
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/190937

 

 

 

Please be advised that this information was generated on 2018-05-13 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/157686619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/190937


March 2018 | Volume 9 | Article 3941

Review
published: 01 March 2018

doi: 10.3389/fimmu.2018.00394

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Piergiuseppe De Berardinis,  

Istituto di Biochimica delle  
Proteine (CNR), Italy

Reviewed by: 
Daniela Fenoglio,  

Università di Genova, Italy  
Dalil Hannani,  

UMR5525 Techniques de  
l’Ingénierie Médicale et de la  

Complexité Informatique, 
Mathématiques et Applications, 
Grenoble (TIMC-IMAG), France

*Correspondence:
Maarten Versteven 

maarten.versteven@uantwerpen.be

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to 

Molecular Innate Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 15 January 2018
Accepted: 13 February 2018

Published: 01 March 2018

Citation: 
Versteven M, Van den Bergh JMJ, 

Marcq E, Smits ELJ, 
Van Tendeloo VFI, Hobo W and 

Lion E (2018) Dendritic Cells and 
Programmed Death-1 Blockade: A 

Joint Venture to Combat Cancer. 
Front. Immunol. 9:394. 

doi: 10.3389/fimmu.2018.00394

Dendritic Cells and Programmed 
Death-1 Blockade: A Joint venture  
to Combat Cancer
Maarten Versteven1*†, Johan M. J. Van den Bergh1†, Elly Marcq2, Evelien L. J. Smits1,2,3, 
Viggo F. I. Van Tendeloo1, Willemijn Hobo4 and Eva Lion1,3

1 Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute 
(VAXINFECTIO), University of Antwerp, Antwerp, Belgium, 2 Center for Oncological Research Antwerp, Faculty of Medicine 
and Health Sciences, University of Antwerp, Antwerp, Belgium, 3 Center for Cell Therapy and Regenerative Medicine, 
Antwerp University Hospital, Antwerp, Belgium, 4 Laboratory of Hematology, Department of Laboratory Medicine, Radboud 
Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands

Two decades of clinical cancer research with dendritic cell (DC)-based vaccination have 
proved that this type of personalized medicine is safe and has the capacity to improve 
survival, but monotherapy is unlikely to cure the cancer. Designed to empower the 
patient’s antitumor immunity, huge research efforts are set to improve the efficacy of 
next-generation DC vaccines and to find synergistic combinations with existing cancer 
therapies. Immune checkpoint approaches, aiming to breach immune suppression and 
evasion to reinforce antitumor immunity, have been a revelation in the immunotherapy 
field. Early success of therapeutic antibodies blocking the programmed death-1 (PD-1) 
pathway has sparked the development of novel inhibitors and combination therapies. 
Hence, merging immunoregulatory tumor-specific DC strategies with PD-1-targeted 
approaches is a promising path to explore. In this review, we focus on the role of PD-1-
signaling in DC-mediated antitumor immunity. In the quest of exploiting the full potential 
of DC therapy, different strategies to leverage DC immunopotency by impeding PD-1-
mediated immune regulation are discussed, including the most advanced research on 
targeted therapeutic antibodies, lessons learned from chemotherapy-induced immune 
activation, and more recent developments with soluble molecules and gene-silencing 
techniques. An overview of DC/PD-1 immunotherapy combinations that are currently 
under preclinical and clinical investigation substantiates the clinical potential of such 
combination strategies.

Keywords: dendritic cell, programmed death-1, cancer immunotherapy, combination therapy, programmed death 
ligand 1/2

iNTRODUCTiON

Dendritic cells (DCs) are key antigen-presenting cells capable of presenting tumor antigens to T lym-
phocytes (1) and promoting innate immunity via, e.g., natural killer (NK) cells (2) and γδ T cells 
(3). To obtain and engineer DCs for therapeutic approaches, they can be generated ex vivo from 
multiple sources such as monocytes [monocyte-derived DCs (moDCs)] and CD34+ hematopoietic 
progenitor cells, or they can be enriched from peripheral and cord blood (4–7). Exploiting their 
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antigen-specific and immunoregulatory qualities, DCs can be 
furnished with tumor antigens and other targeted molecules via 
different techniques (7–9). More than two decades after the first 
implementation of DCs as an immunotherapy to treat cancer (10), 
it can be ascertained that DC-based vaccination is safe, well tol-
erated, and capable of inducing antitumoral immune responses. 
Objective clinical responses, however, are amenable to substantial 
improvement (11). To date, scientists believe that the full potential 
of DC-based immunotherapy has not yet been reached (11–13). 
This is evidenced by the profound and multidimensional explora-
tion of ways to invigorate the immunotherapeutic potential of 
DCs, both at the level of DC vaccine engineering and combining 
DC therapy with other synergistic antitumor (immuno)therapies 
(14–20). Core objectives of this common quest are to improve DC 
immunopotency to promote cytotoxic and long-lasting antitumor 
immunity and to overcome the tumor-mediated immunosup-
pressive environment (9, 20). In relation to this, interfering with 
immune checkpoint inhibitory pathways has been on the rise. 
Since its second-place ranking as a potential target for immuno-
therapy at the Immunotherapy Agent Workshop of the National 
Cancer Institute in 2007 research on the inhibitory checkpoint 
programmed death-1 (PD-1)/programmed death ligand (PD-
L) pathway has boosted massively. Due to superior antitumor 
effects of anti-PD-1- and anti-PD-L1-blocking antibodies, these 
molecules even climbed to the first position as potential targets 
for immunotherapy at the 29th Annual meeting of the Society for 
Immunotherapy of Cancer in 2015 (21). Next to exploiting the 
systemic monoclonal antibody (mAB) strategy, other promising 
PD-1-/PD-L-targeted approaches are under development. As 
acknowledged for DC-based vaccination, combination strategies 
of PD-1-targeted inhibitors with other immune (checkpoint) 
modulators, cell vaccines, or standard-of-care therapies will likely 
hold the future (22). In this review, we discuss the role of the 
PD-1/PD-L pathway in DC-mediated antitumor immunity and 
the progress of emerging strategies combining DC-based therapy 
with PD-1/PD-L pathway interference.

PD-1/PD-L iN HeALTH AND DiSeASe

The PD-1/PD-L axis is one of the most studied pathways to 
gain understanding of immunoregulatory signals delivered by 
immune checkpoint receptor/ligand interaction the past few 
years (23, 24). Originally discovered as a mechanism of the 
organism to protect itself against T  cell reactions toward self-
antigens, interaction of PD-1 with one of its ligands (PD-L1 
or PD-L2) can induce peripheral tolerance by limiting T  cell 
activity, contributing to protection against tissue damage in case 
of an inflammatory response (25), prevention of autoimmune 
diabetes (26), or promotion of the fetal–maternal tolerance 
(27). Infected and malignant cells that evade immune surveil-
lance have been ascribed to employ the inhibitory PD-1/PD-L 
pathway (24). Indispensable in healthy immune responses (28, 
29), overexpression or induction of PD-1 and its ligands PD-L1 
and PD-L2 on both immune and target cells, has been associated 
with immune deficiency, such as exhausted T cells, dysfunctional 
NK  cells, expanded functional regulatory T (Treg) cells, and 
immune evasion and suppression (30, 31). PD-L expression can 

also be indispensable for the establishment of T cell immunity 
in other settings (28, 29). This ambiguity could be explained by 
findings that PD-L2 also possesses a costimulatory role (32, 33), 
possibly through interaction with repulsive guidance molecule b 
(34). Arising from either intrinsic or adaptive immune resistance 
(35), PD-1 and PD-L1 surface expression or secretion in different 
malignancies has been mostly related to poor prognosis (36–42), 
although discordant data have been reported (43, 44), reflecting 
the need to improve our understanding of the host immune 
system and disease-specific microenvironment.

Inhibitory PD-1/PD-L signaling not only occurs between 
immune cells interacting with malignant cells, but is also effec-
tive between different immune cell types shaping the tumor 
immune environment. This provides a strong impetus to target 
this inhibitory axis to breach immune inhibition and promote 
durable immunity. In various solid and hematological tumors, 
blockade of the PD-1/PD-L1 pathway has proven to reverse this 
immune inhibition by restoring both antitumor function and 
number of tumor-infiltrating CD8+ effector T  cells, resulting 
in reduced tumor size and increased overall survival (45–49). 
While PD-1-/PD-L-targeted research predominantly focuses on 
effector T cells, interest in other cell types is growing. A study in 
metastatic melanoma patients showed that, in addition to CD8+ 
T cells, tumor-infiltrating B cells and myeloid-derived suppressor 
cells (MDSCs) were increased by PD-1 therapy (50). With regard 
to innate immunity, it has been evidenced that also NK cells are 
negatively regulated by PD-1 signaling during chronic infections 
(Mycobacterium tuberculosis and HIV-1) (51, 52) and in cancer 
(multiple myeloma, glioblastoma multiforme, ovarian carcinoma, 
digestive cancers) (53–59), directly relating to NK cell cytotoxic 
and regulatory dysfunction, immune suppression, and poor 
prognosis. As for T cells, blockade of this inhibitory pathway by 
means of mABs could restore dampened NK  cell functions, at 
the level of both interferon (IFN)-γ response (52) and cytotoxic 
capacity (57). In addition, antitumor immunity mediated by 
invariant NK T (iNKT) cells was also shown to be improved 
by blockade of the PD-1/PD-L pathway (60, 61). Expression of 
PD-1 is also demonstrated on γδ T cells (62) and resulted in γδ 
T cell exhaustion that could be overcome by administration of a 
blocking anti-PD-L1 antibody (63, 64). A subset of γδ T cells also 
expresses PD-L1 conferring them with tumor-promoting charac-
teristics by inhibiting αβ T cells (65). Therefore, PD-L1-blocking 
antibodies could also restore antitumor immunity by inhibiting 
PD-1/PD-L1 interactions between γδ and αβ T cells. With regard 
to immunoregulatory cells, PD-1 is also highly expressed on Treg 
cells (66). As shown by Sauer et al. (67) and Francisco et al. (68), 
interaction between PD-1 and its ligands blocks the Akt/mTOR 
pathway leading to an increased FoxP3 expression, resulting in 
Treg cell differentiation and maintenance. Furthermore, blocking 
the PD-1 pathway combined with antitumor vaccination showed 
a significant decrease in the number of intratumoral Treg cells and 
reduced tumor growth (69). In addition to Treg cells, a role for the 
PD-1/PD-L pathway has been put forward for other regulatory 
cells including tumor-associated macrophages (TAMs), MDSCs, 
and mucosal-associated invariant T (MAIT) cells (61, 70–75). 
While research into the effect of PD-1/PD-L blockade in these 
cells is limited, preclinical anti-PD-1 therapy has been shown to 
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reduce the number of immune suppressive TAMs and MDSCs 
(73) and was able to increase the IFN-γ production by MAIT cells 
(71), indicating the valuable effect of PD-1/PD-L blockade on 
immune cells beyond the immune-activating CD8+ CTLs.

THe ROLe OF PD-1/PD-L iN DC-
MeDiATeD ANTiTUMOR iMMUNiTY

As orchestrators of the immune system bridging innate and 
adaptive immunity, DCs are key players in directing antitumor 
immunity. Capable of expressing both the PD-1 receptor and 
its ligands, DCs can virtually interact with any PD-1 and PD-L-
positive cell (Figure 1). In this context, the most acknowledged 
interaction is between DCs and T cells. PD-L surface expression 
on DCs [myeloid DC (mDC), plasmacytoid DC (pDC), and 
in vitro generated vaccine DC] is highest upon maturation with 
pro-inflammatory cytokines, Toll-like receptor (TLR) ligands, or 
(parts of) bacterial strains, often used to enhance the expression 
of costimulatory molecules on DCs (76–78). This PD-L surface 
expression has been demonstrated to suppress CD4+ and CD8+ 
T  cell activity in various disease models, such as tuberculosis 
(79–81), HIV (82), and cancer (76, 83–88). Comparably, PD-1 
expression on tumor-infiltrating mDCs has also been shown to 
suppress CD8+ T cell activity and decrease T cell infiltration in 
mouse models for advanced ovarian cancer (89) and hepatocel-
lular carcinoma (90). In addition to suppression of immune 
activation, DC PD-L expression was also shown to be involved 
in the promotion of CD4+CD25+FoxP3+ Treg cell expansion 
and function (68). Tumor growth factor-beta in the tumor 
microenvironment promotes PD-L1 expression on DCs, further 
maintaining Treg cell populations (87, 91) and de novo genera-
tion of Treg cells (92) in favor of the immunosuppressive tumor 
microenvironment (84).

The role of PD-1/PD-L signaling in the crosstalk between DCs 
and NK cells remains largely unexplored. It has been shown that 
disruption of the PD-1/PD-L pathway is able to restore NK cell 
functions, mostly, but not exclusively in multiple myeloma (53, 
55, 57, 93). Only few studies suggest a role of this pathway in 
DC-NK  cell crosstalk and controversy remains. Ray et  al. (57) 
demonstrated that NK  cell function was abrogated by PD-L1 
interactions on pDCs and PD-1 on NK  cells and that NK  cell 
functions could be restored by anti-PD-L1 treatment. On the 
other hand, in a preclinical mouse model, the expression of PD-L 
on NK cells was demonstrated to negatively regulate DC activity 
via interaction with PD-1 on DCs (94). To gain more conclusive 
insights in the contribution of PD-1/PD-L interactions in the 
crosstalk between DCs and NK cells, more research is warranted. 
Similar to DC-NK cell crosstalk, little is known about the role of 
PD-1 signaling in DC-γδ T cell crosstalk (3, 95) and how PD-1/
PD-L blockade in combination with DC-based immunotherapies 
can further empower γδ T cells with antitumor capacities. Other 
innate immune cells that are able to crosstalk with DCs include 
iNKT cells, MAIT cells, and MDSCs (96–100). Blockade of PD-1/
PD-L interactions between DCs and iNKT cells were shown to 
increase activation and release of T helper 1 cytokines by the latter 
resulting in the activation of NK cells and amplified antitumor 

responses (60, 101). Research on PD-1/PD-L interactions between 
DCs and MAIT cells or MDSCs is lacking.

Ligation of PD-1 to PD-L1/2 can also exert intrinsic effects on 
DCs by reverse signaling. Kuipers et al. (102) reported decreased 
expression of maturation markers in PD-L+ DCs and increased 
interleukin (IL)-10 production upon treatment with soluble PD-1 
(sPD-1), suggesting that through reciprocal signaling a suppres-
sive DC phenotype is attained. In another study, upregulation of 
PD-1 on DCs was found to be a consequence of DC maturation, 
especially after TLR-mediated DC activation. Blocking PD-1 
during DC maturation resulted in enhanced DC survival and 
increased immunostimulatory properties (103). In both studies, 
interference with the PD-1/PD-L pathway increased the immu-
nostimulatory properties of the DCs toward T cell activation.

The interplay of PD-1 and PD-L in DC crosstalk with 
(virtually all) activating and regulatory adaptive and innate 
immune cells impacts the productivity of antitumor immunity 
(Figure 1). Other than monitoring PD-L expression on tumor 
cells, it has been suggested that monitoring PD-L expression 
on infiltrating myeloid cells is more predictive for response to 
blockade of PD-1 signaling (104). Building on the successes of 
DC-based therapy (11) and PD-1-blocking strategies (105), the 
exploration of its combinatorial therapeutic use is rationalized 
to empower the clinical response rates and efficacy of these 
targeted approaches (7, 16).

STRATeGieS TO LeveRAGe DC 
iMMUNOPOTeNCY BY iNTeRCeDiNG 
PD-1/PD-L SiGNALiNG

It is generally agreed that the therapeutic potential of DC-based 
immunotherapy could be improved by tackling the immunosup-
pressive tumor microenvironment that contributes to ineffective 
or suboptimal responses (106, 107). Employing intrinsic and 
adaptive immune resistance mechanisms, PD-1 is a top-ranked 
checkpoint contributor to blunting immune responses. In a 
comprehensive review on the molecular and immunological 
hallmarks and prerequisites for next-generation DC vaccines, 
Garg et  al. (20) discourses its combinatorial use with immune 
checkpoint inhibitors to enforce efficient antitumor activity. 
Based on the expression pattern of PD-1 and PD-L on immune 
cells and cellular contacts between DC and a myriad of immune 
effector and regulatory cells, blocking PD-1/PD-L interactions 
will likely impede tumor cell-mediated immune suppression, 
enhance T  cell and NK  cell activation and effector functions, 
and inhibit conversion or activation of Treg cells. However, these 
actions depend also on the way of implementation of PD-1/PD-L 
blockade with DC vaccination. Here, we elaborate on the cur-
rently applicable strategies (Figure 2) and clinical trials (Tables 1 
and 2) that particularly interfere with the PD-1/PD-L pathway in 
the context of DC-based immunotherapies.

Systemic Receptor-Ligand Blockade
The use of mABs that block immune checkpoints, particularly 
cytotoxic T lymphocyte antigen-4 (CTLA-4), PD-1, and PD-L1, 
has made a profound impact in the field of cancer immunotherapy 
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FiGURe 1 | How the PD-1/PD-L signaling axis plays a role in DC-mediated orchestration of innate and adaptive immunity. DCs are renowned for their pivotal role in 
regulating the immune response through interaction with a variety of immune cells. DC-moderated PD-1 signaling has been demonstrated to prototypically result in 
an inhibitory crosstalk with effector cells, evidenced by (1) reduced infiltration and activation capacities, decreased pro-inflammatory, and increased inhibitory 
cytokine release by CD8+ and CD4+ T cells; (2) impaired killing, regulatory and reciprocal DC activation properties of NK cells; and (3) impaired activation, Th1-
cytokine secretion, and downstream NK cell activation by iNKT cells. On the opposite, a costimulatory role for particular interactions promoting CD4+ T cell memory 
has been described as well. In crosstalk with Tregs, PD-1 engagement was shown to mediate their proliferation, regulatory function, and de novo generation, 
contributing to an immune suppressive environment. The role of PD-1-signaling in DC crosstalk with other emerging PD-1-sensitive effector (γδ T cells) and 
regulatory cells (MDSC, TAM) remains to be elucidated. Abbreviations: DC, dendritic cell; IFN-γ, interferon-γ; iNKT, invariant NK T cell; MDSC, myeloid-derived 
suppressor cell; NK, natural killer cell; PD-1, programmed death-1; PD-L1, programmed cell death ligand 1; PD-L2, programmed cell death ligand 2; sPD-1, soluble 
PD-1; sPD-L1, soluble PD-L1; TAM, tumor-associated macrophage; Treg, regulatory T cell.
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(108). As of 2011, treatment of several malignancies with anti-
CTLA-4- (ipilimumab), anti-PD-1- (nivolumab and pembroli-
zumab), and anti-PD-L1- (atezolizumab, durvalumab, and 
avelumab) blocking antibodies has been approved by the US FDA 
and EMA and a series of new inhibitors is being assessed in late 
stage clinical trials (105). With the experience that anti-CTLA-4 
therapy comes with higher toxicity and lower response rates (16, 
109, 110), the focus of research is propelling toward the PD-1/
PD-L pathway as evidenced by the myriad of publications on 
fundamental, preclinical, and clinical PD-1/PD-L research and 
on its prognostic and predictive biomarker value. As an example, 
one of the latest developments is to extend the systemic antibody-
blocking function with antibody-dependent cellular cytotoxicity 
(ADCC) properties. The majority of mABs bear a mutation in 
their Fc portion, making target cells insensitive to ADCC medi-
ated through the FcγRIIIa on NK cells. Keeping the Fc part not 

mutated, avelumab resulted in ADCC-mediated clearance of 
PD-L1+ tumor cells (111).

In combination with DC vaccination, systemic blockade 
with anti-PD-1 mABs (112, 113) or anti-PD-L mABs (114–116) 
resulted in increased activation of cytotoxic CD8+ T  cells and 
decreased Treg cell numbers (112) and showed better therapeu-
tic efficacy compared with either monotherapy by preventing 
tumor growth and prolonging survival in tumor-bearing mice 
[glioblastoma (113), breast cancer (114), and melanoma (116)]. 
Recent studies evaluated the effect of different immune check-
point inhibitors on human T cell responses after co-culture with 
allogeneic moDCs. In this setting, PD-1 and B and T lymphocyte 
attenuator (BTLA)-blocking antibodies could increase IFN-γ pro-
duction and proliferation by T cells. Combined with anti-PD-1, 
other emerging immune checkpoint inhibitors such as anti-T cell 
immunoglobulin and mucin-domain containing-3 (TIM-3), 
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FiGURe 2 | Applied strategies to leverage DC immunopotency by interfering PD-1/PD-L signaling. DC and tumor cell PD-L1 and/or PD-L2 expression exerts direct 
inhibitory effects (−, red arrows) on CD8+ T cells and NK cells, while promoting (+, green arrows) regulatory T cell functions. Current strategies to increase the 
immunogenicity of DC vaccines by interfering the PD-1/PD-L signaling axis include combined systemic blockade by means of PD-L1-blocking moieties. 
Chemotherapy triggers different mechanisms that can promote DC vaccine efficacy, including the induction of immunogenic cell death favorable for DC activation. 
Exploiting the PD-1 pathway, platinum-based chemotherapeutics have been demonstrated to lower PD-L expression on DCs while increasing tumor cell PD-L 
expression, sensitizing the tumor for systemic blockade approaches. In situ engineering of DC vaccines by silencing PD-L with the small molecule dorsomorphin or 
RNAi constructs was demonstrated to successfully improve the immunopotency of DC vaccines. Abbreviations: DC, dendritic cell; ICD, immunogenic cell death; 
NK, natural killer cell; PD-1, programmed death-1; PD-L1, programmed cell death ligand 1; PD-L2, programmed cell death ligand 2; RNAi, RNA interference; sPD-1, 
soluble PD-1; sPD-L1, soluble PD-L1; Treg, regulatory T cell.
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anti-lymphocyte activating gene-3 (LAG-3), anti-CTLA-4, and 
anti-BTLA were able to further increase the IFN-γ-producing 
and proliferative capacity of T cells, while ineffective on their own 
(117, 118). These findings further underscore the strength of the 
PD-1-/PD-L-signaling axis relative to other immune checkpoint 
pathways.

Over the past 8 years, a select number of phase I/II clinical 
trials combining DC vaccination with anti-PD-1 or anti-PD-L1 
antibodies in a range of malignancies have been initiated and 
are currently all ongoing (Table 1). With the first clinical results 
expected in the near future, the challenges of conceptualization 
of such combination therapy are already subject of discussion 
(20). The growing portfolio of both next-generation DC vaccines 
and available PD-1 and PD-L targeting mABs makes the possible 
treatment regimens infinite. Moreover, knowledge is growing 
that tumors are differentially sensitive to either DC therapy or 
antibody-mediated checkpoint blockade, either intrinsically 
or dependent on the stage of the disease. While DC-mediated 
therapy is consistently proven safe (7), systemic mAB therapy 
has to deal with several immune-related adverse effects such as 
skin and mucosal irritation, diarrhea, hepatotoxicity, and endo-
crinopathy (110, 119). Today, we are learning how to recognize 
and manage immune-related adverse events and toxicities and 

gaining knowledge on which therapeutic combinations could be 
applied best at what time point (120, 121). As an alternative to 
human(ized) mABs, different blocking moieties with advanced 
target specificity and affinity and reduced toxicity profiles are 
under investigation, including chimeric fusion proteins (AMP-
224, extracellular domain of PD-L2, and an Fc portion of IgG) and 
nanotechnologies [nanoparticles (122) and nanobodies ((123), 
Theravectys, Ablynx)]. Although research in this area is limited, 
these alternative blockers have interesting features because of 
their size, stability, and pharmacodynamical properties (124), 
which might pave the way for implementation in combination 
therapy with DCs.

Soluble PD-(L)1
Comparable to the systemic antibody approach is the use of sPD-1 
receptor, which only contains the extracellular domain of the 
PD-1 molecule and can ligate to PD-Ls, making them inaccessible 
for interaction with PD-1 molecules on immune effector cells. 
Binding of sPD-1 to surface PD-L on DCs was demonstrated to 
enhance proliferation of lymphocytes in vitro. In addition, after 
administration of a vector encoding for sPD-1, tumor growth was 
inhibited or delayed in a murine model of hepatocarcinoma (125). 
Similar results were found by Song et al. (126) who additionally 
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TABLe 1 | Active clinical trials combining DC-based anticancer immunotherapy with PD-1/PD-L-targeted therapy (clinicaltrials.gov, January 14, 2018).

intervention Therapy schedule Comparator(s) Condition Phase N Trial identifier Status

PD-1-/PD-L-targeted 
therapy

Type of DC vaccine

Anti-PD-1 Ab 
(nivolumab)

Autologous DC loaded with 
CMV pp65 mRNA

Neoadjuvant + adjuvant DC vaccination with  
anti-PD-1 therapy

Without neoadjuvant DC 
vaccination

Recurrent brain 
tumors

I 7 NCT02529072 Active, not 
recruiting

Autologous DC loaded with 
NY-ESO-1 peptide

Therapy cycles of cyclophosphamide, TCR-
transduced PBMC, anti-PD-1 therapy, DC 
vaccination, and rhIL-2

Single group NY-ESO-1+ solid 
tumors

I 12 NCT02775292 Recruiting

Autologous DC loaded with 
autologous tumor lysate

Therapy cycles of i.d. DC vaccination with  
anti-PD-1 therapy

DC therapy alone Recurrent 
glioblastoma

II 30 NCT03014804 Not yet 
recruiting

Anti-PD-1 Ab 
(pembrolizumab)

Autologous DC loaded with 
peptide

Anti-PD-1 SoC post-DC therapy Single group Advanced melanoma I 12 NCT03092453 Recruiting

Autologous DC loaded with 
autologous tumor antigens

Therapy cycles of anti-PD-1 and cryosurgery  
plus i.t. DC vaccination

Single group Non-Hodgkin 
lymphoma

I/II 44 NCT03035331 Recruiting

Autologous DC Therapy cycles of i.n. DC vaccination with  
anti-PD-1 therapy, radiotherapy, GM-CSF and  
anti-TNF-alpha therapy

Single group Follicular lymphoma II 20 NCT02677155 Recruiting

DC-CIK Therapy cycles of i.v. DC vaccination with  
anti-PD-1 therapy

Anti-PD-1 Ab alone Advanced solid 
tumors

I/II 100 NCT03190811 Recruiting

DC-CIK Therapy cycles of i.v. DC vaccination with  
anti-PD-1 therapy

Anti-PD-1 Ab alone NSCLC I/II 60 NCT03360630 Recruiting

Anti-PD-1 Ab DC-CIK i.v. anti-PD-1 Ab-treated DC vaccination Single group Refractory solid 
tumors

I/II 50 NCT02886897 Recruiting

Anti-PD-1 Ab (CT–011) DC/tumor cell fusion vaccine Therapy cycles of anti-PD-1 therapy with DC 
vaccination post-auto-SCT

Anti-PD-1 Ab alone Multiple myeloma II 35 NCT01067287 Active, not 
recruiting

SoC CPI therapy Autologous TLPLDC vaccine DC vaccination (tumor lysate + yeast cell wall 
particles + DC) following CPI monotherapy 
(comparison based on response to CPI therapy)

CPI non-responder, progressive 
disease following initial response 
to CPI, stable disease after CPI

Metastatic melanoma I/II 45 NCT02678741 Recruiting

Anti-PD-L1 Ab 
(avelumab)

Autologous DC vaccine Therapy cycles of DC vaccination with  
anti-PD-L1 therapy

Single group Metastatic colorectal 
cancer

I/II 33 NCT03152565 Not yet 
recruiting

Anti-PD-L1 Ab 
(durvalumab)

DC/AML fusion vaccine Not specified DC therapy alone, traditional care Acute myeloid 
leukemia

II 105 NCT03059485 Recruiting

PD-L siRNA lipofection 
of the DC vaccine

MiHa-loaded DC Post-allo-HSCT Single group Hematological 
malignancies

I/II 10 NCT02528682 Recruiting

AML, acute myeloid leukemia; CPI, checkpoint inhibitor therapy; CIK, cytokine-induced killer cells; DC, dendritic cell; HSCT, hematopoietic stem cell transplantation; IL-2, interleukin 2; i.d., intradermal; i.n., intranodal; i.t., intratumoral; 
i.v., intravenous; MiHa, minor histocompatibility antigens; NSCLC, non-small-cell lung cancer; PBMC, peripheral blood mononuclear cells; PD-1, programmed death-1; PD-L1, programmed death ligand 1; siRNA, small interfering RNA; 
SoC, standard of care; TCR, T cell receptor; TLPLDC, tumor lysate particle-loaded dendritic cell.
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TABLe 2 | Clinical trials combining DC vaccination strategies with PD-1-/PD-L1-modulating chemotherapeutics (clinicaltrials.gov, January 14, 2018).

DC-based therapy PD-1-/PD-L-modulating 
chemotherapy

indication

Autologous DC loaded with TAA-coding  
RNA(s)

Cisplatin Melanoma (NCT02285413), malignant pleural mesothelioma (NCT02649829)

Autologous DC loaded with tumor lysate Multiple myeloma (NCT00083538), ovarian cancer (NCT02432378)
Autologous DC-CIK Esophageal cancer (NCT01691625, NCT02644863), NSCLC (NCT02651441)
DC-CTL NSCLC (NCT02766348)

Autologous DC loaded with TAA(s) Oxaliplatin (as part of 
FOLFIRINOX)

Pancreatic cancer (NCT02548169), colorectal neoplasms (NCT01413295, NCT02503150)
Autologous DC-CIK Gastric cancer (NCT02504229, NCT02215837), colorectal cancer (NCT02202928, 

NCT02415699)

Autologous DC Carboplatin NSCLC (NCT02669719), breast cancer (NCT03387553)

CIK, cytokine-induced killer cell; DC, dendritic cell; DC-CTL, dendritic cytotoxic lymphocyte; NSCLC, non-small-cell lung cancer; TAA, tumor-associated antigen.
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demonstrated increased expression of activation markers on 
DC in mice treated with sPD-1. Kuipers et  al. (102), however, 
demonstrated a decrease in the expression of maturation mark-
ers on DCs treated with sPD-1. These discrepancies might be 
ascribed to different experimental settings such as the use of other 
sPD-1 encoding vectors. Applying the sPD-1 approach in human 
moDCs, Pen et al. (127) transfected mRNA encoding for sPD-1 
or sPD-L1 in DC for transient local expression, thereby limiting 
possible adverse effects seen with systemic PD-1/PD-L blockade. 
With this approach, they demonstrated an upregulation of CD80 
on sPD-1- or sPD-L1-expressing DCs and an increase in both 
CD4+ and CD8+ T  cell effector functions without influencing 
the induction of Treg cells. Today, clinical trials evaluating this 
approach have not been registered.

Chemo-immunotherapy
Anticancer chemotherapeutics remain an important systemic 
treatment modality to arrest or eliminate rapidly growing cancer 
cells. Besides lowering the tumor burden, evidence is growing 
that these cytotoxic drugs also rely on several off-target immu-
nological effects, including enhancement of the immunogenicity 
of malignant cells and, at least for some chemotherapeutics, sup-
pression of inhibitory mechanisms (128, 129). Complementing 
conventional chemotherapy regimens with DC-targeted immu-
notherapy is therefore a promising strategy, actively investigated 
in clinical trials for a range of malignancies (>140 registered 
trials at Clinicaltrials.gov based on “DC and chemo” search). 
DC vaccine efficacy can avail from chemotherapy-induced 
immunogenic tumor cell death that facilitates an adaptive 
immune response specific for dead cell-derived antigens (130). 
In the context of immune checkpoint inhibition, the clinically 
established class of platinum-based chemotherapeutics has been 
designated to act via the PD-1 signaling pathway. In addition to 
DNA-interfering properties, oxaliplatin, cisplatin, and carbopl-
atin were shown to inhibit the STAT6-pathway that is responsible 
for the upregulation of PD-1 ligands, leading to downregulation 
of PD-L1 and PD-L2 on both moDCs and tumor cells (131). 
The combination of platinum-based chemotherapeutics and 
DCs boosted in  vitro T  cell proliferation and enhanced T  cell 
IFN-γ and IL-2 production (131). In other studies, however, 
platinum-based chemotherapeutics were reported to promote 

PD-L expression on blood DC subsets (132) and tumor cells 
(133). Enhanced PD-L expression on DCs resulted in impaired 
T  cell activation, rationalizing that the chemotherapy effect 
likely depends on environmental cues, such as TLR expression 
on those DC subsets (132). In hepatocarcinoma cells, cisplatin 
promoted PD-L1 overexpression both in vitro and in vivo, sug-
gesting a mechanism of chemotherapy resistance eventually 
leading to a suboptimal clinical effect of cisplatin treatment 
(133). The contradictory outcomes of these studies highlight 
the need for further research on the effect of platinum-based 
chemotherapeutics on the functionality of different immune 
cells, as well as on tumor cells of various origins. In addition, it 
will be interesting to extend research to the clinic to determine 
the optimal treatment schedule where chemotherapy and DC 
vaccination are combined. Such combination therapies are 
listed in Table 2. Although these studies are not yet completed, 
a pilot study on the immunogenicity of DC vaccination during 
adjuvant platinum-based chemotherapy in colon cancer patients 
demonstrated enhanced antigen-specific T  cell responses after 
combinatorial treatment (134).

DC-Targeted PD-L RNA interference 
(RNAi) Technology
Taking into account the orchestrating role of DCs, targeted 
downregulation of PD-L expression on DCs is expected to poten-
tiate DC-mediated T cell and NK cell activation and prevent Treg 
cell stimulation. RNAi approaches targeting immunosuppressive 
factors in DCs have been applied to improve immunogenic func-
tions of next-generation DC vaccines (13). This strategy aims at 
enhancing DC-mediated antigen-targeted T cell responses at the 
level of the DC/effector cell immunological synapse, irrespective 
of tumor PD-L expression. Analogous to DCs expressing sPD-1 
or sPD-L1 (vide supra), this technique offers attractive safety con-
siderations compared to systemic antibody administration. The 
targeted nature of this approach shifts the in situ balance between 
immune stimulatory and inhibitory signals in the DC/effector 
cell immunological synapse toward immune stimulation, which 
has been suggested to result in reversal of the PD-1-mediated 
T cell exhaustion status (135).

Various preclinical studies demonstrated feasibility and 
effectivity of introducing small interfering RNAs or short hairpin 
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RNAs interfering with inhibitory immune-related pathways in 
DCs, such as suppressor of cytokine signaling (136), indoleamine 
2,3-dioxygenase (137), and PD-L1/PD-L2 (138–142). Focusing 
on the PD-1/PD-L pathway, silencing of PD-L1 and/or PD-L2 
in DCs has been evaluated with different RNAi introduction 
techniques, including viral transduction and non-integrating 
electrotransfection, lipid nanoparticle transfection, and the 
cGMP-compliant transfection reagent SAINT-RED (77, 138, 
141, 143, 144). Preclinical data demonstrated that PD-L-silenced 
DCs could (1) increase expansion, promote pro-inflammatory 
cytokine secretion and degranulation, and augment antitumor 
function of antigen-specific CD8+ T  cells in human in  vitro 
models (138, 140, 142) and (2) induce significant antitumor 
immunity in  vivo in different malignant mouse models  
(139, 141). Alternatively, in  situ PD-L silencing can also be 
achieved through the use of small molecules. Dorsomorphin, 
a small molecule inhibitor of the bone morphogenic protein 
signaling pathway, was shown to efficiently downregulate PD-L1 
and PD-L2 expressions on treated DCs resulting in increased 
T  cell proliferation and enhanced NK  cell-mediated killing of 
target cells (145).

Today, few DC-associated RNAi approaches are currently 
being tested in early-phase clinical trials, including one trial 
evaluating PD-L1/2-silenced DC vaccines (NCT02528682). 
Results of this trial are awaited.

CLiNiCAL TRiALS

Based on the general appreciation that DC vaccination can be 
improved by blockade of the PD-1/PD-L pathway, as shown by 
both in  vitro experiments and in  vivo animal models, most of 
these combination approaches are embedded in various clinical 
trials (146). With the exception of sPD-1, autologous DC vaccines 
are combined with (i) systemic mABs targeting PD-1 or PD-L1, 
(ii) platinum-based chemotherapeutics, and (iii) in  situ PD-L 
RNAi to treat patients with both hematological cancers [multiple 
myeloma, acute myeloid leukemia (AML)] and solid tumors 
(renal cell carcinoma, mesothelioma, lymphoma, colon cancer, 
melanoma, ovarian cancer, pancreatic cancer, nasopharyngeal 
cancer, and glioblastoma). Clinical trials combining DC vaccina-
tion with PD-1/PD-L interference, registered by January 2018, 
are listed in Tables 1 and 2 and discussed in the corresponding 
paragraphs. The fast-growing number of clinical studies com-
bining DC-based therapy with PD-1/PD-L blockade strategies 
emphasizes the potential of this combinatorial approach in the 
future treatment of cancer patients.

FUTURe PeRSPeCTiveS

Multimodality strategies striving to maximize the efficacy of 
DC-based cancer immunotherapy are emerging (16, 20, 107). 
Evidenced by a growing body of preclinical and clinical data, 
engineering next-generation DC vaccines and redirecting 
the tumor microenvironment are highly promising (7). The 
significant role of PD-1-signaling in DC-mediated antitumor 
immunity rationalizes its therapeutic combinatorial use in 
the rapidly evolving cancer immunotherapy landscape. The 

PD-1-/PD-L-blocking industry—and the immune checkpoint 
industry in general—has expanded drastically in the last years. 
Leading pharmaceutical companies are putting huge efforts 
in the development of systemic antibody therapies, with an 
estimated market value of $35 billion (147). The market for 
DC-based therapies is as big, with approximately 500 clinical 
trials registered evaluating DC vaccines, reflecting the immense 
scientific and pharmaceutical impact of such combinatorial 
therapy. The growing understanding of the immunological 
effects of some conventional chemotherapeutics, related to DC 
activation and PD-1 therapy sensitivity and resistance, provides 
rationale for the development of synergistic adjuvant combina-
tions and carefully designed chemoimmunotherapy schedules 
that aim beyond the mere elimination of the suppressive tumor 
(20, 107). In addition to the pioneering CTLA-4 and PD-1 
inhibitors, other immune checkpoints have been attributed to 
hamper DC-mediated immunity, including LAG-3 and TIM-3 
(56, 119, 148). The LAG-3 mAB IMP321 was demonstrated to 
induce DC maturation (149–151) and is now further tested in 
clinical trials (NCT00351949, NCT00349934). TIM-3, present 
on, among others, DCs, was shown to induce T helper 1 cell 
death when interacting with its ligand galectin-9 on T cells (119, 
152), whereas dual blockade of TIM-3 and PD-1 or CTLA-4 
was able to suppress tumor growth with possibility of cure in 
a fibrosarcoma mouse model (153). Overall, targeting multiple 
immune checkpoints simultaneously with DC therapy is likely 
to result in synergistic efficacy (107).

Designed to potentiate the patient’s own immune system, 
unsatisfactory DC-based therapy efficacy led to an era of metic-
ulous vaccine and protocol optimization aiming to enhance 
vaccine immunogenicity (7, 20). With the approval of immune 
checkpoint inhibitors, the significance of simultaneously 
targeting the inhibitory immune mechanisms was clinically 
established. In search of a balanced treatment, combinatorial 
DC and PD-1 pathway-targeted immunotherapy has some 
implications. The lack of specificity of systemic immune check-
point blockade is prone to eliciting indiscriminate immune 
activation, resulting in significant immune-mediated adverse 
reactions and immune-related adverse events. In addition to 
the frequently observed development of therapy resistance, 
vigilant immunomonitoring to elucidate these mechanisms and 
advance early detection is warranted (105, 154, 155). Recently, 
resistance to anti-PD-1 therapy has been related to disturbance 
of antigen presentation, DC migration, and DC maturation 
(156), underscoring the importance of combinatorial treat-
ment schedules. More than 20 years of clinical testing affirms 
that tumor-specific DC therapy is well tolerated and safe, and 
overstimulation, autoimmunity, or therapy resistance has been 
described (11, 20). By robustly breaching PD-1-related inhibi-
tory signaling and demasking immune evasion, DC therapy 
could get that extra push to prevail durable antitumor immunity 
while compensating for the lack of specificity of immune check-
point blockade (107).

Taken apart, it can be concluded that DC therapy and PD-1 
blocking approaches will prove best in a combinatorial setting 
subject to the malignancy and the disease status (157). In this 
perspective, the search for biomarkers predicting response 
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to DC therapy and to PD-1 pathway blockade is imperative 
(20, 155, 158). Although immune checkpoint inhibition can 
be strikingly effective in immunogenic cancers with high 
mutational burden like melanoma and lung cancer, tumors 
with a lower number of mutations and lower immunogenicity 
may be inherently resistant to this form of therapy (154, 155). 
Complementary, DC efficacy is high for at least some tumors 
with low mutational burden, like leukemia (159–162) and 
glioblastoma (20), further emphasizing the combinatorial use 
of DC vaccination with PD-1-targeted strategies to improve 
DC performance. Exemplifying a combinatorial approach 
with AML, DC vaccinations are typically administered as a 
consolidation therapy after conventional chemotherapy, to 
prevent relapse by eliminating residual leukemic cells and by 
generating durable antileukemic immunity (159, 161, 163). A 
role for PD-1 after conventional leukemia therapy has been 
demonstrated, supported by chemotherapy-induced upregula-
tion of PD-1 on T cells and increased T cell PD-1 expression at 
relapse after hematopoietic stem cell transplantation (47, 164). 
Therapeutically, PD-1 checkpoint blockade in AML has been 
suggested to relieve Treg-mediated immunosuppression (47). 
Empowering adjuvant DC vaccination by blocking the inhibi-
tory PD-1 axis could alleviate DC-mediated adaptive and innate 
antitumor immune responses, reflecting a promising combina-
tion as a follow-up therapy.

CONCLUSiON

In this review, we highlighted the role of the PD-1 pathway in 
DC-mediated antitumor immunity. Aiming to improve DC ther-
apy efficacy, different strategies to invigorate DC immunopotency 
by impeding PD-1-mediated immune regulation were discussed. 

From the most advanced research on therapeutic blocking anti-
bodies, lessons learned from chemotherapy-induced immune 
regulation, and data from more recent developments with gene-
silencing techniques, it can be concluded that combinatorial DC 
and PD-1 pathway-targeted therapy approaches could comple-
ment or even synergize under defined circumstances. Five years 
after the comprehensive review on combination therapy with 
DC vaccines and immune checkpoint blockade by Vasaturo et al. 
(107), touching upon the first few preclinical studies on PD-1 
combination strategies in particular, we witness that preclinical 
research has expanded drastically and has been translated into 
a number of clinical trials. We are now awaiting the first clinical 
results that will substantially direct future anticancer treatment 
approaches.
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