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Rigorous results concerning the Holstein—
Hubbard model

Tadahiro Miyao

Abstract. The Holstein model has been widely accepted as a model
comprising electrons interacting with phonons; analysis of this model’s
ground states was accomplished two decades ago. However, the results
were obtained without completely taking repulsive Coulomb interac-
tions into account. Recent progress has made it possible to treat such
interactions rigorously; in this paper, we study the Holstein—-Hubbard
model with repulsive Coulomb interactions. The ground state proper-
ties of the model are investigated; in particular, the ground state of the
Hamiltonian is proven to be unique for an even number of electrons on
a bipartite connected lattice. In addition, we provide a rigorous upper
bound on charge susceptibility.

1. Introduction and results

1.1. Background

The subtle interplay of electrons and phonons induces various physical phe-
nomena. For instance, when electrons interact with phonons, they have a
tendency to pair. As a result, the ground state of such a system exhibits
either superconducting or charge-density-wave order. Another example is
high-temperature superconductivity. Since the discovery of coupled electron-
phonon systems, such systems have become increasingly active. However, a
unanimously accepted mechanism for the origin of high-temperature super-
conductivity has not been established. The above-mentioned examples sug-
gest that coupled electron-phonon systems offer a rich field of study toward
the identification of such a mechanism. In this paper, we rigorously investi-
gate the ground state properties of the Holstein—-Hubbard model, which is a
standard model of electron-phonon interaction.

The importance of the uniqueness of ground states for models of single
particle interacting with a Bose field was recognized through rigorous studies
of the quantum field theory [5, 7, 10, 11, 29, 35]. Field-theoretical methods
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have been successfully adopted in condensed matter physics. In particular,
Léwen [20] applied Frohlich’s method [7] to a model of a single electron po-
sitioned on a discrete lattice system and that interacts with the phonons of
lattice. Recently, this method was extended to a two-electron system inter-
acting with phonons [21]!.

The importance of the uniqueness of ground states has also been appre-
ciated in the field of many-electron systems [17, 18, 37]. In addition, some
relationships between the notion of correlations and the uniqueness of the
ground states have been revealed in recent years [26]. To explain why the
uniqueness is important, we recall the Hubbard model [13] as a background:

1
Hyubbard = — § tzyczgcya- + 5 E Um('ﬂm - ]1)2, U, > 0. (1)
Cens el

For definitions of symbols, see Section 1.2. In general, the Pauli exclusion
principle and the Coulomb repulsion are essential factors in the study of
many-electron systems. This model takes the two factors into consideration,
and has been regarded as a basic model of the theory of ferromagnetism. In
[19], Lieb proved the uniqueness of the ground state of the Hubbard model
using the method of spin-reflection positivity?. Ferromagnetism in the ground
state immediately follows from this result.

Let us now discuss the problem of electron-phonon interaction. As men-
tioned above, the field-theoretical approach successfully proves the unique-
ness of the ground states of single and two-electron systems interacting with
phonons, however, it is difficult to apply this approach to the general many-
electron systems involving interactions with phonons. Freericks and Lieb in-
vented a crucial approach to show the uniqueness of the many-body ground
state of an electron-phonon Hamiltonian [6]. Their method also relied on
spin-reflection positivity. The Freericks-Lieb method is applicable to a gen-
eral class of models. To clarify the point of the argument, let us consider the
Holstein model [12] since it is a representative model of the Lieb—Freericks
class. The Hamiltonian of the Holstein model is given by the following:

Hitolstein = — . tayChoCyo + O Ganta (Vs +b) + > wobibs.  (2)
h;ﬁéf zEA zeEA

The uniqueness of the ground states of Hyolstein Was successfully proved in
[6]. As a corollary, it was shown that the ground state has a total spin S = 0.

The Holstein model considers the Pauli exclusion principle, but not
Coulomb repulsion. It is logical as well as important to ask whether we can
prove (or disprove) the uniqueness of the ground state even if Coulomb re-
pulsion is considered. The motivation of this study is to answer this question.

1The Coulomb repulsion is considered, while the Pauli exclusion principle is not taken into
account in [21]

2The spin-reflection positivity originated from quantum field theory [30], and has various
applications to strongly correlated electron systems [8, 32, 38|.
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To investigate this problem, we analyzed the Holstein-Hubbard model that
contains effects of the Coulomb repulsion:

1
Hun = Huolstein + 5 Z Ux(na: - ]1)27 U, > 0. (3)
zEA

It should be noted that the Lieb—Freericks approach is inapplicable to this
model®. Our first achievement is that we prove the uniqueness of the ground
states of the extended Holstein—Hubbard model defined by (5). As a corollary,
we elucidate the magnetic properties of the ground state. To this end, we
apply the theory of operator inequalities associated with Hilbert cones, which
has been shown to be effective in studies of many-electron systems [21, 23, 24].

At first glance, it appears that the form of the Hamiltonian is unsuitable
for application to operator inequalities because of the electron-phonon inter-
action term (the middle term in the RHS of (2)). To overcome this obstacle,
we employ the Lang—Firsov transformation [16]. By this transformation, the
electron-phonon interaction term in (3) disappears so that we can apply our
theory of operator inequalities to the resulting Hamiltonian. This is the main
reason why we use the Lang—Firosov transformation. Due to this transfor-
mation, the hopping matrix elements of the resulting Hamiltonian become
complex-valued functions of the phonon coordinates [see (44)]. To the best
of our knowledge, there has been no attempt, except Miyao [22], to show
the uniqueness of the ground states of such a Hamiltonian. In the study by
Miyao [22], the ground state properties of the Su—Schrieffer-Heeger (SSH)
model [36] were investigated. The SSH model describes a one-dimensional
many-electron system interacting with phonons®*. A significant feature of this
model is that its hopping matrix elements are real-valued functions of the
phonon coordinates which makes our analysis complicated. Since the elements
of the hopping matrix are complex in our case, the method in [22] cannot be
applied directly. Therefore, we establish a more sophisticated analysis in this
study.

Lieb’s results for the Hubbard model concern the ground state. On the
other hand, Kubo and Kishi showed a finite temperature version of Lieb’s
theorem [15]. They showed a uniform upper bound on the charg susceptibility
of the Hubbard model at finite temperature, which implies the absence of
charge long-range order. As the second achievement of this study, we extend
their result to the extended Holstein-Hubbard model.

3To be precise, their results remain true if U, < 0, but their method does not work if
Uz > 0.
4The SSH Hamiltonian is concretely given by

L L L
1
Hssu=—»_ > (4 —aqj+1)tcocirio + 3 D Ui(ng — 1> + > woblbs,  (4)
j=loe{1,l} Jj=1 Jj=1
where q; = b; — b7 and ¢ > 0. Clearly, the hopping matrix element ¢; (a) = —(q; — gj+1)t

depends on phonon coordinates, {g;};ea-
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Our method requires a restriction on the electron-phonon coupling strength
(lgo] < /2Up/wp). We are aware of no rigorous results when the electron-

phonon coupling strength is large enough (|gg| > 1/2Up/wo).

1.2. The extended Holstein—-Hubbard model

Let G = (A, E) be a graph with vertex set A and edge collection E. We
suppose that G is embedded in R? and that A is a finite subset of R?. An
edge with end-points 2 and y is denoted by {z,y}. We always assume that
{z,2} ¢ E for any x € A, i.e., any loops are excluded. Henceforth, we assume
that

(G) G is bipartite®.
The Hamiltonian of the extended Holstein—-Hubbard model is given by

N 1
H=— Z toyCagCyo + 3 Z Uzy(ng — 1)(ny — 1)
cetiy el

+ Z gzynz(b;; + by) + Z wob;‘bz, (5)
z,yeN zEA

where c,, is the electron annihilation operator at vertex x and b, is the
phonon annihilation operator at vertex x. These operators satisfy the follow-
ing relations:

{Cxa'y C;;/O./} = 50-(7/5x$/, [bx7 b;/} = 5$$" (6)
ng is the fermionic number operator at vertex x € A defined by
Ng = Z Ngoy, MNgo = C;gcma~ (7)
oe{1,1}

tyy is the hopping matrix element, Uy, is the energy of the Coulomb interac-
tion, and g, is the strength of the electron-phonon interaction. We assume
that

() {guy}, {tzy} and {Uy,y} are real symmetric |A| x |A| matrices®.

The phonons are assumed to be dispersionless with energy wy > 0. H acts in
the Hilbert space

¢ ®P. (8)

¢ is defined by Fe ® Fo. o is the fermionic Fock space over ¢2(A) given
by §e = ®32, A" £2(A), where A"¢?(A) is the n-fold anti-symmetric tensor
product of £2(A). B is the bosonic Fock space over ¢?(A) defined by P =
@, @7 (2(A), where ®@7(?(A) is the n-fold symmetric tensor product. By

5A graph G is called bipartite if A admits a partition into two classes, such that every edge
has its ends in different classes.

6Let M = {Myuy} be a |A| x |A| matrix. M is called a real symmetric matriz if My, is real
and Mgy = My, for all x,y € A.
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the Kato—Rellich theorem, H is self—adjoint on dom(N,) and bounded from
below”, where N, = ZmeA *b

Let Ne =3 0eii,} Zwe A Mzo, the fermionic number operator. We are
interested in the ground state properties of H at half-filling. Thus, we consider
only the following subspace:

H=CH P, €pn =ker(Ne —[A]). 9)

Let S = f(NeT — No), where Neo = > cp Mo, 0 € {1,]}. Since
S(2) commutes with H, we have the following decompositions:
[Al/2
= P ou, Hu= (ker[S(Z)—M]ﬂQA\)@‘B, (10)
M=—|A|/2
[Al/2
H= P Hy, Hy=H]|9Hu. (11)
M=—|A|/2

Here, s is called the M-subspace.

1.3. Ground state properties

Before we state our first result, we need to introduce some definitions.
The effective Coulomb interaction is given by the following equation:

Ueff,a;y = Uzy - Z 9r2Gyz- (12)
zEA

In what follows, we assume that

(A. 1) Z gay is a constant independent of y € A .
TEA

Example 1. (i) An example satisfying (A. 1) is gzy = godsy, Where 0, is the
Kronecker delta.

(ii) Let us consider a linear chain of 2L atoms with periodic boundary
conditions. In this case, G = (A, E) is defined by A = {z;}3L,, z; € R* and
E = {{zj,zj+1}, {xj+1,xj}}j:1 with o741 = x1. We denote the distance
from atom 7 to atom j by w; ;= |x1 — :Ej|. Assume that wj j+1 = constant
for all j. If g5, is a function of |z — y|, i.e., gzy = f(|z — y|), then (A. 1) is
satisfied. Similarly, if A has a symmetric structure, like Cgg fullerene, then
(A. 1) is fulfilled. &

"To show self-adjointness, recall the well-known bounds: ||b, (Np 4+ 1)"1/2|| < 1, ||b%(Np+
1)~1/2|| < 1. Thus, we see that
137 geyna (by + 3)el < 41A max |gay [ (Np + 1)/, ¢ € dom(Ny).
T
Since [|[(Np + M/2¢||2 < g||(Np + D)ep||? + éngH2 for all € > 0, the electron-phonon

interaction term is infinitesimally /Np-bounded. Hence, we can apply the Kato-Rellich
theorem [31].
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Since G is bipartite, A can be divided into two disjoint sets A, and A,.

Set
& & * ok Q(z 1 1
S+ - Z%CCITCIlv S- = Z%ﬁcaclcaﬁ’ S( )= §|A‘ - i(NeT +Nel)7
zEA TEA
(13)
where v, = 1 for z € A, 7, = —1 for x € A,. The pseudospin operator is
defined by
- . 1~ - 1. -
52, =824 39+ + 585, (14)

Although 52, does not commute with Hyy, it is still useful to study ground
states of Hyy.

Theorem 1.1. Assume that |A| is even. Assume (A. 1). Assume that Ug is
positive semi-definite®. Then for all M € {—|A|/2,—|A|/2 + 1,...,]|A|/2},
among all the ground states of Hyy, there exists at least one ground state pps
which satisfies the following:

i p(pM # 0 holds, where P is the orthogonal projection onto ker 52 ).
tot
(ii) Let Syt = ez and Sy— = (Sz4)*. Then

>0 ifx,y € Ae orx,y €A,

) (16)
<0 otherwise.

(on, Sut-Sy—onr) {

In other words, the magnetic structure of the ground state is antiferro-
magnetic.

Remark 1.2. In [26], it is pointed out that (16) can be regarded as the first
Griffiths inequality. ¢

Example 2. Let U, = Uydyy and gzy = Gozy. Then Uegzy = (Uy —
292 /wo)dzy. Thus, Ueg is positive semi-definite if and only if |go| < 1/2Up/wo.
o

Theorem 1.1 does not exclude the possibility that Hj; has degenerate
ground states. Our next result concerns the uniqueness of the ground state.
To show it, we need an additional assumption:

(A. 2) G is connected? and t,, # 0 for all {z,y} € E.

Let us introduce the total spin operator

1 1
52 =824 59+5-+ 585, (17)

8U,g is called positive semi-definite, if, for all {€5}pen € CIAL
Z ngyUcff,zy 20 (15)
z,yEA

holds.
9The graph G is called connected if any of its vertices are linked by a path in G.
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where

Sy = ZCZTCzl, S_ = ZC;lCIT' (18)

zEA TzEA
Theorem 1.3. Assume that |A| is even. Assume (A. 1) and (A. 2). Assume
that Ueg is positive definite'®. For each M € {—|A|/2,—|A|/2+1,...,|A]/2},
the ground state of Hys is unique. Let wpr be the unique ground state of Hyy.
Then we have the following:

(i) Poar #0.
(ii) There exists a unique number S such that S > |M| and SZ,om =
S(S + 1)(,01\/[.
(i)
>0 ifx,ye A orz,y €A,

) (20)
< 0 otherwise.

<90M, Sz+Sy7(PJVI> {

Remark 1.4. (20) means that the antiferromagnetic structure becomes sharper
than (16) or a strict Griffiths inequality holds. ¢

Example 3. Consider the case where U,y = Updyy and gyy = gobzy. Then
Ut is positive definite if and only if |go| < \/woUy/2. &
1.4. Upper bounds on the charge susceptibility

We give a rigorous bound on the charge susceptibility of the Holstein-Hubbard
model. For simplicity, we consider the d-dimensional simple cubic lattice Z?.
For each L € N, the vertex set is given by

A=[-L, LNz (21)
We impose a periodic boundary condition on the model. To be precise, the
edge collection F is given by
E:{{x,y}€A2||x—y|:1}U3, (22)
where
6:{{x,y}€A2’|x—y|:2L71}. (23)

We set t,, =t # 0 for all {z,y} € E.
Let én, = n, — 1. Set
oy = [A[7V2D " e Pan,,. (24)
zEA
The charge susceptibility is defined by

Xﬁ(p) = Lh—>H;o 5(5\7;*177%p)ﬂ7[\7 pE [_ﬂ—aﬂ—]d7 (25)

107 ¢ will be called positive definite if, for all {£z},ca € CIAN{0},
Z gzgyUcff,zy >0 (19)

z,yeEA

holds.
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where

1
(A,B)ga = Zg}\/ dsTr {efSﬁ(HJFZIGA panw) A o= (1=8)B(H+Y sen ’“‘"”)B},
0

(26)
Zgn="Tr {e_ﬁ(}“’zwe/\ ”m"m)]. (27)
The local chemical potential is given by
2
T = T r29zy- 28
pa = o > Gragey (28)

y,zEN

Note that if gy = godzy, then p, = 2¢3/wo for all z € A. For any 3 and
A, we can check that the thermal average density of the system satisfies
(No)g.A i= Zﬂ_,}\Tr[noe’ﬁH] =1, i.e., the system at half-filling is considered!!.
We assume the following:
(B. 1) gzy and U,y are translation-invariant, ie., gy = gz—y,o and Uy, =
Up—y,o forall z,y € A.
(B. 2) Set g(z) = gs,0 and U(z) = U,,. Then g(z) € ¢*(Z%) and U(z) €
(7).

(B. 3) Forall L > 0, it holds that Usg 5 (p) > 0, where fu(p) = Ypene TP f(2).

Remark 1.5. (B. 3) implies that U.g is positive semi-definite.

Theorem 1.6. Assume (B. 1), (B. 2), and (B. 3). For each p € [—7,7|? such
that Uegt(p) > 0, we have

x5(p) < Uet(p) L. (29)
Here f(p) = Y ,cpa "7 f(2).

Remark 1.7. (i) By direct computation, we have Uesg(p) = U(p) — 25(p)? /wo.
(ii) This result is an extension of the Kubo—Kishi theorem [15] in the
following way: (a) The electron-phonon interaction is taken into account. (b)
Not only on-site but general Coulomb repulsion is considered.
(iii) In a companion paper [25], we obtain a similar bound on the Hub-
bard model coupled to a quantized radiation field.

Corollary 1.8. Assume (B. 1), (B. 2) and (B. 3). In addition, assume that

there exists a constant ug > 0 such that Ug(p) > g for all p € [—m,7]%.

Then we have

xs(p) <ug . (30)

Thus, by the Falk—Bruch inequality [2, 4], there is no charge long-range order.

Remark 1.9. The existence of ug > 0 implies that Uyg is positive definite.

1By A := B, we understand that A is defined in terms of B.
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Example 4. For each Uy, Uy, gg > 0, let

U() r=1Yy
0 otherwise

Clearly, (B. 1) and (B. 2) are satisfied. Then one sees Ueg(p) = (Uy — Uy —
293 Jwo) + L Z?Zl(l +cosp;). Thus, (B. 3) is satisfied whenever Uy — U; —
2g2 Jwo > 0. There is no charge long-range order if Uy — Uy — 2¢3 /wo > 0. If
Up—U; —2g2 Jwo = 0, then x(p) could diverge at extreme points of [, 7]<.

O

Remark 1.10. In the case where Uy —U; —2¢? /wq < 0, the existence of charge
long-range order is proved in [27]. &

1.5. Organization

The organization of the paper is as follows: In Section 2, we introduce several
operator inequalities related to Hilbert cones. These operator inequalities are
very useful for our study. Sections 3-6 are devoted to proving the main results
in Section 1.

In Section 3, we provide several expressions of the Hamiltonian (5)
by performing the hole-particle and Lang—Firsov transformations. We then
choose a suitable expression in each section below.

In Section 4, we show Theorem 1.1. By choosing a suitable Hilbert cone,
we prove that the heat semi-group generated by the Hamiltonian preserves
the positivity. Theorem 1.1 is a corollary of this fact.

In Section 5, proof of Theorem 1.3 is given. We show that the semi-
group generated by the Hamiltonian improves the positivity with respect to
the Hilbert cone constructed in Section 4. The uniqueness of ground states
follows from Faris’ theorem, which is a generalization of the Perron—Frobenius
theorem. By applying this fact, the some magnetic structures of the ground
state are revealed.

Section 6 is devoted to the proof of Theorem 1.6. We obtain an upper
bound on the charge susceptibility by extending the method of Gaussian
domination established in [2, 8, 9].

In Appendices A and B, we give a list of basic facts that are used in the
main sections.

In Appendix C, we give a proof of a technical proposition which is
needed in Section 5.

Acknowledgements. This work was supported by KAKENHI(20554421). I
would be grateful to the anonymous referees for useful comments.
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2. Preliminaries

2.1. Hilbert cones and their associated operator inequalities

Definition 2.1. Let X be a complex Hilbert space. By a conver cone, we
denote a closed convex set X, C X such that tX; C X, for all ¢ > 0 and
X: N (—X4) = {0}. In what follows, we always assume that X; # {0}. A
convex cone, X, in X, is called a Hilbert cone if it satisfies the following!?:
(i) (z,y) >0 for all z,y € X,.
(ii) Let Xg be a real subspace of X generated by X, . Then for all x € Xg,
there exist . ,2_ € X4 such that z =z —2_ and {(x;,2_) =0.
(i) X =Xp +iXpr = {z +iy| =,y € Xr}.
A vector z is said to be positive w.r.t. Xy if x € X . We write this as x > 0
w.r.t. X4
A vector y € X is called strictly positive w.r.t. X4 whenever (z,y) > 0
for all x € X, \{0}. We write this as > 0 w.r.t. X;. ¢

In subsequent sections, we will use the following operator inequalities:

Definition 2.2. We denote by Z(X) the set of all bounded linear operators
on X. Let A, B € #(X).
(i) If AXy C X413, we then write this as A>0 w.r.t. X 1%, In this case, we
say that A preserves the positivity w.r.t. X4 . Suppose that AXg C Xgr
and BXg C Xg. If (A— B)X, C X, then we write this as A> B w.r.t.
X,
(ii) We write A> 0 wr.t. Xy, if Az > 0 wrt. X4 for all z € X4\{0}. In
this case, we say that A improves the positivity w.r.t. X4.

The following proposition is fundamental to this paper:
Proposition 2.3. Let A,B,C,D € B(X) and let a,b € R. We have the fol-
lowing:
(i) If A>0,B>0 w.r.t. X1 and a,b >0, then aA+bB>0 w.r.t X,.
(i) fA>B>0and C>D>0 wr.t Xy, then AC>BD >0 w.r.t X .
Proof. (1) is trivial.
(i) f X>0and Y>>0 w.r.t. Xy, we have XYX; C XX, C X;. Hence,
it holds that XY > 0 w.r.t. X;. Hence, we have

AC—-BD= A (C—D)+(A—B) D >0 wrt Xy
N~ —— ———
>0 =0 N0

This completes the proof. O

In Appendix A, we give several crucial theorems on the operator in-
equalities associated with Hilbert cones.

12X, is a Hilbert cone if and only if X is a self-dual cone [1, 21, 26].
L3For each subset 9) C X, AY) is defined by AY = {Az |z € D}.
14This symbol was introduced by Miura [28], see also [14].
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2.2. A canonical cone in Z?(h)

Let h be a complex Hilbert space. The set of all Hilbert-Schmidt class op-
erators on b is denoted by £2(h), i.e., £L2(h) = {€ € B(h) | Tr[¢*¢] < oo}
Henceforth, we regard .#2(h) as a Hilbert space equipped with the inner
product (£,7m) o2 = Tr[€*n], £,n € £?(h). For each A € B(h), the left multi-
plication operator is defined by

L(A)E = AE, €€ 22(h). (32)
Similarly, the right multiplication operator is defined by
R(A)E = €A, €€ 2%(h). (33)
It is not hard to check that
L(A)L(B) = L(AB), R(A)YR(B) =R(BA), A, B¢c A(h). (34)

Definition 2.4. A canonical cone in .#2(h) is given by

L), = {5 c Z%(h) ’f is self-adjoint and £ > 0 as an operator on f)}.
(35)

(Recall that a linear operator £ on § is said to be positive if (x,£x)y > 0 for
all x € h. We write this as £ > 0.) ¢

Proposition 2.5. £2%()y is a Hilbert cone in £%(h).

Proof. We will check conditions (i)-(iii) in Definition 2.1.

(i) Let &,n € £2(h) 4. Since £/2n€1/? > 0, we have (€, 1) o> = Tr[¢n] =
Tele!/2peV/2] > 0.

(i) Note that Z2(h)r = {£ € L2(h) | £ is self-adjoint }. Let £ € £2(h)g.
By the spectral theorem, there is a projection valued measure {E(-)} such
that € = [, AdE()). Denote & = [ AE(\) and & = [°_(=\)dE(N).
Clearly, it holds that £.&_ = 0,&4 € £%(h)y and € = &, — &_. Thus, (i) is
satisfied.

(iii) For each & € £2(h), we have & = £g + i€7, where £ = (€4 £%)/2
and &7 = (& —£*)/2i. Trivially, £g, & € Z2(h)g. This completes the proof. O

Lemma 2.6. Let A € B(h). We have L(A*)R(A) >0 w.r.t. £%(h)..
Proof. For each £ € £?%(h),, we have L(A*)R(A)E = A*¢€A > 0.0

3. Several expressions of the Hamiltonian, H

3.1. The Lang—Firsov transformation
Let

1 . [Wo
= b+ by), e =1/ = (b — by). 36
q o 0(a: ), D 1 2(9: ) (36)



12 Tadahiro Miyao

Both operators are essentially self-adjoint. We denote their closures by the
same symbols. Let

L= —i\/iw()_g/2 Z GaxyNazPy- (37)
z,yeEA

L is essentially anti-self-adjoint. We also denote its closure by the same sym-
bol. Hence, e’ is a unitary operator'®. We see that

eleyoe ™ = exp {i\[?w(]_3/2 Z Gy Py }cm, (38)

yeEA
elbe b =b, — wal Zgyzny. (39)
yeEN
Let
! z€A “o !

Using the facts that
e*iZNPq ez e = witp,, e 2Nep.eltNe = g, (41)

where N, = > one arrives at the following:

TEA I w’
Proposition 3.1. Set % = e '2Nvel. We define Hy by

Hy = WHy%" — = Z Vay + 05 g: (|A| —2M), (42)
myGA

where g« = ca gmym. Then we have

ﬁM =T g1 —T4,+H,+U, (43)
where
Tigo = Z tayCryCyo €XP { + ié{mﬁy}}, (44)
{z,y}€eE
(I){z,y} :\/ﬁwal/2 Z(gzz - gyz)sz (45)
zEA
1
Hy =5 > (02 +wid), (46)
TEA
1
LS U~ (o, 1), .
z,yeN
Ueff,a:y :Ua:y - Vw'q (48)

15The unitary operator el was introduced by Lang and Firsov [16].

16By (A. 1), g« is a constant independent of y.



Rigorous results concerning the Holstein-Hubbard model 13

Proof. We note the following:
2 1
S Vit = —g2Neo = —g2(A = 2M) on . (49)
wWo wo
z,yEA
Here, we used (A. 1). Thus, the formula immediately follows from (38), (39)
and (41). O
3.2. Expression of the Hamiltonian in (F. ® §.) @ P
Note that
Cat =C @1, ¢z = (—ﬂ)Ne & Cy, (50)

where ¢, and ¢} are the fermionic annihilation- and creation operators on
Se, and N, is the fermionic number operator given by N. = > n, with
ng = csc,. Thus, we have the following:

Tigr = Z toyCaCy @ 1 ® exp{ + i(I){x’y}}, (51)
{z,y}€FE

Tigi= Y tol@cic, ®exp { + ié{x,y}}, (52)
{z,y}€E

1
U= 3 Z Uettoy(ne @ 1+ 1@n, = 1) (n, @ 1+ 1@ n, — 1) @ 1y,

z,yeEA

(53)

where Ly is the identity operator on .

3.3. The hole-particle transformation
The hole-particle transformation is a unitary operator W on €| such that

We, @ IW* =,c @1, We, @ IW* =4,¢, @1, WIRQ e, W = 1R c¢,.
(54)

Observe that WNV* = [A] — (Ne ® 1 — 1® N,) and WSHW* =
2[A] = 3(Ne ® 1+ 1 ® N.). Hence, we have

[A]
WE | = @ge,n @ Fens WHM = Se,(a|-201)/2 @ Te,(|a|-201) /2, (55)

n=0

where Fe ., = A"02(A). In what follows, we set
1
M= 3 (Al —22). (56)

Lemma 3.2. We have the following:
(i) WT_g W =Ty

(i) WI_, W =T_4,,.

(iil) WUW?* = U, where

~ 1
U= > Uetay(na@1—1@n,)(n, @ 1—1@n,) @ . (57)
z,yeA
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Proof. (i) By definition of W, we have
14% Z tryCacy @ 1 ® exp { - i‘b{z,y}}W*
{z,y}€FE

= Z by Ve VyCaCy @ 1 ® exp { — i<I>{z’y}}. (58)
{z,y}erE

Since G is bipartite, 7,7, = —1 holds for all {z,y} € E. Consequently,

RHS of (58) = 3 fycie, © 1@ exp { - 1<1>{w,y}} (59)
{z,y}eFE
= Z tyeCrcy ® 1 ® exp { - i@{y,z}}
{y,xz}eE
= Z tryCacy @ 1 ® exp { + ié{xyy}}. (60)
{z.y}eE
Here, we used that t,, = t,, and &y, .3 = —®, 3. Thus, we have (i).

Similarly, one obtains that WI_, W* =T1_, .
(iil) Since Wn, @ IW* = (1—n,) ® 1 and WI1®n,WV* = 1@ n,, we see
that

WUW*=U. O (61)
Corollary 3.3. Let Hj; = WfIMW*. Then we have
Hy = =Thgt —T-g1 + U+ H,. (62)

3.4. Expression of the Hamiltonian in .Z*(F. 5;1) ® L*(Q)

3.4.1. Natural identification §. rst ® Fo prr With £2(Fe pr1). Let 9 be an
anti-linear involution on §, 5s+ defined by

Ve = ¢y 90 =9, (63)

where € is the Fock vacuum in §.. We define an isometric isomorphism from
ZL2(Fe, ) onto Fe art @ Foart by

Dy (lo) (Y1) = ® 9. (64)

Hence, we can identify £?(F. 1) with Fe art ® Fo st by Py. Moreover, one
has

PyL(A)P ' = A1, PYRWA)P,' =1 A (65)

for any bounded linear operator A on §, rt. To summarize, we have the
following identifications:

Se7MT 0y se,MT = XQ(Se,MT)v (66)
LA =Asl, REAW) =1 A (67)
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3.4.2. The Schrodinger representation. Note the following identification:
P = L*(Q,dg) = L*(Q), (68)

where Q = R dg = [],, dg, is the |A|-dimensional Lebesgue measure
on Q, and L?(Q) is the Hilbert space of the square integrable functions on
Q. Under this identification, ¢, and p, can be viewed as multiplication and
partial differential operators, respectively. Moreover, the phonon energy term
can be expressed as

1 0> A
HPQZ( e +w§q§>|2|. (69)

zEA

3.4.3. Representation in £?(§F, 1) ® L?(Q). By (66) and (68), we have the
following identifications:

(chT)®§’B f (SCMT ®L / f %CMT (70)

For each 1) = fQ q)dg € L?(Fe ) @ L*(Q) = fQ L?(Fenrt) dq, let us
define an isometric 1somorphlsm ®F from £ (Fert) @ L*(Q) onto [Fe st ®
'Se,MT] ® L2(Q) by

D
9 (1) = /Q D, (4(a)) da. 1)

Let g — A(q) be a B(F. at)-valued measurable map such that
sup, [|A(q)|l# < oo. Using (65), we see that

57 D
¢’§?/Q L(A(q)) dg®§~" :/Q A(q) ® 1dq, (72)
[S3) @
<I>j!,9/ R(VA(q)*0) dg @&~ =/ 1® A(q) dq. (73)
Q Q

Lemma 3.4. Under identification (70), we have the following:

(i)

Tygy = /j L(Tig4(q))dq, T-g, = /j R(T4(q))dq, (74)
where
Tigl@) = Y tocio,exp{ £, (@), (75)
{z,y}€FE
(I){z,y}(q) = \/iw(;l/2 Z(gzz - gyz)q,zy (76)
zEA

for each g ={q,}, € Q.
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(ii)
U= % Z Ueff,xy{ﬁ(nx) - 'R(nx)}{ﬁ(ny) - R(ny)} ® pe,

z,yEA

where 12 is the identity operator on L*(Q).

(77)

Proof. (i) Since L(-) is linear, i.e., L(aX + bY) = aL(X) + bL(Y), we

have

Tig1 = Z ty €XP {i@{x,y}(Q)}C;Cy ® ldgq
Q {z,y}€FE

/ vy exp {10 (.. (a) }L(che,)dg
Q

{z,y}€FE

/ L(T+4(q

Similarly, since R(-) is linear and ¢, = ¢,, we have

T 4, = / Z yexp{ idr, 1 (q )}]l@c;cydq

{z.y}eE

:/ Z tyy €XP

Q (syleE

{ R(
/Q S teyexp { — 10 4 (0) R ) da
{ R

— I(D{%y} R C Cy q

{z.y}eE

/Q Z tye €Xp

{y,z}€E

- / R(T 14(a))dg
Q

Here, we have used t,,, = t,, and @, 1(q) = —Py, 1 (q).
(ii) is immediate. O
Corollary 3.5. Under identification (70), we have
Hy = T - U+ Hy,

- iq){y’x} R C Cy

where

/mug( dq+/ R(T+,(q))da,

Tiy(a) = T1y(g) + 5 (0, Uurn)
U= Y UettayL(ng)R(ny) @ o

z,y€EA

Here, we use the following notation: (n, Uegn) := yen Usr,zyNazny.

(78)
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3.5. Functional integral representation
Under identification (70), each ¢ € Z%(Fe ar1) ® L?(Q) can be expressed as

) = fg q) dq, where ¥(q) € L?(Fo 1) for ace. g.

Definition 3.6. Let A be a bounded linear operator on Z2(F. 1) ® L*(Q).
If there exists a B(ZL*(Femt))-valued map (q,q’) — K(q,q’) such that

/qu ¢)dq V€ L2For) ©I2(Q),  (84)

then we say that A has a kernel operator K. We denote by A(q,q’) the
kernel operator of A if it exists. Trivially, it holds that

ood) = [ dadd(0(@). A V@) s, O (55)

In this subsection, we will express the kernel operator of exp{—8(—T +
Hp)} in terms of a functional integral representation.

In the remainder of this paper, we may assume that wy = 1 without loss
of generality.

Set A = C([0,00); Q), the set of all Q-valued continuous functions on
[0,00). Let (A, Z(A), Da) be the probability space for the |A|-dimensional
Brownian bridge {a(s) |0 < s < 1} = {{az(s)}zea|0 < s < 1}, ie., the
Gaussian process with covariance

/ 0z (s)oy(t) Do = d,ys(1 —t) (86)
A
for 0 < s <t<1andzxye A. Define, for each q,q’ € Q,
w(s)= (1~ B s)g+ 07 "sq' +/Ba(5's). (87)
The conditional Wiener measure djiq,q7,3 is given by
dpiq.q: = Ps(a,q')Da, (88)

where Ps(q,q') = (2n8)7' % exp (- 5519 — ¢'?).
For each ¢ € A, w(¢p) indicates a function s — w(s)(¢), the sample
path w(-)(¢) associated with ¢. Let

s
) = 1—[e'JTJrg(w(S)(s@))dS7 (89)
0

where the RHS of (89) is the strong product integration (see Appendix B).
Note that since w(s)(¢p) is continuous in s for all ¢ € A, the RHS of (89)
exists.

Proposition 3.7. Let
Ky =-T+ Hp. (90)

Then e PEM has a kernel operator given by

¢ (,q) = [ ditgarip £[Go(@)|R[Ga(w)" | e H Ve (o)
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where

1
= > what - AL (92)

lEA

Proof. First, note that

<f0’ e*BHp/nflefﬁHp/an e fn>

- ' g e I8 dsV(w(s))
/ngdqdq /dl‘q,q 8
x fo(@)* fi(w(D) fo(w(22)) - froa (w(=2EN) (g (93)

for fo, fn € L*(Q) and f1,..., fn_1 € L°(Q), see [33]. Let T(q) = L(T44(q))+
R(T44(q))- By (93) and the Trotter—Kato product formula, we have

<¢7e*ﬁKJ\l¢> — lim <<)07 (e*ﬁHp/"eﬁT/n)nw>

n—oo

— hm dqdq//d/,l/tqu;ﬁ e~ foﬁ dSV(UJ(S))

n—oo QXQ

BBy B 28 Boo(n8
» <¢(q)yenﬂr< () enT@(2) |, 5T <n>>¢(q/)>

= lim dqdq'/duq’q,;ﬁe— JE dsV(w(s))
QxXQ

=Z2(SG,MT)

n—oo

« (ptay feimedy efmuecit]

XR{eﬁm_q(w("f)), 21w 2 ))] >
(SL MT)

By the dominated convergence theorem, we conclude (91). O

4. Proof of Theorem 1.1
4.1. Strategy

The main purpose of this section is to prove Theorem 4.1 below. As seen in
Subsection 4.5, Theorem 1.1 is a corollary of Theorem 4.1.

Theorem 4.1. Assume that |A| is even. Assume (A. 1). Assume that U.g
is positive semi-definite. Then for all M € {—|A|/2,—|Al/2 +1,...,|A|/2},
there exists a Hilbert cone $pr.4 such that e PHM >0 .1t Hum,+ holds for
all B> 0.

In the remainder of this section, we will continue to assume (A. 1) and
that |A| is even.
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4.2. Preliminaries
The canonical cone in £?(F. ps1) @ L*(Q) is given by

Cy = /j L2 (Fo,1)+dg, (95)
where the direct integral of £ (8e,at)+ over Q is defined by
/j L (Ferrt)+dg
- {xp € L*Forst) ® L2(Q) ) U(q) > 0 wrt. L2(Fo )4 for ace. q}.

(96)
Proposition 4.2. €y, is a Hilbert cone in L*(e prt) ® L*(Q).

Proof. We will check the conditions (i)-(iii) of Definition 2.1.

(i) For all ®,¥ € &)y, we know that (®(q),¥(q))e= > 0 for a.e. q.
Hence, (®,¥) = [,(®(q), ¥(q)) »2dq > 0.

(ii) Let €pr be a real subspace generated by €. It is easy to see
that €y r = {¥ € L2(Fenrr) ® L?(Q) | ¥(q) is self-adjoint for a.e. g}. Let
¥ € €y p. Since Z2(Fe i)+ is a Hilbert cone, we have a decomposition
V(q) =V (q)—V_(q) such Wi(q) € L*(Fe.arr)+ and (V1.(q), ¥_(q)) 2> =
0. Thus, (ii) is clear.

(iii) For each ¥ € Z2(F. 1) ® L*(Q), we define U, ¥y € €prr by
Ur(q) = 5(¥(q) +¥(q)"), Vi(q) = 3(¥(q) —¥(q)*). Then ¥ = ¥y +iT;.
O
Lemma 4.3. Let ¥ € £L?(F. p1) ® L2(Q). The following are equivalent:

(i) U e &y
(i) V€ € L2(Senmt)+Vf € L2 Q)+, (L.£® f) > 0.

Proof. To show that (i) = (ii) is easy. Let us show the inverse. Set

9¢(q) = (¥(q), &) #2. By (ii), we have

0< (V¢ f) = /Q f(a)ge(a)da. (97)

From this, we conclude that g¢(q) > 0 a.e. q. Since ¢ is arbitrary, we see that
U € € g, otherwise, ge(q) becomes a complex-valued function for some
€. Since L2 (Fo 1)+ is a Hilbert cone, we have the decomposition ¥(g) =

V. (q)—V_(q), such that ¥4 (q) € L*(Fe nt)+ and (Y (q), ¥-(q)) 2 = 0.
Since ¢ is arbitrary, by taking £ = ¥_(q), we have

0<gelg) = —[¥-(9)l* <0, (98)
which implies that ¥_(q) = 0. Thus, ¥ € €y,. O

Lemma 4.4. Let B : Q — %B(Fe mt); @ — B(q) be strongly continuous. Then
we have

/Q Y L(B@ I RB@)dgE 0 wrt. T (99)
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In particular, L(C*)R(C) @120 w.r.t. €y for each C € B(L*(Fout))'"-

Proof. For a.e. g, we obtain £(B(q)*)R(B(q)) >0 w.r.t. L*(Feart)+
by Lemma 2.6. Thus, fg L(B(q)*)R(B(q))dq leaves € invariant. O

Let L?(Q), be a Hilbert cone in L?(Q) defined by
L*(Q); ={F € L*(Q)|F(q) >0 ae.}. (100)
Then, the following lemma will be useful:

Lemma 4.5. Let A be a bounded linear operator in L*(Q). If A> 0 w.r.t.
L?(Q)y, then Tg: @ A>0 w.r.t. Cy.

Proof. Let f € L*(Q)4. Since A >0 w.r.t. L*(Q)4, we know Af €
L?(Q),. Thus, for each ¢ € 32(§C7M1)+, it holds that £ ® Af € €j;. Hence,
for each ¥ € €);, we have

(e @ AV, E© f) = (¥,£ @ Af) > 0. (101)

By Lemma 4.3, we obtain g2 @ AV € €5y, which means that 1g2 ® A> 0
w.r.t. Q:M O

4.3. Lower bounds for the effective Coulomb interaction
Proposition 4.6. We have the following:
(i) If Ueg 1is positive semi-definite, then
> UetrayL(ne)R(ny) @ N2 0 w.rt. €. (102)
T, yeEA
(ii) If Ueg is positive definite, then there exists a Uy > 0 such that
> UetayL(na)R(ny) @ U2 = Up Y L(n2)R(na) @ U2 20 w.rt. €y

z,yeA zEA
(103)

Proof. (i) Let M = (M,,) be a |A| x |A| matrix defined by M,, =
Uot 2y (z,y € A). By assumption, M is positive semi-definite. Thus, there
exists an orthogonal matrix P such that M = PDPT | where D = diag(\,)
is a diagonal matrix with A, > 0. Set n = {nZ}IGA and set n = PTn.
Denoting i = (n)zen, we have

S sty £(na)R(n,) = (£(n), MR(n)) = (£(), DR(#)

z,yeA

=3 NL(Aa)R(Aa)- (104)

rEA
Clearly, the RHS of (104) is positive w.r.t. €y by Lemma 4.4.

T B(L? (8o, ast)) is the set of all bounded linear operators in the Hilbert space 72 (e, 1)
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(ii) By assumption, M is positive definite. Thus, the lowest eigenvalue
of M is strictly positive: Uy := min, A, > 0. Thus, by (104), one sees that

37 Uty £(n)R(ny) = Y AaL(a)R(Re)

z,yeA TEA

>0 3 £()R ()
=Uy Z C(nx)R(nz)

zEA
EO w.r.t. ZQ(Se,MT)—i—- (105)

By Lemma 4.4, we conclude our proof of (ii). O

4.4. Completion of proof of Theorem 4.1

Proposition 4.7. Assume that Ueg is positive semi-definite. For all > 0 and
Mt e {—|A|/2,—|A|/2+1,...,|A|/2}, we have e PEM >0 w.rt. €.

Proof. Since U >0 w.r.t. €5; by Proposition 4.6, we have

s n
AU — Z % U™ >0 w.r.t. €y for all 3> 0. (106)
n=0~~ >0
>0

By (69) and Lemma 4.5, it holds that e A > 0 w.r.t. €, for all 5 > 0!8,
Denoting K = H, —U, we have e BK — o= BHvoBU () wor.t. ¢, for all G >0.
By (81) and Lemma 4.4, we have

®
AT :/ E(eﬁmg(Q))R(eﬁT”(q))dq >0 w.r.t. €. (107)

Q

Combining these properties, we obtain
n
(em/" e*ﬁK/”) >0 w.r.t. €y for all 5> 0. (108)
—— ——
>0 >0

Thus, the proposition follows from the Trotter-Kato formula. O

4.5. Proof of Theorem 1.1

Let J be a conjugation defined by (J¥)(q) = U*(gq) for each ¥ € Z2(F, ps1)®
L?(Q). Since e~ PHnm preserves the positivity w.r.t. €y7, Hys commutes with
J. Let A be an eigenvalue of Hj; and let ¥ be a corresponding eigenvector.
Set U = (U +J¥)/2 and W1 = (¥ —JU)/2i. Then Ur(q) and ¥1(q) are self-
adjoint for a.e. g. In addition, they are eigenvectors of H,; with an associated
eigenvalue \.
Let 15 be a ground state of Hj;. 1; can be written as ¢y, = fg Yar(q)dg

under identification (70). By the observation above, we may assume that
Yar(q) is self-adjoint for a.e. g without loss of generality. Let ¢ar 4+ (q) (resp.

18To be precise, we know that exp{—ﬁ% Yo (=V2 +wiq2)} >0 wrt. L2(Q)+. Thus, by
Lemma 4.5, we have e 8Hp = Ty ® exp{—ﬁ% Za(_ng + wgq%)} >0 w.r.t. €.
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¥a,—(q)) be the positive (resp. negative) part of ¥as(q)'”. Hence, it holds
that ¥y = Y+ —Yn—, ¥+ € €y and (s 4+, 9n,—) = 0. By Proposition
4.7, we have

e PEM — (hpy, e Py 1y < (|ehag], e PEM gp )Y, (109)

where |9ar| = ¥ar,+ + Y¥ar,—. This means that || is a ground state of Hys
as well. We will show that |¢ys| satisfies properties (i) and (ii) in Theorem
1.1.

Using the notation in Subsection 5.2, we can express |¢| as

D
ol = Y / oarlxv (@)lex) (e lda. (110)

z,YeAMTA

Since s is a non-zero vector, Y| is non-zero as well. Thus, there ex-
ists an Xy € AM'A and a measurable set 7 C Q with |Z| > 0 such that
[Yarlxox,(q) # 0 for all ¢ € T (Xp may depend on q)?°. Observe that
SZ lex,){ex,| = 0. From this, it follows that Ps_qins # 0, where Pg—q is
the orthogonal projection onto ker[S2,]. Using the fact that W*S2 W = §2,
we obtain (i).

Let pps be a positive ground state of Hy; and let @p; be its representa-
‘;ilon in 22%(Fe, vt )OL*(Q). Note that WS, Sy W* = vuyy L2l ) R((cach)*).

ence,

(m, St Sy—onr) = Yavy(Pars L(cacy)R((cacy) )P )- (112)

Since @y is positive and L(c.c;)R((czc
proof of (ii). O

*

5)7) B0 wrt. €y, we conclude our

5. Proof of Theorem 1.3

5.1. Strategy
Our main purpose in this section is to show Theorem 5.1 below. To this end,
recall the expression of Hj, in Corollary 3.5.

Theorem 5.1. Assume that |A| is even. Assume (A. 1) and (A. 2). Assume
that Ueg is positive definite. For all 3 > 0 and MT € {—|A|/2,—|A]/2 +
1,...,|A|/2}, we have e PHM > 0 w.r.t. €.

As a corollary, we obtain the following result by Theorem A.2.

9Precise definitions of 1,4 (q) are given in the proof of Proposition 2.5.

20Since |4z| is non-zero, there exists a measurable set Z with |Z| > 0 such that |1ps](q) # 0
for all g € Z. For each g € Z, we observe that

0 < Tr[|[varl(q)] = Z [Vl x x (@) (111)

xXeaMTp

Hence, there exists an Xg € AMT A such that [arlxox,(q) # 0.
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Corollary 5.2. Assume that |A| is even. Assume (A. 1) and (A. 2). Assume
that Ueg is positive definite. Let Epr be the ground state emergy, i.e., the
lowest eigenvalue of Hyr. For each MT € {—|A|/2,—|A]/2 + 1,...,|A|/2},
FEyr is nondegenerate and the corresponding eigenvector s strictly positive
w.r.t. Cpr.

By this result, we see the uniqueness claimed in Theorem 1.3. Some
additional observations tell us more detailed information about the ground
state stated in Theorem 1.3; see Subsection 5.5.

In the remainder of this section, we continue to make every assumption
named in Theorem 5.1.

Now, let us explain how to prove Theorem 5.1.

Proposition 5.3. Let Uy be a strictly positive constant given by Proposition
4.6. Let

Uy =Up Y L(nz)R(n;) @ L. (113)
TEA

We define a new Hamiltonian Hg\?[) by
HY = Ky — U (114)
Ife‘ﬁHgv(P >0 w.r.t. €y for all B > 0, then e PHM >0 w.r.t. €y for all § > 0.

Proof. By Proposition 4.6, it holds that U>Ug w.r.t. €;;. Hence, by ap-
plying Proposition A.1, we have e ~AHnm Ee’ﬁH(ﬂg) w.r.t. €. Thus, if e P 10
w.r.t. €y, we conclude that e FHM > 0 wort. €. O

By Proposition 5.3, it is sufficient to prove that e‘ﬂHgv? >0 war.t. Cy
for all g > 0.

By the Duhamel formula, we have the following norm-convergent ex-
pansion:

N =3 9,5, (115)

n>0
@n,ﬁ _ / efleM[UO efszKMUO L e*SnKMUO ef(ﬁfZ}‘zl Sj)KM’
Sn(B)

(116)

sl
where fS (B) = foﬁ dtl foﬁ_tl dﬁ2fol6 ZJ:l i dtn and @()ﬁ = e_BKM. In

Subsection 5.3, we will prove the following:

Theorem 5.4. (Ergodicity) {Pn glnen, s ergodic in the sense that for each
w1 € € \{0}, there are 5 > 0 and n € Ny := {0}UN such that (@, Dy 1) >
0.

Assuming Theorem 5.4, we can prove Theorem 5.1.
Proof of Theorem 5.1 given Theorem 5.4
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The basic idea originates from [7, 22]. Note that since e”T > 0 and Uy > 0
w.r.t. €, we see that &, g > 0 w.r.t. €y. Thus, for each n € Ny, one has

P > 9, (117)
w.r.t. €. Take ¢, € € \{0} arbitrarily. Then by Theorem 5.4, there exist
B > 0 and n € Ny such that (¢, D, ) > 0. Hence, using (117), we have
<%e—BH§SI)¢> > (¢, Dy sy > 0. To summarize, for each p, ¢ € € \{0},

. o) . (©)
there exists a 3 > 0 such that (gp,e_ﬁﬂﬂg ¥) > 0. This means that e~ OHA;
improves the positivity w.r.t. €, according to Theorem A.2. O

Conclusion: It suffices to show Theorem 5.4 to prove Theorem 1.3. {

5.2. Preliminaries

Before we enter the proof of Theorem 5.4, we need to make some preparations.
Let G = (A, E) be a connected graph. For each 0 < n < |A[, we set

A(”):{X:(xl,...,a:n)EA"‘JH#"'#ﬂ?n}- (118)

Let &,, be the permutation group on the set {1,...,n}. Let (z1,...,z,),
(Y1s -+ yn) € A If there exists a 0 € &, such that (To(1)s > To(n)) =
(Y1,.--,Yn), then we write (x1,...,2,) ~ (y1,...,yn). The binary relation
“~” on A" is an equivalence relation. We denote by A™A the quotient set
A\ ~. For notational simplicity, we denote by (z1,...,,) the equivalence
class [(z1,...,zy)] if no confusion occurs. We say that X = (z1,...,z,),Y =
(y1,.--,Yn) € A™A are neighbors if there exists a unique j such that z; and
y; are neighbors in G*! and z; = y; holds for all i € {1,...,n}\{j}. For each
n € Ny, we define a graph A"G by

A"G = (A"AATED), (119)
A'E = {{X,Y} € [\"A]?| X, Y are neighbors} (120)

with A°G = (0,0), the empty graph, and A'G = G. Remark that since
| AIMTAL =1, AVIG is trivial.
The following proposition is often useful:

Proposition 5.5. If G is connected, then A" G is connected for all0 < n < |A].
Proof. See [6, 22]. O

A pathin A"G is a graph P = (v,e) C A"G with v = {X;,..., Xy} and
e = {{X1, X}, {X2, X3},...,{Xn_1,Xn}}, where all X; are distinct. The
path P is simply denoted by P = X1 X5 -+ Xn. The number N — 1 is called
the length of path P and denoted by |P|. For each X, Y € A"A, we denote by

@gg)/ the set of all paths from X to Y. For each L € N, we set
2L = {p e 2 ||| = L}. (121)

21z, y € A is said to be neighbors if {z,y} € E.
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Clearly, it holds that 2 = J, 20} [L].
Let e;(y) = 0zy. Then {e,|x € A} is a complete orthonormal sys-
tem(CONS) of £2(A). For each X = (x1,...,7,) € A"A, we define

ex = ez, A Neg, € AN"2(A). (122)

Then {ex |X € A"A} is a CONS of A"¢?(A) as well. Note that each v €
22 (Semt) ® L?(Q) can be expressed as

(&)
o= Y [ exv(@lex)levlda (123)

X, yeaMia
5.3. Proof of Theorem 5.4
We will prove Theorem 5.4 step-by-step.

Proposition 5.6. Let
G = (nye—aKM/m—l))”’lUém
:Ug/[TeﬁKM/(nfl)UéW ...eﬁKM/(nfl)UéW. (124)

Suppose that {€,,. 5} is ergodic in the sense that, for each ¢, € €p\{0},
there exist f > 0 and n € Ng such that (@, €, ) > 0. Then {Z, 3} is
ergodic.

Proof. Set. N(n) = nM* + (n—1). It suffices to show that a subsequence
{ PN (n),p}n,s is ergodic. Let

Fo(s1,...,8,) = e KMy o2 KM, .. emn BN, e~ (F=2j-1 ) Knr
(125)

By (116), it holds that

IN(n).B :/ Fneny (81,5 8N (m))- (126)
SN (n)(B)
Remark that
o= iy (005 0,8/(n=1),0,...,0,...,8/(n = 1),0,...,0). (127)
SN—— —— NS
Mt Mt Mt
In particular, €, 5 > 0 w.r.t. €y for all n € Ny and 8 > 0. Since {4, 3}

is ergodic, for each p,1 € €3,\{0}, there are 8 > 0 and n € Ny such that

<¢3C€n,[3w> > 0. Let f(sla ceey SN(’n)) = <907FN(n)(517 sy 5N(n))¢> Then f is
a non-zero positive function such that

f((),...,O,ﬂ/(nf 1),0,...,0,...,8/(n— 1),0,...,0) >0 (128)
——— ——— ——
Mt Mt Mt
by (127). Moreover, f is continuous in s1,. .., sn(,). Thus,
Sn(n)(B)
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This means that {Zy(n),3}n,s is ergodic. O

In the remainder of this subsection, we will prove that {%), g} is ergodic.
Henceforth, we may assume that

Up=1 (130)

without loss of generality. Let A"G = (A"A, A"E) be the graph defined in
Subsection 5.2.

Lemma 5.7. Let Ex = |ex)(ex| for each X € AMTA. We have

UM Y L(EX)R(Ex)® 12 wrt Cy. (131)

Proof. Since |AMT| > |/\MT Al and Ex = ng, ...n, . for each X =

(T1,...,2p1) € AM' A, we obtain, by Lemma 4.4,
t
[Uéw = Z E(nwl .”anT)R(nwl ”.anT) @12
(@1, at)EAMT
> Y L(Ex)R(Ex) @ I (132)
XeAMTA
w.r.t. QM O

We introduce the following notation:

/dl/((lnq,lﬁ)F Wi, ... ,wn_l)

/Q . H dg; /dﬂq a01:6(#1) ditg, q238(P2) -+ - ditg,, _5.q:5(Pn-1)

X exp l— Zl/o dsV(wj(s)(goj))

Remark 5.8. Using the Brownian bridge a; (j = 1,...,n), w; can be ex-
pressed as

w;(s)(;) = (1= B7's)gj—1 + 07 sq; + /By (B7's) (). & (134)

F(wl(cpl)7 e ,wn,l(gon,l)). (133)

:
Proposition 5.9. For each P = X1 X5+ X|p|41 € 1@;\;{ ) and P1,---,P|p| €
A, let

|P|

99 (PAwi(el) = T Ex Golwsle)Bx, e (0139)

Jj=1



Rigorous results concerning the Holstein-Hubbard model 27

n

where HAj = Ay Ay --- A, the ordered product. Set § = (3/(n —1). The
j=1
kernel operator of €, g satisfies the following operator inequality :

(gn,,@ (q7 ql) > Z Z / dl/l(lttq_lélﬁ)

X1, XenMip Pegz;‘f;) [n—1]

. [g[gM” (P {wj};%—f)} R [{%M” (P{ws ¥} }] (136)

w.r.t. "%2(58,]\47)""

Proof. First, we note the following fact: Let A, B be bounded operators
on L2 (Fo 1) ®L*(Q). Suppose that A and B have kernel operators. If A>B

w.r.t. €y, then A(q,q') > B(q,q’) w.r.t. 32({3’e,1\/11)+ for a.e. q,q'??.
By Proposition 3.7 and Lemma 5.7, we have

(gn,ﬁ(qa ql)

_1)

> E dz/(n 7

- q.9';8
X1, Xn€AMTA

X ,C|:EX1G5,(QJ1)EX2 cee Gé(wnfl)EXn

xR |:EX1LG§(WTL1)*EX”1 - ~GB(w1)*EX1]

E (n—1)

I> ~

B Z /dqu’;ﬁ
X1 Xn€AMIA poxy X, e 21 In-1)

X L |:EX1G[3’(""’1)EX2 s Gg(wnl)EXn:|

XR[EXnG@(wnl)*EXn_l Gﬁ(wl)*Exl] (137)

w.r.t. 32(397]\41)4_. O

22The proof of this fact is as follows. Since A > B w.r.t. €y, we have (p ® f, AY ®
g9) > (p® f,ByY ® g) for all f,g € L?(Q)+ and ¢,¢ € 32(3@1&1‘()4-- This means that
Jf(@)g(@') (e, Ala,a')¥)dadq’ > [ f(a)g(a'){», B(a,q'))dqdq’. Thus, (¢, A(q,q")) >
(¢, B(q,q’)v¢) holds for a.e. q,q’. Since ¢, ¥ € ‘32(3e,MT)+: we conlude that A(q,q’) >
B(q,q’') w.r.t. 32(39’]\4-‘-)4, for a.e. q,q’.
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Let ¢, ¢ € €3 \{0}. By (123), we can express these as

®
Y= Z / Yxv(q)lex)(ev|dg,

X,yeanMia

o
o= X[ exv(@lex)ier|da.
X, yeamtp
Since ¢ > 0,¢p > 0 w.r.t. €7, one obtains Pxx(q) = (ex,¥(glex)s, ,,+ =
0 and pxx(q) = (ex,p(qlex)s, ,,+ = 0 for all X € AM'A which imply

¥Yxx(q) > 0 and pxx(g) > 0 for all X € AM'A and a.e. q. In particular,
since both ¢ and ¢ are non-zero, there exist X,Y € AM'A and Sx,Sy C Q9
with non-vanishing Lebesgue measures such that ¥xx(q) > 0 on Sx and
©yy(q) > 0 on Sy?>. Then one obtains the following:

Corollary 5.10. It holds that

(0. Cpt) > Y /S < dqdq' / v ovy (@vxx(d)
Y XOox
]

PeMDn-1

2
Mt n—
x| (ev, @) (PAw; =t Yex ) » (138)
Proof. By (136), we have
<§0,<€n,5¢>
’ (n—1) ’
=S 2 /Q o tada / '™ Y o x, (@), x, ()
Xl,XnE/\MTAPG(@;\f;) [n—1]
2
(MT) n—1
. <6X1’g5 (P’{w] j:1>eX”>sc,M+
> RHS of (138). O (139)

Conclusion: By Corollary 5.10, to show that {4, g} is ergodic, it suffices to
find some n and  such that the RHS of (138) is strictly positive. {

For all {z,y} € FE and z € A, set
a. = a.({z,y}) = V2w, *(gs2 — 9y2)- (140)

23 Assume that ¢¥xx(-) = 0 for all X € AMTA as a vector in L2(Q). Then we have
Tr[y(q)] = ZXE/\JWTA Yxx(g) = 0, which implies that ¢» = 0. This is a contradiction.

Thus, there exists an X € AMT A such that wxx(-) # 0 as a vector in L?(Q). Thus, there
exists a measurable set Sx with |[Sx| > 0 such that ¥ x x(g) > 0 for all g € Sx.
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Let

y={ad)cex 0|z e pst. L ateshla. - ) e 20,

EISIAN
(141)
Clearly, ) is a set of Lebesgue measure 0. Let
W = {w € 4| max |a(s)(¢)] < 61/4}- (142)
se|0,

Note that fWﬁ Do > 0 for sufficiently small 5 > 0, since UgsoW3 = A. In
Appendix C, we will show the following:

Proposition 5.11. (Connectivity) Let P € Q@g\;{j) [L]. Let (g,q1),(q1,q2),- - -,
(qr—-1,q') € Y°, the complement of ). Then there exist 3, > 0 and T'x > 0
such that for all B € (0,8,) and ¢1,%2 ..., € Wg, we have

>T,. (143)

e (P st

e,MT
Note that B, and Ty depend on q,q1,...,qr-1,q .

Proof. See Appendix C. O

5.4. Completion of proof of Theorem 5.4

By Propositon 5.5, we can take n € N such that z@x(,l\;f(f)[n — 1] # 0. Let

(g,q1)s---,(qn-2,9") € Y°. For all P € 93(/2\;[(*)[” —1], B € (0,84) and
P15, Pn—1 € Wg, the term

2

<€Y»«%§MT) (R {wj(%)}?;f) 6X>S

e,MT

is strictly positive by Proposition 5.11. Thus, it holds that

1
/0 dﬁ/dﬂq,quﬁ(‘Pl) dﬂqlm;ﬁ(‘:%) o dpig, 5,q58(Pn-1)

n—1 B8 ¥
X exp [— Z/O dsV (w;(s)(#;)) <€Y7%£M )<P» {wj(%)}?;f) €X>
i=1

>0 (144)

e, Mt

for all (g,q1),...,(gn—2,9") € Y°. Let J, 3 be the RHS of (138). By (133)

and (144), we have fol Jn,3dB > 0. Since J7;, g is continuous in 3, there exists
a By > 0 such that 7, g, is strictly positive. Hence, {%,, 3} is ergodic. O
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5.5. Proof of Theorem 1.3
By Corollary 5.2 and Theorem A.2, the ground state of Hj, is unique and
strictly positive w.r.t. €.

(i) immediately follows from Theorem 1.1.

Because H); commutes with S2,, and because the ground state of H)s
is unique, we obtain (ii).

By an argument similar to that for (112), we have

(a1, Sut Sy—thar) = Yavy (Yot L(cacy)R((cacy) )nr).  (145)

Since 1y is strictly positive and L(c,cj)R((czcy)*)>0 w.r.t. €y, we conclude
(iii). O

6. Proof of Theorem 1.6

6.1. Gaussian domination

In this section, we assume (B. 1), (B. 2) and (B. 3).

In the previous sections, we considered the Hamiltonian in the M-
subspace. Here, we will study the Hamiltonian in the full space € ® B. In
this case, we can still define the Lang—Firsov transformation % and the hole-
particle transformation % as before. Let us define H by

* * 1
H=WUHU W+ pana =5 Y Vay. (146)
TEA z,yEA
We can confirm that
H=-Ty,1—T_,,+U+H,, (147)

where T4 , and U are given in Subsections 3.1 and 3.3, respectively.
For each h = {h,}.en € RIAL let

~ 1
U(h) = 5 Z Ueff,zy (nxT —Ng| + hz) (nyT — Ny + hy) (]_48)
z,yeA

We introduce a new Hamiltonian given by the following;:
H(h) = Ty 41 — T4, + U(h) + H,. (149)
Note that
H = H(0). (150)
The main purpose in this subsection is to show the following:
Theorem 6.1. Let Z5.(h) = Tr [e_mm(h)e_sHp . We have Z5.(h) < Z35.(0)
for allh € RIA and e > 0.

Remark 6.2. We introduced e~*» in Z3 . (h) for the following reason: the
factor e~Hr enables us to interchange a limit operation and a trace operation
in the final step of the proof.
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6.1.1. Auxiliary lemmas. Let T'= T, 1+ +T_,4 . Under the identification
®
@@m:/ Se®§edQ7 (151)
Q
we have

(&)
T- /Q T(q)da, T(q)=Teyl@@1+18T 4(q)  (152)

where T4 ,4(q) is defined by (75).

Lemma 6.3. Let K = —T + H,. Let
Zgne(h) = Tr[(e‘ﬂK/"e—ﬂmh)/") e_sHP], neN, e>0. (153)

Let us introduce the following notation:

/dyé?;;g,EF(w17 et ’wnJrl)

n
:/Q quj/d/‘q,ql;ﬁ/dﬂqhqz;ﬁ"'/dﬂqnthn;ﬂ/dﬂqmq’;s
j:

xexp{ Z/ dsV(w;(s /dstn+1 )} (w1, wWht1)-

(154)
Then, setting 3 = B/n, we have
Z3n.e(h)
(4r)-TIAL/2 (n+1) =i 3" —yr K4
_(47'(' /an\Hdk/dq/dyqqﬁE J1 e J=17"3
771, ,ﬁ
X Trz. oz [H (HeT(wj(s))dseiZm,yEA BkaUeff,wy(ny®n—ﬂ®ny)>] . (155)
j=1 \ 0

Proof. By the Trotter-Kato product formula, we have

S S s S w S
e (q,q') = /dﬂqq ﬁ(l Ie Dd) o V@), (156)
Let

I pe = (e*ﬁK/nefﬁﬁ(h)/n)nefer. (157)
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By (156), the kernel operator of .#, g . is obtained by the following observa-
tion:

jn,ﬁ,e(qu qn+1)
n - B
= / 11 da; ( IIe """ (gj-1. qj)e_ﬁU(h)/"> e (g, gnia)
Q" j=1 j=1

- > B s i(8)—[Fds ) s
:/Qn H de /d’uqovql;é o ./duqn,‘LHrl;Ee iz fo dsV(@i(9)=Jg dsV(@nt1(s))
=1

n ﬁ
<11 { ( 11 eT(wj(s))ds> o—F0(h) }
j=1 0

n+1 S —_3U
- faigzt 11 (H Yoo 159

j=1

Thus, we have

Zpme(h) = T[S o] = / dqTrs, o5, [fn,ﬁ,e<q, 9|

/ 4 / dyq @i, 3 Trs, 05, [ II { < I1 eT(w’(s))ds> e PUM) H .

(159)

Finally, applying the following identity
e=FOM) _ (4r)-1AI/2 / ke ¥e 46t e AUtk (ny1=m1) | (160)
RIA|
we obtain the assertion in the lemma. O
Lemma 6.4. We have
Zgn,e(h)

—(4m) ”'A‘”/ Hdk /dq/dvc(,";és TR X K4
R7L|A\

2

x |Trg. (161)

N -
H <H6T+q(‘~'7(5 ))ds lzm yEAﬁkJrUeff w"y>‘|
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Proof. Note that Tr[A ® B] = Tr[A]Tr[B]. By Lemma 6.3, we immedi-
ately have

Zﬁ n e(h)

n
=(4) ”'A‘/Q/ H /dq/dyg’jg e Do kb X5 K5 /4
roial 11 a5,

X TI‘S H (H eT+q(<dg s))ds +i>o, yEA ﬁk”Ueff wy y>]
_n _/;
X TI‘S H (H eT_g(wj(S))dse—iEx,yeA @kijeff,xyny> ) (162)
Jj=1 0
Let © be a conjugation in §. defined by Oc; ---c; Q =c; ---c; Q,

where Q is the Fock vacuum in §.. Noting that ©¢, 0 = ¢,, we have OT_,(w(s))O =
Ty4(w(s)) and ©On,© = n,. Thus, it holds that

3 B
o H eT-g(w(s))dsgy _ H eTJrg("«'(S))dS7 (163)

0 0
Oe i Teyer Fhialettavy @ = o+ X yen Fhsalettavny, (164)

Hence, using the fact that Tr[A] = (Tr[©ABO)])*, we observe that

n 3
Trg, H (HeT_g(w(s))dse—iZm,yeA Bkjmuemyny>]
j=1 0
n /7; )
:{Tl“ge @H (HeT_g(w(s))dse—iZz,yeA BkaUemyny>@ }
j=1 0

n B *
:{Tr&e H <H6T+g(w(5))dse+izw,ye/\ 5’szUeff.,wy“y>] } . (165)

j=1\ 0

This completes the proof. O

6.1.2. Proof of Theorem 6.1. Remark that except for e 2j=ikiBa]) fac-
tors of the integrand in (161) are positive. Thus, |25 .c(h)| < Z3.,,..(0). As
n — 00, Z3.5.¢(h) converges to Z3 . (h) by Lemma 6.5 below. Thus, we have
ngg(h) < 2[375(0). O

Lemma 6.5. We denote by £*(X) the ideal of all trace class operators on
a Hilbert space X. Let A,,A € #(X) and B,,B € £Y(X) such that A,
converges to A strongly and ||B, — B|l1 — 0 as n — oo, where || - ||1 is the
trace norm. Then ||A, B, — AB|1 — 0 as n — 0.

Proof. See [34, Chap. 2, Example 3]. O
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6.2. Completion of proof of Theorem 1.6
We define the Duhamel two-point function as
1
(A B)sa = 25 / AT o= po= 0= ] (166)
0
Theorem 6.6. Let 0, = ngyy —ng|. For allh € CIM, we have
(o, Uah)" (0. U )) < 57" (h Uth), (167)
where (o, Uegh) =3\ Uett,zy0shy.
Proof. Let A € R. We note
H(\h) = H + §U(\h), (168)
~ ~ - )\2
0U(Ah) = U(Ah) — U(0) = Ao, Uegh) + §<h’ Uegh). (169)

By the Duhamel formula, we have the norm-convergent expansion:

¢~ PHOR) zpn (170)

D,(\) = (—-6)" / 15U (AR) - - - e~ PHFU (Ah)e ™ (12— s)0H,
Sn(l)

(171)
By Lemma 6.5, we have
Z5.(\h) ZTr{ N *H} (172)
Note that
)\2
Tr [Dl()\)e_EHP} = 5 (b, Usgh)Tx [e-BHe—EHP] (173)
and, by Theorem 6.1,
Z 5(0) - Z ,E()‘h)
b 2 b > 0. (174)
Hence, letting A — 0, it follows s that
g(h,Uegh)Tr [e_ﬁHe_EHp}
1 1 S1
— ﬁQ/ dsl/ dsoTr [e_slﬂH<U, Uegh>e_525H(U,Uegh>
0 0
em (i m)emeHy | > g, (175)

By applying Lemma 6.5 again, we have lim._, 1o Trle ?He~*H»] = Z5 and
the second term in (175)

2
N / der[(a U.sh)e " (o, Uogh)e <1—f>ﬁH} as ¢— +0. (176)
0
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Thus, we obtain (167) for h real-valued. To extend this to complex-valued
h’s, we just note that, if A = Ar +iA; with A} = Agr, A = Aj, we have
(A", A)pa = (Ar; Ar)p.a + (Ar, AD)ga- O

To finish proof of Theorem 1.6, we note that
((6m, Uegrh)*, (om, Ueffh>)&A = (o, Uem)”, <0',Ueffh>))ﬁ,A. (177)

Thus, by the Fourier transformation, we obtain Theorem 1.6. O

Appendix A. Operator inequalities associated with the Hilbert
cone

Let X be a complex Hilbert space and X be a Hilbert cone in X.
Proposition A.1. Let A, B be self-adjoint positive operators on X. Suppose
that

(i) e PA>0 w.rt. Xy for all 3>0;
(i) A> B w.rt X
(ili) C = A — B is bounded.
Then we have e PB > e=F4 y.r.t. Xy forall B> 0.

Proof. By (ii), C>0 w.r.t. ¥, and B = A—C. By the Duhamel formula,
we have the following norm-convergent expansion:

e_ﬁB = Z Dn(ﬁ)a (178)
n=0
Dy (8) = /s @) e ACeT2AC . oA (X1 54, (179)

B e S .
where fSn(ﬁ) = fo dsq fo dsa- [y dsy, and Do(83) = e . Since
C>0and e *4 >0 w.r.t. X, it holds that D, (38) >0 w.r.t. X, for all n > 0.
Thus, by (178), we have e #B > Dy(3) = e #4 w.r.t. X4 for all 5> 0. O

The following theorem plays an important role:

Theorem A.2. (Perron—Frobenius—Faris) Let A be a positive self-adjoint op-
erator on X. Suppose that 0 Je™t4 w.r.t. X, for all t > 0 and inf spec(A) is
an eigenvalue. Let Py be the orthogonal projection onto the closed subspace
spanned by eigenvectors associated with inf spec(A). Then the following are
equivalent:

(i) dimranPy =1 and P4 >0 w.r.t. X4.
(i) 0<e ™ w.rt. X, for allt > 0.
(iii) For each z,y € X4 \{0}, there exists a t > 0 such that (x,e *4y) > 0.

Proof. See [5, 21, 31]. O
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Appendix B. Strong product integration

Let C,,xn be the space of n X n matrices with complex entries. Let A(-) :
[0,a] — C,,xn be continuous. Let P = {sg, $1,...,S,} be a partition of [0, a]
and p(P) = max;{s; — s;_1}. The strong product integration of A is defined
by

a

—_—

H eA(s)ds -—  lim eA(.91)(Sl—SO)eA(S2)(32_51) . eA(S"L)(S"_S"*l). (180)

o n(P)—0

Note that the limit is independent of any partition P.

Theorem B.1. It holds that

H eAl)ds _q / dsA(s)
O O

Proof. See [3]. O

g&ﬁMM@H—1—/‘@wugw (181)
0

Appendix C. Proof of Proposition 5.11

To show Proposition 5.11, we need two technical lemmas.
Recall the definition of ®, ,1(-) given by (45).

Lemma C.1. Let (q,q’) € V¢, the complement of Y. There exist 3y > 0 and
C > 0 such that, for all 5 € (0,5) and ¢ € Wpg,

B8
|61 / ds exp {icb{w,y} (w(s)(cp))} >y — CBY4, (182)
0
where
sin 6, 1 /
Yoy = 2 T s axy = 5 Zaz({wvy})(qz - qz)‘ (183)
Ty

z€A

Note that yzy > 0 for all (q,q") € Y° and By depends on (q.q").

Proof. Let

1 . .
Kmy _ ol D ca @24 (6219zy _ 1) . (184)
.

Note that |Kyy| = 74y and

5
Kpy= 07" /0 ds exp {iq’{m,y} ((1 —B71s)q. + ﬁ‘lsq;) } (185)
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Thus, since |e'® — 1| < |a|, we have

|ﬂ1 /Oﬁ dsexp {iCI){%y} (w(s)(cp))} - Ky

:|ﬁl /Oﬁ ds exp {ifb{w,y} ((1 — B871s)q. + Blsq;)}
(e {vAne (o)} 1)

i V02 (o))
<BY> 7 |a({z,y})|. (186)

zEN

< max

This completes the proof. O

Lemma C.2. Let (q,q') € Y°. Let {X,Y} € AM'E. There exist By > 0 and
~v > 0 such that, for all 8 € (0, 5p) and ¢ € Wg, we have

Kem—l / g (w<s><so>)ey>] > (187)

Note that By and v = v(q,q’) depend on (q,q’).

Proof. Using standard notation of the second quantization®*, we can

write

Ti4(q) = dU'(T44(q)) s (190)
T+g(q) = Z Loy €Xp {iq){x,y}(q)}lew><ey| (191)
{z,y}€FE

for all g € Q.
Write X,Y as X = (21,...,251) and Y = (y1,..., Y1) Then, there
exists a unique j such that {z;,y;} € E and z; = y; holds for all ¢ # j. By

24Let A be a bounded self-adjoint operator on ¢2(A). The second quantization of A is
defined by

N
(AN =) 188 A ®--al (188)
j=1 I
jth

dU(A)y acts in ANL2(A). Set agy = {es, Aey). Then dT'(A)y can be expressed as

dU(A)N = > azychey. (189)
z,yEA
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(190), it indicates the following:

(ex. [ asTra ) @Der) =(en,, [

/OB dste;y, exp {i@{xj,yj} (w(s)(cp)) }

B8
ATy (w(5) () e, )

(192)
y (192) and Lemma C.1, we have
B
(ex.r? [ sty (wo)@)er )
0
B
=ty s / ds exp {i@{xj%}(w(s)(go))}‘
0
>te;y,] (Vasy; — CBY). (193)

Thus, we have the desired assertion. O

Completion of proof of Proposition 5.11
For each P = X1 Xy --- X141 € M (L), let

(P ey ()Y ) = HEX [ sy P50 B 190

We claim that
90 (P ey ()b ) = 70 (P} ) + O(BH). (195)

Here, the error term O(BLT!) satisfies ||O(BEFY)|| < CBLHL, where C is
independent of ¢;. To see this, we observe that, by Theorem B.1,

Ex

J+1

3
Ex, Gﬁ(wj(sj)(soj))—/o ds Ty g(w;(s)(#;))

16
| Ex, |Ga(wi(s:) () — 1 — / ds T4y (w;(5)(3)) | Ex, .
Jé; 2
< ([ elrestesien)
< BO(MY (s ) (196)

Here, we have used the fact that Ex,Ex,,, =0.

j+1
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Denote Xy = X and X1 =Y. By Lemma C.2, we have

87" (ex " (P w0} Jev )

L+1

8
:H <er_1,51/0 d3’]I‘+g(wj(s)(cpj))er>

>y(q. q1)v(q1.q2) - v(qr-1,4'), (197)

where v(q, ') is given by Lemma C.2. By combining this and (195), we obtain
the desired result. O
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