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Abstract
Dopamine has been associated with risky decision-making, as well as with pathological gambling, a behavioral
addiction characterized by excessive risk-taking behavior. However, the specific mechanisms through which
dopamine might act to foster risk-taking and pathological gambling remain elusive. Here we test the hypothesis
that this might be achieved, in part, via modulation of subjective probability weighting during decision making.
Human healthy controls (n � 21) and pathological gamblers (n � 16) played a decision-making task involving
choices between sure monetary options and risky gambles both in the gain and loss domains. Each participant
played the task twice, either under placebo or the dopamine D2/D3 receptor antagonist sulpiride, in a double-blind
counterbalanced design. A prospect theory modelling approach was used to estimate subjective probability
weighting and sensitivity to monetary outcomes. Consistent with prospect theory, we found that participants
presented a distortion in the subjective weighting of probabilities, i.e., they overweighted low probabilities and
underweighted moderate to high probabilities, both in the gain and loss domains. Compared with placebo,
sulpiride attenuated this distortion in the gain domain. Across drugs, the groups did not differ in their probability
weighting, although gamblers consistently underweighted losing probabilities in the placebo condition. Overall,
our results reveal that dopamine D2/D3 receptor antagonism modulates the subjective weighting of probabilities
in the gain domain, in the direction of more objective, economically rational decision making.
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Significance Statement

Dopamine has been implicated in risky decision making and gambling addiction, but the exact mechanisms
underlying this influence remain partly elusive. Here we tested the hypothesis that dopamine modulates
subjective probability weighting, by examining the effect of a dopaminergic drug on risk-taking behavior,
both in healthy individuals and pathological gamblers. We found that selectively blocking dopamine D2/D3

receptors diminished the typically observed distortion of winning probabilities, characterized by an over-
weighting of low probabilities and underweighting of high probabilities. This made participants more linear
in their subjective estimation of probabilities and thus more rational in their decision-making behavior.
Healthy participants and pathological gamblers did not differ in their risk-taking behavior, except in the
placebo condition in which gamblers consistently underweighted losing probabilities.
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Introduction
A wealth of animal and human studies has implicated

dopamine in risk-taking behavior. Pharmacological stud-
ies in rodents have shown that drugs blocking dopamine
D1 and D2/D3 receptors generally decrease risk taking,
whereas drugs enhancing dopamine D1 and D2/D3 recep-
tor activity generally increase risk-taking (St Onge and
Floresco, 2009; Zeeb et al., 2009; St Onge et al., 2010;
Barrus and Winstanley, 2016). Similarly, in humans,
boosting dopaminergic transmission with drugs such as
L-Dopa and D2/D3 receptor agonists has been shown to
increase risk-taking behavior (Riba et al., 2008; Djamshid-
ian et al., 2010; Voon et al., 2011; Rutledge et al., 2015;
Rigoli et al., 2016). Furthermore, studies in both humans
and animals have reported that variations in dopamine
levels due to genetic manipulations or natural variations in
the expression of the dopamine transporter gene are asso-
ciated with changes in risk preferences (Mata et al., 2012;
van Enkhuizen et al., 2014). Yet, the specific neurocognitive
mechanisms through which increased dopaminergic trans-
mission would increase risk-taking behavior remain partly
elusive. Some studies have suggested an influence via
reward valuation mechanisms (Zhong et al., 2009) while
other studies have shown that this influence is exerted via
a change in value-independent gambling propensity (Rut-
ledge et al., 2015; Rigoli et al., 2016; Timmer et al., 2017).
Here, we focus on a less well-investigated hypothesis,
which is the role of dopamine on the subjective weighting
of probabilities, both in healthy participants and individu-
als suffering from pathological gambling, a psychiatric
disorder characterized by excessive risk taking.

A useful and popular framework for examining how dopa-
mine influences probability weighting is prospect theory
(Kahneman and Tversky, 1979). Prospect theory posits
that the departure of human agents from rational eco-
nomic decision-making (i.e., expected value maximiza-
tion) results from diminishing sensitivity to outcome value
on the one hand and nonlinear weighting of probabilities
on the other hand. People typically overweight low prob-
abilities and underweight moderate to high probabilities,
which results in an inverted-S-shaped probability weight-

ing function and a diminished sensitivity to changes in prob-
abilities in the medium range (Fig. 1B). A previous PET
study in humans has shown that the degree of nonlinear
probability weighting in the gain domain is correlated with
striatal dopamine D1 receptor availability across subjects
(Takahashi et al., 2010). Work with fMRI has also shown
that probability distortion is accompanied by similarly
distorted patterns of striatal BOLD activity (Hsu et al.,
2009). Here, we aimed to establish a causal link between
dopamine and probability distortion using a pharmaco-
logical manipulation.

Dopamine has been linked to pathological gambling
(PG, also called gambling disorder), an addictive disorder
characterized by excessive financial risk-taking in the face
of negative consequences. Initial evidence for the role of
dopamine in PG came from the clinical observation that a
subset of patients with Parkinson’s disease develop PG
symptoms after receiving dopaminergic replacement ther-
apy, in particular dopamine D2/D3 receptor agonists with
high affinity for D3 receptors (Voon et al., 2009; Seeman,
2015). This concurs with recent evidence showing that PG
is characterized by a hyper-dopaminergic state (Boileau
et al., 2014; van Holst et al., 2017), and the prominent role
of dopamine D3 receptors in human and rat models of PG
(Payer et al., 2014; Lobo et al., 2015). However, the
specific mechanisms through which dopamine D2/D3 re-
ceptor activity may act to foster PG remain elusive. In our
previous study (Ligneul et al., 2013), pathological gam-
blers showed an elevation in their probability weighting
function compared with healthy controls, reflecting an
increased preference for risk or “optimism bias” in the
gain domain (Gonzalez and Wu, 1999). Based on this
observation, we aimed to test whether sulpiride, a selec-
tive dopamine D2/D3 receptor antagonist, could normalize
risk-taking behavior in pathological gamblers, by decreas-
ing the elevation of subjective probability weighting.

To test the above hypotheses, we conducted a pharmaco-
behavioral study using a within-subject counterbalanced
design. pathological gamblers and healthy controls were
asked to make choices between safe and risky options, both
under placebo and sulpiride. Of note, feedback was not
provided, to avoid potential learning effects and rein-
forcement-induced changes in choice strategy (Schonberg
et al., 2011). We used prospect theory modeling to estimate
subjective probability weighting and sensitivity to outcome
value, separately in the gain and loss domains. Our main
objective was to assess the effect of sulpiride on the two
main characteristics of the probability weighting function,
i.e., nonlinear distortion (sensitivity to changes in probability)
and elevation (optimism bias). At a more exploratory level,
we were also interested in comparing those effects in the
gain and loss domains, given extensive literature showing
differential effects of dopamine on gains versus losses
(Frank et al., 2004; Pessiglione et al., 2006).

Materials and Methods
Participants

We recruited 22 healthy controls and 22 pathological
gamblers, all men, following an in-depth structured psy-
chiatric interview administered by a medical doctor (MINI
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Plus; Sheehan et al., 1998). One gambler was excluded
because his data were accidentally not written to the log
file for one drug session. One control participant and five
gamblers were excluded due to extreme behaviors violat-
ing core assumptions of prospect theory (for more details,
see Statistical analysis). Therefore, the reported results
are based on data from 21 healthy controls and 16 gam-
blers. The present task was part of a larger study for
which the participants were paid €50 on each session.
The other tasks in the study were a reversal learning task
(Janssen et al., 2015), a slot machine task measuring
sensitivity to near-misses (Sescousse et al., 2016), and a
mixed gamble task measuring loss aversion. All partici-
pants provided written informed consent, which was
approved by the regional research ethics committee
(Commissie Mensgebonden Onderzoek, region Arnhem-
Nijmegen).

pathological gamblers were recruited through adver-
tisement (N � 13) and addiction clinics (N � 3). None of
the gamblers was in treatment at the time of testing, except
for one who was just starting a cognitive behavioral therapy
for his gambling problems. Control participants were re-
cruited through advertisement. All gamblers, with the ex-
ception of one, qualified as pathological gamblers (�5
DSM-IV criteria for pathological gambling; American Psy-
chiatric Association, 2000). One gambler qualified as
problem gambler as he met only four DSM-IV criteria. The
severity of gambling symptoms was assessed using the
South Oaks Gambling Screen (SOGS; Lesieur and Blume,
1987). All gamblers had a minimum SOGS score of 6
(range, 6–18), whereas healthy controls, with the excep-

tion of two participants, had a SOGS score of 0 (range,
0–2).

The two groups were matched for age, net income,
body mass index, and verbal IQ (Table 1). Participants
were excluded if they consumed more than four alcoholic
beverages daily; were using psychotropic medication;
had a lifetime history of schizophrenia, bipolar disorder,
attention deficit hyperactivity disorder, autism, eating dis-
order, anxiety disorder, or obsessive-compulsive disor-
der; or had a major depressive episode in the preceding
six months. Given the high comorbidity between patho-
logical gambling and other psychiatric disorders (Lorains
et al., 2011), gamblers with the following comorbidities
were included in the sample: past cannabis dependence
(more than five months; N � 1); lifetime history of dysthy-
mia (N � 1); and remitted post-traumatic stress disorder
(remitted more than four years; N � 1). One gambler had
used cannabis weekly in the preceding six months but did
not meet the DSM-IV criteria for abuse/dependence. The
control participants did not have any history of substance
abuse or dependence. A number of self-report question-
naires were further used to characterize the participants
(Table 1).

Pharmacological manipulation
Participants were tested once after receiving a sulpiride

pill (Dogmatil, 400 mg), and once after receiving a placebo
pill filled with microcrystalline cellulose. The order of ad-
ministration was randomized according to a double-blind,
crossover design (placebo-sulpiride: 10 controls, eight
gamblers; sulpiride-placebo: 11 controls, eight gamblers).

A B

Figure 1. The gambling task and the probability weighting function of prospect theory. A, Each trial consisted of a self-paced choice
between a sure option (on the left) and a risky gamble (on the right), followed by visual confirmation of the choice (a frame around the
chosen option) and fixation. The sure amount in the next trial was adjusted based on the choice (increased if gamble was chosen,
decreased if the sure option was chosen), with the gamble being fixed. After six choices, the sure amount that was reached provided
an indifference point between the two options, defined as the certainty equivalent of the gamble. A new series of choices involving
a new gamble was then started (in total, 10 gambles in the gain domain and 10 gambles in the loss domain). No feedback was
provided on the outcome of the choices. B, The solid black line represents a typical probability weighting function, with overweighting
of low probabilities and underweighting of moderate to high probabilities. The dashed diagonal line represents neutrality with regard
to sensitivity to probabilities.
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The test sessions were separated by at least one week.
Sulpiride was chosen as the dopamine-modulating drug
in this study based on a few reasons. First, it is one of the
most selective agents acting on dopamine D2/D3 recep-
tors. As mentioned earlier, D2/D3 agents are known to
cause pathological gambling symptoms in a subset of
patients with Parkinson’s disease. Moreover, sulpiride has
been shown to modulate the sensitivity to reward and
punishment during learning in human studies (Eisenegger
et al., 2014; van der Schaaf et al., 2014). Background
neuropsychological functioning, physiological measures
and subjective mood were measured at several time
points during the protocol to check for nonspecific effects
of sulpiride; no such effects were observed. The risky
decision-making task was performed �3 h 15 min after
drug intake, thus coinciding with high plasma concentra-
tions of sulpiride (von Bahr et al., 1991).

Experimental design and statistical analysis
Experimental task

We used a “certainty equivalent” procedure (Fig. 1A)
based on the protocol developed by Abdellaoui et al.
(2008, 2011). Participants made series of hypothetical
decisions between a sure amount of money (either a gain
or a loss) and a gamble (either a pure-gain or pure-loss
gamble). In each series of decisions, the gamble was fixed
and the sure amount was iteratively adjusted to converge
toward a certainty equivalent corresponding to the sure
amount that felt subjectively equivalent to the gamble.
There were 10 series of decisions (i.e., 10 different gam-
bles) in the gain domain and 10 series of decisions in the
loss domain (Table 2).

In each series of decisions, the sure amount offered on
the first trial corresponded to the expected value of the

gamble. On subsequent trials, the sure amount was ad-
justed based on the previous choice according to the
bisection method (Abdellaoui et al., 2011), such that it was
increased if the gamble was chosen and decreased if the
sure option was chosen. This staircase procedure drove
the participants toward their certainty equivalent, that is, the
indifference point between the risky and safe options. The
decision for each trial was self-paced, after which the
participant’s choice was highlighted on the screen. Par-
ticipants did not receive any feedback on their choice.
Each series of decisions consisted of six trials, which is
considered enough to provide reliable certainty equivalent
estimates (Abdellaoui et al., 2011). In order to check for
errors and random responses, each series ended with two
control trials that required choosing between the gamble
and a sure amount slightly above or below the estimated
certainty equivalent. If the participant’s response was not
consistent with previous choices, the series was re-
peated. Participants were not explicitly informed about
these control trials. We checked that the number of rep-
etitions was not significantly different between healthy
controls and pathological gamblers (gain domain: Z �
0.55, p � 0.60; loss domain: Z � 1.31, p � 0.20), between
the placebo and sulpiride drug conditions (gain domain: Z �
1.66, p � 0.098; loss domain: Z � 0.36, p � 0.72), or
between gains and losses in general (Z � 1.47, p � 0.14).

In total, participants went through a minimum of 160
experimental trials (10 series � [6 choices � 2 control
trials] � 2 [gain/loss]). The task was the same in the loss
domain but with negative amounts of money. Gain and
loss trials were presented in separate blocks and the
order of the blocks was counterbalanced across partici-
pants and drug sessions. The order of the specific gam-
bles (Table 2) within gain and loss blocks was
randomized. The task was performed on a computer and
the task presentation was created with the Psychophysics
Toolbox 2 (Brainard, 1997) for Matlab.

Behavioral modeling
We used the semi-parametric method introduced by

Abdellaoui et al. (2008, 2011; see also Fox and Poldrack,
2014) to estimate the value and probability weighting
functions of prospect theory. This procedure was em-
ployed separately for gains and losses and for the drug
and placebo conditions, within each individual participant.

Table 1. Demographic characteristics and questionnaire scores

Variable Healthy Controls (n � 21) Pathological Gamblers (n � 16) p
Range M SD Range M SD

Age 18–52 32.1 11.4 21–50 35.8 8.8 0.29
Net income (€) 0–3570 1691 1123 750–3250 1750 949 0.87
Body mass index 18.3–30.9 23.1 3.2 20.8–26.9 23.9 2.0 0.38
SOGS 0–2 0.2 0.5 6–18 12.4 3.9 �0.001
FTND 0–5 0.6 1.4 0–8 2.5 2.9 0.014
Number of current smokers – 10 – – 10 – 0.37
AUDIT 0–14 6.2 3.8 0–15 7.7 4.6 0.27
HADS anxiety 0–12 2.7 2.8 1–12 4.9 3.4 0.035
HADS depression 0–10 1.6 2.3 0–15 4.9 4.4 0.006
Verbal IQ 85–128 106 9.5 77–123 103 12.3 0.43

M, Mean; SD, Standard Deviation; FTND, Fagerström test for nicotine dependence (Heatherton et al., 1991); AUDIT, alcohol use disorders identification test
(Saunders et al., 1993); HADS, hospital anxiety and depression scale (Zigmond and Snaith, 1983).

Table 2. Gambles with varying outcomes and probabilities

Gamble index i
Variable 1 2 3 4 5 6 7 8 9 10
x 1200 1200 600 1200 600 1000 1200 1200 1200 1200
p 1/6 2/6 2/6 2/6 2/6 2/6 2/6 3/6 4/6 5/6
y 0 0 0 600 300 400 900 0 0 0

x is the larger amount of money in the gamble that could be won or lost
with probability p; y is the smaller amount of money in the gamble that
could be won or lost with probability 1 � p. x and y are in €. For losses, the
amounts of money were the same but negative.
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In the first step of the procedure, the certainty equiva-
lents of the gambles with varying amounts of money but a
fixed probability of 2/6 (gamble indices i � 2, . . ., 7 in
Table 2) were used to estimate the probability weight
w(2/6) as well as the curvature of a parametrically defined
version of the value function v(●). By definition, the utility
of each gamble is equal to the utility of its certainty
equivalent and, based on prospect theory, we can write:

v(CE) � w(p)v(x) � (1 � w(p))v(y) (1)

where CE is the certainty equivalent, x is the amount of
money to be won with probability p and y is the amount of
money to be won with probability 1 � p. Assuming a
power function x� for v(●) (Fox and Poldrack, 2014), where
� quantifies sensitivity to outcome values, we can further
write:

CE � �w�p��x� � y�� � y��
1

� (2)

Using a nonlinear least squares procedure (lsqcurvefit
function in Matlab), we then estimated the optimal param-
eter values � and w(2/6) that minimized the least squares
�CE�i� � CEˆ �i��, where CEˆ �i� are the estimated certainty
equivalents for gambles indices i � 2, . . .,7, expressed as:

CEˆ �i� � �w�2/6���xi�� � �yi��� � �yi���
1

� (3)

In the second step of the procedure, nonparametric
estimates of the remaining probability weights w(1/6),
w(3/6), w(4/6) and w(5/6) were derived from the certainty
equivalents of the corresponding gambles (gamble indi-
ces i � 1, 8, 9 and 10 in Table 2). Since y � 0 in these
gambles, based on Equation 2, each probability weight
can be calculated as follows:

CE � �w�p�x��
1

� ⇔ w�p� �
CE�

x�
(4)

Based on these probability weights, we further derived
a parametric estimation of the probability weighting func-
tion. We used a nonlinear least squares procedure to
estimate the two-parameter function proposed by Latti-
more et al. (1992), in which the sensitivity to changes in
probabilities is quantified with distortion parameter �, and
the optimism about risk is quantified with elevation pa-
rameter �:

w�p� �
�p�

�p� � �1 � p��
(5)

To avoid local minima in our least squares estimations,
we used an approach with randomized starting values.
The two-step estimation procedure was run 200 times
with starting values randomly drawn from [0, 5] for param-
eters �, �, and �, and from [0, 1] for w(2/6). The resulting
prospect theory parameters with the smallest squared
norm of the residuals (“resnorm”), reflecting the goodness-of-fit
between the model and the data, were selected for the
subsequent statistical analysis. Note that the resnorm
values did not differ between drugs or groups for either of

the two least square estimations (paired and independent
t tests, respectively: all pcorrected � 0.2), suggesting that
the average goodness-of-fit was comparable across
drugs and groups.

Statistical analysis
One control participant and four pathological gamblers

were excluded from subsequent group analyses based on
their certainty equivalents. For all these participants, the
absolute value of their certainty equivalent was higher for
Gamble 1 (x � 	€1200, p � 1/6) than for Gamble 10
(x � 	€1200, p � 5/6), in at least one of the four condi-
tions of interest (gain/loss � placebo/sulpiride). This be-
havior violates the basic assumption of positive
monotonicity in the evaluation of probabilities. One path-
ological gambler was further excluded due to extremely
risk averse behavior (� value over three standard devia-
tions away from the mean) that likely resulted from a fear
of losing control and relapsing into compulsive gambling
(as reported by the participant during debriefing). While
the primary analyses were performed on the reduced
sample resulting from these exclusions, we also per-
formed analyses on the full sample to verify that our
results were not distorted by our exclusion procedure (for
details, see Results, Sensitivity analyses).

Prospect theory parameters �, �, and � were compared
across groups and drug conditions, separately in the gain
and loss domains, using nonparametric statistics due to
the non-normal distribution of the data. Main effects of the
within-subject Drug factor were assessed using Wilcoxon
tests. Main effects of between-subject Group factor were
assessed using Mann–Whitney U tests, after parameters
were averaged across drug sessions. Drug-by-Group as
well as Drug-by-Drug Order interactions were examined
with Mann–Whitney U tests comparing sulpiride minus
placebo values between groups. Bonferroni correction
was used for the six comparisons performed for each
dependent variable (parameters �, �, and �): the two main
effects of Drug and Group as well as their interaction,
times the two contexts (gains and losses). Therefore, the
corrected p values correspond to the uncorrected p val-
ues multiplied by 6. For effect sizes, we use the Common
Language Effect sizes (CLE; Wuensch, 2015; Grissom
and Kim, 2012) for intuitive interpretation. For the Mann–
Whitney U tests, the CLE was calculated as U divided by
the product of the two groups’ sample sizes. For the
Wilcoxon tests, the CLE was calculated as the number of
positive differences (in favor of sulpiride over placebo)
divided by the number of comparisons, that is, the total
sample size. Therefore, the CLE represents the probability
of a randomly selected value from one group/condition
being higher than a randomly sampled value from the other
group/condition. For both tests, there is no difference be-
tween the groups or conditions at CLE � 0.5.

Code accessibility
The data and code used to produce the reported

results are available as Extended Data 1. The data and
code can be found with DOI references and addresses
doi.org/10.6084/m9.figshare.5311354 and doi.org/10.
6084/m9.figshare.5311456, respectively. The code was
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run with a standard Windows 7 Professional 64-bit desk-
top computer (Intel Xeon CPU E5-1620, 16GB RAM), both
with MATLAB R2013a and R2016a (RRID: SCR_001622).

Results
Table 3 reports group estimates for parameters �, �,

and � in the study.

Sensitivity to changes in probabilities (distortion
parameter �)

A change in the distortion parameter � of the probability
weighting function represents a change in the nonlinear
weighting of probabilities and thus the sensitivity to
changes in probability. The distortion parameter � did not
significantly differ between control participants and path-
ological gamblers either in the gain domain (Z � 1.47,
puncorr � 0.15, CLE � 0.64) or the loss domain (Z � �1.13,
puncorr � 0.27, CLE � 0.39).

However, there was a significant effect of the drug on �
in the gain domain (Z � 2.96, puncorr � 0.003, pcorr �
0.018, CLE � 0.70). Specifically, participants had higher
values of � under sulpiride (Mdn � 0.69) than under
placebo (Mdn � 0.58), indicating lower levels of distortion
of the probability weighting function in the sulpiride con-
dition (Fig. 2). In the loss domain, there was no difference
between placebo and sulpiride (Z � 0.36, puncorr � 0.72,
CLE � 0.41). Drug effect did not interact with drug order
in either the gain (Z � 1.46, puncorr � 0.15, CLE � 0.65) or
the loss domain (Z � 0.58, puncorr � 0.58, CLE � 0.56),
indicating no reliable session effects. The drug effect
(sulpiride-placebo) was not significantly different between
control participants and pathological gamblers in the gain
domain (Z � 0.55, puncorr � 0.60, CLE � 0.55) or in the
loss domain (Z � �2.02, puncorr � 0.044, pcorr � 0.26, CLE �
0.30). Figure 3 illustrates the shape of the probability weight-
ing function separately for the gain/loss and placebo/
sulpiride conditions in each group.

Optimism about risk (elevation parameter �)
A change in the elevation parameter � of the probability

weighting function represents a shift in the weighting of
the entire probability range, thus reflecting overall opti-
mism or pessimism about risk. The elevation parameter �
did not significantly differ between control participants
and pathological gamblers either in the gain domain (Z �
�1.41, puncorr � 0.17, CLE � 0.36) or in the loss domain
(Z � �1.96, puncorr � 0.051, pcorr � 0.31, CLE � 0.31).
Moreover, there was no significant effect of drug either in

the gain domain (Z � �0.31, puncorr � 0.76, CLE � 0.43)
or in the loss domain (Z � 0.39, puncorr � 0.70, CLE �
0.59). Finally, the drug effect (sulpiride-placebo) was not
significantly different between control participants and
pathological gamblers in the gain domain (Z � �0.74,
puncorr � 0.48, CLE � 0.43) or in the loss domain (Z �
1.57, puncorr � 0.12, CLE � 0.65).

For optimal comparison with our previous study, in
which we found a group difference in � in the gain domain
(Ligneul et al., 2013), we further compared the groups in
the placebo condition alone. This analysis did not reveal a
significant group difference in � in the gain domain (Z �
0.03, puncorr � 1.0, CLE � 0.50) but did reveal a significant
difference in the loss domain (Z � �2.9, puncorr � 0.003,
pcorr � 0.018, CLE � 0.22). Specifically, pathological
gamblers had lower values of � (Mdn � 0.42) than control
participants (Mdn � 1.08), indicating lower elevation of
the probability weighting function in the loss domain (Fig.
3C,D).

Sensitivity to outcomes (curvature parameter �)
Since our procedure also enabled us to measure the

curvature parameter of the value function, we also exam-
ined potential effects of group and drug on this parame-
ter. Nonparametric tests indicated that there was no
significant difference between control participants and
pathological gamblers either in the gain domain (Z � 0.86,
puncorr � 0.40, CLE � 0.58) or in the loss domain (Z �
1.17, puncorr � 0.25, CLE � 0.61). Moreover, there was no
effect of drug in the gain domain (Z � 1.53, puncorr � 0.13,
CLE � 0.62) or in the loss domain (Z � �1.21, puncorr �
0.23, CLE � 0.41). Finally, the drug effect (sulpiride-
placebo) was not significantly different between control
participants and pathological gamblers in the gain domain
(Z � 1.96, puncorr � 0.051, pcorr � 0.31, CLE � 0.69) or in
the loss domain (Z � �1.69, puncorr � 0.10, CLE � 0.34).

Sensitivity analyses
To confirm the pattern of our main result on probability

distortion, we performed an analysis of the probability
weights themselves, which were obtained using a semi-
parametric procedure, as opposed to the parametric es-
timation of �. Specifically, we performed a 2 (groups) 
 2
(drugs) 
 5 (probability levels: 1/6, 2/6, 3/6, 4/6, and 5/6)
ANOVA on the probability weights w(p) in the gain do-
main. We observed a significant interaction of drug and
probability level on the w(p) (F(2.7,94.495) � 3.21, p � 0.031,
	2 � 0.084), thus strengthening our main result that
sulpiride differentially modulates small versus medium-to-
large probability weights. However, matched samples
post-hoc t tests between the w(p) for the two drug con-
ditions failed to reach significance (w(1/6): t(36) � 1.15, p �
0.26, w(2/6): t(36) � 1.39, p � 0.17, w(3/6): t(36) � 0.62,
p � 0.54, w(4/6): t(36) � �0.15, p � 0.26, w(5/6): t(36) �
�1.41, p � 0.17).

We also repeated our estimation procedure with differ-
ent variations to check the robustness of our results
despite small changes in the way the parameters were
estimated. First, we estimated parameters � and � using
the Prelec version of the probability weighing function

Table 3. Estimates of prospect theory parameters

Parameter
Controls Gamblers

Placebo Sulpiride Placebo Sulpiride
Mdn IQR Mdn IQR Mdn IQR Mdn IQR

�gains 0.74 0.66 0.80 0.42 0.80 0.37 1.16 0.81
�losses 1.02 1.14 1.28 0.64 1.92 1.46 1.36 0.95
�gains 0.99 0.86 0.93 0.85 0.90 0.51 0.68 0.61
�losses 1.08 0.80 0.83 0.61 0.42 0.31 0.78 0.99
�gains 0.55 0.50 0.66 0.54 0.64 0.35 0.89 0.49
�losses 0.97 0.61 1.06 0.60 0.88 0.78 0.72 0.72

Mdn, median; IQR, interquartile range.
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(Prelec, 1998), instead of the Lattimore version (Lattimore
et al., 1992). The Prelec function is defined by the follow-
ing equation:

w�p� � e���� ln p�� (6)

The parameters � and � have the same interpretation as
in the Lattimore function, except that the degree of ele-
vation decreases when the parameter � increases. When
the same analysis was conducted on the parameter esti-
mates obtained with the Prelec function, the drug effect
on the distortion parameter � remained significant (Z �
2.71, puncorr � 0.007, pcorr � 0.032, CLE � 0.70), empha-
sizing that sulpiride decreases the distortion of the prob-

ability weighting function (i.e., increases the parameter �)
compared with placebo.

In addition, the drug effect on the distortion parameter �
remained significant (Z � 2.96, puncorr � 0.003, pcorr � 0.018,
CLE � 0.70) when we used a linear value function (� � 1)
instead of a power function (x�), a common assumption we
made in our previous study (Ligneul et al., 2013).

Furthermore, using the original analysis with the power
and Lattimore functions, the drug effect on the distortion
parameter � remained significant when we excluded the
one participant with past cannabis dependence (Z � 2.83,
puncorr � 0.005, pcorr � 0.030, CLE � 0.69). It also re-
mained significant when we included all possible partici-

A B

C

Figure 2. Dopaminergic modulation of probability distortion. A, Boxplot illustrating the drug effect (sulpiride-placebo) on the distortion
parameter � of the probability weighting function in the gain domain, across all participants. Box height represents the interquartile
range (IQR), black line represents the median, and whiskers represent the largest and smallest values no further than 1.5�IQR. Single
data points are values located outside the whiskers. B, Within-subject paired observations of � estimates in the placebo and sulpiride
conditions for both experimental groups (different illustration of the result presented in Fig. 2A). C, Fitted probability weighting
function, based on the median estimates of � (elevation) and � (distortion) parameters across all participants. The shaded areas
illustrate the variance of � across participants, with the boundaries corresponding to the probability weighting function plotted with
median �, and 25th and 75th percentile �.
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pants, i.e., when none of the participants were excluded
based on behavioral criteria, leading to 22 healthy con-
trols and 21 pathological gamblers (Z � 3.50, puncorr �
0.00046, pcorr � 0.0028, CLE � 0.72). However, the group
effect on the elevation parameter previously observed in
the loss/placebo condition did not remain significant
when all participants were included, Z � �2.6, puncorr �
0.009, pcorr � 0.054, CLE � 0.27.

Finally, to assess the accuracy of the parameter esti-
mation, we ran a parameter recovery procedure (Heath-
cote et al., 2015). First, we used the parameter values
from the original estimation to simulate new data. Specif-
ically, we generated synthetic certainty equivalents for
every gamble (i.e., 10 gambles in the gain the domain and
10 gambles in the loss domain) for each participant and
each drug condition, using Equation 2. From there we
created 200 noisy synthetic datasets by adding normally

distributed noise to these synthetic certainty equivalents;
following standards in the field, the standard error of the
noise was set to be the median (over all participants and
conditions) of the root-mean-squared error between the
original and simulated values. We then used these noisy
synthetic datasets in combination with the previously de-
scribed semi-parametric procedure (Abdellaoui et al., 2011),
to perform 200 estimations of w(2/6), �, �, and � parameters.
Across-subject correlation coefficients between the original
and the recovered parameter values (defined as medians
over the 200 simulations) were above 0.95 for all parameters
in all conditions, indicating efficient parameter recovery and
high accuracy in the original parameter estimation. Our main
result indicating a significant drug effect on the distortion
parameter � showed an even larger effect size with the
recovered parameter values (CLE � 0.76) than with the
original parameters (CLE � 0.70).

B

C D

A

Figure 3. Fitted probability weighting function based on group median estimates of � (elevation) and � (distortion). Across groups,
sulpiride decreased probability distortion in the gain domain compared with placebo (A, B). When examining the placebo condition
alone, pathological gamblers showed a decreased elevation of their probability weighting function in the loss domain compared with
healthy controls (C, D).
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Discussion
This study investigated the effect of a dopaminergic

manipulation on probability weighting during risk-taking in
pathological gamblers and healthy participants. In line
with our first hypothesis, we found that blocking dopa-
mine D2/D3 receptors attenuated probability distortion in
the gain domain. However, in contrast to our second hy-
pothesis, the elevation of the probability weighting function
was not affected by the dopaminergic manipulation and
did not differ between pathological gamblers and healthy
controls in the gain domain, although a group difference
was observed in the loss domain under placebo. Similarly,
we did not find evidence for differences in sensitivity to
outcomes between pathological gamblers and healthy
controls, as well as no effect of the drug on the sensitivity
to outcomes.

Our results demonstrate that the degree of nonlinear
probability weighting during decision-making is modulated
by dopamine. More specifically, blocking D2/D3 receptors
decreased probability distortion in the gain domain; this
made participants more linear, or rational, in their overall
assessment of probabilities, and thus more sensitive to
changes in probabilities in the medium range. Such a
differential effect of a dopaminergic agent on low versus
high probabilities is consistent with several previous stud-
ies. First, it is remarkably consistent with a recent study
that used a similar paradigm and similar drug (amisul-
pride), and showed that the selective blockade of D2/D3

receptor with amisulpride led to a similar decrease in
probability distortion during risky decision-making (Burke
et al., 2017). In another study, Norbury et al. (2013)
showed that, in low sensation-seeking participants, the
dopamine D2/D3 receptor agonist cabergoline increased
risk-taking for high winning probabilities, while decreasing
it for low winning probabilities. Similarly, Stopper et al.
(2013) have shown that the administration of a dopamine
D1 receptor agonist increased risk-taking behavior of rats
in the context of high winning probabilities but decreased
it in the context of low winning probabilities. Interestingly,
in all these studies including ours, the interaction of do-
paminergic drug effects with probability level led to more
rational behavior maximizing long-term expected value.
Thus, it could be that, instead of, or in addition to, induc-
ing a shift in risk taking, modulating dopamine might
induce a shift in the adherence to the principle of ex-
pected value maximization. This is an intriguing hypothe-
sis that would deserve to be formally tested in future
studies.

Particularly relevant for the current study is the work of
Takahashi et al. (2010), which to our knowledge is the only
study with Burke et al. (2017) to have explicitly investi-
gated the role of dopamine in probability weighting. In
their PET study, Takahashi et al. (2010) reported that
lower dopamine D1, but not D2, receptor binding in the
striatum was associated with higher levels of probability
distortion. This seems partly at odds with the current
results, which suggest that that D2 receptor stimulation
also plays a role in probability weighting. One possibility is
that the drug effect observed in the current study could
reflect a change in the balance between D1 and D2

receptor-mediated activity in the direct and indirect path-
ways of the basal ganglia, respectively, with sulpiride-
induced D2/D3 receptor blockade being associated with a
shift toward D1 receptor-dependent Go-pathway activity
(Frank and O’Reilly, 2006; Jocham et al., 2011; van der
Schaaf et al., 2014). Note that the stimulation of low
affinity D1 receptors could have been further amplified by
the use of a relatively low dose of sulpiride (400 mg), which
may also act on presynaptic auto-regulatory D2 receptors
and thus increase dopamine release (Frank and O’Reilly,
2006). Accordingly, we observed that sulpiride-induced
D2/D3 receptor blockade decreases distortion, which is in
line with the observation of Takahashi et al., that higher D1

receptor binding in the striatum is associated with less
distortion.

A number of previous studies have shown that dopa-
minergic manipulations induce a global shift in risk atti-
tudes, i.e., they either increase or decrease risk taking,
both in humans (Riba et al., 2008; Djamshidian et al.,
2010; Rutledge et al., 2015; Rigoli et al., 2016) and ani-
mals (St Onge and Floresco, 2009; Zeeb et al., 2009;
Cocker et al., 2012). As mentioned previously, the lack of
such an effect in our study could stem from the fact that,
in contrast to most of these studies that only manipulated
one probability (or a limited range of probabilities), we
considered the whole range of probabilities and observed
opposite effects for high and low probabilities. Another
distinctive feature of our experimental design is the ab-
sence of monetary feedback, which was chosen to avoid
contamination of the decision-making process by previ-
ous outcomes (Schonberg et al., 2011). This is important
since risk attitudes, in particular probability distortion,
have been shown to differ when making decisions from
description, as is the case in our study, versus from
experience, i.e., based on feedback (Hertwig and Erev,
2009). In addition, recent evidence in rats suggests that
the influence of the dopamine D2 pathway on risky be-
havior is exerted via the signaling of prior outcomes (Zalo-
cusky et al., 2016). Thus, the absence of feedback in our
task could explain why the blockade of dopamine D2

receptors failed to produce a global effect on risk atti-
tudes. Interestingly, the vast majority of human studies
reporting a global shift in risk-taking following a dopami-
nergic manipulation have used dopamine-enhancing
agents such as L-Dopa. Thus far, we are aware of only
one study (Burke et al., 2017) reporting similar effects
following dopamine D2/D3 receptor blockade.

We were not able to replicate our previous result show-
ing an elevation of the probability weighting function in the
gain domain (i.e., increased preference for risk) in patho-
logical gamblers compared with healthy controls (Ligneul
et al., 2013). One important methodological difference is
that the monetary amounts used in the current study were
much higher than in our previous study (€300–€1200 vs
€2–€20). It has been observed that people tend to be
more risk seeking for low-stake gambles than large-stake
gambles, an observation referred to as the “peanuts ef-
fect” (Prelec and Loewenstein, 1991; see also Weber and
Chapman, 2005). It is possible that the gamblers in our
previous study were particularly sensitive to the peanuts
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effect and engaged in particularly high risk-seeking be-
havior in the presence of low-stake gambles. It is also
possible that the control participants in the current study
happened to be more risk seeking than on average. A
qualitative comparison of median values for the elevation
parameter in the gain domain (Ligneul et al., 2013: �Controls �
0.74, �Gamblers � 1.03; current study: �Controls � 0.99,
�Gamblers � 0.90) with typical values reported in the literature
(Fox and Poldrack, 2014, their Table A.3: median � � 0.77)
lends credence to these hypotheses: it seems that the
control participants in the current study were more risk
seeking than on average, while the gamblers were less
risking than in our previous study.

Another difference is that we assumed a linear value
function in our previous study, whereas in the current
study we estimated the value function empirically based
on the certainty equivalents. Given the trade-off between
prospect theory parameters � (curvature parameter of the
value function) and � (elevation parameter of the proba-
bility weighting function) in accounting for risk attitudes
(Fox and Poldrack, 2014), it could be that part of the
risk-seeking behavior was absorbed by the � parameter in
our current modeling procedure, whereas all of it was
absorbed by the � parameter in the previous study. Note
however that our present results remained qualitatively
unchanged when the estimation procedure was run with a
linear value function, that is, we did not observe group
differences in the probability weighting function when
using either the linear or power forms of the value func-
tion.

While no group difference was observed in the gain
domain, analyses restricted to the placebo condition re-
vealed that, in the loss domain, pathological gamblers
showed a significant decrease in the elevation of their
probability weighting function compared with heathy con-
trols (Fig. 3C,D). This observation implies a general un-
derweighting of losing probabilities, which could
contribute to the optimism bias and excessive risk-taking
behavior observed in pathological gamblers. However,
given that this result was not predicted and only applies to
the placebo condition, we prefer to refrain from speculat-
ing further before it is replicated.

This study is not without its limitations. First, we had a
modest sample size, partly due to the complexities of
running pharmacological studies in patients, and the ex-
clusion of several participants based on outlying behavior
and violations of basic prospect theory assumptions. Yet,
to mitigate the increased likelihood of false positives (Pol-
drack et al., 2017), we implemented stringent Bonferroni
correction for multiple comparisons and demonstrated
the convergence of results across various sensitivity analy-
ses. It should also be noted that our sample was exclusively
composed of men, and that further study is necessary to
assess whether our results generalize to women, especially
given previous evidence of gender differences in proba-
bility weighting (Fehr-Duda et al., 2006). Another limitation
is the moderate test-retest reliability of decision-making
measures in addictive disorders such as pathological
gambling (Kräplin et al., 2016). This might have limited our
ability to replicate our previous result on the elevation of

probability weighting (Ligneul et al., 2013) and more gen-
erally our ability to uncover true differences between
groups or drug conditions. Furthermore, individual risk
preferences have been shown to vary substantially across
tasks, a phenomenon known as the “risk elicitation puz-
zle,” partly attributable to inconsistent decision strategies
across tasks (Pedroni et al., 2017). This observation war-
rants some caution regarding the generalizability of the
present findings, which could in part be driven by the
specific demands of the task that we used. In particular,
using a more ecological gambling task might have re-
vealed clearer differences in risk-taking between patho-
logical gamblers and healthy controls (Schonberg et al.,
2011).

In summary, this study provides evidence supporting
the hypothesis that modulating dopamine affects how
humans weight winning probabilities during decision
making. Dopamine D2/D3 receptor antagonism shifts
probability weighting in the direction of more objective,
economically rational decision making. In future studies, it
will be important to replicate this result and further com-
pare the contributions of D1 and D2/D3 receptors with the
same method, since the effect has now been observed in
relation to both receptors (Takahashi et al., 2010).
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