
HAL Id: hal-01788768
https://hal.inria.fr/hal-01788768

Submitted on 9 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Role of Validation in Refinement-Based Formal
Software Development

Jean-Pierre Jacquot, Atif Mashkoor

To cite this version:
Jean-Pierre Jacquot, Atif Mashkoor. The Role of Validation in Refinement-Based Formal Software
Development. Models: Concept, Theory, Logic, Reasoning, and Semantics, College Publications, 2018,
978-1-84890-276-3. �hal-01788768�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157682619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01788768
https://hal.archives-ouvertes.fr


The Role of Validation in Refinement-Based
Formal Software Development?

Jean-Pierre Jacquot1 and Atif Mashkoor2

1 Université de Lorraine & LORIA, Vandœuvre-lès-Nancy, France
firstname.lastname@loria.fr

2 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
firstname.lastname@scch.at

Abstract. In this chapter, we consider the issue of validation in the
context of formal software development. Although validation is a stan-
dard practice in all industrial software development processes, this ac-
tivity is somehow less well addressed within formal methods. As the
needs for formal languages, tools and environments are increasing in
producing real-life software, the validation issue must be addressed.
In this chapter, we discuss what the place of validation within formal
methods, what specific issues there are associated with formal methods
as far as validation is concerned, and what tools can be used in this
regard. We then present a few examples of the usefulness of valida-
tion from the case studies we have developed. The chapter is concluded
with a few open research problems associated with validation and future
work.

1 Introduction

This chapter discusses the role of validation in the context of formal software
development. We borrow the definition of validation from the US Food and
Drug Administration (FDA) principles of software validation3 which state that
“validation is a confirmation by examination and provision of objective evi-
dence that software specifications conform to user needs and intended uses,
and that the particular requirements implemented through software can be
consistently fulfilled.” In this chapter, we focus on model-oriented and state-
based (refinement-based) methods such as B [1], Event-B [3] or Z [25]. Such
methods are based on two principles:

1. the specification of a system or software can be cast as a mathematical
model expressing invariant properties on a state, and

? The work of Atif Mashkoor is supported by the Austrian Ministry for Transport, In-
novation and Technology, the Federal Ministry of Science, Research and Economy,
and the Province of Upper Austria in the frame of the COMET center SCCH.

3 https://www.fda.gov/downloads/MedicalDevices/.../ucm085371.pdf

202



2. a correct implementation can be derived by a chain of refinements of the
formal specification adhering to a strict set of correctness rules.

It thus follows that, by using such a method, developers are guaranteed to
produce software which is provably consistent with the specification. They have
“built the software right.” However, nothing guarantees that they have “built
the right software.” So, the verification part of the engineering effort is covered,
but not the validation part. We believe that software developers will be more
likely to use formal methods if they take into account this latter part.

The issue of validation within formal methods has come up only recently
for two main reasons, one good and one bad. The good reason is that the
research community had to focus first on hard theoretical problems, e.g., how to
automate most of the verification process. Without a high level of automation,
formal methods are not usable in practice. Now, the power of theories and tools
allows us to tackle real-life problems, see for example [7–10]. Provers know how
to discharge complex formulas, model-checkers can deal with huge spaces, and
formalisms allow developers to simply express complex properties. While there
is still room for much improvement, it seems safe to say that we have passed
the threshold where the methods could reasonably be deployed. The bad reason
is the belief that validation is not necessary: we “just” need to get all the
right properties; i.e., we just need to focus on getting a complete specification
from the requirements analysis. We should also mention a probable last reason:
validation requires human judgment, and so is outside the formal world.

While requirements engineering is indeed a key element of any successful
development, it is unrealistic to expect this activity to produce a complete set
of expectations, constraints, and assumptions before the development begins:
requirements evolve, decisions during development must be made, assumptions
are overlooked, and not all requirements can be expressed in a specific formal
method.

Our position is that validation must be part of all stages of a development
conducted with refinement-based formal methods: from the initial specification,
to the implementation, passing through each strategic refinement [17,19].

The chapter is organized as follows. We first discuss what validation is
and why we must use it in the context of formal software development. Then,
we present the important issues associated with validation. Then, we discuss
the kind of tools, existing and to be invented, necessary for validation. Last,
we give some examples where validation uncovered critical problems in case
studies which were already verified.

2 The Place of Validation in Formal Methods

The term “validation” is understood, slightly, differently in science and in en-
gineering. In the former, validation consists of checking that the predictions

203



of a model conform with reality. In a sense, validation measures the explica-
tive power of a model. In the latter, validation consists of checking that the
produced artifact is consistent with its users’ expectations. As formal methods
are an engineering technique based on mathematical modeling, “validation”
concerns both meanings.

In this section, we analyze validation in relation to different phases of a
software development project. We discuss what can be validated and why it is
important to do it.

2.1 Initial model

The starting point of any development using a formal method is a formal spec-
ification of software to produce. It consists of a set of mathematical and logical
formulas. We are then in the classic scientific validation issue:

– do the formulas express properties we want to account for?
– do the formulas lead to the correct predictions?
– do the formulas cover all the properties we want to account for?

A major difference between models in software engineering and models in other
engineering is that in the latter models are often more “numerical” and in the
former models are more “logical.” Numerical models are, in principle, easier to
validate since computing with them produces numbers which can be checked
against existing data or measured on physical objects. Logical models are,
in principle, more complicated to validate since we need to draw all possible
inferences from the formulas.

For models with few formulas, one can expect domain specialists to assess
the validity of the specification through thorough reading. For larger models,
the task requires the use of tools to explore the possible inferences.

2.2 During development

In refinement-based methods, a development step is a refinement: an evolution
of the model which must meet very strong consistency relations between be-
fore and after the step. Those constraints have the form of theorems, or proof
obligations, which must be discharged. There is then a solid safety net for the
model’s evolution. However, validation is necessary for several reasons: exten-
sion of the model, fixing-up of formulas, developer choices, emerging behaviors,
and assessing progress.

Extension of the model Some methods, such as Event-B, allow developers
to introduce new properties during refinement. On the plus side, this allows to
build incrementally the model by introducing gradually its different features.
The notion of observation level4 is an attempt to organize rigorously such

4 An observation level is a focus on a specific part of a formal model for a fine-grained
analysis [15, 16].

204



introduction. The new formulas must of course be validated in the same spirit
as for the initial model, but we must also check that they interact well with
the part of the model that has already been specified.

Fixing-up formulas The general direction of refinement is to go from non-
deterministic to more deterministic behaviors, and from abstract data models
to implementable data structures. The proof obligations guarantee that the re-
fined formulas are consistent, but not that they are a valid model. For instance,
in Event-B, the guard of a refined event must be stronger than the guard of
the corresponding abstract event. That can be cast as a proof obligation which
must be discharged. But, upon success, we must also check that the new guard
is not “too strong,” thus discarding wanted behaviors from the model.

Developer choices Refinements, most often, require the developer to make
some choices. Regularly, even good and precise specifications do not offer any
clue to guide the choices. The problem is that all choices are not equal! For
instance, the complete specification of the withdrawal function of an ATM is
an attainable goal. There are three inputs (card, PIN-code and amount), three
outputs (card, cash, account modification) and a limited set of conditions (even
integrating hardware problems). But, at some time during the development,
the two operations of giving back the card and the cash must be ordered.
Interestingly, the first generation of ATM gave first the cash, then the card.
Now, the order is reversed: one must retrieve the card to get the cash. The most
probable explanation for this switch of behavior is that humans are forgetful
and left many cards behind. This is the kind of assumption that is likely to
be omitted in a formal model. The point is not that the problem would have
been caught during the development, but that, without validation, it is nearly
impossible to spot.

Emerging behaviors As refinements proceed, the model is growing in size
and details. It contains more and more formulas which may interact in unex-
pected ways. This growth has the potential to introduce emerging properties
in the model, some maybe good, some maybe neutral, and some maybe bad.
Of course, it is better to avoid the bad ones as soon as possible.

Assessing development progress A (probably undesirable) feature of for-
mal methods is their opacity: potential users and stakeholders do not possess,
generally, the mathematical background necessary to read and understand thor-
oughly the models. This can lead to uncomfortable situations because stake-
holders cannot be included in the development process [11]. This has several
consequences:

205



– problems with requirements and unwanted behaviors are not caught before
the development is finished,

– nobody, except the developers, can assess whether the development is going
in a good direction,

– without continuous monitoring of the development progress, it will be more
difficult to convince managers of the benefits of formal methods.

2.3 Implementation

Using formal methods does not forgo the necessity to test the final product.
However, the kind of tests that are required later on are like acceptance tests
where it is determined that the product meets users needs and unlike other
tests which (try to) assess that the invariant properties are preserved.

Nonfunctional properties Nonfunctional properties, such as response time
or maintainability, are equally important requirements. Even when they can be
formalized, such as a bound on response time, they are often outside the scope
of formal methods. Meeting nonfunctional properties is also often dependent
on the hardware and the environment where the implementation runs, which
may not be exactly known or modeled during development.

Usability For systems which interact with humans, e.g., ATMs, it may be
impossible to predict all the difficulties that may arise. This should be the true
role of beta-version software: validating that the system improves the users’
ability to fulfill their task.

2.4 Non modeled properties

Irrespective of the considered formal method, there are some properties that are
outside its expressive power. For instance, it is very difficult to model general
time, causality, or reachability properties in Event-B. So, we can expect, for
any real-life software, to have requirements which cannot be formalized. It is
then important to test for those requirements. The tools and techniques to test
are the same as those used to validate the models through execution. So, these
tests can be included in the validation procedure.

As soon as a model takes care of requirements outside the expressive power
of a particular method, specific tests must be setup. Further down the devel-
opment, such tests must be run at every step in the spirit of non-regression
testing.

206



3 The Issues with Validation

The validation of models is not a new idea. It is indeed an important part
of traditional software development processes. However, formal methods, until
recently, mostly ignored validation. We think the context of formal methods
induces some specific issues about the validation process. This section discusses
those.

3.1 Requirements

Whatever development method is used, the validation of a piece of software
is only worth the quality of the requirements for that element of a system.
Precise requirements are the goalposts against which the final product must
be measured. Hence it is absolutely important to have a detailed, well written,
complete, and unambiguous statement of requirements to start with.

In the context of formal methods, there are two issues with requirements.
The first issue lies with the formalization of requirements themselves. A critical
question is the coverage of requirements: does the final formal model takes
all of them into account? To answer such a question, we need to be able to
trace requirements back and forth to the formal model. There is then a need
to have a good level of compatibility between the modeling languages used
for requirements and for models. This is, for instance, what the ProR tool5

proposes for Event-B.
The second issue lies with the evolution of requirements. We are not con-

vinced that a better requirement elicitation process would make this issue dis-
appear. Of course, better requirements must always be sought out, but they will
still evolve for two main reasons: implicit assumptions and environment mod-
ifications. Software which interacts with open environments, notably humans,
must rely on assumptions about this environment (ranges of value, behaviors,
etc.), many of which are not formalized. Yet, once in a while, we discover that
the formal models allow behaviors that are undesired. Also, the notion of envi-
ronment of a system is a point of view of the system. But there are other points
of view, from which the new system is a modification of the environment. By
its mere existence, the new system may shift the expectations for its users or
create new expectations.

The problem is actually an open research question: how to manage modi-
fications in a formal model? Until now, there is no other option than starting
again the development.

3.2 Human judgment

Validation implies that someone makes a judgment on the model. This means
that users must assess whether the model meets requirements. There are two

5 http://www.eclipse.org/rmf/pror/

207



ways to make such an assessment: one is to “understand” the model enough to
explain its relation to requirements, the other is to run the model and analyze
its output.

The former technique is adequate for models which consist of few formulas
(invariant properties, events, automatons, etc.). As the size of the model grows,
the interaction between the logical formulas becomes more and more difficult
to analyze. For instance, we have often observed that we tend to write stronger
than necessary guards for events, therefore forbidding otherwise admissible
situations. Such errors are difficult to catch through reading only.

Larger models, in terms of the number of elements and formulas, are bet-
ter validated by analyzing the space of legal states they specify. The analysis
revolves around two kinds of questions: Which states are reachable? Are all
the ways to reach a state admissible to the user or the environment? The
first question concerns the coverage of requirements by the model; the second
question concerns the problem of inadequate behaviors. This can be achieved
by techniques akin to those used in software testing. So, we can adapt existing
techniques to reduce safely the amount of executions to explore the state space.

3.3 Abstraction and nondeterminism

In using a test-based approach to validation, we are confronted with a major
difficulty: how to execute the model? While it is always possible to run a state-
based model by computing manually a few traces, a true validation requires to
compute many more. We need an automated execution mechanism.

An executable program is a formal model. However, it is way too detailed
to allow for formal verifications in general. There lies the reason which moti-
vated the introduction of formal methods. Abstract formal models are allowed
to use data which may not be implemented as such, e.g., operations with non-
constructive definitions, and nondeterministic execution models, so proofs can
be conducted.

Execution tools must provide solutions for two different problems. The first
is a way to implement data. Since efficiency can be put aside (up to a rea-
sonable degree), we can use canonical definitions and libraries. The second is
the exploration of the state space. Both nonconstructive and nondeterministic
definitions increase the size of the state space to explore. There is a threshold
below which automated exploration is possible. Over this limit, we must resort
to human intervention to guide the exploration.

When using an execution tool, we must be confident that the results and
behaviors we observe are indeed specified by the model. The tool must be
correct. Fully automated tools can be trusted more easily than tools where
user’s intervention is required. In both cases, we need some insurance that tools
correctly implement the operational semantics of the formalism. In the last case,
we also need the insurance that elements provided by users are consistent with
the model. We have addressed this issue with the notion of simulation “fidelity”

208



which is looser than the strict behavioral equivalence relation, but ensures that
observations made on the executable model can be trusted as observations on
the original one [19].

4 The Tools

The actual use of formal methods is highly dependent on sophisticated tools.
Formal models are too complex to be manipulated “by hand,” and the opera-
tions on them are highly complex, relying on elaborate theories and extensive
exploration. Verification, either through theorem proving or model checking,
is not possible without tools; validation is not different. We present here a
typology of tools we have found useful.

4.1 Translators

A development using formal methods and refinement will eventually produce a
program written in a programming language. So, at some point, the mathemat-
ical and logical model must be translated. Then, standard testing techniques
can be used to validate the final program. Sometimes, when the model is deter-
ministic and the data has some canonical implementation, translators can be
used during the development. Of course, this will generally happen when the
development is near its end.

The main advantage of using a translator in a validation procedure is that
the executable model is very close to the final program. Assuming the trans-
lator is proven (or at least verified), the observations made while executing
the program correspond exactly to the model. Execution can be trusted with-
out further consideration. The environment in which the model is executed is
close to the environment for the final product. So, the kind of non-functional
requirements that depend on the actual environment can begin to be assessed.

Of course, the main limitation is that the model must be close to imple-
mentation. This limits the use of translators to the very last stages of the
development. We should strive to have the major problems with requirements
been discovered and overcome before those stages.

4.2 Model checkers

The validation of a software model is to explore the state space defined by
the model. Model checkers are built for that exact purpose and, indeed, can
be used during the development. ProB [12], a model checker for B adapted to
Event-B, has been extended by an interface control and shows the execution of
the model.

The main advantage of model checkers is their solid formal foundation.
When they provide an answer, we are assured that it is a true consequence of

209



the model. Also, their exhaustive exploration of the state space insures a full
coverage of the model’s behaviors.

The main limitation of model checkers is the combinatorial explosion of the
state space exploration. Nondeterminism fuels the explosion, however, even
deterministic systems can lead to models with a state space too large for prac-
tical application of model checking. For instance, in the landing gear case study
proposed for ABZ’2014 [6], most published studies acknowledge that the use
of model checkers becomes impossible when a certain level of details has been
reached. Yet, the system is purely deterministic.

4.3 Animators

Animators are tools which implement the operational semantics of the formal-
ism and are able to interpret directly the formal code. The nondeterministic
features are treated by enumerating all the possible local values and picking
randomly the actions to do when necessary. The enumeration can use either
smart constraint solving techniques (ProB for instance), or brute force enumer-
ation (AnimB6 for instance).

The main advantage of animators is their close proximity to the formal
model. They interpret directly the code over a “virtual machine” which is
relatively easy to verify.

Animators have the same limitations as model checkers. Since they need to
enumerate values, those need to belong to relatively small sets. It is possible
to develop heuristics to transform nonanimatable models into animatable ones,
e.g., as proposed in [14,18]. It can be done safely but at some cost: transforma-
tions generate proof obligations which must be proven, and the resulting model
is only a sub-model of the original model. Some behaviors and data state may
be lost, but no spurious ones are introduced.

4.4 Simulators

To make validation accessible at all times during a development, there is a need
to execute very abstract and nondeterministic models on which all the preced-
ing tools fail. The idea then is to rely on automatic interpretation on most of
the model and ask the user to provide explicit definitions for nonconstructive
constructs and choice restriction for the nondeterministic constructs. The ra-
tionale is that developers must begin with very abstract models, but they know
in which direction the development will proceed to become implementable. Of
course, the hand-coded parts provided by the users constraint and restrict the
space that can be explored, but we can expect that the cut-out parts of the
state space are actually irrelevant for the final software. For instance, when
modeling some movements in a 3D space, we may need some distance function

6 http://www.animb.org

210



which is not explicitly modeled; for practical validation, “implementing” it as
the standard Cartesian distance is effective.

The main advantage of the simulation technique [26] is that models at all
levels of abstraction can be validated, at least partially.

There are two limitations to the technique:

– the explored state is smaller than the specified space; we must trust users
to provide solutions that explore the space which is important in practice,

– the user’s additions must be consistent with the model. This is a com-
plex issue. For Event-B, for instance, we have developed a notion of “fi-
delity” which captures this property [28]. It entails the generation of proof
obligations which must be discharged to guarantee the consistency of the
simulation.

4.5 Scenario managers

To check whether a given requirement is covered by a system, we need to set
up a test situation: getting to an initial state value, firing a predefined sequence
of commands or actions, and comparing the expectations against actual results
and observations. To validate a model, we need to check all requirements the
model is supposed to cover. So, we must have some tools to manage a large
collection of scenarios.

Furthermore, for validation to be a continuous process accompanying refine-
ments, we must check that no requirement is dropped off during a refinement.
This is the standard issue of non-regression testing that faces the maintenance
process and the incremental development methods.

5 Case Studies

In this section, we present a few examples of our developments where the ex-
ecution of models helped us spot and eventually fix anomalies in our models.
All the following examples are taken from our work with Event-B. So before
discussing examples, we first introduce this formal method.

5.1 The Event-B method

Event-B is a state-based formal method for systems and software engineering.
A model in Event-B is composed of three elements:

1. a state, which is a function mapping names to values. The values are in-
ductively defined as atoms (integers, symbols, booleans), sets of atoms,
and set-theoretic constructions of values. There are special notations for
typical set constructions such as relations, power sets, total relations, or
bijective functions. Syntactically, the state distinguishes between constants
and variables.

211



2. an invariant, which is a logical first-order formula on the state that specifies
the legal values of the state of a system. Syntactically, the invariant is a
conjunction of smaller formulas.

3. a set of events, which are guarded substitutions on the state. The guard is
a conjunction of smaller first-order formulas on variables of the model.

The formal semantics of the model is defined by four properties:

1. all expressions must be well-typed; the typing relation is essentially the
“belongs to” set-theoretic relation,

2. there must exist at least a value of the state which satisfies the invariant.
Syntactically, there is a special event (INITIALISATION) which sets the
initial legal state,

3. any event whose guard holds can be fired (the choice is nondeterministic),
each event fired from a legal state leads to another legal state: i.e., they
maintain the invariant,

4. all events must be feasible, i.e., if the guard is true, there must exist a
solution for all substitutions which leads to a legal state.

The model development scheme associated with Event-B is based on for-
mal refinement. Refinement is a relation between models. A model MR is a
refinement of MA if: (1) there is a gluing invariant between the state of MR
and the state of MA, this gluing invariant is part of the invariant of MR, and
(2) all events in MR have their counterparts in MA and have a stronger guard
ensuring that a refined event can only be fired if the abstract event can.

In practice, refinements can be classified into four general kinds:

State restriction The invariant or guards of events are strengthened so the
legal state space becomes smaller.

Data refinement Some variables are “replaced” by others closer to an imple-
mentable data structure.

Property introduction New variables and related invariants are introduced
to model a property.

Behavior refinement New events are introduced to model new behaviors.
Technically, new events must be formal refinements of the SKIP (do-nothing)
event.

The syntax and semantics are designed so that, for each model, a set of in-
dependent proof obligations are generated. The model is verified when all proof
obligations are discharged. The major advantage of refinement-based methods
is that the proof of correctness of the implementation is broken into many small
and relatively simple proofs which are spread out all over the development pro-
cess.

212



5.2 The platooning case study

The platooning case study [27] was intended to assess the possibility of using
Event-B to prove an existing algorithm of platooning by redeveloping it. The
algorithm controls the movement of autonomous vehicles forming a platoon
by using only perception of the preceding vehicle in the formation. The safety
property of interest is non-collision of vehicles participating in the platoon. The
development was conducted in two phases: the first phase considered only a 1-D
version of the algorithm which only controls speed, the second phase considered
a 2-D version which adds direction control. The examples below concern only
the 1-D version.

The validation was done by using the animator Brama [23] to which a
graphical interface was added. It was performed at the end of the development,
on a model which included an event to set the target speed of the platoon which
was not part of the specification. This unguarded event does not modify the
state space or the essential behaviors of the model.

The animation uncovered two interesting problems with the model.

Oscillations During the animation, it appeared that when the platoon reached
its target speed, although the leading vehicle had a smooth continuous
speed, the following vehicles were alternating braking and accelerating with
each cycle. Furthermore, acceleration/deceleration values increased with
the position in the platoon. This is of course an unintended behavior of
the system. This situation comes from the incompleteness of requirements
which must include a statement about oscillation. It should be noted that
the definition of oscillation in Event-B may be tricky.

Blockages When running a scenario where the platoon comes to a stop, we ob-
served that it could not start again. Analysis of the problem reveals that the
platoon algorithm was actually caught in a deadlock. The reason was that
Event-B supports only integers while the algorithm uses real numbers. The
slight difference in values prevented some guards to be true. The solution
was to modify slightly the model to account for the numerical discrepancy.
Event-B has no provision to guarantee that models do not deadlock. It is
possible to define invariants which express the deadlock freeness property,
but they must be introduced explicitly.

5.3 The landing gear case study

The landing gear case study [5] was introduced as part of the ABZ conference
to allow comparison of formal systems and development approaches. The task
is to design the control system of the landing gears of an airplane. The require-
ments are given in a natural language document which describes the physical
components, the sequence of movements, and the timing constraints of a live
system.

213



A very important property of the control system is to allow maneuver re-
versibility at all time, i.e., the pilot must have the possibility to stop and reverse
the maneuver at any time. Such a property cannot be specified in Event-B.
However, as the system can be described as a finite automaton, it is possible
to design an exhaustive set of scenarios to check the reversibility.

All solutions of the case study based on Event-B observed the necessity to
use a form of execution to check the property; all developers admitted to have
reworked their models a few times to get it right.

An interesting observation about the tools is that, even if the system is
finite and deterministic, automatic tools, such as ProB, stop to work as the
description of the hardware elements gets more detailed.

We used JeB [19]. An important part of the code we had to write consisted
in the executable models of the hardware, the sensors in particular.

5.4 The transport domain model case study

The transport model [13] is an experiment to assess the potential expressiveness
of Event-B to specify domains. The requirements include the following:

– vehicles move along a network akin to a road system,
– vehicles must not collide,
– two kinds of collisions are considered: rear-endings along a path and inter-

section crashes,
– vehicles obey the usual kinematics law,
– travel time must be modeled,
– energy consumption must be modeled.

A very important feature of the development is the gradual introduction of the
properties.

We used two kind of tools to execute the model: Brama (an animator) and
JeB (a simulator). While the use of Brama prompted the design of transfor-
mation heuristics (please see [14] for more details) to make models amenable
to animation, JeB allowed us to execute all models in the 13 refinement steps.
Execution of the model helped us on several grounds.

Context validation Although execution tools are designed to check the be-
havior of the model, the technology can be used to validate that the static
part (the contexts in Event-B) is a valid model of the environmental data
of reality. Modeling a small village showed that we need to introduce new
kinds of nodes in the network to model the entry and exit points as (infinite)
sources and (bottomless) sinks.

Deadlocks identification A difficulty with our model is that it must account
for gridlocks, i.e., places in the network where no movement is possible, but
must also avoid deadlocks, i.e., situations where a real vehicle could move
but the model prevents it. Traditional techniques for deadlocks checking do
not work well as the model allows for all vehicles to be parked.

214



Guard debugging Most of the anomalies seen during the executions were
traced back to incorrect guards in events. Most often, the guards were too
strong for one of two reasons. The first is “logically” too strong, i.e., some
cases were forgotten when writing the guard. The second is “numerically”
too strong. As for the platooning case study, the kinematic functions are
modeled with integers. So, the formulas must take into account some kind
of “imprecision” due to the differences in arithmetics.

Termination checking An important implicit property is that unobstructed
vehicles must progress toward their destination. Such a property is difficult
to model in Event-B. Execution allows us to assess the progress.

6 Research Issues

In this section, we discuss more precisely two issues which have recently emerged
as new research topics.

6.1 Interaction between models

Formal methods are very relevant for software pieces which are part of wider
systems where they control hardware elements. Cyber-Physical Systems (CPS)
are of this kind, and they are becoming ubiquitous in our everyday environment.
The validation of software models then also requires hardware elements to be
modeled and participate to the execution strategy. Except for the rare hardware
pieces which act as digital state machines, most are analog devices obeying some
physical laws. Thus, they are more likely to be modeled with techniques such
as differential equations or frameworks like Scilab7. We know how to produce
executable models of such artifacts, but the interaction between the executable
models of software and hardware is an open problem.

The following issues must be addressed:

1. Connecting the executable models. This is a standard issue in software engi-
neering when we need to build systems composed of units running in differ-
ent environments. In the context of Event-B, several directions are investi-
gated. The European FP7 ADVANCE project8 explored platforms build on
Functional Mock-up Interface (FMI) [21], Rodin [4], and ProB to test CPS
system with multi-simulation. Generic platforms, such as MECSYCO [24],
provide a basis for connecting JeB generated executable models with mod-
els developed in other languages. Preliminary studies we have conducted
ahve shown the potential of such approaches.

7 http://www.scilab.org
8 http://www.advance-ict.eu

215



2. Equalizing the abstractions. At a given refinement step, the formal model
is an abstraction of actual software. The model considers the outside en-
vironment from this abstract point of view and must sees it at the same
abstraction level. We then need to bring the hardware simulation models
up to the same abstraction level. There are two basic possibilities. Either a
model of the hardware at the appropriate level is built by the specialists of
these artifacts, or, an “abstracting interface” is wrapped aroung a detailed
model of the hardware to make it interact at the required abstraction level.

3. Which ever of the preceding two techniques is used, there remains the
essential question: can the observation on the simulation be trusted? This
boils down to the fidelity of the hardware simulation model to the actual
hardware piece.

6.2 Relation between refinement and validation

In formal methods, such as Event-B, the notion of refinement was introduced
and formalized to support the incremental verification of the final software.
While each refinement is a complete model by itself and its consistency must
be proven, the syntactic and semantic structures have been defined so that
only proof obligations associated with the newly introduced elements need to
be discharged for the proof to be complete. The proof that the final software
conforms to its specification progresses along with the proof of each refinement.
The verification is then monotonic with respect to refinements. Such a mono-
tonicity would also be desirable for validation. However, much research needs
to be done to achieve this goal. Several points must be established:

1. How to identify and associate a particular refinement with the “new” re-
quirements being taken into account?

2. How to associate requirements and test scenarios?
3. How to generate new test scenarios for the refined model from test scenarios

for the abstract model? This is related to the issue of non-regression testing:
we need to be able to “replay” tests to check that behaviors are valid
“refinement” of behaviors validated on abstract models. A definition of
scenarios which can integrate a notion of abstraction/refinement is then
required.

At present, points 1 and 2 are more a, complex, engineering problem than a
research issue. Tools, such as ProR, already allow the elicitation and formaliza-
tion of requirements in a format compatible with Event-B models in Rodin [22].

Point 3 requires first to have a formal definition of scenarios compatible
with refinement. Since the semantics we use to define fidelity, i.e., the relation
between formal models and executable models, is based on traces, we can con-
sider scenarios as traces. More precisely, we can define scenarios as constraints
on traces such as succession of events (from a given refinement level), succession
of states, and any mix.

216



7 Conclusion and Future Work

Although we did not start from this point of view, we have come to realize
that our work on validation led to ideas and tools that are close to the Agile
spirit [20], at least the Good ideas as identified by Meyer: short development
cycles, extensive “testing,” and permanent user validation.

The similarity between the short development cycles (the “runs”) of Agile
methods and the short refinement steps as advocated in [2] is striking. In both
cases, the development proceeds through a sequence of correct models, either
formal or executables. Of course, the notion of correctness is very different in
each case. By including validation of the formal models, we can get even a closer
analogy as users can be involved and assess the adequacy of the requirements
all along the development.

Behind the practice of “permanent testing” of Agile methods is the idea
that, once established, the correctness of a feature must always be guaranteed.
Refinement-based formal methods ensure this property by other means, and,
too often, despise tests. However, testing has other roles which are useful in
formal methods. The first role concerns the verification of the properties that
cannot be modeled within the method. The second role is the validation that
the requirements have been met.

The possibility for users to interact with models during the whole devel-
opment is essential to ensure that, at the end, software will meet the actual,
useful, requirements. Requirements’ evolution is a hot research topic, partic-
ularly in the context of formal methods. At present, we do not know how to
refactor a formal development when a requirement changes. So it is very impor-
tant to detect as early as possible a problem with requirements: either missing,
incomplete, or mis-adapted.

The diffusion of Agile methods in industry is a model we should strive
for formal methods. As discussed above, by introducing validation into each
requirement step, we hope to get the positive arguments to counter those used
to put formal methods aside.

References

1. Abrial, J.R.: The B Book. Cambridge University Press (1996)

2. Abrial, J.R.: Formal methods in industry: achievements, problems, future. In:
Proceedings of the 28th international conference on Software engineering. pp.
761–768. ICSE ’06, ACM, New York, NY, USA (2006)

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

4. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International Journal on
Software Tools for Technology Transfer 12(6), 447–466 (2010)

217



5. Boniol, F., Wiels, V.: The landing gear system case study. In: ABZ 2014:
The Landing Gear Case Study, Communications in Computer and Informa-
tion Science, vol. 433, pp. 1–18. Springer International Publishing (2014), http:
//dx.doi.org/10.1007/978-3-319-07512-9_1

6. Boniol, F., Wiels, V., Ameur, Y.A., Schewe, K.D.: ABZ 2014: The Landing Gear
Case Study Case Study Track, Held at the 4th International Conference on Ab-
stract State Machines, Alloy, B, TLA, VDM, and Z Toulouse, France, June 2-6,
2014, Proceedings, Communications in Computer and Information Science, vol.
433. Springer (2014)

7. Bormann, J., Lohse, J., Payer, M., Venzl, G.: Model checking in industrial
hardware design. In: Proceedings of the 32nd Annual ACM/IEEE Design Au-
tomation Conference. pp. 298–303. DAC’95, ACM, New York, NY, USA (1995),
http://doi.acm.org/10.1145/217474.217545

8. Butler, R., Caldwell, J., Carreno, V., Holloway, C., Miner, P.S., Di Vito, B.:
NASA Langley’s research and technology-transfer program in formal methods.
In: Computer Assurance, 1995. COMPASS’95. Systems Integrity, Software Safety
and Process Security. Proceedings of the Tenth Annual Conference on. pp. 135–
149 (Jun 1995)

9. Cimatti, A.: Industrial applications of model checking. In: Cassez, F., Jard, C.,
Rozoy, B., Ryan, M. (eds.) Modeling and Verification of Parallel Processes, Lec-
ture Notes in Computer Science, vol. 2067, pp. 153–168. Springer Berlin Heidel-
berg (2001), http://dx.doi.org/10.1007/3-540-45510-8_6

10. Kaufmann, M., Moore, J.: An industrial strength theorem prover for a logic based
on Common Lisp. Software Engineering, IEEE Transactions on 23(4), 203–213
(Apr 1997)

11. Kossak, F., Mashkoor, A., Geist, V., Illibauer, C.: Improving the understand-
ability of formal specifications: An experience report. In: Salinesi, C., Weerd, I.
(eds.) Requirements Engineering: Foundation for Software Quality, Lecture Notes
in Computer Science, vol. 8396, pp. 184–199. Springer International Publishing
(2014), http://dx.doi.org/10.1007/978-3-319-05843-6_14

12. Leuschel, M., Butler, M.: ProB: An Automated Analysis Toolset for the B
Method. Journal Software Tools for Technology Transfer 10(2), 185–203 (2008)

13. Mashkoor, A.: Formal Domain Engineering: From Specification to Val-
idation. Ph.D. thesis, Université de Lorraine (Jul 2011), http://tel.

archives-ouvertes.fr/tel-00614269/en/
14. Mashkoor, A., Jacquot, J.P.: Stepwise validation of formal specifications. In: 18th

Asia-Pacific Software Engineering Conference (APSEC’11). pp. 57–64 (2011)
15. Mashkoor, A., Jacquot, J.P.: Utilizing Event-B for Domain Engineering: A Crit-

ical Analysis. Requirements Engineering 16(3), 191–207 (2011)
16. Mashkoor, A., Jacquot, J.P.: Observation-Level-Driven Formal Modeling. In:

High-Assurance Systems Engineering (HASE), IEEE 16th International Sympo-
sium on. pp. 158–165 (2015)

17. Mashkoor, A., Jacquot, J.P.: Validation of formal specifications through trans-
formation and animation. Requirements Engineering pp. 1–19 (2016), http:

//dx.doi.org/10.1007/s00766-016-0246-6
18. Mashkoor, A., Jacquot, J.P., Souquières, J.: Transformation Heuristics for Formal

Requirements Validation by Animation. In: 2nd International Workshop on the
Certification of Safety-Critical Software Controlled Systems (SafeCert’09). York,
UK (2009)

218

http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://doi.acm.org/10.1145/217474.217545
http://dx.doi.org/10.1007/3-540-45510-8_6
http://dx.doi.org/10.1007/978-3-319-05843-6_14
http://tel.archives-ouvertes.fr/tel-00614269/en/
http://tel.archives-ouvertes.fr/tel-00614269/en/
http://dx.doi.org/10.1007/s00766-016-0246-6
http://dx.doi.org/10.1007/s00766-016-0246-6


19. Mashkoor, A., Yang, F., Jacquot, J.P.: Refinement-based Validation of Event-B
Specifications. Software & Systems Modeling pp. 1–20 (2016), http://dx.doi.
org/10.1007/s10270-016-0514-4

20. Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer Verlag (2014)
21. Savicks, V., Butler, M., Colley, J.: Co-simulating Event-B and Continuous Mod-

els via FMI. In: Proceedings of the 2014 Summer Simulation Multiconference.
pp. 37:1–37:8. SummerSim’14, Society for Computer Simulation International,
San Diego, CA, USA (2014), http://dl.acm.org/citation.cfm?id=2685617.

2685654

22. Sayar, I., Souquières, J.: La validation dans le processus de développement. In:
Actes du XXXIVème Congrès INFORSID, Grenoble, France, May 31 - June
3, 2016. pp. 67–82 (2016), http://inforsid.fr/actes/2016/INFORSID2016_

paper_3.pdf

23. Servat, T.: BRAMA: A New Graphic Animation Tool for B Models. In: B’07:
Formal Specification and Development in B. pp. 274–276. Springer-Verlag (2006)

24. Vaubourg, J., Presse, Y., Camus, B., Bourjot, C., Ciarletta, L., Chevrier, V.,
Tavella, J.P., Morais, H.: Multi-agent Multi-Model Simulation of Smart Grids
in the MS4SG Project. In: Demazeau, Y., Decker, K.S., Bajo Pérez, J., de la
Prieta, F. (eds.) PAAMS’15. Lecture Notes in Computer Science, vol. 9086, p. 12.
Springer, Salamanca, Spain (Jun 2015), https://hal.inria.fr/hal-01171428

25. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1996)

26. Yang, F., Jacquot, J.P., Souquieres, J.: JeB: Safe Simulation of Event-B Models
in JavaScript. In: Software Engineering Conference (APSEC), 20th Asia-Pacific.
vol. 1, pp. 571–576 (2013)

27. Yang, F., Jacquot, J.P.: Scaling up with Event-B: A case study. In: Bobaru, M.,
Havelund, K., Holzmann, G., Joshi, R. (eds.) NASA Formal Methods, Lecture
Notes in Computer Science, vol. 6617, pp. 438–452. Springer Berlin Heidelberg
(2011)

28. Yang, F., Jacquot, J.P., Souquières, J.: Proving the fidelity of simulations of
Event-B models. 15th IEEE International Symposium on High-Assurance Sys-
tems Engineering pp. 89–96 (2014)

219

http://dx.doi.org/10.1007/s10270-016-0514-4
http://dx.doi.org/10.1007/s10270-016-0514-4
http://dl.acm.org/citation.cfm?id=2685617.2685654
http://dl.acm.org/citation.cfm?id=2685617.2685654
http://inforsid.fr/actes/2016/INFORSID2016_paper_3.pdf
http://inforsid.fr/actes/2016/INFORSID2016_paper_3.pdf
https://hal.inria.fr/hal-01171428

	Festschrift.pdf
	Festschrift.pdf
	II.05.90.119Paper07HOpKD60FerrarottiTecTurull.pdf
	Polynomially Bounded Valuations in Higher-Order Logics over Relational Databases

	II.06.120.143Paper09StephenHyperref.pdf
	Introduction
	The Database Framework
	SI and CPSI
	Tolerant CPSI
	An Operational Description of TCPSI
	Conclusions and Further Directions

	III.08.174.198Paper01KD-fest.Wen.LNCS.pdf
	Cyberphysical Systems:A Behind-the-Scenes Foundational View

	III.09.199.216Paper02main.pdf
	The Role of Validation in Refinement-Based Formal Software Development

	III.11.239.260Paper05kd_tribute_2017_finalVersion01.pdf
	Introduction
	ASM-based development process
	Running example
	Offline and online conformance checking
	Link and conformance definition between specification and code
	Offline conformance checking
	Online conformance checking

	Case studies
	Related work
	Conclusions

	III.12.264.285Paper16book_chapter.pdf
	Addressing Client Needs for Cloud Computing using Formal Foundations
	Introduction
	Overview of the Client-Cloud Interaction System
	Client-Cloud Interaction Middleware
	Identity Management Solution for the Cloud
	Monitoring of Client-Cloud Interaction using Service Level Agreements
	Anomaly-Based Intrusion Detection
	Adaptivity of Cloud Content

	A Management System for Interconnecting Clouds
	Overview of the Distributed Cloud Interaction Middleware
	Monitoring Layer
	Architecture of the System

	Adaptation Layer
	Architecture of the System


	Formal Specification of the Monitoring and Adaptation Processes
	Background on the ASM Formal Method
	Specification of the Monitoring Solution
	Monitor Module
	Leader Module
	Middleware ASM

	Specification of the Adaptation Solution
	ActionController Module


	Validation and Verification of the Specifications
	Validation
	Verification

	Related Work
	Conclusion


	III.12.264.287Paper16Festschrift16book_chapter.pdf
	Addressing Client Needs for Cloud Computing using Formal Foundations
	Introduction
	Overview of the Client-Cloud Interaction System
	Client-Cloud Interaction Middleware
	Identity Management Solution for the Cloud
	Monitoring of Client-Cloud Interaction using Service Level Agreements
	Anomaly-Based Intrusion Detection
	Adaptivity of Cloud Content

	A Management System for Interconnecting Clouds
	Overview of the Distributed Cloud Interaction Middleware
	Monitoring Layer
	Architecture of the System

	Adaptation Layer
	Architecture of the System


	Formal Specification of the Monitoring and Adaptation Processes
	Background on the ASM Formal Method
	Specification of the Monitoring Solution
	Monitor Module
	Leader Module
	Middleware ASM

	Specification of the Adaptation Solution
	ActionController Module


	Validation and Verification of the Specifications
	Validation
	Verification

	Related Work
	Conclusion







