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Preface 
 
 
We welcome all the participants to the conference: Mathematics for 

Nonlinear Phenomena: Analysis and Computation – International 
Conference in honor of Professor Yoshikazu Giga’s 60th birthday.  This 
volume is intended as the proceeding of this conference, held for the period of 
August 16 -18, 2015 in Sapporo.

Importance of mathematics is significantly increasing in various areas of 
sciences.  Particularly, a lot of interesting nonlinear phenomena take place 
in many research fields and mathematics are expected to be applicable to 
these subjects.  Accordingly, the nonlinear analysis and nonlinear PDE 
theories are now more and more active in the stream of such movement of 
sciences.  For this reason we are motivated to organize this conference, to 
deepen the discussions and communications among active participants based 
on the lectures by strong leaders in various different subjects of nonlinear 
mathematical phenomena.  Professor Yoshikazu Giga has been making a 
huge contribution to these research fields for several decades.  We would 
like to take this occasion to recognize his feat in mathematical researches.  

We hope you enjoy the conference Mathematics for Nonlinear Phenomena 
and your stay in the nice weather of summer in Sapporo.  

 
Organizers:  
Shuichi Jimbo (Chair / Hokkaido University) 
Shunichi Goto (Hokkaido University of Education) 
Yoshihito Kohsaka (Kobe University) 
Hideo Kubo (Hokkaido University) 
Yasunori Maekawa (Tohoku University) 
Masaki Ohnuma (Tokushima University) 
 
Honorary Organizer:  
Yoshikazu Giga (The University of Tokyo) 
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Scientific Committee: 
Hideo Kozono (Waseda University)  
Takayoshi Ogawa (Tohoku University)  
Tohru Ozawa (Waseda University)  
Yoshihiro Tonegawa (Tokyo Institute of Technology)  
Eiji Yanagida (Tokyo Institute of Technology) 
 
 
Steering Committee: 
Shuichi Jimbo (Hokkaido University)  
Mi-Ho Giga (University of Tokyo)  
Hideo Kubo (Hokkaido University)  
Hirotoshi Kuroda (Hokkaido University)  
Keisuke Takasao (The University of Tokyo)  
Nao Hamamuki (Hokkaido University) 
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Prediction without probability: a PDE approach to 
a model problem from machine learning 

 
Robert V Kohn, Courant Institute, NYU 

 
 

Abstract 
In the machine learning literature, one approach to "prediction" assumes that 

there are two or more "experts"; the best prediction in this setting is the one that 
"minimizes regret", i.e. minimizes the shortfall relative to the best-performing expert. 
My talk focuses on a model problem involving the prediction of a binary sequence 
(loosely speaking: a stock whose price is restricted to a binomial tree) when there are 
just two experts. I'll discuss a continuum limit in which the optimal prediction is 
determined by solving a 2nd order parabolic PDE. This is joint work with Kangping Zhu 
(for two very simple experts) and Nadejda Drenska (for more realistic experts). 
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The method of viscosity solutions for analysis of singular
diffusion problems appearing in crystal growth problems

Piotr Rybka, Warszawa, Poland

An important ingredient of the modified Stefan problem is Gibbs-Thomson law on a moving interface,

βV = σ + κγ on Γ(t). (1)

Since κγ is the weighted mean curvature, then (1) is a driven weighted mean curvature (wmc) flow,

where σ is temperature (supersaturation or pressure depending upon the model). Here, we assume that

σ is given. We are interested in γ which is convex but not C1. An important point is how to interpret

κγ , which is formally defined by

κγ = −divS (∇Xγ)(X)|X=n(x),

where n(x) is the normal to Γ(t) at x. The issue is that γ may not be differentiable at the normals to

Γ, hence κγ may not be defined on a large subset of Γ.

An important step of analysis is writing (1) for graphs. If Γ is the graph of u, then we can show,

Proposition 1. Let us suppose that u : (0, L) × IR+ → IR and Γ(t) is the graph of u(·, t). In this

case, n(x) = (−1, ux)/
√
1 + u2x. Then, there is W : IR2 → IR such that for all x ∈ (0, L) function

p �→W (p, x) is convex such that the operator V − κγ/β on Γ(t) takes the following form,

vt(1 + κv)√
v2s + (1 + κv)2

− a(vs, v, s)√
(1 + κv)2 + v2s

∂

∂x
(Wp(vx, x)), (2)

where κ is the curvature of Γ(t).

First, we would like to study simpler problems, where W = W (p), a = a(p), i.e. these two

functions depend just on the derivative of the unknown function. After such simplifications (1) takes

the form,
ut = a(ux)(Wp(ux)x + σ̃), (x, t) ∈ (0, L)× IR+,
u(x, 0) = u0(x), x ∈ (0, L),

(3)

augmented with boundary conditions.

We will recall the definition of viscosity solutions for (3) after [1]. We will also state a Comparison

Principle for viscosity solutions, [1]. We will make comments on solvability of (3), different notions

of solutions and their relationship.

We studied (1) for closed curves called bent-rectangles, [2], when the anisotropy function γ given

by the following formula

γ(p1, p2) = |p1|γΛ + |p2|γR. (4)

By definition, a bent rectangle is a Lipschitz curve, which is a small perturbation of a rectangle with

sides parallel to the axes. For the sake of simplicity, we assume that bent rectangles have the symmetry

center at the origin. The deformed sides are graphs of Lipschitz functions which are constant near the

origin and at a distance from the origin. These flat parts, parallel to the axes are called facets. On

facets the derivative of γ given by (4) is not defined, what makes problem (1) interesting.

In a series of papers, including [2], we constructed so-called variational solutions to (1), when

the initial datum Γ0 is a bent rectangle. This construction has drawbacks: a) the verteces moved as

intersections of facets, not by (1), b) a uniqueness result was missing. The idea is to use the tools of

viscosity theory to resolve these issues. In order to do this we show that bent-rectangles are graphs

over a reference manifold. We can show, see [3]:

1
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Theorem 1. If a bent rectangle Γ(0) satisfies an additional geometric condition, then we can construct

a reference manifold M such that Γ(0) and its ‘small perturbations’ are graphs. That is, there is

function u : [0, 2πL)× [0, T )→ IR, called a profile function, such that

Γ(t) = {ψ(s) + ν(s)u(s, t), s ∈ [0, 2πL)},

where ψ : [0, 2πL)→ IR2 is a parametrization ofM and ν(s) is the outer normal toM at ψ(s).

Theorem 1 applies to a class of bent rectangles, so that we can subsequently use Proposition 1.

The resulting equation is,

ut = a(us, u, s)(
∂

∂x
(Wp(ux), x) + σ̃), (s, t) ∈ [0, 2πL)× IR+ (5)

with the initial condition u(x, 0) = u0(x) and periodic boundary conditions. The main difference,

in comparison with (3), is that now the coefficients a and W depend on s and the unknown u. In

particular the singular slopes change from point to point. This makes us adapt the definition of the

viscosity solution and we have to prove a new version of the comparison principle. Having these tools

at hand we are able to show a result, which may be expressed roughly as follows, (see [3] for more

details):

Theorem 2. Let us suppose that Γ(·), a family of bent rectangles, which is a variation solution to (1)

and Γ(0) is a bent rectangle satisfying assumptions of Theorem 1. Then,

(a) the corresponding profile function u is a viscosity solution of (5) iff an additional condition holds;

(b) u is a unique solution to (5), hence Γ(·) is a unique variational solution to (1).

We stress that the set of singular slopes in (5) changes from point to point. On facets intersecting

the axis (1) takes the form,

ut = (sgnux)x + f,

while near the verteces it looks like

ut = (sgn (ux + 1) + sgn (ux − 1))x + f. (6)

We may study the above equation for its own sake, especially that we may expect competition of

facets with different slopes. We showed, (see [4]):

Theorem 3. Let us consider (6) with f ≡ 0 for (x, t) ∈ (0, L) × IR+ and initial condition u(·, 0) =
u0 ∈ BV . We assume either periodic or homogeneous Neumann or Dirichlet boundary conditions.

Then, there exists a unique viscosity solution to (6).

We also study of solutions to (6) with the help of the Comparison Principle.

References
[1] M.-H. Giga, Y. Giga, P.Rybka, A comparison principle for singular diffusion equations with spatially inho-

mogeneous driving force, Arch. Ration. Mech. Anal., 211, (2014), 419–453.

[2] Y. Giga, P.Górka, P.Rybka, Evolution of regular bent rectangles by the driven crystalline curvature flow in

the plane with a non-uniform forcing term, Adv. Differential Equations, 18, (2013), 201–242.

[3] Y. Giga, P.Górka, P.Rybka, Bent rectangles as viscosity solutions over a circle, Nonlinear Anal. Ser. A:

Theory, Methods and Applications, 125, (2015), 518–549.

[4] M. Matusik, P. Rybka, Oscillating facets, preprint.
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EVOLUTION OF SPIRALS BY CRYSTALLINE CURVATURE

AND EIKONAL EQUATION

TAKESHI OHTSUKA

Dedicated to Professor Yoshikazu Giga on the occasion of his 60th birthday

Burton et al. [1] proposed a theory of crystal growth with aid of screw disloca-
tions in 1951. Screw dislocations provide spiral steps (discontinuity) in the crystal
height. Atoms on the surface bond with the crystal structure at the step, and thus
results in an evolution of the steps. The dynamics of the step in this setting is well
studied in [1]. The normal velocity V of the step is given as the curvature equation

V = C − κ,

where C is a constant denoting a driving force of the evolution.
One often see the spiral-shaped polygonal pattern, which is drawn by steps,

on growing crystal surface. Such an anisotropic pattern should be caused by the
anisotropic surface energy density whose equilibrium shapeWγ is a Nγ sided convex
polygon. We call Wγ Wulff shape. In such an evolution, the normal velocity Vj of
j-th facet of the spiral step is given as

(1) βjVj = U −Hj ,

where βj is a constant denoting the mobility, Hj is the crystalline curvature defined
by the length of j-th facet of Wγ for j ∈ Z/(NγZ). Note that the facet number j is
considered as the generalized number; we regard j + nNγ is equivalent for n ∈ Z.
We call the evolution of spiral-shaped polygonal curve by (1) crystalline motion.

WhenWγ is a convex polygon, the surface energy density is possibly not convex,
thus partial differential equation approach for tracking the evolution does not work
well. Taylor [7] introduced an ordinary differential equation(ODE) approach to
the crystalline motion of interface. Ishiwata [4] proposed an ODE approach to the
crystalline motion of a spiral step with a pre-determined trajectory of the center
(which is called tip trajectory). However, one often find evolution of spiral steps
which seems to be associated with a fixed center in the in situ observation of crystal
surface, or theory of crystal growth.

Then, in this talk we shall give a scheme for crystalline motion of polygonal
spiral step with a fixed center. We also compare the evolution of the polygonal
spiral step by ODE approach and a formal level set approach by [5] numerically.

The crucial difference between earlier work by [4] and ours are the scheme of the
generation of new facet around the center. In [4] the new facet generates when the
center turns the vertex of the tip trajectory. On the other hand, the new facet will
be generated by our scheme when the facet associated with the fixed center has
suitable length for the evolution. Therefore, we prove not only the existence and
uniqueness of the solution, but also there exists an countably infinite sequence of

Key words and phrases. Crystalline curvature flow.
The work of the second author is partly supported by JSPS Grant Kiban(C) 26400158.
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2 T. OHTSUKA

times when new facets are generated. We also prove that the solution of polygonal
spiral step evolving by our scheme has no self-intersections for whole time.

This is a joint work with T. Ishiwata.

1. Main results

We prepare some notations for the Wulff shape Wγ . Let Wγ be a Nγ sided
convex polygon. We now give a number of facet of Wγ as a generalized number
j ∈ Z/(NγZ) with conter-clockwise rotating orientation. Then, let Nj be the
outer unit normal vector of j-th facet of Wγ with the angle ϕj ∈ [0, 2π), i.e.,
Nj = (cosϕj , sinϕj). Since Wγ is a convex polygon we have

(W1) 0 = ϕ0 < ϕ1 < ϕ2 < · · · < ϕNγ−1 < 2π,
(W2) ϕj < ϕj+1 < ϕj + π for j ∈ Z/(NγZ).

LetTj be a unit tangential vector of j-th facet ofWγ such thatTj = (sinϕj ,− cosϕj)
for j ∈ Z/(NγZ). In other words, Tj is the rotation of Nj with the rotation angle
−π/2. Let �j > 0 be a length of j-th facet of Wγ .

We introduce a new scheme for the evolution of a polygonal spiral by (1). The
scheme is composed by the evolution of a polygonal spiral curve, and generation
of a new facet. We first deduce an evolution equation for a polygonal spiral curve

Γ(t) by (1). Let Γ(t) be given by Γ(t) =
⋃k

j=0 Lj(t) with

Lj(t) = {λyj(t) + (1− λ)yj−1(t)| λ ∈ [0, 1]}
for j = 1, 2, . . . , k. We call Lj(t) j-th facet of Γ(t). We may assume that L0(t) is
parallel to 0-th facet of Wγ , i.e., L0(t) is given as

L0(t) := {y0(t) + rT0| r > 0}.
In this talk we only consider the case that Γ(t) is convex in the following sense; we
say Γ(t) is convex if

• (yj−1(t)− yj(t))/|yj−1(t)− yj(t)| = Tj for j = 1, 2, . . . , k,
• the direction of evolution of Lj(t) is same as Nj , i.e., Vj(t) = ṡj(t) with
sj(t) = yj(t) ·Nj .

If Γ(t) is convex, then the crystalline curvature Hj of Lj(t) is given as

Hj =
�j
dj

,

where dj = dj(t) = |yj(t) − yj−1(t)| denotes the length of Lj(t). See [7] or [3] for
details.

Under the above hypothesis, when the facet Lj(t) and Lj±1(t) evolve with the
normal velocity Vj(t) and Vj±1(t), respectively, then the length dj(t) satisfies

ḋj = −
(

1

tan(ϕj+1 − ϕj)
+

1

tan(ϕj − ϕj−1)

)
Vj

+
1

sin(ϕj+1 − ϕj)
Vj+1 +

1

sin(ϕj − ϕj−1)
Vj−1.

Thus, if Γ(t) evolves by (1), then dj should be imposed

ḋj = −bj
(
U − �j

dj

)
+ c+j

(
U − �j+1

dj+1

)
+ c−j

(
U − �j−1

dj−1

)
(2)

for t > Tk−1, j = 2, 3, . . . , k − 1,
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EVOLUTION OF SPIRALS BY CRYSTALLINE CURVATURE AND EIKONAL EQUATION 3

where Tk−1 is the time when Lk(t) is generated and added to Γ(t), and bj , c
±
j are

the constants given by

bj =
1

βj

(
1

tan(ϕj+1 − ϕj)
+

1

tan(ϕj − ϕj−1)

)
, c±j = ± 1

βj±1 sin(ϕj±1 − ϕj)

for j ∈ Z/(NγZ). Moreover, we impose that the center of spiral, which is denoted

by yk(t) provided that Γ(t) is given by Γ(t) =
⋃k

j=0 Lj(t), stays at the origin. It
means Vk = 0, so that we now impose

(3)

ḋk = c−k

(
U − �k−1

dk−1

)
,

ḋk−1 = −bk−1

(
U − �k−1

dk−1

)
+ c−k−1

(
U − �k−2

dk−2

)
⎫⎪⎪⎬
⎪⎪⎭

for t > Tk−1.

Note that dk has no influence to determine dj for j = 1, 2, . . . , k − 1. On the
other hand, we have d0(t) = ∞ for every t ∈ R by the definition of L0(t), so that
V0(t) = U/β0. Then we now impose

(4) ḋ1 = −b1
(
U − �1

d1

)
+ c+1

(
U − �2

d2

)
+ c−1 U for t > Tk−1.

Hence, we obtain the system (2)–(4) of length dj for Γ(t) evolving by (1). When
we obtain the solution dk, . . . , d1 of the above, then draw Γ(t) by setting

(5) yj−1(t) = yj(t) + dj(t)Tj for j = k, . . . , 1

with yk(t) = O.
We next introduce a rule of generation of a new facet. Define

Tk = sup{T > Tk−1; dk(t) ≤ �k/U for t ∈ [Tk−1, T )},
i.e., Tk is the first time when dk = �k/U . We call Tk the generation time of Lk+1

(or (k + 1)-th facet). At t = Tk we add a new vertex yk+1(t) = O and a facet
Lk+1(t) with the following rule.

(O+
k ) If sk(t) ≥ 0, then the direction of evolution of Lk+1(t) is Nk+1, so that

yk(t) = yk+1(t) + dk(t)Tk+1 for t ≥ Tk.
(O−k ) If sk(t) < 0, then the direction of evolution of Lk+1(t) is Nk−1, so that

yk(t) = yk+1(t) + dk(t)Tk−1 for t ≥ Tk.

The crucial difference on the scheme of generation of new facet between [4] and
ours is that the generation of new facet is resultant of the solution dk of the system
to (2)–(4). for Γ(t) evolving by (1). In fact, the scheme of the generation in [4]
is built-in to the “tip trajectory” which is a convex polygonal curve related to Wγ

where the center moves on. On the other hand, we have to prove the existence of
a sequence {Tk} satisfying limk→∞ Tk =∞ in our scheme. If the sequence {Tk} is
finite then the spiral step does not pile up, or if limk→∞ Tk <∞ then the height of
the growing crystal blows up at the center of the spiral step at t = limk→∞ Tk.

Finally, we introduce a class of the initial curve. Assume that the initial curve

Γ(Tk0−1) =
⋃k0

j=0(Tk0) is a convex polygonal curve satisfying either the following

(I1) or (I2) holds.

(I1) For k0 = 1; Γ(T0) =
⋃1

j=0 Lj(T0), y1(T0) = y0(T0) = O.
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4 T. OHTSUKA

(I2) For k0 ≥ 2; Γ(Tk0−1) =
⋃k0

j=0 Lj(Tk0−1) is a convex spiral satisfying

dk0(Tk0−1) = 0, dj(Tk0−1) = δj ≥ �j/U for j = 1, 2, . . . , k0 − 1,(6)

− bk0−1

(
U − �k0−1

δk0−1

)
+ c−k0−1

(
U − �k0−2

δk0−2

)
> 0,(7)

− bj

(
U − �j

δj

)
+ c+j

(
U − �j

δj

)
+ c−j

(
U − �j

δj

)
> 0 for j = 2, . . . , k0 − 2,(8)

− b1

(
U − �1

δ1

)
+ c+1

(
U − �2

δ2

)
+ c−1 U > 0.(9)

Then, we are now in the position to propose a new scheme to the evolution of
polygonal spiral curve by a crystalline curvature equation (1).

Summary of the scheme (SP).

Step 1. Give an imitial spiral curve Γ(Tk0−1) satisfying either (I1) or (I2), and an
initial time Tk0−1 ∈ R.

Step 2. Solve the system (2)–(4) for given Γ(Tk−1), and draw Γ(t) for t ≥ Tk−1

with (5), where k ≥ k0.
Step 3. If Tk < ∞, then generate Lk+1(Tk) and yk+1(Tk) with the rule (O+

k ) or

(O−k ). Return to Step 2 with updating the initial data by Γ(Tk)∪Lk+1(Tk)
and the initial time Tk.

Definition 1. We say Γ(t) is a semi-solution to (1) with the scheme (SP) if there
exists a convex polygonal spiral curve Γ(t) for t ≥ Tk0−1 and an increasing sequence
Tk for k ≥ k0 − 1 (which is possibly infinite) such that

(i) dj(t) = |yj(t) − yj−1(t)| > 0 and is continuous provided that t > Tj for
j = 1, 2, . . .,

(ii) (d1, . . . , dk) ∈ C1(Tk−1, Tk)
k ∩ C0[Tk−1, Tk]

k is a solution to (2)–(4) in
(Tk−1, Tk],

(iii) the generation rule either (O+
k ) or (O

−
k ) holds at t = Tk for every k ≥ k0.

We say Γ(t) is a solution to (1) with the scheme (SP) if Γ(t) is a semi-solution to
(1) with the scheme (SP) and has no self-intersections for t ≥ Tk0−1.

Then, we obtain the following results.

Theorem 2. Let Γ(Tk0−1) =
⋃k0

j=0 Lj(Tk0−1) be a convex polygonal spiral curve

satisfying either (I1) or (I2). Then, there exists a solution Γ(t) to (1) with the
scheme (SP), and the infinite sequence of generation time Tk for k ≥ k0 − 1 satis-
fying limk→∞ Tk =∞.

The strategy of the proof of Theorem 2 is dividing the proof into the two steps;
existence of semi-solution, and intersection-free result on the semi-solution. By the
theory of ordinary differential equations, one can find the existence of local solution
to the system (2)–(4) in a neighborhood of t = Tk−1 for the initial data satisfying
(I2). Then, we prove the following a priori estimates to the solution of (2)–(4) on
[Tk−1,∞);

(i) dj > �j/U , ḋj > 0 in (Tk−1,∞) for j = 1, 2, . . . , k − 1,
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(ii) sup[Tk−1,∞) ḋj <∞ for j = 1, 2, . . . , k.

Then, we obtain the global solution to (2)–(4) on [Tk−1,∞) and the generation time
Tk <∞, and there exists Rk for k ∈ Z/(NγZ) satisfying Tk−Tk−1 ≥ Rk. Moreover,
we find sj ≥ 0 for j ∈ Z/(NγZ) as long as Lj(t) exists. This monotonicity result
and the properties of the crystalline curvature equation yield the intersection-free
result.

A level set approach for spirals with a single auxiliary function is proposed by [5].
Let Ω ⊂ R

2 be a bounded domain satisfying O ∈ Ω. According to their method, a
continuous spiral curve with counter-clockwise rotational orientation whose center
is the origin is described by

Γ(t) := {x ∈W ; u(t, x)− θ(x) ≡ 0 mod 2πZ}, n = − ∇(u− θ)

|∇(u− θ)| ,

where n ∈ S1 is the unit normal vector field of Γ(t) denoting a direction of the
evolution, W = Ω \ Bρ(0) with a small constant ρ > 0, and θ(x) = arg(x) is a
multiple valued function getting the value of the argument of the vector x ∈ R

2.
According to [2], an anisotropic curvature equation for a curve Γ surrounding D

is described as an L2-gradient flow of the surface energy

Γ �→
∫
Γ

γ0(n)dS +

∫
D

Udx

with a function γ0 : S
1 → (0,∞), where dS denotes a surface element. Then, the

anisotropic curvature equation with a constant driving force is represented as

β(∇(u− θ))ut − γ(∇(u− θ)){divDγ(∇(u− θ)) + U} = 0 on (0, T )×W

with γ(p) = |p|γ0(p/|p|) for p ∈ R
2 \ {0} and a positive function β on R

2 \ {0}. Its
mathematical analysis with an isotropic Neumann boundary condition was done in
[6] when γ and β are at least smooth. Then, we shall present some numerical results
comparing between (SP) and the level set approach approximating the situation
such that its surface energy density gives an Wulff shape approximating a convex
polygonal Wγ .
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Stability of scale-critical circular flows in a

two-dimensional exterior domain

Yasunori Maekawa (Tohoku University)

The circular flows are typical flows we often observe in our lives; typhoon

exhibits a circular flow pattern of clouds, tornado is an updraft with a strong

swirling flow, a rotating disk leads to a circular flow around it. In this talk we

discuss a special class of two-dimensional circular flows for viscous incompress-

ible fluids, having a critical decay in space or time in view of scaling. The first

one we consider is the Lamb-Oseen vortex, denoted by αUG(t, x), where α is a

given real number which represents a circulation at spatial infinity, while UG is

the velocity field defined as

UG(t, x) =
x⊥

2π|x|2
(
1− e−

|x|2
4t

)
, x⊥ = (−x2, x1) . (1)

For each α the Lamb-Oseen vortex αUG is an exact forward self-similar solution

to the Navier-Stokes equations in R
2:

∂tu−Δu+ u · ∇u+∇p = 0 , div u = 0 , t > 0 , x ∈ R
2 . (NS)

Here u = u(t, x) = (u1(t, x), u2(t, x)) and p = p(t, x) are the velocity field and

the pressure field, respectively. We have used the standard notation for deriva-

tives: ∂t = ∂
∂t , ∂j = ∂

∂xj
, Δ =

∑2
j=1 ∂

2
j , div u =

∑2
j=1 ∂juj , u · ∇u =∑2

j=1 uj∂ju. It is well known that (NS) is invariant under the scaling:

uλ(t, x) = λu(λ2t, λx) , pλ(t, x) = λ2p(λ2t, λx) , λ > 0 . (2)

One can easily check that UG(t, x) satisfies the invariant property with respect to

the scaling (2), UG
λ (t, x) = UG(t, x) for any λ > 0, and the norm

sup
t>0

‖u(t)‖Ln,∞(Ω) + sup
t>0

t
1
4 ‖u(t)‖L2n(Ω) (3)

with n = 2 and Ω = R
2 of UG is finite. Here Ln,∞(Ω) is the weak-Ln space.

Note that (3) with Ω = R
n is an invariant norm under the scaling (2). The

1
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unique existence of solutions to the Navier-Stokes equations possessing the small

invariant norm (3) was proved by Kozono-Yamazaki [14] when Ω is an exterior

domain in R
n with n ≥ 2 under the no-slip boundary condition on u.

The asymptotic stability of the Lamb-Oseen vortex was firstly studied by

Giga-Kambe [7] in 1988, and their result was extended by Carpio [3] and Gallay-

Wayne [5]. In particular, it is shown in [5] that for any α the Lamb-Oseen vortex

αUG is asymptotically stable with respect to arbitrary initial perturbation u0 such

that its vorticity ω0 = ∂1u0,2 − ∂2u0,1 is integrable and satisfies the zero mass

condition
∫
R2 ω0 dx = 0; see Giga-Giga-Saal [6] for details on this problem and

related topics.

Although the velocity in (1) does not satisfy the prescribed boundary condi-

tion in general, it is possible to formulate the stability problem of the Lamb-Oseen

vortex even in exterior domains. However, the approach used in [7, 3, 5], which

is for the case Ω = R
2, is not applied to the case of exterior domains. The reason

is that the vorticity formulation is essentially used there, while in the presence of

nontrivial boundary the no-slip boundary condition on u leads to a production of

vorticity near the boundary and it is hard in general to obtain useful information

on this vorticity production. Recently, based on a new energy estimate for the

perturbed velocity the global stability of αUG is proved by Gallay-M. [4] for suf-

ficiently small |α| also in the exterior problem, and this result is further extended

by the author [15] to the small scale-critical flow satisfying (3) (with n = 2);

see also Iftimie-Karch-Lacave [11] for asymptotic behaviors of exterior flows. In

particular, we have the following result for two-dimensional exterior flows.

Theorem 1 ([4, 15]) If |α| is sufficiently small then the Lamb-Oseen vortex αUG

is asymptotically stable with respect to arbitrary L2 initial perturbations for the
Navier-Stokes equations in two-dimensional exterior domains (under the no-slip
boundary condition on the velocity fields).

The L2 stability of the two-dimensional scale-critical flow as in Theorem 1 is

nontrivial even if the norm (3) (with n = 2) is assumed to be sufficiently small.

This is because the Hardy-type inequality

|〈u · ∇v, v〉L2(Ω)| ≤ C‖u‖Ln,∞(Ω)‖∇v‖2L2(Ω) , v ∈ Ḣ1
0 (Ω) (4)

is not available in general when Ω is a domain in R
n with n = 2, which leads

to a serious difficulty in obtaining the uniform bound for the kinetic energy of

the perturbation such as sup
t>0

‖v(t)‖L2(Ω) <∞. This is contrastive to the higher

dimensional case, where a unified approach has been established for the global

L2 stability of small scale-critical flows by using the Hardy-type inequality (4);

2
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see Karch-Pilarczyk-Schonbeck [12] and Hishida-Schonbeck [10]. In [4, 15]

the difficulty in the two-dimensional case has been overcome by establishing

the logarithmic growth energy estimate for the perturbation flow, which is then

combined with the low frequency analysis used in Borcher-Miyakawa [1] and

Kozono-Ogawa [13]. The stability of the Lamb-Oseen vortex for not small |α| is

still open in the case of exterior domains.

Next let us take t→ 0 in (1), which yields a steady circular flow

U(x) =
x⊥

2π|x|2 , x⊥ = (−x2, x1) , x �= 0 . (5)

For each α the flow αU is a steady self-similar solution to the two-dimensional

Navier-Stokes equations in R
2 \ {0}. Another important aspect of αU is that

it defines a stationary flow around a rotating disk. Indeed, αU is a stationary

solution to the following Navier-Stokes equations in the exterior disk Ω = {x ∈
R
2 | |x| > 1}, which is regarded as a simplest model of the flow around a rotating

obstacle in two dimensions:⎧⎪⎪⎨
⎪⎪⎩

∂tu+ u · ∇u = Δu−∇p , for x ∈ Ω , t > 0 ,
div u = 0 , for x ∈ Ω , t ≥ 0 ,
u(x, t) = α

2πx
⊥ , for x ∈ ∂Ω , t > 0 ,

u(x, 0) = u0(x) , for x ∈ Ω .

(NSα)

Note that U has a scale-critical decay O(|x|−1) as |x| → ∞. For the three-

dimensional exterior problem Borchers-Miyakawa [2] established the existence

and the stability of small stationary solutions decaying in the scale-critical order

O(|x|−1); see also [12, 10] for recent stability results in the three-dimensional

case. As for the two-dimensional exterior problem, Yamazaki [17] proved the

existence of small stationary solutions having O(|x|−1) decay under some sym-

metry conditions on both domains and given data, and Hillairet-Wittwer [8] con-

structed stationary solutions near the circular flow αU when |α| is large. Re-

cently, the asymptotic behavior of the two-dimensional steady Stokes flow around

a rotating obstacle is investigated in details by Hishida [9], where it is shown that

the leading profile is given by a constant multiple of the circular flow U . On

the other hand, in the two-dimensional case, little seems to be known about the

stability of stationary flows decaying in the critical order O(|x|−1), again due to

the absence of the Hardy-type inequality (4) for Ω ⊂ R
n with n = 2. In fact, the

argument in [4, 15] essentially uses the bound sup
t>0

t1/4‖u(t)‖L4(Ω) � 1 in show-

ing the L2 stability of u, and therefore, it does not work for the stability problem

of stationary flows. As far as the author knows, so far there is no general stabil-

ity result for two-dimensional stationary flows when they decay like O(|x|−1) as

3
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|x| → ∞, even under the smallness condition on both stationary flows and initial

perturbations.

In this talk we will discuss the local L2 stability of αU in the exterior disk.

Although the result is limited to such a specific flow and a domain, the next

theorem seems to be the first contribution to the stability problem of the two-

dimensional exterior flow in the situation such that the Hardy-type inequality is

not available.

Theorem 2 ([16]) If |α| is sufficiently small then the stationary flow αU in (5) to
the Navier-Stokes equations (NSα) in the exterior disk Ω = {x ∈ R

2 | |x| > 1}
is asymptotically stable with respect to small L2 initial perturbations.

It should be emphasized here that no symmetry condition is imposed on the per-

turbations in Theorem 2. The key step of the proof is the spectral analysis for the

linearized operator

DL2
σ
(Aα) = W 2,2(Ω)2 ∩W 1,2

0 (Ω)2 ∩ L2
σ(Ω) ,

Aαv = −PΔv + αP
(
U · ∇v + v · ∇U

)
, v ∈ DL2

σ
(Aα) .

(6)

Here L2
σ(Ω) = {f ∈ C∞

0 (Ω)2 | div f = 0 in Ω}‖·‖L2(Ω) is the space of solenoidal

vector fields in L2(Ω)2, and P : L2(Ω)2 → L2
σ(Ω) is the Helmholtz projection.

Some details on the spectrum of Aα will be presented in the talk.
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Boston, Inc., Boston, MA, 2010.

[7] Y. Giga and T. Kambe, Large time behavior of the vorticity of two dimen-

sional viscous flow and its application to vortex formation. Comm. Math.

Phys. 117, (1988) 549–568.

[8] M. Hillairet and P. Wittwer, On the existence of solutions to the planar

exterior Navier-Stokes system. J. Differential Equations 255 (2013), 2996-

3019.

[9] T. Hishida, Asymptotic structure of steady Stokes flow around a rotating

obstacle in two dimensions. Preprint, arXiv:1503.02321.

[10] T. Hishida and M. E. Schonbek, Stability of time-dependent Navier-Stokes

flow and algebraic energy decay. Preprint, arXiv:1412.0204.

[11] D. Iftimie, G. Karch, and C. Lacave, Asymptotics of solutions to the Navier-

Stokes system in exterior domains. J. Lond. Math. Soc. (2) 90 (2014) 785–

806.

[12] G. Karch, D. Pilarczyk, and M. E. Schonbek, L2-asymptotic stability of

mild solutions to the Navier-Stokes system of equations in R
3. Preprint,

arXiv:1308.6667.

[13] H. Kozono and T. Ogawa, Decay properties of strong solutions for the

Navier-Stokes equations in two-dimensional unbounded domains. Arch.

Rational Mech. Anal. 122 (1993), 1–17.

[14] H. Kozono and M. Yamazaki, Local and global unique solvability of the

Navier-Stokes exterior problem with Cauchy data in the space Ln,∞. Hous-

ton J. Math. 21 (1995), 755–799.

[15] Y. Maekawa, On asymptotic stability of global solutions in weak L2 space

for the two-dimensional Navier-Stokes equations. Preprint.

[16] Y. Maekawa, On stability of steady circular flows in a two-dimensional

exterior disk. Preprint.

[17] M. Yamazaki, Unique existence of stationary solutions to the two-

dimensional Navier-Stokes equations on exterior domains. Mathematical

Analysis on the Navier-Stokes Equations and Related Topics, Past and Fu-

ture - In memory of Professor Tetsuro Miyakawa, Gakuto International

Series in Mathematical Sciences and Applications, Vol. 35, Gakkōtosho,
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Partial Differential Equations on Evolving 
Domains 

 
Charles M. Elliott, University of Warwick 

 
 

Abstract 
We present an abstract framework for treating the theory of well-posedness of 

solutions to abstract parabolic partial differential equations on evolving Hilbert spaces. 
This theory is applicable to variational formulations of PDEs on evolving spatial 
domains including moving hyper-surfaces. We formulate an appropriate time derivative 
on evolving spaces called the material derivative and define a weak material derivative 
in analogy with the usual time derivative in fixed domain problems; our setting is 
abstract and not restricted to evolving domains or surfaces. Then we show 
well-posedness to a certain class of parabolic PDEs under some assumptions on the 
parabolic operator and the data. Specifically, we study in turn a surface heat equation, 
an equation posed on a bulk domain, a novel coupled bulk-surface system and an 
equation with a dynamic boundary condition. We give some background to applications, 
primarily in cell biology. We describe how the theory may be used in the numerical 
analysis of evolving surface finite element methods and give some computational 
examples involving the coupling of surface evolution to processes on the surface. 
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Topological constraints and structures in macro

(fluid and plasma) systems

Z. Yoshida ∗

Graduate School of Frontier Sciences, University of Tokyo

1 Casimir invariants

The theory of mechanics is built from two elements: matter and space;
the former is formulated by an energy = Hamiltonian, while the latter is
mathematically a geometry. A Hamiltonian is a function on a phase space
X, and the geometry of X is dictated by a Poisson bracket {F,G} (F and
G are functions on X), and is called a Poisson manifold.

A complex form of the Hamiltonian (for example, the Ginzburg-Landau
free energy that has multiple equilibrium points) is often the root cause
of nontrivial structures or dynamics. But this is not the case for a weakly
coupled system like a usual fluid or a plasma, in which the Hamiltonian is
equivalent to the norm of the phase space. Then, the equilibrium point is
just the “vacuum” that bears no structure. However, we do observe diverse
structures created in a fluid or a plasma (which are typically “vortical”
like a tyhoon or a galaxy). It must be, then, some structure of the space
that imparts interesting structures to such a system. When the Poisson
manifold is foliated by topological constraints so that the state vector can
move only on a leaf embedded in X, the effective energy is the restriction
of the Hamiltonian on the leaf, which may be appreciably distorted by the
curvature of the leaf.

Topological constraints are caused by the degeneracy of the Poisson
bracket (mathematically the center of the Poisson algebra C∞

{ , }(X)). We

call a function (observable) C a Casimir invariant, if {C,F} = 0 for all F .
In fact, such C is invariant: Given a Hamiltonian H, dC/dt = {C,H} ≡ 0
(notice that the constancy of C is independent of the choice of H, which is

∗This work was done in collaboration with P J Morrison of Department of Physics,
University of Texas at Austin.
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in marked contrast to usual invariants that pertain to some symmetries of
a specific Hamiltonian, i.e., Noether charges).

Here we proffer the following visions:

1. A Casimir invariant may be viewed as an adiabatic invariant, which is
an action variable separated by coarse-graining a “microscopic” angle
variable.

2. By extending the phase space, a Casimir invariant can be converted to
a Noether charge corresponding to a gauge symmetry of “macroscopic”
variables.

Connecting 1 and 2, the coarse-grained microscopic variable is the gauge
freedom of the macroscopic variables.

The point is the incorporation of the notion of “scale” —the merit of do-
ing so is not only in providing Casimir invariants (topological constraints)
with physical interpretations, but also in formulating a systematic and phys-
ically meaningful method of singular perturbations to “unfreeze” the topo-
logical constraints.

In this talk, we put a simple example of fluid equations into the perspec-
tive. We draw heavily on the previous works [1, 2, 3, 4].

2 Ideal vortex dynamics

We consider an incompressible ideal fluid on Ω = T2, which obeys Euler’s
equation of motion:

∂tv + (v · ∇)v = −∇p, (1)

∇ · v = 0, (2)

where v is a 2-dimensional vector field (1-form) representing the velocity
field, and p is a scalar field representing the fluid pressure. On T2, we may
represent v = dϕ = t(∂yϕ,−∂xϕ) with a scalar field ϕ. The vorticity ω is
the exterior derivative of v, which reads ω = −Δϕ. Inverting the Laplacian,
we will write ϕ = Kω. The exterior derivative of (1) gives the vorticity
equation

∂tω = [ω,Kω], (3)

where [a, b] = ∂ya · ∂xb− ∂xa · ∂yb.
We may cast (3) into a Hamiltonian form (see [1] for a mathematical

justification). We define a Poisson bracket

{F,G}ω = 〈∂ωF, [ω, ∂ωG]〉, (4)

2
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where 〈 , 〉 is the inner product of the phase space Xω = {ω ∈ C(Ω)}. With
a Hamiltonian

H(ω) =
1

2

∫
Ω
(Kω) · ω d2x, (5)

the adjoint equation dF/dt = {H,F}ω is equivalent to (3). Evidently,
Ch =

∫
h(ω) d2x (h is an arbitrary smooth function) is a Casimir invari-

ant (especially,
∫
ω2 d2x is the appreciated enstrophy).

We extend the phase space by including a phantom field ψ, and define
an extended Poisson algebra C∞

{ , }ζ (Xζ) by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ =

(
ω
ψ

)
∈ Xζ ,

{F,G}ζ = 〈∂ζF,Jζ∂ζG〉, Jζ =

(
[ω, ◦] [ψ, ◦]
[ψ, ◦] 0

)
.

(6)

The extended system (6) has two different types of Casimir invariants:

Cf =

∫
ωf(ψ) d2x, (7)

Cg =

∫
g(ψ) d2x, (8)

where f and g are arbitrary smooth functions.

Remark 1 (phantom field) As far as the Hamiltonian H is independent
of ψ, the phantom ψ co-moves with ω without causing any change in the
evolution of ω. If we include ψ into H, however, it influences the dynamics
(then, we say that ψ is actualized). For example, when we consider

H(ω, ψ) =
1

2

∫
Ω
[Kω) · ω + (−Δψ) · ψ] d2x, (9)

the corresponding Hamilton’s equation represents the ideal magnetohydrody-
namics (ψ is the magnetic flux) [5, 6].

Let us consider a canonical Poisson algebra C∞
{ , }z(Xz) with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z =

(
q
p

)
∈ Xz,

{F,G}z = 〈∂zF,Jz∂zG〉, Jz =

(
0 I
−I 0

)
,

(10)
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We relate the phase spaces Xζ and Xz by

ω = [p, q], ψ = p. (11)

One may regard that writing ω = [p, q] is a kind of parameterization of ω
by two fields q and p. By “chain rule”, we obtain

Lemma 1 For all F (ω, ψ) = F ([p, q], p) and G(ω, ψ) = G([p, q], p),

{F,G}ζ = {F,G}z. (12)

Under the parameterization (11), Cf =
∫
[p, q]f(p) d2x =

∫
[Φ(p), q] d2x =

0 (Φ is the primitive function of f), implying that this parameterization re-
stricts the Poisson manifold Xz to the leaves of Cf = 0. However, the other
set of invariants Cg is not trivial. The invariance of Cg in the canonical
system C∞

{ , }z(Xz) is due to the symmetry of a Hamiltonian (and all other

observables) forced by (11). In fact, Cg =
∫
g(p) d2x is a Noether charge

corresponding to the gauge symmetry of the parameterization (11):

ad∗Cg
= Jz∂zCg =

(
g′(p)
0

)

generates the infinitesimal gauge transformation q �→ q + εg′(p), where g′ is
the derivative of g. The co-adjoint orbit Ad∗Cg

(τ) (τ ∈ R) defines an angle
variable Θg conjugate to the action variable Cg; solving {Θg, Cg}z = 1, we
obtain

Θg =
〈q, g′(p)〉
‖g′(p)‖2 .

Notice that the set of canonical action-angle pairs Cg and Θg span an infinite
dimension.

We call Xζ a “macroscopic” phase space, and Xz a “microscopic” phase
space. The quotient of Xz by Ad∗Cg

(τ) (τ ∈ R) mod-outs (or, coarse-grains)
the microscopic angle variable Θg, by which the macroscopic quantity Cg is
frozen.

We may refine Lemma 1 as

Theorem 1 The reduction of C∞
{ , }z(Xz) by the gauge symmetry group G =

{Ad∗Cg
(τ); τ ∈ R, ∀g} yields C∞

{ , }ζ (Xζ), i.e.,

C∞
{ , }z(Xz/G) = C∞

{ , }ζ (Xζ).

4
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One may compare the present argument with the well-known story of
“reduction for canonization” [7] —given a leaf as a co-adjoint orbit of some
Casimir invariants, one may produce a symplectic leaf by mod-outing the
conjugate angle variables. The canonical system is, then, of a smaller phase
space. Here, we are exploring the opposite direction, i.e., “extension for can-
onization”. First, we delineate how a reduction of “microscopic variable”
yields a noncanonical (degenerate) Poisson bracket, and then, changing the
perspective, we recover the “microscopic variables” to canonize the system.
We can unfreeze each Cg by including the corresponding Θg into the Hamil-
tonian: dCg/dt = {Cg, H([q, p], p,Θg)}z.
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A Journey through the World of Incompressible Viscous Fluid Flows:

an Evolution Equation Perspective

Matthias Hieber

TU Darmstadt, Germany

Incompressible fluids are subject to the following system of balance laws

�(∂t + u · ∇)u+ ∇π = div S in Ω,
div u = 0 in Ω,

�(∂t + u · ∇)ε+ div q = S : ∇u in Ω,

where u, � denote the velocity and density of the fluid, π its pressure, S the stress tensor, ε
the internal energy, q the heat flux and Ω ⊂ R

n a bounded domain with smooth boundary.
The above equations represent the balance laws for the momentum, mass and energy of
the fluid, respectively.

Neglecting the balance law for the energy and choosing S = 0, one obtains Euler’s equa-
tions, whereas choosing in this case S = SNewton = 2μD(u), we obtain the equations of
Navier-Stokes. Here μ denotes the viscosity of the fluid and D(u) its deformation tensor
given by D(u) = 1/2[∇u + (∇u)T ].

In this talk we discuss various models for incompressible viscous flows including the equa-
tions of Navier-Stokes, the primitive equations of ocean dynamics, viscoelastic fluids of
Oldroyd-B type as well as the Ericksen-Leslie model for the flow of nematic liquid crystals.

Starting with the equations of Navier-Stokes, we mainly concentrate on strong solutions
within the Lp-setting. Our strategy for obtaining strong solutions is to rewrite the Navier-
Stokes as an evolution equation of the form

u′(t) − Au(t) = −P [u(t) · ∇)u(t)], u(0) = u0,

where A denotes the Stokes operator and P the Helmholtz projection. We then convert
this equation into an integral equation of the form

u(t) = etAu0 −

∫ t

0
e(t−s)AP [(u(s) · ∇)u(s)]ds,

and aim to solve this integral equation via fixed point methods. Of central importance in
this context are properties of Stokes operator A and the Stokes semigroup etA. Pioneering
key results in this direction are due to Y. Giga, see [Gig81] and [Gig85]. We survey several
results on strong solvability of the Navier-Stokes equations in scaling invariant spaces, in
particular in

Ḣ
1
2 (R3) ↪→ L3(R3) ↪→ B

−1+ 3
p

p,∞ (R3) ↪→ BMO−1(R3) ↪→ B−1
∞,∞(R3),

1
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and observe that Lp − Lq-smoothing properties of the Stokes semigroup T and gradient
estimates of the form ‖∇etAf‖p ≤ Ct−1/2‖f‖p for t > 0 as described by Y. Giga in [Gig86]
are of crucial importance.

Abe and Giga introduced in [AG13] a blow up argument which implies that the Stokes
operator generates an analytic semigroup also on L∞σ (Ω) for a large class of domains
Ω ⊂ R

n. We present here a direct approach to L∞-a priori estimates for the Stokes
equation, which is described in detail in [AGH15]. Our approach to L∞ -estimates for the
solution of the Stokes equation is inspired by the Masuda-Stewart technique for elliptic
operators and allows to obtain a rather general picture of the Stokes semigroup acting on
spaces of bounded functions; see also [HM14], [BH15].

The primitive equations of ocean dynamics are a fundamental model for many geophysical
flows. They are described by a system of equations which are derived from the equations
of viscous incompressible flows by assuming that the vertical motion is modeled by the
hydrostatic balance. Starting from a fundamental well-posedness result due to Cao and
Titi [CT07], we describe a new strategy for obtaining global strong well-posedness of the
three dimensional primtive equations in Lp-spaces for a rather general class of initial data,
see [HK14]. Our approach is based on the fact that the the newly defined hydrostatic
Stokes operator generates an analytic semigroup on a certain subspace of Lp associated
with the newly defined hydrostatic Helmholtz projection as well as on H2 a priori bounds.

We then turn our attention to viscoelastic fluids of Oldroyd-B type and their stability
properties. In this case, the stress tensor S is determined by S = SN + Se, where SN =
2μλ2λ1D(u) corresponds to the Newtonian part and Se to the purely elastic part, which is
described by a differential equation. Here λ1 and λ2 denote the relaxation and retardation
time of the fluid and α = 1 − λ2/λ1 ∈ (0, 1) the retardation parameter of the system. We
are interested in stability questions for this type of fluids in exterior domains Ω ⊂ R

3,
see [GHN14]. Since 0 lies in the the spectrum of the linearized problem, questions of
this type are delicate. We show first that the solution of linearized equation is governed
by a bounded analytic semigroup T on Lp(Ω) × W 1,p(Ω). If α is close to 0, then the
angle ϕ of analyticity of T is close to π/2 representing the parabolic character of the fluid
equation. On the other hand, if α is close to 1, then ϕ is close to 0, representing the
hyperbolic character of the transport equation. Showing that T is strongly stable, we see
moreover that the trivial solution of this system is asymptotically stable in the sense that
any solution starting in a small ball around the origin converges towards 0 as t → ∞.

Finally, we discuss the general Ericksen-Leslie model describing the flow of nematic liquid

crystals in a thermodynamically consistent way. The model reads as

ρDtu+ ∇π = div S in Ω,

div u = 0 in Ω,

ρκDtθ + div q = S : ∇u+ div(λ∇)d · Dtd+ (θ∂θλ)∇d∇Dtd in Ω,

γDtd − μV V d − div[λ∇]d = λ|∇d|2d+ μDPdDd in Ω,

The variables θ, d denote the temperature and the so called director, Dt = ∂t + u · ∇ the
Lagrangian derivative, Pd = I − d ⊗ d and V the vorticity tensor. These equations are

2
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supplemented by the thermodynamical laws for the internal energy ε, the entropy η, the
heat capacity κ and the Ericksen tension λ and by the constitutive laws for

S = SN + SE + SL,

where SE and SL denotes the Ericksen and Leslie stress, respectively, see [Eri62].

Our strategy for obtaining strong global well-posedness of the above system for data close
to equilibria points is to consider the system as a quasilinear parabolic evolution equation
within the Lp-setting and to apply methods from maximal Lp-regularity; see [HP15]. We
explain key points of our analysis at various simplifications of the above model (see e.g.,
[HNPS13]) and develop a rather complete understanding of the underlying dynamics of
the full model.
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Stochastic Three-Dimensional Rotating Navier-Stokes
Equations: Averaging, Convergence, Regularity

and 3D Nonlinear Dynamics
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Dedicated to Professor Yoshikazu Giga on his 60th birthday

Abstract

We consider stochastic three-dimensional rotating Navier-Stokes equa-
tions and prove averaging theorems for stochastic problems in the case of
strong rotation. Regularity results are established by bootstrapping from
global regularity of the limit stochastic equations and convergence theo-
rems. The effective covariance operator is computed using Ito’s stochastic
calculus and averaging theorems for operator valued processes. The en-
ergy injected in the system by the noise is large, the initial conditions
have large energy, and the regularization time horizon is long for the 3D
stochastic dynamics (infinite time regularity is proven in the determin-
istic case). Regularization is the consequence of precise mechanisms of
relevant three-dimensional nonlinear interactions. We establish multiscale
averaging and convergence theorems for the stochastic dynamics. These
stochastic averaging, convergence and regularity results hold for many
important physical systems described by three-dimensional Navier-Stokes
and Maxwell PDEs coupled with fast wave dynamics.
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Boundary integral methods for implicitly defined 
interfaces 

 
Y.-H. Richard Tsai, University of Texas 

 
 

Abstract 
I will present a new approach for computing boundary integrals that are 

defined on implicit interfaces, without the need of explicit parameterization. A key 
component of this approach is a volume integral which is identical to the integral over 
the interface. I will show results applying this approach to simulate interfaces that 
evolve according to Mullins-Sekerka dynamics used in certain phase transition 
problems. I will also discuss our latest results in generalization of this approach to 
summation of unstructured point clouds. 
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Locomotion of animals, design of robots
and mathematics

Ryo Kobayashi

JST, CREST

Department of Mathematical Life Sciences, Hiroshima University

Why can animals show amazingly sinuous and robust motion under unpredictable complex
environments ? It is because animals have a large number of degrees of freedom in their
bodies and can orchestrate them very well. Even for the most advanced robots today,
such abilities are difficult to attain. In order to create animal-like robots, autonomous
decentralized control (ADC) is the key concept that facilitates real-time control of a large
number of degrees of freedom corresponding to the changing surroundings. We propose a
simple design principle of ADC, which is termed as discrepancy control; then, we test it
by implementing it in various types of robots.

It is known that animals control their large number of degrees of freedom in a well-
coordinated manner by means of distributed neural networks called central pattern gen-
erators (CPGs)[1] which generates rhythmic signals. Adopting CPG as a controller seems
to be an advantageous approach to realizing ADC in robots; however, its design principle
has not been established thus far. Our strategy for obtaining the design principle of ADC
is to learn from the most primitive living system, true slime mold. Every part of this
creature exhibits a contraction oscillation with the period about 2 minutes, and the pro-
toplasmic flow is caused by the pressure difference. Distributed oscillators are considered
to be mechanically coupled through the protoplasm.

We proposed a mathematical model of the oscillatory motion of true slime mold (Fig.1)[2].
In this model, the oscillators receives the feedback signals to make the phase shift so as
to decrease p2/2 where p is a pressure. The term p2/2 was named discrepancy function
because it is an indicator of discrepancy between the real state and the state specified by
the controller. We applied this idea to design the feedback signal in the ADC of the robot
as indicated in Fig.2. The robot has actuators Si controlled by the phase oscillator φi,
and the controller φi forms a coupled oscillator system through the direct communication
gij(φi, φj). Each controller φi also receives a feedback signal obtained from the discrepancy
function. The equation of the controller is given as

∂tφi = ωi +
∑

j

gij(φi, φj)− ∂φi
Ii, (1)

where Ii is a discrepancy function defined by the locally accessible variables. Though
the discrepancy function is designed for each individual case, it expresses the locally
accumulated stress in general. It is essential that the controllers interacts not only through
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Figure 1: Diagram of the model of the mo-
tion of true slime mold [2]. φ : distributed
phase oscillator, s : thickness of plasmod-
ium, sn : target thickness of plasmodium
controlled by the phase oscillator, p : pres-
sure given by p = β(s − sn), h : feedback
signal given by h = −σ∂φ(p2/2).

Figure 2: Schematic description of the robot
whose actuators Si are controlled by the local
oscillators φi. Each oscillators receives the feed-
back signal which makes the discrepancy (lo-
cally defined quantity) decrease. Good design
of the discrepancy function makes well coordi-
nated motion.

the direct communication, but also through the mechanical coupling between actuators.
They can also get the information of environments through the feedback signal. We
implemented this ADC scheme to several type of robots, e.g. amoeboid robot Slimy[3],
snake robot HAUBOT[4] and quadruped robot OSCILLEX[5]. In this presentation, we
will demonstrate HAUBOT and OSCILLEX.

Figure 3: (a) Schematic of HAUBOT (b) HAUBOT (c) Distortion caused by opposite rota-
tions of the upper and the lower motor can adjust the degree of muscle tonus.

HAUBOT has a one-dimensional link mechanism as a backbone, and it generates a motion
similar to snakes’ lateral undulation by giving torque to each joint. Let us set the variables
as follows, θi: angle of the ith joint, θ̄i : target angle of the ith joint, φi : oscillator
which controls the target angle. Target angle is given by θ̄i = θ0 sin φi for i > nc and
θ̄i = θ0 sin φi + θd for 1 ≤ i ≤ nc, where θd is a direction control signal which is given
remotely. Phase oscillators is driven by the formula

∂tφi = ω + ε sin (φi−1 − φi − ψ)− σ∂φi
Ii (2)
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where the discrepancy function is given by Ii = |θi − θ̄i|. In the design of HAUBOT, not
only a phasic feedback but also a tonic feedback is taken into account. Tonic feedback is
given by the policy ”strengthen the stiffness in more stressed actuators”. The variable ηi

characterizes the muscle tonus by setting the upper and lower target angles by θ̄u
i = θ̄i +ηi

and θ̄l
i = θ̄i − ηi. The variable itself follows the equation

∂tηi = α(βIi − ηi). (3)

The experiments shows that the phasic feedback enhances the energy efficiency and the
tonic feedback achieves powerful motion, and both of them can collaborate to make a
good performance.

OSCILLEX is a quadruped robot. The most characteristic feature is that its four legs
are controlled not by central controller but by the local phase oscillators φi (i = 1, 2, 3, 4)
independently. In addition, the controllers has no direct communication (gij = 0), thus
they interact only through mechanical coupling through their body. By defining the
discrepancy function as Ii = Ni sin φi, the equation of each oscillator is given by the
simple equation

∂tφi = ω − σNi cos φi, (4)

where Ni is a load to the toe of the ith leg. The biggest advantage of this robot is that no
time is needed to get into the stationary walking state, while it usually takes some time
for the initial transition if the oscillators are used for the controller. This good property is
achieved by the fact that the controllers goes into the excitable state from the oscillatory
state when the load surpass the critical value ω/σ. Also the gait pattern is automatically
generated corresponding to the weight balance of the body automatically.

Figure 4: Quadruped robot OSCILLEX [5]
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Transport of Charged Particles in Biological 
Environments 

 
Chun Liu, Penn State University 

 
 

Abstract 
Almost all biological activities involve transport of special particles or 

molecules in complicated environments. In this talk, I will discuss the diffusion of those 
particles with electric interaction, and those in undiluted solutions, where size effects 
and relative drags become important. In particular, I will make connections between 
these generalized diffusion and the classic systems such as porous media equations and 
cross diffusion systems. 

－35－



Fluid flow and rotation: a fascinating interplay

Jürgen Saal

Rotating fluid phenomena appear numerously in applications. Corresponding
models have undergone a substantial mathematical development in the recent two
decades. Starting from groundbreaking works of Babin, Mahalov, and Nicolaenko
around 2000 on the rotating Navier-Stokes equations⎧⎪⎪⎨

⎪⎪⎩

∂tv − μΔv + ωe3 × v + (v · ∇)v = −∇p in (0, T )×G,
div v = 0 in (0, T )×G,

v = 0 on (0, T )× ∂G,
v|t=0 = v0 in G,

(0.1)

as the basic model for a rotating fluid, since then many related models have beed
considered. For instance, for fluid flow past a rotating obstacle the linearly growing
drift term (ω × x) · ∇u has to be added, which can change regularity and stability
behavior completely [7, 8]. In technological applications such as the spin-coating
process even a free boundary part enters in the model, i.e., then we have G = G(t)
[4]. Another wide branch of rotating fluids is given by the field of geostrophic
boundary layers. One of the most basic examples here is represented by the Ekman
boundary layer. Setting G = R

3
+ (half-space) and v0 = UE + ṽ0 by, (0.1) turns into

a commonly accepted model for the Ekman boundary layer [10]. Here UE is the
famous Ekman spiral given by

UE(x3) = U∞(1− e−x3/δ cos(x3/δ), e−x3/δ sin(x3/δ), 0)T , x3 ≥ 0. (0.2)

where U∞ denotes the total velocity of the flow. The parameter δ denotes the layer
thickness given by δ =

√
2μ/|ω|. The couple (UE , pE) with pressure

pE(x2) = −ωU∞x2

represents an exact steady state solution of the Ekman boundary layer problem.
Whereas in generator systems rotation is produced through fluid flow, in other

technological processes such as spin-coating or in geostrophic layers rotation is the
driving force to influence fluid properties. For instance, it is known that rapid
oscillation can regularize fluid flow. Considering e.g. a rotating cylinder filled with
water, at high angular velocity ω there is no variation of the fluid velocity parallel to
the axis of rotation. Thus the fluid flow becomes two-dimensional and hence regular.
The physical principle behind that phenomenon is called Taylor-Proudman-theorem
and has been known since roughly a century. It took more than 80 years until a first
rigorous analytical proof of the Taylor-Proudman theorem has been derived in the
celebrated papers of Babin, Mahalov, and Nicolaenko [1, 2, 9]. In other words, Babin,
Mahalov, and Nicolaenko proved the striking result of global-in-time regularization
of a flow in periodic domains, if the rotation is sufficiently fast. Based on their works,
subsequently many authors generalized their results in various directions. For an
alternative proof in R

n based on dispersive effects, see e.g. [3]. The results obtained
by Babin, Mahalov, and Nicolaenko are not only mathematically of great interest.
They could also play a significant role in applied situations. This is justified by

1
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the fact that in applications the angular velocity of rotation is often much higher
than other appearing parameters. This is true in geophysical situations, e.g. for
the rotating earth, but also in technological applications such as the spin-coating-
process. However, there is no rigorous proof of the Taylor-Proudman theorem on
domains with boundary so far.

The key ingredient in the approach of Babin, Mahalov, and Nicoleanko is uni-
formness in ω of appearing quantities such as an existence interval or a bound for
solutions. On the other hand, rotating boundary layer flows usually display an oscil-
lating behavior, i.e., they are nondecaying at space infinity. These two requirements,
that is

(i) uniformness in ω,
(ii) nondecaying flows,

i.g. cannot be satisfied simultaneously by a treatment in standard function spaces.
Therefore, in [5, 6] an approach in spaces of Fourier transformed vector Radon
measures is developed. Besides giving account to the nature of boundary layer
problems, this approach offers a couple of further features:

(1) the computations are rather elementary and as a consequence we can find
explicit dependence of the solution on related parameters;

(2) the eigenvalues producing unstable eigenmodes belong to the point spectrum
of the linearized operator;

As a consequence results on linear and nonlinear stability/instability of the Ekman
spiral can be derived. The results are indeed uniformly in ω which, as mentioned
before, is the essential pre-condition for regularization induced by rapid oscillation.

It is the purpose of my talk to give an outline of fundamental results obtained
during the last decade, but also to present recent developments on the topic of
rotating fluids, in particular concerning the Ekman boundary layer problem.
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