W )x = G(W ),

where W = (v, y, u, z)T , F (W ) = −(u, σ(z), v, y)T and G(W ) = (−y, v−γy, 0, 0)T . The
set of basic states is OW = R

4. The subspace M and the set E of equilibrium states
are given respectively by

M = span{e3, e4}, E = {W = (0, 0, u, z)T ; u, z ∈ R},

where {e1, e2, e3, e4} denotes the standard orthonormal basis of R4.
By a simple computation we see that the total energy of the dissipative Timoshenko

system (3.2) satisfies

{1
2
(v2 + y2 + u2) + S(z)

}
t
− {vu+ yσ(z)}x + γy2 = 0, (3.3)
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where S(z) =
∫ z

0
σ(ζ) dζ. This total energy is regarded as a mathematical entropy of

our dissipative Timoshenko system. In fact, putting

η(W ) =
1

2
(v2 + y2 + u2) + S(z), (3.4)

we can show the following result.

Proposition 3.1. The function η(W ) in (3.4) is a mathematical entropy of the dissi-
pative Timoshenko system (3.2) in the sense of Definition 2.1. Therefore the system
(3.2) is put in a symmetric dissipative system for U := (DWη(W ))T = (v, y, u, σ(z))T .

In the actual computation we use W = (v, y, u, z)T and rewrite (3.2) in the form

Ã0(W )Wt + Ã(W )Wx + LW = 0,

where Ã0(W ) = diag (1, 1, 1, σ′(z)),

Ã(W ) = −

⎛⎜⎜⎝
0 0 1 0
0 0 0 σ′(z)
1 0 0 0
0 σ′(z) 0 0

⎞⎟⎟⎠ , L =

⎛⎜⎜⎝
0 1 0 0
−1 γ 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ .

The linearized system around W = 0 is given by

A0Wt + AWx + LW = 0,

where we simply write as A0 = Ã0(0) and A = Ã(0). It was shown in [7] that the
solution W to the linearized system satisfies

|Ŵ (ξ, t)| ≤ Ce−cη(ξ)t|Ŵ0(ξ)|,
where η(ξ) = ξ2/(1+ ξ2)2, and W0 denotes the corresponding initial data. This implies
the regularity-loss property described by (1.2). Consequently, we have the following
linear decay estimate:

‖∂k
xW (t)‖L2 ≤ C(1 + t)−1/4−k/2‖W0‖L1 + C(1 + t)−l/2‖∂k+l

x W0‖L2 ,

where k, l ≥ 0.
Concerning the nonlinear problem we have the following result on the global exis-

tence and optimal decay of solutions.

Theorem 3.2 ([15] (cf. [8])). Suppose that E0 = ‖W0‖H2 is small. Then the disipative
Timoshenko system (3.2) admits a unique global solution W satisfying

‖W (t)‖2H2 +

∫ t

0

‖v(τ)‖2H1 + ‖y(τ)‖2H2 + ‖∂xu(τ)‖2L2 + ‖∂xz(τ)‖2H1 dτ ≤ CE2
0 . (3.5)

Suppose in addition that E1 = ‖W0‖H2∩L1 is small. Then the global solution W verifies
the optimal decay estimate

‖W (t)‖L2 ≤ CE1(1 + t)−1/4. (3.6)

The regularity assumption H2 in the above theorem can be relaxed to B
3/2
2,1 . We

refer to [16, 25].
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4 Isentropic Euler-Maxwell system

We consider the isentropic Euler-Maxwell system in plasma physics:⎧⎪⎪⎪⎨⎪⎪⎪⎩
nt + div(nu) = 0,

(nu)t + div(nu⊗ u) +∇p(n) = nfEM − nu,

Et − rotB = nu,

Bt + rotE = 0,

(4.1)

divE = n∞ − n, divB = 0. (4.2)

Here n > 0 and u ∈ R
3 are the density and the velocity of the electron, respectively,

while E ∈ R
3 is the electric field and B ∈ R

3 is the magnetic induction; these are
unknown functions of time t > 0 and space variable x ∈ R

3. The pressure p(n) is a
given smooth function of n satisfying p′(n) > 0 for n > 0, fEM denotes the Lorentz
force given by fEM = −(E+u×B), and n∞ is the ion density in the background which
is assumed to be a positive constant. The Euler-Maxwell system (4.1), (4.2) describes
the dynamics of compressible electrons in plasma physics under the interaction of the
magnetic and electric fields via the Lorentz force.

We note that any solution of (4.1) satisfies (4.2) for all t > 0 if (4.2) holds initially.
Our system (4.1) is written in the form of (1.1) with n = 3, namely, we have

Wt +
3∑

j=1

F j(W )xj
= G(W ), (4.3)

where W = (n, nu,E,B)T ,

3∑
j=1

F j(W )ξj =
(
n(u · ξ), nu(u · ξ) + p(n)ξ, BΩξ, −EΩξ

)T
,

and G(W ) = (0, −n(E+u×B)−nu, nu, 0)T . Here and below, u, E, B and ξ denotes
row vectors in R

3, and Ωξ is the skew-symmetric matrix defined by

Ωξ =

⎛⎜⎝ 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

⎞⎟⎠
for ξ = (ξ1, ξ2, ξ3) ∈ R

3, so that we have ξ × B = −BΩξ (as a row vector). The set of
basic states for our system is OW = {W = (n, nu,E,B)T ; n > 0, u, E,B ∈ R

3} ⊂ R
10.

Let {e1, · · · , e4, φ1, · · · , φ6} be the standard orthonormal basis of R10; e1, {e2, e3, e4},
{φ1, φ2, φ3} and {φ4, φ5, φ6} are corresponding to n, nu, E and B, respectively. Then
the subspace M and the set E of equilibrium states are given by

M = span {e1, φ4, φ5, φ6}, E = {W = (n, 0, 0, B)T ; n > 0, B ∈ R
3},

respectively.
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We see that the total energy of the isentropic Euler-Maxwell system (4.1) satisfies
the equation{

n
(
Φ(n) +

1

2
|u|2)+ 1

2
(|E|2 + |B|2)

}
t

+ div
{
nu
(
Φ(n) +

1

2
|u|2)+ p(n)u+ E ×B

}
+ n|u|2 = 0,

(4.4)

where Φ(n) =
∫ n p(ζ)

ζ2
dζ. We note that n(Φ(n)+ 1

2
|u|2) is the total energy of the electron

and 1
2
(|E|2 + |B|2) is the electro-magnetic energy. We set

η(W ) = n
(
Φ(n) +

1

2
|u|2)+ 1

2
(|E|2 + |B|2). (4.5)

This total energy becomes a mathematical entropy of our isentropic Euler-Maxwell
system (4.1). In fact, we have:

Proposition 4.1. The function η(W ) in (4.5) is a mathematical entropy of the isen-
tropic Euler-Maxwell system (4.1) in the sense of Definition 2.1. Therefore the system
(4.1) is put in a symmetric dissipative system for U := (DWη(W ))T .

We note the above U is given explicitly as U =
(
a(n) − 1

2
|u|2, u, E,B

)T
, where

a(n) := Φ(n) + p(n)
n
. Here we use V = (n, u, E,B)T which is a physically natural state

variable. Then the system (4.1) can be written in the form

Ā0(V )Vt +
3∑

j=1

Āj(V )Vxj
+ L̄(V )V = 0, (4.6)

where

Ā0(V ) =

⎛⎜⎜⎜⎝
p′(n)
n

nI

I

I

⎞⎟⎟⎟⎠ , L̄(V ) =

⎛⎜⎜⎜⎝
0

n(I − ΩB) nI

−nI O

O

⎞⎟⎟⎟⎠ ,

∑
j

Āj(V )ξj =

⎛⎜⎜⎜⎝
p′(n)
n

(u · ξ) p′(n)ξ

p′(n)ξT n(u · ξ)I
O −Ωξ

Ωξ O

⎞⎟⎟⎟⎠ .

The system (4.1) or (4.6) admits a constant equilibrium state V∞ = (n∞, 0, 0, B∞)T ∈
E , where B∞ ∈ R

3 is an arbitrarily fixed constant vector. We linearize (4.6) around the
constant state V∞. The linearized system for the perturbation Z = V − V∞ is given by

A0Zt +
3∑

j=1

AjZxj
+ LZ = 0,
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where A0 = Ā0(V∞), Aj = Āj(V∞) and L = L̄(V∞). It was shown in [3, 18] that the
solution Z to the linearized system satisfies

|Ẑ(ξ, t)| ≤ Ce−cη(ξ)t|Ẑ0(ξ)|, (4.7)

where η(ξ) = |ξ|2/(1 + |ξ|2)2, and Z0 denotes the initial data satisfying (4.2) (in the
modified version). This implies the regularity-loss property described by (1.2). As the
consequence, we have the following linear decay estimate:

‖∂k
xZ(t)‖L2 ≤ C(1 + t)−3/4−k/2‖Z0‖L1 + C(1 + t)−l/2‖∂k+l

x Z0‖L2 ,

where k, l ≥ 0.
Concerning the nonlinear problem we have the following result on the global exis-

tence and optimal decay of solutions.

Theorem 4.2 ([24] (cf. [3, 18, 19])). Suppose that the initial data V0 satisfy (4.2) and
that E0 = ‖V0−V∞‖H3 is small. Then the isentropic Euler-Maxwell system (4.1) admits
a unique global solution V satisfying

‖(V − V∞)(t)‖2H3 +

∫ t

0

‖(n−n∞, u)(τ)‖2H3 + ‖E(τ)‖2H2 + ‖∂xB(τ)‖2H1 dτ ≤ CE2
0 . (4.8)

Suppose in addition that E1 = ‖V0 − V∞‖H3∩L1 is small. Then the global solution V
verifies the optimal decay estimate

‖(V − V∞)(t)‖L2 ≤ CE1(1 + t)−3/4. (4.9)

The regularity assumption H3 in the above theorem can be relaxed to B
5/2
2,1 . For the

details, we refer to [23].

5 Euler-Cattaneo-Maxwell system

In this section we consider the non-isentropic Euler-Maxwell system. As in the usual
isentropic model treated in the previous section, we introduce the frictional damping
for the momentum equation of electron. Also we take into account the thermal effect
which is described by the Cattaneo law, but we do not introduce the ”energy damping”
of electron, which was usually assumed in the previous works.

Our non-isentropic Euler-Maxwell system (which we call the Euler-Cattaneo-Maxwell
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system in this note) is written in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + div(nu) = 0,

(nu)t + div(nu⊗ u) +∇p = nfEM − nu

τ1
,{

n
(
e+

1

2
|u|2)+ 1

2
(|E|2 + |B|2)

}
t

+ div
{
nu
(
e+

1

2
|u|2)+ pu+ q + E × B

}
= 0,

τ0qt +
q

κθ2
−∇(1

θ

)
= 0,

Et − rotB = nu,

Bt + rotE = 0,

(5.1)

divE = n∞ − n, divB = 0. (5.2)

Here n > 0, u ∈ R
3, θ > 0 and q ∈ R

3 are the density, the velocity, the absolute
temperature and the heat flow of the electron, respectively, while E ∈ R

3 is the electric
field and B ∈ R

3 is the magnetic induction; these are unknown functions of t > 0 and
x ∈ R

3. The pressure p and the internal energy e of the electron field are given smooth
functions of (n, θ) satisfying the second law of thermodynamics

de = θds− pd
( 1
n

)
,

where s denotes the entropy of the electron field which is also a smooth function of
(n, θ). It is assumed that pn = ∂p

∂n
> 0, pθ = ∂p

∂θ
> 0 and eθ = ∂e

∂θ
> 0 for n > 0 and

θ > 0. The Lorentz force fEM = −(E + u × B) is the same as in the previous section
and acts as an outer force in the electron field, and κ > 0 denotes the coefficient of
thermal conductivity which is assume to be smooth in (n, θ). The positive constant
n∞ denotes the ion density in the background, and τ0 > 0 and τ1 > 0 are relaxation
parameters.

We note that any solution of (5.1) satisfies (5.2) for all t > 0 if (5.2) holds initially.
Our system (5.1) is written in the form of (1.1) with n = 3, namely, we have (4.3),
where W = (n, nu,Σ, τ0q, E,B)T ,

3∑
j=1

F j(W )ξj =
(
n(u · ξ), nu(u · ξ) + pξ, Γ · ξ, −1

θ
ξ, BΩξ, −EΩξ

)T
,

and G(W ) = (0, −n(E + u × B) − 1
τ1
nu, 0, − 1

κθ2
q, nu, 0)T . Here Σ and Γ denote

the total energy and the corresponding flux: Σ = n
(
e + 1

2
|u|2) + 1

2
(|E|2 + |B|2) and

Γ · ξ = n(u · ξ)(e + 1
2
|u|2) + p(u · ξ) + q · ξ + (E × B) · ξ. For this system, the set of

basic states is OW = {W = (n, nu,Σ, τ0q, E,B)T ; n, θ > 0, u, q, E,B ∈ R
3} ⊂ R

14.
Let {e1, · · · , e8, φ1, · · · , φ6} be the standard orthonormal basis of R14; e1, {e2, e3, e4},
e5 and {e6, e7, e8} are corresponding to n, nu, Σ and τ0q, respectively, while {φ1, φ2, φ3}
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and {φ4, φ5, φ6} correspond to E and B, respectively. Then the subspace M and the
set E of equilibrium states are given by

M = span {e1, e5, φ4, φ5, φ6},
E = {W = (n, 0,Σ0, 0, 0, B)T ; n, θ > 0, B ∈ R

3},

respectively, where Σ0 = ne+ 1
2
|B|2.

We compute the equation of the entropy s. Then combining it with the equation of
the heat flow q, we find that

(− ns+
1

2
τ0|q|2

)
t
− div

(
nus+

q

θ

)
+

n|u|2
τ1θ

+
|q|2
κθ2

= 0, (5.3)

which is the equation of the modified negative entropy. This modified negative entropy
can be regarded as a mathematical entropy of the system (5.1). In fact we have:

Proposition 5.1. The modified negative entropy η(W ) := −ns + 1
2
τ0|q|2 is a math-

ematical entropy of the Euler-Catteneo-Maxwell system (5.1) in the sense of Defini-
tion 2.1. Therefore the system (5.1) is put in a symmetric dissipative system for
U := (DWη(W ))T .

We note the above U is given explicitly as U = 1
θ
(b − 1

2
|u|2, u, −1, θq, E, B)T ,

where b := e + p
n
− θs. In the actual computations we use V = (n, u, θ, q, E,B) as the

unknown vector of the system (5.1).
It was observed in [12] that the dissipative structure of the Euler-Cattaneo-system

(5.1) is of the regularity-loss type and is characterized by (1.2). Therefore, as in the
case of the isentropic Euler-Maxwell system, we have the pointwise estimate (4.7) and
the corresponding linear decay estimate for linear solutions. Furthermore, we can show
the global existence and stability of nonlinear solutions for small initial data in H3.
For the details, we refer to [12]. On the other hand, the work on the optimal decay of
nonlinear solutions with less regularity is now in progress.

Finally in this note, we remark that the general theory was already establised when
the relaxation matrix is symmetric. We refer the reader to [17, 20, 1] for dissipative
structure and linear decay property, and [14] and [21, 22] for global existence and
optimal decay of nonlinear solutions in Sobolev spaces and Besov spaces, respectively.
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Remarks on the effect of spatial expansion

for nonlinear partial differential equations

Makoto NAKAMURA ∗

Abstract

The Cauchy problem of a semilinear partial differential equation which gen-

eralizes the Schrödinger equation and the parabolic equation is considered, and

the global and blow-up solutions are shown in Sobolev spaces. The variance

of the scale-function of the space is considered. The role of spatial variance

on the problem is studied, and some dissipative properties of the equation are

remarked.

Mathematics Subject Classification (2010) : 35Q55, 35L70

1 Introduction

We consider the Cauchy problem of a semilinear partial differential equation, and we

show the global and blow-up solutions in Sobolev spaces. We introduce the equation.

We denote the spatial dimension by n ≥ 1, the Planck constant by � := h/2π, the

mass by m > 0. Let σ ∈ R, a0 > 0, a1 ∈ R. We put T0 := ∞ when (1 + σ)a1 ≥ 0,

T0 := 2a0/n(1 + σ)a1 when (1 + σ)a1 < 0. We define a scale-function a(t) for

t ∈ [0, T0) by

a(t) :=

⎧⎨⎩ a0

(
1 + n(1+σ)a1t

2a0

)2/n(1+σ)
if σ 	= −1,

a0 exp
(
a1t
a0

)
if σ = −1,

(1.1)

where we note that a0 = a(0) and a1 = ∂ta(0). We define the weight function

w(t) := (a0/a(t))
n/2. We use the change of variable s = s(t) :=

∫ t
0 a

−2(τ)dτ , and

∗Faculty of Science, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560,

JAPAN. E-mail: nakamura@sci.kj.yamagata-u.ac.jp
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we put S0 := s(T0). We use the convention a(s) := a(t(s)) and w(s) := w(t(s)) for

s ∈ [0, S0) as far as there is no fear of confusion. A direct computation shows

S0 =

⎧⎪⎪⎨⎪⎪⎩
1

2a0a1
if a1 > 0 and σ = −1,

2
a0a1(4−n(1+σ)) if a1(1 + σ)

(
1− 4

n(1+σ)

)
< 0 and σ 	= −1,

∞ otherwise.

For λ ∈ C, 1 ≤ p < ∞, −π/2 < ω ≤ π/2, 0 ≤ μ0 < n/2, and 0 < S ≤ S0, we

consider the Cauchy problem given by⎧⎨⎩ ±i
2m

�
∂su(s, x) + e−2iω Δu(s, x)− λe−2iωa(s)2

(|uw|p−1u) (s, x) = 0,

u(0, ·) = u0(·) ∈ Hμ0(Rn)
(1.2)

for (s, x) ∈ [0, S)× R
n, where i :=

√−1, Δ :=
∑n

j=1 ∂
2/∂x2j , and Hμ0(Rn) denotes

the Sobolev space of order μ0 ≥ 0. The double sign ± is in same order. We say that

u is a global solution of (1.2) if it exists on [0, S0).

When the scale-function is a constant a(·) = 1, we have s = t and S0 = T0 = ∞.

The first equation in (1.2) corresponds to the Schrödinger equation

±i
2m

�
∂su(s, x) + Δu(s, x) + λ

(|u|p−1u) (s, x) = 0 (1.3)

for ω = 0, and to the parabolic equation

2m

�
∂su(s, x)−Δu(s, x)± λ

(|u|p−1u) (s, x) = 0 (1.4)

for ω = ±π/4.

Let us consider the well-posedness of (1.2). For any real numbers 2 ≤ q, r ≤ ∞,

we say that the pair (q, r) is admissible if it satisfies 1/r+2/nq = 1/2 and (q, r, n) 	=
(2,∞, 2). For μ0 ≥ 0 and two admissible pairs {(qj , rj)}j=1,2, we define a function

space

Xμ0([0, S)) := {u ∈ C([0, S), Hμ0(Rn)); max
μ=0,μ0

‖u‖Xμ([0,S)) < ∞},

where

‖u‖Xμ([0,S)) :=

⎧⎪⎨⎪⎩
‖u‖L∞((0,S),L2(Rn))∩⋂j=1,2 L

qj ((0,S),Lrj (Rn)) if μ = 0,

‖u‖L∞((0,S),Ḣμ(Rn))∩⋂j=1,2 L
qj ((0,S),Ḃμ

rj2
(Rn)) if μ > 0.

Here, Ḣμ(Rn) and Ḃμ
rj2

(Rn) are the homogeneous Sobolev and Besov spaces, re-

spectively. Since the propagator of the linear part of the first equation in (1.2)

is written as exp(±i� exp(−2iω)sΔ/2m), we assume ± sin 2ω ≥ 0 to define it for

tempered distributions. We note that the scaling critical number of p for (1.2) is

p(μ0) := 1 + 4/(n− 2μ0) when a(·) = 1.

2
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Theorem 1.1. Let n ≥ 1, λ ∈ C, 0 ≤ μ0 < n/2, and 1 ≤ p ≤ p(μ0). Let ω satisfies

−π/2 < ω ≤ π/2, and ± sin 2ω ≥ 0. Assume μ0 < p if p is not an odd number.

There exist two admissible pairs {(qj , rj)}j=1,2 with the following properties.

(1) (Local solutions.) For any u0 ∈ Hμ0(Rn), there exist S > 0 with S ≤ S0 and

a unique local solution u of (1.2) in Xμ0([0, S)). Here, S depends only on the norm

‖u0‖Ḣμ0 (Rn) when p < p(μ0), while S depends on the profile of u0 when p = p(μ0).

The solutions depend on the initial data continuously.

(2) (Small global solutions.) Let p = p(μ0), σ ∈ R, μ0 ≥ 0, a1 ≥ 0, or let

1 < p < p(μ0), σ = −1, μ0 > 0, a1 > 0. If ‖u0‖Ḣμ0 (Rn) is sufficiently small, then

the solution u obtained in (1) is a global solution, namely, S = S0.

When λ ∈ R, we are able to use the conservation law to show global solutions

for large data in H1(Rn). The global solutions for the complex Ginzburg-Landau

equation are shown in [3, Theorem 3.1]. The blow-up solutions for initial data with

negative energy are obtained by the concavity of an auxiliary function, the virial

identity, and the Heisenberg uncertainty principle. We refer to [2, Section 6.5] for

(1.3), [4, Theorem 5.3] for (1.4), [1, Theorem 1.8] for (1.3) in the hyperbolic space.

We show some fundamental results in this talk.

To prove the results for global and blow-up solutions, we use two dissipative

properties. One is from the parabolic structure of the equation when ± sin 2ω > 0.

The other is from the scale function a(·) when ∂ta(0) = a1 	= 0. Even if the equation

does not have the parabolic structure when ± sin 2ω = 0, the latter is very effective

to obtain the global solutions. The energy estimate shows the dissipative property

for the first equation in (1.2) if λa1(p− 1− 4/n) > 0.

In this talk, the notation A � B denotes the inequality A ≤ CB for some

constant C > 0 which is not essential in our argument. For any real number 1 ≤
r ≤ ∞, its conjugate number is denoted by r′ with 1/r + 1/r′ = 1. For μ ∈ R and

1 ≤ r,m ≤ ∞, we use the Lebesgue space Lr(Rn), the Sobolev space Hμ,r(Rn), the

Besov space Bμ
rm(Rn), and their homogeneous spaces Ḣμ,r(Rn) and Ḃμ

rm(Rn).
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Unconditional uniqueness of solutions for
nonlinear dispersive equations

Nobu Kishimoto (RIMS, Kyoto University)

1. Introduction
We investigate unconditional uniqueness (UU) of solutions to the Cauchy problem for
general nonlinear dispersive equations on the torus T

d := R
d/(2πZ)d or on R

d. We
consider Sobolev spaces Hs := (1 − Δ)−s/2L2 as the spaces of initial data. Here, UU
in Hs means uniqueness of the solutions (in the sense of distribution) in C([0, T ]; Hs)
for initial data in Hs. Hereafter, for a Banach space X we write CT X to denote
C([0, T ]; X).

Two critical regularity exponents may arise in this problem. First, if the equation is
invariant under the scaling transformation, then the scale-invariant Sobolev regularity
s = ss is initially expected to be the lowest regularity that admits the well-posedness
of the Cauchy problem. (However, there are many cases where the Cauchy problem
becomes ill-posed at some regularity higher than the scaling.) Secondly, there exists
the regularity threshold s = se below which the nonlinear part does not make sense
in the distributional framework. Therefore, we naturally focus on UU in Hs for s ≥
max{ss, se}. For instance, if we consider the nonlinear Schrödinger equation (NLS)
with the cubic nonlinearity

i∂tu + Δu = |u|2u, (t, x) ∈ [0, T ] × R
d,

the equation is invariant under the scaling u(t, x) �→ uλ(t, x) := λu(λ2t, λx) (λ > 0),
which preserves the Ḣs(Rd) norm if s = ss := d

2
−1, whereas the embedding Hs(Rd) ↪→

L3(Rd) holds if and only if s ≥ d
6
, which suggests that se = d

6
. Hence, for this equation

we consider UU in Hs only for s ≥ max{d
2
− 1, d

6
}.

We also note that UU is sometimes trivial, especially if the solution is obtained by
an iteration argument in CT Hs itself. For the above cubic NLS, this corresponds to
the case s > d

2
for which Hs(Rd) is an algebra. The concept of unconditional well-

posedness (i.e., well-posedness with unconditional uniqueness) was introduced by T.
Kato [9], who pointed out that UU becomes meaningful in the case that the solution
is obtained by iteration but using an auxiliary function space in addition to CT Hs.
In the NLS example, one can still construct solutions for s < d

2
in a certain range by

using the so-called Strichartz estimates, but then uniqueness is obtained initially in
the intersection of CT Hs with some mixed Lebesgue space Lp

T Lq used as an auxiliary
space, and to establish UU often requires an additional argument.

There are many results on UU in the non-periodic case (i.e., the Cauchy problem
on R

d). For NLS (with general power-type nonlinearities), the first result of T. Kato
[9] has been improved by Furioli-Terraneo [3], Rogers [13], Su Win-Y. Tsutsumi [15],
and recently by Han-Fang [5]. These results settled the UU problem for most of s ≥
max{ss, se}. For other equations see e.g. Zhou [17] (KdV equation), Su Win [14] (cubic
derivative NLS), and Masmoudi-Nakanishi [12] (Zakharov system).

Compared to the non-periodic case, UU seems less studied in the periodic settings.
For the KdV equation UU was obtained by Babin et al. [2], which was followed by

This work was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 24740086.
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Kwon-Oh [11] (modified KdV equation) and T.K. Kato-Tsugawa [10] (fifth order KdV-
type equations). Recently, Guo et al. [4] proved UU for one-dimensional periodic cubic
NLS. In these results, proof is based on successive applications of integration by parts
in the time variable. This can be regarded as a variant of Poincaré-Dulac Normal Form
Reduction (NFR); we refer to [1] for details of the Poincaré-Dulac NFR.

It is worth noticing that Guo et al. [4] had to invoke NFR infinitely many times to
make all the nonlinear estimates closed in CT Hs, in contrast to the previous works for
the KdV-type equations in which, despite of the derivative losses in the nonlinearities,
the results were obtained by applying such integration-by-parts procedure finitely many
times. Such a difference comes from the difference of resonance structure between the
NLS and the KdV type equations.

We also note that in the NFR argument, just the CT Hs-norm is basically used in the
estimates, whereas many of UU results in the non-periodic case also use some auxiliary
function spaces (e.g. Strichartz-type spaces or the Fourier restriction spaces), which
are designed to be large enough to contain CT Hs so that desired nonlinear estimates
hold.

2. Main Results
Let us concentrate on the periodic case, i.e., x ∈ T

d. Our aim is to generalize the
infinite NFR machinery of [4] so that it can be applied to a wide range of nonlinear
dispersive equations.

There are many potential difficulties in this machinery. Some of them are as follows:

(a) Each application of NFR will produce higher and higher order nonlinear terms.
For instance, in the case of cubic NLS, nonlinear terms of order 2k + 3 will
appear after the k-th application of NFR. Then, one needs to establish multilinear
estimates with higher and higher degrees of nonlinearities.

(b) The resonance structures in nonlinear terms are different from each other and
become more and more complicated as the degrees of them increase. Note that
NFR can be applied only to the non-resonant part of nonlinear terms.

(c) The number of terms after the k-th NFR grows in a factorial order (k!)C , which
is faster than an exponential order Ck.

(d) One has to justify the limiting procedure of ‘applying NFR indefinitely’, namely,
find the limit equation and show that any distributional solution of the original
equation in CT Hs is also a solution of it.

Guo et al. [4] could deal with the above (a)–(d) (actually they just gave a ‘hint’ for (d))
for the simplest NLS, i.e., in the one-dimensional cubic case, by explicitly writing down
all the nonlinear terms and making delicate resonance/non-resonance decompositions
of them. Since their proof was highly dependent on simplicity of the equation, their
argument has not been applied to other equations, even to the two-dimensional cubic
NLS.

Our main result, as stated below, treats more general nonlinear dispersive equations
and gives two sufficient conditions which allow the infinite NFR machinery to work.
Each sufficient condition consists of several simple multilinear estimates, and we can
show that these estimates are actually enough to yield all the required multilinear
estimates by an induction on the degree, and also enough to justify the limit equation.
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We use Fourier series expansion to move to the frequency space and consider the
following abstract equation:

∂tωn(t) =
∑

n=n1+···+np

eitφmωn1(t)ωn2(t) · · ·ωnp(t) + R[ω]n(t), n ∈ Z
d, (1)

where φ = φ(n, n1, . . . , np) ∈ R denotes the phase part, m = m(n, n1, . . . , np) ∈ C is
the multiplier, and R[ω] is the remainder terms. For example, the KdV equation

∂tu + ∂3
xu = ∂x(u

2), (t, x) ∈ [0, T ] × T

is, by setting ωn(t) :=
∫ 2π

0
[U(−t)u(t)](x)e−inx dx with U(t) being the propagator for

the Airy equation, equivalent to

∂tωn(t) =
in

2π

∑
n=n1+n2

eit(n3−n3
1−n3

2)ωn1(t)ωn2(t), (t, n) ∈ [0, T ] × Z,

which is of the form (1) with p = 2, φ = n3 − n3
1 − n3

2, m = in/2π, and R = 0. In such
a way, nonlinear dispersive equations can be represented as (1) if we assume that the
nonlinearity is a polynomial in u, ū and derivatives of them with constant coefficients.
The initial data ωn(0) is now given in weighted �2 spaces �2

s := 〈n〉−s�2(Zd) instead of
Hs, and unconditional uniqueness for the original equation in Hs is replaced with that
for (1) in �2

s.

Our main theorem is as follows:

Theorem 1. Let s ∈ R and assume that the following estimates for R[ω] hold;

∥∥R[ω]
∥∥

CT �2s
≤ C

(‖ω‖CT �2s

)
,∥∥R[ω] −R[ω̃]

∥∥
CT �2s

≤ C
(‖ω‖CT �2s

, ‖ω̃‖CT �2s

)‖ω − ω̃‖CT �2s
.

Assume further that for some Banach space X of functions on Z
d satisfying ‖ω‖X ≤

C‖ω‖�2s
, we have one of the following [A], [B]. Then, UU for (1) holds in �2

s.

[A] There exists δ > 0 such that

(A1)
∥∥ ∑

n=n1+···+np

|m|
〈φ〉1/2

ω(1)
n1

· · ·ω(p)
np

∥∥
�2s
≤ C

p∏
j=1

∥∥ω(j)
∥∥

�2s
,

(A2)
∥∥ ∑

n=n1+···+np

|m|
〈φ〉1−δ

ω(1)
n1

· · ·ω(p)
np

∥∥
X
≤ C min

1≤j≤p

∥∥ω(j)
∥∥

X

p∏
l=1
l �=j

∥∥ω(l)
∥∥

�2s
,

(A3)
∥∥ ∑

n=n1+···+np

|m|ω(1)
n1

· · ·ω(p)
np

∥∥
X
≤ C

p∏
j=1

∥∥ω(j)
∥∥

�2s
.
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[B] There exist s1, s2 ∈ R satisfying s1 < s < s2 such that

(B1) sup
μ∈Z

∥∥ ∑
n=n1+···+np

μ≤φ<μ+1

|m|ω(1)
n1

· · ·ω(p)
np

∥∥
�2s1

≤ C

p∏
j=1

∥∥ω(j)
∥∥

�2s1
,

(B1)′
∥∥ ∑

n=n1+···+np

|m|ω(1)
n1

· · ·ω(p)
np

∥∥
�2s2

≤ C

p∏
j=1

∥∥ω(j)
∥∥

�2s2
,

(B2) sup
μ∈Z

∥∥ ∑
n=n1+···+np

μ≤φ<μ+1

|m|ω(1)
n1

· · ·ω(p)
np

∥∥
X
≤ C min

1≤j≤p

∥∥ω(j)
∥∥

X

p∏
l=1
l �=j

∥∥ω(l)
∥∥

�2s1
,

(B2)′
∥∥ ∑

n=n1+···+np

|m|ω(1)
n1

· · ·ω(p)
np

∥∥
X
≤ C min

1≤j≤p

∥∥ω(j)
∥∥

X

p∏
l=1
l �=j

∥∥ω(l)
∥∥

�2s2
,

(B3)
∥∥ ∑

n=n1+···+np

|m|ω(1)
n1

· · ·ω(p)
np

∥∥
X
≤ C

p∏
j=1

∥∥ω(j)
∥∥

�2s
. (same as (A3))

With the above multilinear estimates, the infinite NFR machinery proceeds as fol-
lows. The estimate (A1) or (B1)+(B1)’ is the main estimate to obtain �2

s-control for
all the nonlinear terms in each NFR step, except for one ‘less regular’ term. Then (A2)
or (B2)+(B2)’ allow us to show that this term vanishes in the X norm in the limit
equation. The estimate (A3) or (B3) ensures that the nonlinear terms make sense in
the framework of distribution.

It is essential in the proof of unconditional uniqueness to notice that one cannot
rely on approximation by good solutions (decaying faster) and needs to justify every
formal calculation for a solution in CT �2

s itself, because a general solution in CT �2
s is not

necessarily approximated by good solutions. However, this is done by using (A2)+(A3)
or (B2)+(B2)’+(B3).

Remarks. (i) A similar statement holds in the case of multiple nonlinear terms (in
which case we need to use the same Banach space X for each term), or for systems of
equations.

(ii) The remainder term R[ω] basically includes easily controlled terms or the spe-
cific part of the main term which is in itself easily estimated but causes trouble in
establishing the multilinear estimates (A1)–(A5) or (B1)–(B3) if it remains in the
main term. It is sometimes important to find such a problematic part in the main
term and move it to R[ω] before carrying on NFR.

(iii) At this moment, it is not clear whether a similar argument is applicable to
non-periodic problems. In fact, the only issue is justification of formal calculations.
In the periodic case, the equation combined with the estimate (A3) or (B3) shows
that ωn(t) is a C1 function for each fixed n. However, this is no longer true for
each n ∈ R

d in the non-periodic case, and one has to verify the product rule for the
time differentiation or the exchange of the integral and the time differentiation in the
framework of distribution.
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3. Applications
(i) NLS with odd power nonlinearity, general dimension:

i∂tu + Δu = ±|u|2ku, (t, x) ∈ [0, T ] × T
d, k, d ∈ N. (2)

We can prove (B1)–(B3) with X = �∞(Zd) and obtain the following:

Theorem 2. UU holds for (2) in Hs(Td) if (i) s > d2

2(d+3)
(k = 1 and 2 ≤ d ≤ 5), (ii)

s > sc = d
2
− 1

k
and s ≥ se = d(2k−1)

2(2k+1)
(k ≥ 2 or d ≥ 6).

(ii) Zakharov system:

i∂tu + Δu = nu, ∂2
t n − Δn = Δ(|u|2), (u, n) : [0, T ] × T

d → C× R. (3)

Reducing to a first order system and applying Theorem 1 [A] with X = �2
0 × �2

−1, we
have

Theorem 3. If d = 1, 2, then UU holds for (3) in the energy space, i.e. for
(
u(0), n(0),

∂tn(0)
) ∈ H1(Td) × L2(Td) × H−1(Td).

(iii) cubic derivative NLS:

i∂tu + ∂2
xu = ±i∂x(|u|2u), (t, x) ∈ [0, T ] × T. (4)

We apply Theorem 1 [A] with X = �2
s−1 to an equivalent equation obtained by the

gauge transformation (cf. [6, 7]).

Theorem 4. UU holds for (4) in Hs, s > 1
2
.

Note that the best regularity in which well-posedness is valid is s = 1
2

([16, 8]), while
ss = 0 and se = 1

3
for (4). (Modified) Benjamin-Ono equation can be also treated with

a gauge transformation, but our proof with Theorem 1 needs to be slightly modified.
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Introduction to mathematical modeling of
soap bubble and smoke in air

Hajime Koba*

1. Introduction

We are interested in mathematical models of both a soap bubble and
smoke in air:

Air

Air

Air

Air

Gravity Gravity

Wind
Wind

Soap bubble

Soap bubble

Soap bubble in air

Air

Smoke

Air

Smoke

Gravity Gravity

Wind
Wind

Fuel Fuel

Smoke in air
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Surface flow (interfacial flow) and surface tension (interfacial tension)
play an important role in a soap bubble in air and smoke in air. Now
we consider a soap bubble in air. In order to make a mathematical
model of a soap bubble in air, we formalize as follows:

ΩA(0)

ΩB(0)

ΩA(T )

ΩB(T )

G(0) G(T )

F (0)
F (T )

Γ(0)

Γ(T )

Here ΩA(t), ΩB(t) are domains with a moving boundary, Γ(t) is an
evolving hypersurface, G(t) is the gravity, F (t) is an external force.

Now we introduce some notation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρA : density of fluid in ΩA(t),

vA : velocity of fluid in ΩA(t),

pA : pressure of fluid in ΩA(t),

eA : internal energy in ΩA(t),

qA : heat flux in ΩA(t),

θA : temperature of fluid in ΩA(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρB : density of fluid in ΩB(t),

vB : velocity of fluid in ΩB(t),

pB : pressure of fluid in ΩB(t),

eB : internal energy in ΩB(t),

qB : heat flux in ΩB(t),

θB : temperature of fluid in ΩB(t),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ : density of fluid on Γ(t),

v : velocity of fluid on Γ(t),

p : pressure of fluid on Γ(t),

e : internal energy on Γ(t),

q : heat flux on Γ(t),

θ : temperature of fluid on Γ(t),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ : surface tension on Γ(t),

u : relative velocity of fluid on Γ(t),

w : motion velocity of Γ(t),

[[ · ]] : jump condition ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μA, λA : viscosity coefficients of fluid in ΩA(t),

κA : thermal diffusivity of fluid in ΩA(t),

μB, λB : viscosity coefficients of fluid in ΩB(t),

κB : thermal diffusivity of fluid in ΩB(t),

μ, λ : viscosity coefficients of fluid on Γ(t),

κ : thermal diffusivity of fluid on Γ(t).
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We would like to model a soap bubble in air from a mathematical
point of view. In other words, we would like to derive relationships
among the above symbols from mathematical assumptions. To this
end, we shall go through the following steps:

Step1: Deriving the dominant equations for the motion of fluid in a
domain with a moving boundary

Step2: Deriving the dominant equations for the motion of fluid on an
evolving hypersurface:[Inviscid/Viscous]⎧⎪⎨⎪⎩
Incompressible fluid

Compressible fluid (Barotorpic)

Compressible fluid (Internal energy/Temperature/Heat transfer)

Step3: Soap bubble in air / Smoke in air

Here an evolving hypersurface means that the surface is moving or the
shape of the surface is changing along with the time.

In this talk, we focus on the second step. We introduce various
fluid flow systems on an evolving hypersurface derived by applying our
energetic variational approach.

2. Known results (Fixed hypersurface·Manifold)

Let us introduce the Euler system on a manifold derived by Arnold
[2, 3] and the Navier-Stokes system on a manifold introduced by Taylor
[8]. Let M be a 2-dimensional closed Riemannian manifold, and let
μ > 0 be a viscosity coefficients of fluid on M. Let u be a velocity
on M, and let p be a pressure associated with u. Assume that u is a
1-form on M and that p is a function on M.

M
u

TM
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Arnold [2, 3] applied the Lie group of diffeomorphisms to derive the
following Euler system on a manifold M:{

ut +∇uu+ gradMp = 0,

divMu = 0.

See also Ebin-Marsden [4].
Taylor [8] introduced the following Navier-Stokes system, derived

from their physical sense, on a manifold M:

(2-1)

{
ut +∇uu+ gradMp = μ(ΔMu+Ku),

divMu = 0.

Mitsumatsu and Yano [7] also derived the system (2-1) from an en-
ergetic point of view. Arnaudon and Cruzeiro [1] applied stochastic
variational approach to derive the system (2-1).

Here⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M : 2-dimensional closed Riemannian manifold,

u : 1-form on M[fluid flow in surface],

p : function on M[pressure associated with u],

μ > 0 : viscosity coefficient,

ΔM : the Borhner-Laplacian,

K : the Gaussian curvature (the Ricci curvature),

gradM : gradient operator on M,

divM : divergence operator on M,

∇uu : covariant derivative.

3. Main results (Evolving hypersurface)

Let us state our main results. We first explain difficult points to
derive the dominant equations for the motion of fluid on an evolving
hypersurface.

Point1: To characterize incompressible and compressible fluid on an
evolving hypersurface or a moving hypersurface

Point2: To deal with normal direction of fluid flow on an evolving hy-
persurface

Point3: To derive viscous terms of fluid flow systems on an evolving
hypersurface
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In order to overcome these difficulties, we use the Riemannian metric
and our energetic variational approach. In this talk we explain them
in detail. Note that we cannot directly apply the method from [8, 7, 1]
to derive a fluid flow system on an evolving hypersurface.

Before stating our main results, we introduce notation. Let x =
(x1, x2, x3) be the spatial variable and t be the time variable. Let
Γ(t) be a hypersurface in R

3 depending on time t ∈ [0, T ) for some
T ∈ (0,∞]. Let w = (w1(x, t), w2(x, t), w3(x, t)) be a motion velocity
of Γ(t). Let u = (u1(x, t), u2(x, t), u3(x, t)) be a relative velocity on
Γ(t).

Γ(t0)

Γ(t0 + t)

w(t0)

u(t0)

Γ(t0 + 2t)

w(t0 + t)

w(t0 + 2t)

u(t0 + t)

u(t0 + 2t)

The velocity

v = (v1(x, t), v2(x, t), v3(x, t)) := u+ w

is called a total velocity of the fluid particle at x. The symbol q denotes
a total pressure or a pressure associated with v. Let ρ, θ be the density
and temperature of fluid on Γ(t), respectively. Write

ST = {(x, t) ∈ R
4; (x, t) ∈

⋃
0<t<T

{
Γ(t)× {t}

}
}.

We assume that Γ(t) is a 2-dimensional closed manifold for each fixed
t ∈ [0, T ). Set

C∞(ST ) = {f : ST → R; f = g|ST
for some g ∈ C∞(R4)},

C∞
0 (ST ) = {f ∈ C∞(ST ); supp f(·, t) ⊂ Γ(t)}.

We suppose that
ρ, u, w, v, q, θ ∈ C∞(ST ).
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Applying our energy methods (Least Action Principle and Minimum
Dissipation Energy Principle), we derive

Incompressible fluid [Motion is unknown](Giga∗-Liu†-K)� �{
ρ0Dtv − divΓD

μ,0
Γ (v) + gradΓq + qHn = 0,

divΓv = 0.

� �
Incompressible fluid [Motion is given](Giga∗-Liu†-K)� �

(3-1)

{
ρ0D

Γ
t v − PΓdivΓD

μ,0
Γ (v) + gradΓq = 0,

divΓv = 0.

� �
Compressible fluid [Barotropic](K)� �⎧⎪⎨⎪⎩

DN
t ρ+ divΓ(ρv) = 0,

DN
t (ρv) + divΓ{ρv ⊗ v −Dμ,λ

Γ (v) + PΓq} = 0,

q = q(ρ).

� �
Compressible fluid [Heat transfer](K)� �⎧⎪⎪⎪⎨⎪⎪⎪⎩

DN
t ρ+ divΓ(ρv) = 0,

DN
t (ρv) + divΓ{ρv ⊗ v −Dμ,λ

Γ (v) + PΓq} = 0,

DN
t (ρθ) + divΓ(ρθv − κgradΓθ) = 0,

q = q(ρ, θ).

� �
Here⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ, ρ0 : density,

v : velocity,

q : pressure ,

θ : temperature,

μ, λ : viscosity,

κ : thermal diffusivity,

H : mean curvature,

n : unit outer normal vector,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divΓ : surface divergence,

gradΓ : surface gradient,

PΓ : orthogonal projection to tangent,

Dt : material derivative,

DΓ
t : surface material derivative,

DN
t : time derivative with Neumann,

Dμ,λ
Γ (·) : surface deformation tensor

*: Y.Giga(Department of Mathematical Sciences, University of Tokyo)
†: C. Liu(Department of Mathematics, Penn State University)
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4. Remark (Comparison with previous models)

Let us compare the system (3-1) with the Euler system derived by
Arnold [2, 3] and the Navier-Stokes system introduced by Taylor [8].
If ρ0 = 1, Dμ,0

Γ (v) ≡ 0, and v is a tangent vector on the surface, the
incompressible fluid system (3-1) is noting but the Euler system on a
manifold. The system (3-2) with ρ0 = 1, Dμ,0

Γ (v) ≡ 0, and PΓv = v, is
same as the Euler system on a manifold derived by Arnold. However,
when ρ0 = 1, μ > 0, and PΓv = v, our model (3-1) is different from
the Navier-Stokes system on a manifold introduced by Taylor. In this
talk, we will talk about it if time permits.

References

[1] M. Arnaudon, A.B. Cruzeiro, Lagrangian Navier-Stokes diffusions on mani-
folds: variational principle and stability. Bull. Sci. Math. 136 (2012), no. 8,
857–881. MR2995006
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A = −κn,

A κ n

Γ0 E0

v0

⎧⎪⎨⎪⎩
α′′(t, s) = −κ(s) (t, s) ∈ (0, T )× [0, 1),
α′(t = 0, s) = v0(s) s ∈ [0, 1),
α(t = 0, s) = γ(s) s ∈ [0, 1).
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Δt
u : Ω → RN−1⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

utt = c2Δu (0, Δt)× Ω,
∂u
∂ν = 0 (0, Δt)× ∂Ω,

ut(0, x) = v0 Ω,

u(t = 0, x) = 2z0
ε − z−Δt

ε Ω,

N Ω Rd v0

c2 d

zt
ε(x) =

N∑
i=1

piχ{dt
i(x)>ε/2} +

1
ε

( ε

2
+ dt

i(x)
)

piχ{−ε/2≤dt
i(x)≤ε/2}.

dt
i(x) i x

t

dt
i(x) =

{
infy∈∂P t

k
||x− y|| x ∈ P t

k,

− infy∈∂P t
k
||x− y|| ,

χE E pi ith

RN−1 i = 1, ..., N. N = 2
Δt PΔt

i

PΔt
i = {x ∈ Ω : u(Δt, x) · pi ≥ u(Δt, x) · pk, k ∈ {1, ..., N}}.

z0
ε

d = 2

ε > 0 k 2zk
ε − zk−1

ε

v0 = 0 c2 = 2 t > 0
v′ = −κ + O(t) v(t) = v(0)− tκ + O(t2))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
utt =

(
∇u√

1+|∇u|2

)
(0, T )× Ω,

∂u
∂ν = 0 (0, Δt)× ∂Ω,

ut(0, x) = v0 Ω,

u(t = 0, x) = u0 Ω,
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T > 0 Ω

c2 = 2

u(τ, r) = 2rn−1 − rn−2 − r + c2

∫ τ

0

∫ s

0

(
−d− 1

r

)
dt ds + O(τ3),

τ rn

n u
c2 = 2 d = 3 c2 = 1

Pk k = 1, ..., N
ε/2 ≥ 0

P1

P2
{ ε P1

P2

{ ε

P3

P1

P2

{ ε

P3

P4P6

P5

u n
ε = 0 ε > 0

x

u
x

N

wj = ε
N − 1

N

[
u · pj +

2−N

2(N − 1)

]
.
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x ∂Pk

u(x) =
1
ε

( ε

2
+ dn

k(x)
)

pk +
1
ε

( ε

2
+ dn

i (x)
)

pi.

pj pk pi pj = pk

wj =ε
N − 1

N

[
dn

k(x)
ε

− dn
i (x)

ε(N − 1)

]
= dn

k(x),

ε ε

ε = 0.
ε > 0

wj
tt −Δwj = ε

N − 1
N

[utt −Δu] · pj = 0,

u

{
r′′ = −1

r

r′(0) = 0, r(0) = r0,

r0 = 0.2381
{(P x

i , P y
i )}i

∫ t∗
0 |ru(t)− r(s)|2 ds∫ t∗

0 |r(s)|2 ds
,
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8× 8 0.13
16× 16 0.12
32× 32 0.11
64× 64 0.08
128× 128 0.04
256× 256 0.02

ru

t∗

ε = 0.52

r(
t)

t

* numerical
- exact
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u ∈ H1(Ω)

Fn(u) =
∫

Ω

(
|u− 2un−1 + un−2|2

2τ2
+
|∇u|2

2

)
dx +

1
ε̃

∣∣∣∣V −
∫

Ω
χ{u>0}dx

∣∣∣∣
2

,

τ > 0 un−1, un−2

ε̃ > 0
P1

e u

u(x, y)|e = αx + βy + γ,

α, β γ

Fn(u) ≈
M∑

j=1

∫
ej

⎛⎜⎝
∣∣∣uj − 2uj

n−1 + uj
n−2

∣∣∣2
2τ2

+

∣∣∇uj
∣∣2

2

⎞⎟⎠ dx +
1
ε̃

∣∣∣∣∣∣V −
M∑

j=1

∫
ej

χ{ui>0}dx

∣∣∣∣∣∣
2

,

M uj P1

ej

Fk(u) k
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Fk(uk) ≤ Fk((1− θ)uk + θuk−1)

0 ≤ lim
θ↓0
Fk((1− θ)uk + θuk−1)−Fk(uk)

θ

∣∣∣∣
∣∣∣∣uk − uk−1

h

∣∣∣∣
∣∣∣∣
2

L2(Ω)

+ Cp

(
||∇uk||2L2(Ω) + ||uk||2L2(Ω)

)
≤ C0,

C0

―
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1

Shadow system approach to a 3-component
Lotka-Volterra system with diffusion

Hideo Ikeda∗, Masayasu Mimura∗∗ and Tommaso Scotti∗∗

∗ University of Toyama, 930-8555 Gofuku 3190, Toyama, Japan
∗∗ Meiji University, 164-8525 Nakano 4-21-1, Tokyo, Japan

1 Introduction

The term harmful algal bloom (in short, HAB) indicates an algal bloom that has negative impacts
on other organisms via the production of toxins, mechanical damage, or by other means. HAB
includes different types of taxa such as dinoagellates, diatoms, and cyanobacteria (commonly
known as blue-green algae). The latter are of special importance because of their potential impact
on drinking or recreational waters. In fact, they can produce a variety of potent toxins called cyan-
otoxins (e.g. Falconer and Humpage [1]). These compounds have been found to be hepatotoxic
or neurotoxic for a wide range of organisms, including humans, and several intoxication cases
have been reported worldwide (Jochimsen et al. [5]). Therefore, in the recent years, the formation
of toxic blooms of cyanobacteria in lakes and rivers has been causing more and more concern.
Ecological evidence suggest that toxic and nontoxic species of freshwater phytoplankton hardly
coexist in absence of other species. In particular, competition experiments have shown that the
toxic strain of Microcystis is a very poor competitor for light (Kardinaal et al. [7]). In these ex-
periments the toxic strain always lost the competition against the nontoxic one, even when given
a strong initial advantage. Then a natural question is: how can these species survive and actually
bloom? Regarding this question, it is ecologically discussed that toxin-producing Microcystis has
overall an inhibitory effect on the growth of most herbivore taxa. Nevertheless, zooplankton usu-
ally grazes on both toxic and nontoxic species (Fulton and Pearl [3]). This is interesting, since the
toxic or noxious chemicals produced by blue green algae may inhibit feeding and, over long term,
cause mortality of zooplankton (Porter and Orcutt [10], Lampert [8], [9], Fulton and Paerl [2]). In
particular, while a few species like the rotifer Brachionus calyciorus and the cladoceran Bosmina
longirostris apparently make no great distinction between toxic and non toxic prey, the feeding
rates of other small-bodied cladocerans, rotifers, and copepods seem to be strongly related to the
toxicity of Microcystis (Fulton and Paerl [2]). These observations suggest that predator and toxic
prey have an inhibitory effect on each other. Then another naive question is: can the existence
of such interaction promote the spatial pattern formation and local algal blooms? This ecolog-
ical question motivates us to theoretically understand the mechanism behind the formation of
spatial blooms of toxic plankton. For this purpose, we proposed a two-prey (toxic and nontoxic
phytoplankton)-one-predator (zooplankton) Lotka-Volterra system with diffusion in a previous
paper Scotti et al. [11], under the assumptions that (i) in absence of the predator, the toxic prey
is a weaker competitor for common resources than the non-toxic one, and (ii) depending on the
toxicity and another parameter, the predator is more or less inclined to avoid the toxic prey. The
dynamics discussed above are described by the following reaction-diffusion system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P
∂ t

= r1P
(

1− P+aX
K1

−Z
)
+ D1ΔP

∂X
∂ t

= r2X
(

1− X +bP
K2

−dZ
)
+ D2ΔX

∂Z
∂ t

= r3Z(P−μX −1) + D3ΔZ,

(1.1)
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2

where P(t,x),X(t,x) and Z(t,x) are respectively the population densities of the nontoxic and toxic
phytoplankton and of the zooplankton, and the parameters ri,Di(i = 1,2,3),K1,K2,a,b,d and μ
are all positive constants. Ecologically, an important parameter in (1.1) is μ , which is the rate of
toxicity. We assume that the predation rate of the toxic prey d decreases in μ . Here we simply
specify d = d(μ) = 1/(1+μ). The ecological explanation of (1.1) is discussed in [11].

By using suitable transformations of time and space, (1.1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P
∂ t

= P
(

1− P+aX
K1

−Z
)
+ ΔP

∂X
∂ t

= rX
(

1− X +bP
K2

−d(μ)Z
)
+ σΔX

∂Z
∂ t

= RZ(P−μX −1) + DΔZ,

(1.2)

where r = r2/r1, R = r3/r1, σ = D2/D1 and D = D3/D1 are respectively the ratios of the growth
rates and the diffusion rates of the nontoxic phytoplankton and the toxic phytoplankton and/or the
zooplankton.

2 A mathematical model

In this paper, simply assuming that r = 1, K1 = K2 = K and σ = 1 in (1.2), we consider the one
dimensional system of (1.2) in a finite interval 0 < x < L, that is,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pt = P
(

1− P+aX
K

−Z
)
+ Pxx

Xt = X
(

1− X +bP
K

−d(μ)Z
)
+ Xxx

Zt = RZ(P−μX −1) + DZxx,

t > 0, 0 < x < L (2.1)

where a,b,K,μ , R and D are positive constants. We treat (2.1) under the Neumann boundary
conditions

Px = Xx = Zx = 0, t > 0, x = 0, L (2.2)

and the initial conditions

P(0,x) = P0(x)� 0, X(0,x) = X0(x)� 0, Z(0,x) = Z0(x)� 0, 0 � x � L. (2.3)

For the system (2.1), we impose the following assumptions:

(A1) K > 1,

which implies that predator and nontoxic prey coexist in the absence of toxic prey.

(A2) a < 1 < b,

which implies that in the absence of predator, the nontoxic prey is a superior competitor for
resources with respect to the toxic one. Assumption (A1) corresponds to the coexistence of two
species of (nontoxic) phytoplankton and zooplankton (e.g. Hutchinson [4]). Assumption (A2) is
based on the idea that toxic strains are eventually outcompeted by nontoxic ones (e.g. Kardinaal
et al. [7], Lampert [8]).

For (2.1) with (2.2), we easily find that the spatially constant equilibrium solution E3 =
(1,0,(K −1)/K) exists for any μ > 0. Instead of (A1), we assume K to satisfy
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Figure 2.1 Bifurcation curves of E4 in the (D,μ)-plane (L = 30) (a) and the (L,μ)-plane (D = 2500) (b), where a = 0.95, b = 1.2,
K = 2.9 and R = 0.43. The curve n corresponds to the n-mode bifurcations, where the zero solution of the linearized problem of (2.1)
with (2.2) around E4 destabilizes under the nth eigenmode cos(nπx/L) perturbation.

Figure 2.2 Global structure of equilibrium solutions of (2.1) with (2.2) when μ is varied, where L = 30, D = 2500. The other
parameters are the same as the ones in Figure 2.1. Solid (resp. dashed) lines represent stable (resp. unstable) equilibrium solutions of
(2.1) with (2.2). The right figure is a magnification of the left one where μ is close to μc1.

(A3) K > b.

Putting μc = (b− 1)/(K − b), we know that E3 is stable for 0 < μ < μc, while it is unstable for
μc < μ . Furthermore, when μ increases, a spatially positive constant equilibrium solution of (2.1)
with (2.2), say, E4 = (P̄μ , X̄μ , Z̄μ) super-critically bifurcates from E3 at μ = μc, that is, E4 exists
for μ > μc. Here we assume R suitably large to require that E4 is stable for μ > μc in the ODEs
corresponding to (2.1) in the absence of diffusion. In addition to (A2) - (A3), we assume μ to
satisfy

(A4) μ > μc.
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Figure 2.3 1-mode equilibrium solutions (P̄+
1 (x), X̄+

1 (x), Z̄+
1 (x)) of (2.1) with (2.2) for (a) μ = 0.15, (b) μ = 0.5 and (c) μ = 3.1. The

other parameters are the same as the ones in Figure 2.1 and D = 2500. Here P̄+
1 , X̄+

1 and Z̄+
1 are drawn in blue, green and red colors,

respectively.

Figure 2.4 Dependency of D on the global structures of equilibrium solutions of the system (2.1) with (2.2) when L = 30. (a) D = 800,
(b) D = 1500, (c) D = 2500, (d) D = 5000, (e) D = 10000 and (e′) is a magnification of (e) around μ = μc1. The other parameters are
the same as the ones in Figure 2.1. Solid (resp. dashed) lines represent stable (resp. unstable) equilibrium solutions of (2.1) with (2.2).

Here we note that E4 is not necessarily stable in (2.1) with (2.2), that is, the stability of E4 de-
pends on μ,R,D and L. Figures 2.1(a) and (b) show respectively the linearized stability of E4

in the (D,μ) plane (L = 30) and (L,μ) plane (D = 2500) for suitably fixed a,b,K and R ([11]).
When μ(> μc) is small, E4 is stable for any fixed D (or L), while when μ is suitably large, E4

loses its stability as D (or L) increases. This destabilization is called diffusion-induced instability
as stated by Turing ([12]). In fact, suppose that D is suitably large (for instance, D = 2500).
By suing AUTO, we can show the global structure of equilibrium solutions of (2.1) with (2.2)
when μ is varied (see Figure 2.2). This figure shows the occurrence of two bifurcation values
of μ , say μc1 and μc2 (μc1 < μc2), at which spatially non-constant 1-mode equilibrium solu-
tions, say (P̄±

1 (x), X̄±
1 (x), Z̄±

1 (x)) super-critically bifurcate from E4, and exist and are stable for

μc1 < μ < μc2, where (P̄+
1 (x), X̄+

1 (x), Z̄+
1 (x)) is shown in Figure 2.3 and (P̄−

1 (x), X̄−
1 (x), Z̄−

1 (x))
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is given by (P̄+
1 (L− x), X̄+

1 (L− x), Z̄+
1 (L− x)). Here a 1-mode equilibrium solution stands for a

new non-constant equilibrium solution which appears via the 1-mode bifurcation. These numer-
ical results indicate that a HAB (stable non-constant equilibrium solutions with large amplitude)
does not appear for either small or large μ , while it appears for intermediate μ .

We now address the following question: can we show the existence and stability of such non-
constant equilibrium solutions of (2.1) and (2.2) analytically? One of the ways is to assume that
D is rather large in (2.1) so that the problem (2.1) with (2.2) and (2.3) becomes simpler, because
one can expect Z(t,x) to be spatially homogeneous. In Figure 2.4, we show the dependency of D
on the structures of equilibrium solutions of (2.1) with (2.2) when μ is globally varied. We notice
that they do not qualitatively change if D becomes larger and larger, as shown in Figures 2.4(c) -
(e). This result motivates us to study the limiting system of (2.1) with (2.2) as D → ∞ in order to
discuss the existence and stability of non-constant equilibrium solutions.

3 The shadow system

We formally derive the limiting system from (2.1) with (2.2) as D→+∞. We first start by dividing
the third equation of (2.1) by D so that we obtain

1

D
Zt =

R
D

Z(P−μX −1) + Zxx. (3.1)

If we assume that Zt , P, X and Z remain bounded as D →+∞, then (3.1) implies that the limit
of Z, say, ξ satisfies

ξxx = 0. (3.2)

It follows from (3.2) and the boundary conditions (2.2) that ξ must be spatially constant. On the
other hand, integrating the equation of Z in (2.1) on the interval [0,L] with respect to x, we get

∂
∂ t

∫ L

0
Zdx =

∫ L

0
RZ(P−μX −1)dx (3.3)

by the boundary conditions (2.2) and then

Lξt = Rξ
(∫ L

0
Pdx−μ

∫ L

0
Xdx−L

)
,

that is,

ξt = Rξ
(

1

L

∫ L

0
Pdx− μ

L

∫ L

0
Xdx−1

)
by (3.2) and (3.3). Consequently when D → +∞, we formally obtain the following limiting sys-
tem, which is called a shadow system, of (2.1) with (2.2) for the unknowns (P(t,x),X(t,x), ξ (t))
: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt = P
(

1− P+aX
K

−ξ
)
+ Pxx

Xt = X
(

1− X +bP
K

−d(μ)ξ
)
+ Xxx,

ξt = Rξ
(

1

L

∫ L

0
Pdx− μ

L

∫ L

0
Xdx−1

) t > 0, 0 < x < L (3.4)

with
(Px,Xx)(t,0) = (0,0) = (Px,Xx)(t,L), t > 0. (3.5)

In order to obtain equilibrium solutions of (3.4) with (3.5), we first assume ξ to be suit-
ably fixed and consider the first two equations of (3.4) with (3.5), which are the well known
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competition-diffusion system for two species. If we could find an equilibrium solution (P̄(x;ξ ), X̄(x;ξ ))
of the system and substitute it into the third equation of (3.4), we obtain the equation of ξ only

H(ξ )≡ 1

L

∫ L

0
P̄dx− μ

L

∫ L

0
X̄dx−1 = 0. (3.6)

If we can find ξ̄ to satisfy (3.6), we get an equilibrium solution (P̄(x; ξ̄ ), X̄(x;ξ ), ξ̄ ) of the shadow
system (3.4) with (3.5).

In order to obtain equilibrium solutions of the competition-diffusion system for two species,
we can apply the results by Kan-on [6]. For this purpose, we introduce a new parameter ε = 1/L2

into (3.4) with (3.5) to normalize the interval [0,L] to the unit one [0,1]. Then, the shadow system
(3.4) with (3.5) is rewritten to the rescaled normal system with a parameter ε as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt = P
(

1− P+aX
K

−ξ
)
+ εPxx

Xt = X
(

1− X +bP
K

−d(μ)ξ
)
+ εXxx,

ξt = Rξ
(∫ 1

0
Pdx−μ

∫ 1

0
Xdx−1

) t > 0, 0 < x < 1 (3.7)

with
(Px,Xx)(t,0) = (0,0) = (Px,Xx)(t,1), t > 0. (3.8)

In this section, we fix μ arbitrarily to satisfy μ > μc and ignore the μ-dependency of equilib-
rium solutions of the shadow system (3.4) with (3.5).

3.1 2-component competition system of (3.7) with (3.8) for fixed ξ

In this subsection, we look for equilibrium solutions of the following 2-component competition
system of (3.7) with (3.8) for a fixed ξ when ε is a free parameter:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pt = P
(

1− P+aX
K

−ξ
)
+ εPxx

Xt = X
(

1− X +bP
K

−d(μ)ξ
)
+ εXxx,

t > 0, 0 < x < 1

(Px,Xx)(t,0) = (0,0) = (Px,Xx)(t,1), t > 0.

(3.9)

Here we note that, depending on the parameter values a,b,K,μ and ξ , the dynamics of solu-
tions of (3.9) possesses three different cases, (a) mono stability, (b) bistability and (c) coexistence,
as shown in Figure 3.1. Since our concern is to find non-constant equilibrium solutions of (3.9),
we restrict values of the parameters a,b,K,μ and ξ to satisfy the case (b) in Figure 3.1, because
this is the only case for which such solutions exist (Zhou and Pao [13] , Kan-On [6]). Figure
3.1(b) is equivalent to assume

(A5) ab > 1,

which is identical to 0 <
1−a

1−ad(μ)
<

b−1

b−d(μ)
< 1. We define the interval I by

I = (ξ , ξ̄ ) with ξ =
1−a

1−ad(μ)
and ξ̄ =

b−1

b−d(μ)
(3.10)
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Figure 3.1 Three different structures of the nullclines of (3.9) with d = d(μ)= 1/(1+μ). (a-1) P-monostability, (a-2) X-monostability,
(b) bistability and (c) coexistence. The red and white circles stand for stable and unstable equilibrium solutions of (3.9), respectively.

and assume ξ to satisfy ξ ∈ I. Then the system (3.9) has a positive constant equilibrium solution
(P̄(ξ ), X̄(ξ )) which is explicitly represented as

P̄(ξ ) =
1−a− (1−ad(μ))ξ

1−ab
, X̄(ξ ) =

1−b+(b−d(μ))ξ
1−ab

. (3.11)

Remark 1 We easily find that

lim
ξ→ξ

(P̄(ξ ), X̄(ξ )) =
(

1−d(μ)
b−d(μ)

,0

)
and lim

ξ→ξ̄
(P̄(ξ ), X̄(ξ )) =

(
0,

1−d(μ)
1−ad(μ)

)
.

Taking ε as a bifurcation parameter, we look for non-constant equilibrium solutions of (3.9),
which are bifurcated from the constant solution (P̄(ξ ), X̄(ξ )). By simple calculation, it can be
easily checked that for arbitrarily fixed ξ ∈ I, the linearized operator of (3.9) around (P̄(ξ ), X̄(ξ ))
has the zero eigenvalue at ε = εn

0 (ξ ) = (1/nπ)2Q0(ξ ) with

Q0(ξ ) =
−(P̄(ξ )+ X̄(ξ ))+

√
(X̄(ξ )− P̄(ξ ))2 +4abP̄(ξ )X̄(ξ )

2K
(3.12)
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Figure 3.2 Schematic global structure of the constant and non-constant equilibrium solutions (P̄(ξ ), X̄(ξ )) and
(P̄±

n (x;ξ ,ε), X̄±
n (x;ξ ,ε)) (n = 1,2, · · ·) of (3.9) when ε is varied.

and the corresponding eigenfunction ucos(nπx) for each n ∈ N, where u = (u1,u2)
T is an eigen-

vector of the matrix

A(ξ )≡
[

π2ε1
0 (ξ )+ P̄(ξ )/K aP̄(ξ )/K

bX̄(ξ )/K π2ε1
0 (ξ )+ X̄(ξ )/K

]
(3.13)

corresponding to the zero eigenvalue. Here we used the relation εn
0 (ξ ) = ε1

0 (ξ )/n2 for each n ∈ N
and normalized u1 to 1 so that u2 =−(Kπ2ε1

0 (ξ )+ P̄(ξ ))/ (aP̄(ξ )).
Then the following results on equilibrium solutions of (3.9) are given, as shown in Figure 3.2:

Proposition 1 (Kan-on [6]) . Assume (A2) - (A5) and consider the problem (3.9) with arbitrarily
fixed ξ ∈ I. For each n ∈ N, we have the followings:
(i) For any ε ∈ (0,εn

0 (ξ )), there exists a pair of spatially non-constant positive equilibrium solu-
tions (P̄±

n (x;ξ ,ε), X̄±
n (x;ξ ,ε)) of (3.9).

(ii) (P̄±
n (x;ξ ,ε), X̄±

n (x;ξ ,ε)) are C1-class functions from (0,εn
0 (ξ )) to C2[0,1]×C2[0,1].

(iii) (3.9) has no positive equilibrium solutions other than (P̄(ξ ), X̄(ξ )) and (P̄±
j (x;ξ ,ε), X̄±

j (x;ξ ,ε))
( j = 1,2, · · · ,n) for any ε ∈ [εn+1

0 (ξ ),εn
0 (ξ )).

(iv) lim
ε→εn

0 (ξ )
(P̄±

n (x;ξ ,ε), X̄±
n (x;ξ ,ε)) = (P̄(ξ ), X̄(ξ )).

3.2 Existence of non-constant equilibrium solutions of the shadow system

Under the assumptions (A2) - (A5), we have the following main theorem by virtue of Proposition
1:

Theorem 1 Assume (A2) - (A5). For each n ∈ N, the following results hold :
(i) For any ε ∈ (0,εn

0 (ξ̄
∗)), there exists at least a pair of spatially non-constant n-mode equilib-

rium solutions (P̄±
n (x;ε), X̄±

n (x;ε), ξ̄±
n (ε)) of (3.7) with (3.8).

(ii) (P̄±
n (x;ε), X̄±

n (x;ε)) are C1-class functions from (0,εn
0 (ξ̄

∗)) to C2[0,1]×C2[0,1].
(iii) lim

ε→εn
0 (ξ̄ ∗)

(P̄±
n (x;ε), X̄±

n (x;ε), ξ̄±
n (ε)) = (P̄∗, X̄∗, ξ̄ ∗).

－104－



9

Unfortunately, this theorem does not give any information on the number of non-constant
equilibrium solutions of (3.7) with (3.8). It really depends on the functional form of H(ξ ;ε)
when ε is suitably fixed.

In this talk, we will give a simple proof of this theorem and discuss the dependency of spatially
non-constant 1-mode equilibrium solutions on the toxicity μ . Furthermore, we will consider the
bifurcation property and the stability of these non-constant equilibrium solutions.
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Title:
Weak solutions to the Navier-Stokes initial boundary value problem
in exterior domains and initial data in the L(3,∞)-space

Abstract:
The talk concerns the existence of weak solutions to the Navier-Stokes initial
boundary value problem in exterior domains:

ut + u · ∇u−Δu = −∇πu, ∇ · u = 0, in (0, t)× Ω
u(t, x) = 0 on (0, T )× ∂Ω, u(0, x) = u◦(x) on {0} × Ω,

(1)

where vt := ∂v
∂t e v · ∇w := vk

∂w
∂xk

. In literature we find the existence of

a weak solution for data u◦ ∈ L2(Ω). Recently, an existence theorem for
data u◦ which only have finite Dirichlet norm is proved in paper [10]. This
result appears interesting because it realizes a bridge between unsteady so-
lutions and the class of existence of time periodic solutions and of stationary
solutions of the Navier-Stokes equations. In this note, we study the exis-
tence of weak solutions corresponding to data L(3,∞)(Ω) (Lorentz’s space).
Beyond the connection, again, with the steady (see [8]) and time periodic
solutions (see [12]), we look for further developments concerning the space-
time asymptotic behaviors of the solutions to problem (1), already proposed
for the first time in [2, 3] for the weak solutions of the L2-theory. Employing
some ideas contained in paper [10], we are able to prove the following result:

Theorem 0.1. Let u◦(x) ∈ L(3,∞)(Ω). There exists a weak solution u
to problem (1) such that, for all T > 0, u ∈ L4(0, T ;L(3,∞)(Ω)), u ∈
L2(0, T ; J1,2

�oc(Ω)) and, for some T0 > 0, u ∈ C(0, T0;L(3,∞)(Ω)). Finally,
for such a weak solution the Leray structure theorem holds.

L(3,∞)(Ω) :=completion of C0(Ω) in L(3,∞)(Ω) and J1,2
�oc(Ω) := {u :

u ∈ W 1,2
�oc (Ω), γ∂Ω(u) = 0 and ∇ · u = 0} (C0(Ω) is the vector space of

hydrodynamics test functions).
To better explain our results, we make a short review of some known

results on the topic.

1 Weak solutions L2-theory.

We begin introducing the definition of Hopf weak solution whose set is de-
noted by H
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Definition 1.1. A field u, such that u : (0, T ) × Ω → R
n, is said a weak

solution to problem (1) if

i) for all T > 0, u ∈ L2(0, T ; J1,2(Ω)),

||u(t)||22 + 2

t∫
0

||∇u(τ)||22dτ ≤ ||u◦||22, ∀t > 0,

ii) lim
t→0

||u(t)− u◦||2 = 0,

iii) u satisfies the equation:
T∫
0

[
(u, ϕτ )− (∇u,∇ϕ) + (u · ∇ϕ, u)

]
dτ + (u◦, ϕ(0)) = 0,

for all ϕ ∈ C1
0 ([0, T );C0(Ω)).

In the following we denote (a priori) the subsets L and CKN of the set H
of weak solutions, one due to Leray in [9] and the other to Caffarelli-Kohn-
Nirenberg in [1], that we formalize by means of the following definitions.

Definition 1.2. A field u : (0, T ) × Ω → R
3 is said a Leray weak solution

to problem (1) if u is a weak solution and the following inequality holds:
(energy relation in strong form)

||u(t)||22 + 2

t∫
0

||∇u(τ)||22dτ ≤ ||u(s)||22, t≥s, for s=0 and a.e. in s≥0,

Ω ⊆ R
d, d = 3.

(2)

Definition 1.3. A field u : (0, T )×Ω → R
3 is said a suitable weak solution

to problem (1) if u is a weak solution and the following inequality holds:
for some field πu : (0, T )× Ω → R (pressure field) there holds:∫

Ω

|u(t)|2φ(t)dx+ 2

t∫
s

∫
Ω

|∇u|2φdxdτ ≤
∫
Ω

|u(s)|2φ(s)dx

+

t∫
s

∫
Ω

|u|2(φτ +Δφ)dxdτ +

t∫
s

∫
Ω

(|u|2 + 2πu)u · ∇φdxdτ,

(3)

for all t ≥ s, for s = 0 and a.e. in s ≥ 0, and for all nonnegative φ ∈
C∞
0 (R× R

3).

2
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The difference in the weak formulations is connected to the three different
energy relations. Actually they imply a different regularity and also different
qualitative properties, as, for example, stability properties.

The existence of weak solutions (H) has been proved by Hopf for an
initial boundary value problem in an arbitrary domain Ω ⊆ R

n. Instead, in
the cases of L and of CKN some restrictions are needed on the domain Ω.
We refer to papers [11] and [5], respectively, for such questions.

The sets H ⊇ L ⊇ CKN of weak solutions are not empty as proved by
means of the following theorems that we state in the case of the Cauchy
problem of the Navier-Stokes system, but whose validity is known for the
IBVP (1):

Theorem 1.1. [Hopf’s existence theorem] - For all u◦ ∈ J2(Ω) there
exists a weak solution u(t, x) such that, for all ψ ∈ J2(Ω), (u(t), ψ) is a
continuous function of t.

Theorem 1.2. For all u◦ ∈ J2(R3) there exists a Leray weak solution such
that

t∫
s

[
(u, ζτ )− (∇u,∇ζ) + (u · ∇ζ, u) + (πu,∇ζ)

]
dτ + (u(s), ζ(s))

= (u(t), ζ(t)),

(4)

for all ζ ∈ C1
0 ([0, T );C

∞
0 (R3)), with πu ∈ Lr(0, T ;Ls(R3)), provided that

s ∈ (1, 3] and r := 1
3

2s
s−1 .

Theorem 1.3. For all u◦ ∈ J2(R3), there exists a suitable weak solution
such that

t∫
s

[
(u, ζτ )− (∇u,∇ζ) + (u · ∇ζ, u) + (πu,∇ζ)

]
dτ + (u(s), ζ(s))

= (u(t), ζ(t)),

(5)

for all ζ ∈ C1
0 ([0, T );C

∞
0 (R3)), with πu ∈ Lr(0, T ;Ls(R3)), provided that

s ∈ (1, 3] and r := 1
3

2s
s−1 .

Now we would like to recall the regularity properties and the space time
pointwise stability of a weak solution belonging to CKN .

3
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2 Regularity and space time pointwise stability of a CKN
solution.

We limit ourselves to the Cauchy problem. A first contribute concerning
the regularity of a weak solution u ∈ L is due to Leray in [9], that is the so
called structure theorem:

Theorem 2.1. If u ∈ L, there exists a set of indices A ⊆ N such that, for all
l ∈ A, u is a regular inside the disjoint cylinders (Θl, Tl)×R

3 with Tl ≤ ∞.
Moreover, setting O = ∪l∈A(Θl, Tl), then, the complement of O in R

+ has
finite 1

2 -Hausdorff measure, and ϑ := sup
l

Θl ≤ c||u◦||42.

We give some comments on the above statement.

Remark 2.1.
The regularity claimed in the theorem is the classical one that we deduce

(a priori) locally in time for initial data belonging 1 to J1,2(Ω).
For all l ∈ A, u ∈ L is regular in (Θl, Tl)×R

3, the cardinality of A is at
most the one of N and (ϑ,∞) ⊂ O.

In particular, the regularity allows to consider ||u(t)||∞ and to give an
asymptotic behavior of the kind:

||u(t)||∞ ≤ c||u◦||2t− 3
4 , t ≥ ϑ.

By several authors Theorem2.1 has been extended to domains Ω⊂R
3.
�

If in the structure theorem the partial regularity is given on (0,∞), in
paper [1] the partial regularity is given also in the space. In this connection
we start giving:

Definition 2.1. We say that (t, x) is a singular point for a weak solution
(u, πu) if u /∈ L∞ in any neighborhood of (t, x); the remaining points, where
u ∈ L∞(I(t, x)) for some neighborhood I(t, x), are called regular points. We
denote by S̃ the set of all the possible singular points (t, x).

We introduce the parabolic cylinders

Qr(t, x) := {(τ, y) : t− r2 < τ < t and |y − x| < r}.
1 J1,2(Ω):=completion of C0(Ω) in W 1,2(Ω).

4
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Definition 2.2 (Parabolic Hausdorff measure). For all X ⊂ R × R
3, and

η ≥ 0 we set
Pη(X) := lim

ε→0
Pη

ε (X) ,

where

Pη
ε (X) := inf

{ ∞∑
i=1

rηi : X ⊂ ∞∪
i=1

Qri , ri < ε
}

Denoted by H the usual Hausdorff measure, we get H η(X) ≤ c(η)Pη(X).
The following result holds:

Theorem 2.2. For any suitable weak solution u (CKN ) to the Navier-
Stokes Cauchy problem the associated singular set satisfies P1(S̃)=0.

In the recent paper [3] the following result concerning the poitwise sta-
bility is proved:

Theorem 2.3. Let u◦ ∈ J2(R3) and, for some α ∈ [1, 3) and R0 > 0, let be

|u◦(x)| ≤ U◦|x|−α, for |x| > R0. (6)

Let (u, πu) be a suitable weak solution to the Navier-Stokes Cauchy problem.
Then, there exists a constant M ≥ 1 such that

|u(t, x)| ≤ c(u◦)|x|−α, for all (t, x) ∈ (0,∞)× R
3 \BMR0 , (7)

where M is independent of u◦.

Corollary 2.1. For a solution of Theorem2.3 we get:

k ∈ [0, α], |u(t, x)| ≤ c(u◦)c|x|−α+kt−
k
2 , (t, x) ∈ (0,∞)×(R3 \BMR0). (8)

Some comments on the last statements.

Remark 2.2.
Under our assumptions, estimates (7) are an improvement of regularity

results furnished in [1] in the case of the Cauchy problem (see TheoremD
and its Corollary p.820 of [1]).

Theorem2.3 is an improvement of the ones given in [4] in very stronger
hypotheses.

As far as we know such results are the first for weak solutions.
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3 The assumption u◦ ∈ L(3,∞) and its connection with the
pointwise stability: Theorem0.1.

In Theorem2.3 we have a double assumption on the initial data u◦. Actually,
we require that initial data belongs to J2 and, for some α ∈ [1, 3) and R0 > 0,
|u◦(x)| ≤ U◦|x|−α, for |x| > R0. Of course, the assumptions play a different
role. The former hypothesis is made in order to obtain the existence (of
a suitable weak solution) with no restriction on the data and the latter to
achieve the spatial decay from t > 0. However, roughly speaking, since Ω
is exterior, for α ∈ [1, 32 ], the former assumption seems to clash with the
latter. Therefore, we would like to make our assumptions more natural and
coherent. The following one

u◦ ∈ L(3,∞) (9)

seems to be the suitable assumption for all α ∈ [1, 3).
We would like to make precise a concept: assumption (9) is not connected

with questions of scaling invariant data and regularity of solutions, for which
our theorem does not give contributions. The regularity of a solution of
Theorem0.1 is just the one of a suitable weak solution given in section 2.

Why is it made assumption (9) and not u◦ ∈ L(q,∞) for some q ∈ (1, 3)?
Because assumption (9) gives the opportunity to discuss the nonlinear term
in a way useful for our aims.

Our Theorem0.1 is just the first step, that is the existence of solutions
assuming data (9) in exterior domains. Under the assumption (6), the prob-
lem of pointwise stability will be object of a forthcoming paper jointly with
F. Crispo. As matter of course, under assumptions (6) and (9) the asymp-
totic result (7) will become sharp as in the case of small data. Assumption
(9) includes the case of α = 1 with no further assumption. Moreover, this
case achieves a special interest for its analogy with steady and time periodic
solutions [6, 12] and, very recent, for questions of stability [7]. However, our
result is just a starting point, since our solution tends to zero at infinity
while the steady problem can be considered for v∞ �= 0 too.

Finally, we insert a further comment on Theorem0.1. We perform a
solution u as

u := V + v,

where V ∈ L(3,∞) uniformly in t > 0 and v ∈ J2 uniformly in t > 0.
Taking into account that the unbounded nature of the domain makes the
two different bounds not comparable, a solution of Theorem0.1 has not a
metric with respect to which it is bounded and depends on the initial data
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uniformly in time, as in the case of the L2-theory or in the case of small
data in L(3,∞) or L3. Hence, although the result is restricted to the exterior
of a ball, the pointwse stability achieves further interest since it realizes a
dependence on the initial data for this kind of weak solution.
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