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1 Introduction

The AdS/CFT correspondence in its various guises is now more than a decade old. From its

original incarnation connecting N = 4 super Yang-Mills theory and near horizon geometry

of D3-branes, via less supersymmetric models closer in nature to QCD, the conjectured

AdS/CFT has passed numerous non-trivial hurdles, thus ensuring its place as one of the

cornerstones of the string theory literature.

Emboldened by such successes, physicists recently have shifted tack to applying the

AdS/CFT to model conformal quantum mechanical condensed matter systems with non-

relativistic (NR) symmetry. In this setting, [1, 2] initiated a flurry of excitement in a NR

version of the AdS/CFT by proposing a gravity background whose isometry group is the

so-called Schrödinger group with dynamical exponent z. We will focus on the z = 2 case,
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where the Schrödinger group consists of space and time translations, Galilean boosts, a

scale transformation and a special conformal transformation.

To study whether and how the NR-AdS/CFT works, it would be desirable to have

a concrete example of a dual pair with a large amount of supersymmetry, i.e., a NR

analog of N = 4 super-Yang-Mills and AdS5 × S5. A notable example in this regard

is the “non-relativistic mass deformed ABJM theory” (NR-ABJM) constructed recently

in [3, 4] based on the (2 + 1)-dimensional N = 6 Chern-Simons matter theory of Aharony,

Bergman, Jafferis and Maldacena [5]. The NR-ABJM theory has global symmetry group

U(1)B × SU(2)1 × SU(2)2 × U(1)R × Z2 and 14 supersymmetries.

The original ABJM theory at Chern-Simons level (k,−k) describes multiple M2-branes

probing the orbifold C
4/Zk in the transverse direction; the gravity dual is AdS4 ×S7/Zk.

1

One may turn on an anti-self-dual four-form flux in C
4, which polarizes M2-branes into M5-

branes [6–8]. This corresponds to the mass deformation of the ABJM theory [9, 10] with the

most symmetric (classical) vacuum having the global symmetry SU(2)×SU(2)×U(1)×Z2

and 12 Poincaré supersymmetries.

In the course of taking the non-relativistic limit, the internal symmetry of the vacuum

remains unchanged, while the space-time symmetry mutates into the Schrödinger symme-

try. At the same time, the supersymmetry is enhanced from 12 to 14 supercharges. The

latter may be divided into the sum of 2 dynamical, 2 kinematical and 2 conformal super-

charges constituting the N = 2 super-Schrödinger algebra [11–13], as well as 8 additional

“spectator” supercharges.

If the classical analysis of the field theory vacuum structure may be transplanted di-

rectly to the the supergravity setting, the gravity dual of the NR-ABJM theory could

simply be found by taking a suitable “non-relativistic limit” of the solution of [7, 8]. How-

ever, as we will discuss below, there are some conceptual and technical difficulties for such

an operation, which leads us to pursue an alternative approach.

We start by constructing an ansatz for 11-dimensional supergravity that is compatible

with all the global symmetry and Schrödinger symmetry of the NR-ABJM theory, and

proceed to analyze the Killing spinor equations. We succeed in finding the most general

solution with 6 supercharges forming the N = 2 super-Schrödinger algebra. The solution

takes a simple, explicit form and includes two free parameters (b, c). Setting b = 0, we re-

cover the one-parameter family of solutions previously found by Ooguri and Park [14], where

the result was obtained by deforming some known N = 1 AdS5 solutions in M-theory [15].2

However, bearing in mind the original goal of realizing the 8 additional supercharges,

we are forced to conclude that, within the reach of our assumptions, the desired solution

does not exist. We will list several possible explanations for the failure, but the discussion

will not be conclusive.3

We use standard methods for solving the Killing spinor equations, namely, spinorial

Lie derivatives and G-structure. The methods may be easily adapted to generate more

super-Schrödinger solutions, but with the lengthy analysis involved, we confine ourselves

1We will set k = 1 for most of our discussion, although generalization for arbitrary k is straightforward.
2Earlier work on non-relativistic deformations of this supersymmetric family appeared in [16].
3 See [17] for a possibly related discussion.
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to this one example. Instead, to illustrate how to compare with previously known N = 2

super-Schrödinger solutions [18, 19], we perform T-duality on the IIB solution of [19] to

obtain a new solution in M-theory containing an S2 ×T 2 component in the internal space.

The rest of this paper is organized as follows. In section 2, we review some relevant

features of both NR-ABJM theory and super-Schrödinger symmetry. We also exhibit

our ansatz compatible with the expected global symmetries. In section 3, after a brief

introduction to our methods, we present the solution, explain its main features, compare

it with the solution of [14]. Section 4 contains the details of solving the Killing spinor

equations. In section 5, we uplift a IIB solution of [19] to M-theory and comment on its

properties. We conclude in section 6 with a discussion on possible reasons why the gravity

dual of NR-ABJM does not exist within reach of our assumptions.

2 Motivation and setup

2.1 Non-relativistic ABJM theory and BW/LLM solution

A brief review of NR-ABJM. The ABJM theory is an N = 6 supersymmetric Chern-

Simons-matter theory with U(N) × U(N) gauge group with Chern-Simons levels (k,−k).
The matter fields consist of bi-fundamental scalars ΦA and fermions ΨA, which transform

under the SU(4) ≃ SO(6) R-symmetry group as 4 and 4̄, respectively.

The theory is dual to M-theory on AdS4 × S7/Zk. Regarding S7 as a circle fibration

over CP
3, the Zk acts on the the fiber. In other words, the Zk action breaks the SO(8)

symmetry of S7 to U(1)B × SU(4). It is sometimes useful to take the U(1)B direction to

be the M-theory circle and consider IIA theory on AdS4 × CP
3 with fluxes turned on. In

the field theory the U(1)B generator counts the total number of bosons and fermions.

The non-relativistic ABJM theory with 14 supercharges (NR-ABJM) [3, 4] can be

obtained in two steps. First, one performs a mass deformation [9, 10] which gives the same

mass to all matter fields (up to signs for fermions) and breaks the SU(4) R-symmetry into

SU(2)1 × SU(2)2 × U(1)R. Second, one takes the usual non-relativistic limit for massive

fields. The Lagrangian of the resulting theory is as follows:

L =
k

4π
(LCS + Lkin + Lbos + Lint1 + Lint2) , (2.1)

where

LCS = ǫmnptr

[
Am∂nAp −

2i

3
AmAnAp − Ãm∂nÃp +

2i

3
ÃmÃnÃp

]
,

Lkin = tr
[
φ̄A(iDt)φ

A − (Diφ̄A)(Diφ
A)
]

+tr
[
ψ̄A(iDt)ψA + ψ̄a(D2

i ψa − F12ψa + ψaF 12) + ψ̄ȧ(D2
i ψȧ + F12ψȧ − ψȧF 12)

]
,

Lbos =
1

2
tr
[
φaφ̄[aφ

bφ̄b] − φȧφ̄[ȧφ
ḃφ̄ḃ]

]
,

Lint1 =
1

4
tr
[
(φ̄aφ

a + φ̄ȧφ
ȧ)(ψ̄bψb − ψ̄ḃψḃ) + (φaφ̄a + φȧφ̄ȧ)(ψbψ̄

b − ψḃψ̄
ḃ)
]

+
1

2
tr
[
−φaφ̄bψaψ̄b + φȧφ̄ḃψȧψ̄

ḃ − φ̄aφ
bψ̄aψb + φ̄ȧφ

ḃψ̄ȧψḃ

]
,

Lint2 = −1

2
tr
[
ǫabǫċḋ(φ̄aψbφ̄ċψḋ + φ̄aψċφ̄ḋψb) + ǫabǫċḋ(φ

aψ̄bφċψ̄ḋ + φaψ̄ċφḋψ̄b)
]
. (2.2)
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We are mainly following the notations of [3] with some minor changes. The (a, b ; ȧ, ḃ)

indices denote doublets of SU(2)1 × SU(2)2.

The Lagrangian (2.2) is invariant under the scaling

(t, x ; φ,ψ) → (λ−2t, λ−1x ; λφ, λψ) . (2.3)

As in the free Schrödinger field theory, this scaling symmetry can be extended to the

full Schrödinger algebra which also includes a non-relativistic special conformal symmetry

generator K.

As for the supersymmetry, all 12 Poincaré supercharges of the ABJM theory survive

the mass deformation as well as the non-relativistic limit. Four of them are singlets under

SU(2)1×SU(2)2. Two of them (Q, Q̄), which anti-commute to give the Hamiltonian H, are

called dynamical. The other two (q, q̄) which anti-commute to give the U(1)B generator are

called kinematical. These supercharges transform non-trivially under the Schrödinger alge-

bra. In particular, the commutators between K and (Q, Q̄) require that an additional pair

of supercharges (S, S̄), called conformal supercharges, should exist. These six supercharges

together with the Schrödinger generators form the so-called N = 2 super-Schrödinger al-

gebra as we will discuss in more detail below.

The remaining eight supercharges {qaȧ, q̄aȧ}, which we call spectators, commute with

all Schrödinger generators except the rotation, and transform in (2,2) of SU(2)1 ×SU(2)2.

In summary, the NR-ABJM theory has the global symmetry group

U(1)B × SU(2)1 × SU(2)2 × U(1)R × Z2 ,

where the Z2 interchanges the two SU(2) factors, and contains 14 supercharges.

BW/LLM solution and subtleties with the NR limit. The gravity dual of the

ABJM theory is AdS4 × S7/Zk. To find the gravity dual of the NR-ABJM theory, a naive

approach would be to carry over the mass deformation and the non-relativistic limit to the

gravity side. But, a moment’s thought reveals difficulties in such an attempt.

The gravity dual of the mass deformed theory was obtained some time ago by Bena

and Warner [7] (BW) and reproduced later by Lin, Lunin and Maldacena [8] (LLM); see

appendix B for a short summary of the BW/LLM solution. Bena-Warner begins with a

collection of M2-branes and turns on the four-form flux in the transverse directions. The

flux breaks the SO(8) R-symmetry to SO(4) × SO(4) and polarizes the M2-branes into

M5-branes, which wrap the two three-spheres that are orbits of the SO(4) groups.

There exists a gravity solution for each distinct configuration of polarized M5-branes.

Remarkably, the supergravity equations boil down to a linear equation. In the language of

LLM, the smooth solutions are in one-to-one correspondence with Young tableaux whose

total number of boxes N are the same as the number of M2-branes before polarization.

It is widely believed that the polarized M5-branes correspond to “fuzzy three-sphere”

configurations of the ABJM theory, although an exact match at the quantum level still

remains an open problem [10].

Note that the non-relativistic limit of the mass deformed ABJM theory was taken

without taking the polarization effects into account. It would correspond to a BW/LLM

– 4 –
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solution with no polarized M5-branes. Such a solution was written down in [7], but was

found to exhibit a naked singularity. The LLM dictionary makes it clear that the singularity

is unavoidable.

Putting the singularity problem aside for a moment, let us consider how to perform the

non-relativistic limit on the gravity side. The NR-ABJM theory is non-trivial when there

are non-zero number of particles, which is proportional to the eigenvalue of the U(1)B gen-

erator, which in turn gets identified with the central element M of the Schrödinger algebra.

Recall that the U(1)B generator acts on the circle fiber of S7. On the other hand, in

the geometric realization of the Schrödinger algebra to be reviewed in the next subsection,

M is identified with a light-cone momentum. The situation is strongly reminiscent of the

discrete light-cone quantization (DLCQ) procedure taken in the context of Schrödinger

geometry in [20–22]. A crucial difference is that in our case the light-cone momentum is

taken along a direction transverse to the M2-brane world-volume. The existence of this

light-cone momentum also hinders attempts to obtain solutions via consistent truncation,

as were performed in [21, 23, 24].

In principle, one could proceed as follows. First, one modifies the BW/LLM solution

by adding the particle number M . In the IIA picture, it amounts to turning on the flux

counting the D0-brane charge. Second, one makes the standard coordinate change of the

DLCQ procedure:4

φ̃ = φ− αt , t̃ = t

⇒ H̃ ≡ i∂t̃ = i∂t − α(−i∂φ) ≡ H − αM , M̃ ≡ −i∂φ̃ = −i∂φ ≡M . (2.4)

With a suitably chosen constant α and an appropriate scaling limit, the light-cone Hamil-

tonian is identified with the Hamiltonian of the non-relativistic theory. The gravity de-

scription is expected to be valid for a large value of M .

Coming back to the BW/LLM solution, it is conceivable that the scaling limit of the

DLCQ procedure may push away the singularity of the unpolarized solution, so that the

final non-relativistic solution becomes free of any singularity. Whether such a phenomenon

happens could be tested only by a direct computation. Unfortunately, we are hindered by

a technical difficulty; it is not clear how to turn on the M momentum and obtain the fully

back reacted supergravity solution, as the U(1)B circle is fibered non-trivially along the

CP
3 base.

We are thus led to an alternative approach. We will begin with the most general

ansatz consistent with the symmetries of the NR-ABJM theory and look for a supergravity

solution preserving the same amount of supersymmetry. Before writing down the ansatz,

we review the super-Schrödinger algebra in some detail.

2.2 Super-Schrödinger symmetry

Bosonic algebra in arbitrary dimensions. The Schrödinger algebra Schd contains an

SO(2, 1) subalgebra among the time-translation (H), dilatation (D) and special conformal

4 See [14] for a closely related discussion.

– 5 –



J
H
E
P
0
3
(
2
0
1
0
)
0
3
4

(C) generators.

[D,H] = +2H , [D,C] = −2C , [H,C] = −D , (2.5)

as well as the SO(d) subalgebra,

[M ij ,Mkl] = +δjkM il + δilM jk − δikM jl − δjlM ik . (2.6)

The remaining generators are space-translations (P i) and Galilean boosts (Gi). They are

vectors under the SO(d),

[M ij , P k] = +δjkP i − δikP j , [M ij , Gk] = +δjkGi − δikGj , (2.7)

and satisfy the following commutation relations:

[D,P i] = +P i , [D,Gi] = −Gi , (2.8)

[H,P i] = 0 , [C,P i] = +Gi , [H,Gi] = −P i , [C,Gi] = 0 . (2.9)

Finally, we have the central extension with the “rest-mass” or the particle number,

[P i, Gj ] = −δijM . (2.10)

All the generators above are anti -Hermitian.

It is sometimes useful to introduce a Virasoro-like notation,

L0 ≡ 1

2
D , L−1 ≡ H , L+1 ≡ C , P i−1/2 ≡ P i , P i+1/2 ≡ Gi , M0 ≡M . (2.11)

Then, the commutation relations can be compactly summarized as

[Lm, Ln]=(m− n)Lm+n , [Lm, P
i
r ]=

(
1

2
m− r

)
P im+r , [P ir , P

j
s ]=(r − s)δijMr+s . (2.12)

Global frame. As explained in [25], the operator-state map naturally introduces the

following recombination of generators:

L̂0 ≡ 1

2
(−iH − iC) , L̂±1 ≡ 1

2
(−iH + iC ±D) ,

P̂ i±1/2 =
1√
2
(−iP i ∓Gi) , M̂0 = −iM0 . (2.13)

The new generators also satisfy Virasoro-like commutation relations,

[L̂m, L̂n]=(m− n)Lm+n , [L̂m, P̂
i
r ]=

(
1

2
m− r

)
P̂ im+r , [P̂ ir , P̂

j
s ]=(r − s)δijM̂r+s , (2.14)

as well as the conjugation relations

(L̂m)† = L−m , (P̂ ir)
† = P i−r , (M̂0)

† = M̂0 . (2.15)
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Geometric realization. In [1, 2], a (d + 3)-dimensional Schrödinger-invariant metric

was presented. In our convention, the metric takes the form

ds2 = −dt
2

r4
+

2dtdv + d~x2 + dr2

r2
. (2.16)

The generators of the Schrödinger algebra are realized as Killing vectors of this metric,

Lm = −tm+1∂t −
1

2
(m+ 1)tm(r∂r + xi∂i) +

1

4
m(m+ 1)tm−1(~x2 + r2)∂v ,

P ir = tr+1/2∂i −
(
r +

1

2

)
tr−1/2xi∂v , Mm = tm∂v , Mij = xi∂j − xj∂i . (2.17)

A global coordinate for the geometry (2.16) was found in [26]. It is related to the Poincaré

coordinate by the following transformation,

t = tan T , r =
R

cos T
, ~x =

~X

cos T
, v = V − 1

2
(R2 + ~X2) tan T . (2.18)

In the new coordinate, the metric reads

ds2 = −dT
2

R4
+

2dTdV − ( ~X2 +R2)dT 2 + d ~X2 + dR2

R2
. (2.19)

The global form of the Schrödinger generators get simplified in this coordinate,

L̂0 =
1

2
(i∂T ) , L̂±1 =

1

2
e±2iT

[
i∂T + i( ~X2 +R2)∂V ∓

(
Xi∂Xi +R∂R

)]
,

P̂ i±1/2 =
1√
2
e±iT

(
−i∂Xi ∓Xi∂V

)
, M̂0 = −i∂V . (2.20)

Schrödinger algebra in d = 2. Let J ≡ −iM12 be the SO(2) rotation generator. It is

useful to combine other generators according to their helicity (J-eigenvalue) defined by

[J,O] = jO . (2.21)

For example, Pr ≡ P 1
r + iP 2

r has j = +1 and P̄r ≡ P 1
r − iP 2

r has j = −1. In the helicity

basis, the bosonic algebra can be rewritten as

[Lm, Ln] = (m− n)Lm+n , [Lm, Pr] =

(
1

2
m− r

)
Pm+r , [Pr, P̄s] = 2(r − s)Mr+s . (2.22)

In what follows, we will denote operators with non-negative j by unbarred operators O
and their hermitian conjugates by barred operators Ō.

Super-Schrödinger algebra in d = 2

N = 2 super-Sch algebra. This algebra was first introduced in [12] in the context of

Chern-Simons systems. The notation N = 2 refers to the supersymmetry of the relativistic

parent theory. In the “Poincaré frame”, it has kinematical (q, q̄), dynamical (Q, Q̄) and

conformal (S, S̄) supercharges, and a U(1) R-symmetry.

– 7 –
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Let us jump directly to the Virasoro-like notation in which the commutation relations

take the simplest form. The supercharges are denoted by q, Q−1/2 ≡ Q, Q+1/2 ≡ S and

their conjugates. They transform under the SO(2, 1) × U(1)J × U(1)R subalgebra as

[Lm, Qr] =

(
1

2
m− r

)
Qr , [Lm, q] = 0 , (2.23)

and

[J,Qr] = +
1

2
Qr , [R,Qr] = +Qr , [J, q] = +

1

2
q , [R, q] = −q . (2.24)

Their commutators with Pr give

[P̄r, Qs] = (r − s)q̄ , [P̄r, q] = 0 . (2.25)

Finally, the anti-commutators among supercharges give

{Q̄r, Qs} = Lr+s +
1

2
(r − s)

(
J − 3

2
R

)
, {q,Qr} = Pr , {q̄, q} = 2M . (2.26)

Note that (Lm, Qr, J − 3
2R) form a closed sub-algebra, called OSp(2|1), isomorphic to the

usual N = 2 superconformal algebra in a chiral sector of RNS superstring world-sheet.

N = 6 super-Sch algebra. The ABJM theory has an SU(4) R-symmetry. The mass

deformation breaks it into SU(2)1 ×SU(2)2 ×U(1)R. The six supercharges participating in

the N = 2 subalgebra are singlets of SU(2)1 × SU(2)2. The additional eight supercharges,

which we call spectator supercharges, satisfy the following relations:

[Lm, qaȧ] = 0 , [Pr, qaȧ] = 0 = [P̄r, qaȧ] ,

{Qr, qaȧ} = 0 = {Q̄r, qaȧ} , {q, qaȧ} = 0 = {q̄, qaȧ} ,

[J, qaȧ] = +
1

2
qaȧ , [R, qaȧ] = 0 ,

[Rab, qcċ] = −δαγ qbċ +
1

2
δab qcċ , [Rȧḃ, qcċ] = −δac qċḃ +

1

2
δȧ
ḃ
qcċ ,

{
q̄aȧ, qbḃ

}
=

1

2
δab δ

ȧ
ḃ
M − δabR

ȧ
ḃ + δȧ

ḃ
Rab , (2.27)

where Rab, R
ȧ
ḃ are the SU(2) generators defined by

[Rab, R
c
d] = δcbR

a
d − δadR

c
b , (Rab)

† = Rba . (2.28)

The N = 2 subalgebra (2.26) still holds, except that the generator R is replaced by R̃. In

the field theory, the shift is partly due to an additional conserved quantity, namely, the

fermion number Σ. The shifted R-charge is related to the original one by R̃ = (4/3)R −
(2/3)Σ. From the commutation relations, we see that the shift is needed to make qaȧ
neutral under J − 3

2R̃, which should hold because qaȧ commutes with Qr. It is not clear

how to realize Σ geometrically.
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L0 J R R̃

Q +1 +1/2 +1 +1

S −1 +1/2 +1 +1

q 0 +1/2 −1 −1

qαα̇ 0 +1/2 0 1/3

Table 1. U(1) quantum numbers of supercharges.

2.3 Ansatz

Recall the sequence of the R-symmetry breaking,

SO(8) ⊃ U(1)B × SU(4) ⊃ U(1)B × SU(2)1 × SU(2)2 × U(1)R . (2.29)

To see how these R-symmetries are realized geometrically, consider S7 as a warped product

of two S3’s, and write down the metric as

ds2S7 = dα2 + cos2 αdΩ2
1 + sin2 α dΩ2

2 . (2.30)

We use the standard Euler-angle coordinates (θ, φ, ψ) for each S3:

dΩ2
i =

1

4

[
dθ2
i + sin2 θidφ

2
i + (dψi − cos θidφi)

2
]

(i = 1, 2, no sum). (2.31)

We choose the orientations of the 3-spheres such that the U(1)R acts diagonally on ψ1,2

and the U(1)B acts with an opposite relative sign.

Now, let us begin with AdS4 × S7/Zk and imagine taking the mass deformation and

then the non-relativistic limit. The procedure will change the metric significantly, but the

R-symmetries (2.29) as well as the time and space translation (in Poincaré patch) should

be preserved throughout. Moreover, the fibration structure of the U(1)B and U(1)R angles

over the two S2’s should be maintained.

In what follows, we will use the following notations

w =
1

2
(ψ1 + ψ2) , v =

1

2
(ψ1 − ψ2) , (2.32)

Dw = dw − 1

2
(cos θ1dφ1 + cos θ2φ2) , (2.33)

Dv = dv − 1

2
(cos θ1dφ1 − cos θ2φ2) , (2.34)

dω2
i =

1

4
(dθ2

i + sin2 θidφ
2
i ) , (2.35)

Metric. We can try to write down the most general ansatz for the metric and the 4-form

flux consistent with the Schrödinger symmetry, global symmetries as well as the fibration

structure. Building upon the Schrödinger-invariant metric of [1, 2],

ds2 = −dt
2

r4
+

2dtdψ + dr2 + d~x2

r2
, (2.36)
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we propose our ansatz for the metric,

ds2 = e2c1
(
−c2

dt2

r4
+

2dt(Dv + c3Dw) + dr2 + d~x2

r2
+

4

9
e2h2(Dw)2

)

+e−4c1

(
e−2h2dy2 +

4

3
e2h1

(
e+2h3dω2

1 + e−2h3dω2
2

))
. (2.37)

All the functions (c1,2,3, h0,1,2,3) depend only on y, which is the only coordinate not con-

strained by the continuous symmetries of the geometry. We “gauge-fixed” the reparametriz-

tion invariance in y by a particular choice of gyy. The numerical factors 4/9 and 4/3 are

inserted for later convenience. The Schrödinger symmetry and R-symmetry allow for two

more terms in the metric,

r−2dtdy , Dwdy , (2.38)

but both of them can be removed by shifting v and w by y-dependent functions.

Orthonormal frame. The metric ansatz (2.37) admits a natural orthonormal frame,

e+ =
e2c1

r2
dt , e−=− c2

2r2
dt +Dv + c3Dw ,

e1 =
ec1

r
dx1 , e2 =

ec1

r
dx2 , e7 =

2

3
ec1+h2Dw , e8 =

ec1

r
dr , e9 =e−2c1−h2dy ,

(e3, e4 ; e5, e6) =
1√
3
e−2c1+h1

(
e+h3(σ1, σ2) ; e−h3(τ1, τ2)

)
. (2.39)

Here, σA, τA are invariant one forms of S3’s. See appendix A for our convention for

Euler-angle coordinates.

Flux. To write down the general ansatz for the 4-form flux, we first collect all Schrödinger

invariant p-forms in the “external” part of the metric:

{e+128, e+12, e+8, e+} (2.40)

Note that all the invariant p-forms contain e+. Combining these with invariant p-forms

from the internal part, we arrive at the ansatz with ten unknown functions,

F = e−3c1e+8
[
e−2c1k1e

12 + e4c1−2h1(e−2h3k4,1e
34 + e+2h3k4,2e

56)
]

+eh2e+9
[
e−2c1k2e

12 + e4c1−2h1(e−2h3k5,1e
34 + e+2h3k5,2e

56)
]

+ec1e97
[
e−3c1k3e

+8 + e4c1−2h1(e−2h3k6,1e
34 + e+2h3k6,2e

56)
]

+e8c1−4h1k7e
3456 . (2.41)

Here, we are using the shorthand notation eab = ea∧eb, etc. and assuming wedge products

among differential forms. We inserted compensating factors of metric coefficients so that

the Bianchi identity (dF = 0) maintains the simple form,

k′1 + 4k2 = 0 ,

k′4,1 + 2k5,1 − k3 = 0 ,

k′4,2 + 2k5,2 − k3 = 0 ,

k′7 − (k6,1 + k6,2) = 0 . (2.42)
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There are three more terms allowed by the symmetries, {e+127, e+347, e+567}, but they are

excluded by the Bianchi identity.

Parity symmetry. There is a discrete Z2 symmetry exchanging the two 2-spheres which

acts as a parity y → −y. The unknown functions have the following parity eigenvalues,

Even : c1, c2, h1, h2, k1, (k4,1 + k4,2), (k5,1 − k5,2), (k6,1 + k6,2) .

Odd : c3, h3, k2, k3, (k4,1 − k4,2), (k5,1 + k5,2), (k6,1 − k6,2), k7 . (2.43)

3 Solution and a sketch of the computation

Having written out the most general ansatz, in this section we give a quick overview of

our methods, summarize the equations imposed on the unknown functions in the ansatz,

write down the solution and discuss its properties. The details of the computation will be

postponed until the next section.

3.1 Methods

Supersymmetric solutions of M-theory satisfy the Killing spinor equation,

δǫψM = ∇M ǫ+
1

12 · 4!FIJKL
(
F IJKLM − 8δIMΓJKL

)
ǫ = 0 . (3.1)

See appendix A for our conventions for 11-dimensional supergravity. Our approach to the

problem will hinge upon two standard tools used for finding supersymmetric solutions,

namely, the spinorial Lie derivative and the G-structure.

To begin with, the Lie derivative of a spinor ǫ with respect to a Killing vector K may

be defined as in [27]

LKǫ = Km∇mǫ+
1

4
(∇aKb) Γabǫ. (3.2)

In general, the spinorial Lie derivative gives a geometric realization of the algebra,

[K,Q1] = Q2 ⇐⇒ LKǫQ1
= ǫQ2

. (3.3)

From the metric ansatz (2.37), one may then write out the spinoral Lie derivatives asso-

ciated to the various Killing directions. The Lie derivatives of the spinors, via the super

Schrödinger algebra discussed in section 2, determine all coordinate dependence other than

the y-direction of the two dynamical supercharges Q. Once Q are determined, the kine-

matical q and conformal S supercharges also may be worked out from the algebra.

Adopting the language of G-structures to M-theory was initiated in [28, 29]. Assuming

the existence of Killing spinors {ǫi}, one constructs the following differential forms

Kij = (ǭiΓaǫj)e
a , (3.4)

Ωij =
1

2
(ǭiΓabǫj)e

ab , (3.5)

Σij =
1

5!
(ǭiΓabcdeǫj)e

abcde . (3.6)
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The Killing spinor equations imply that Kij are Killing vectors, so that (3.4) becomes a

geometric representation of the algebra

{Qi, Qj} = Kij .

In addition, the KSE give a set of algebraic and differential relations among (K,Ω,Σ).

These relations are equivalent to the original KSE by construction, but are often easier to

solve and illuminate the geometric structure more clearly. For the purpose of this paper,

however, it turns out to be more straightforward to analyze the KSE directly, while keeping

in mind the lessons from [28, 29].

We will demand that our ansatz admit the six supercharges of N = 2 super-Sch

algebra. The kinematical supercharges (q, q̄) correspond to null Killing spinors studied

in [29], whereas the dynamical supercharges (Q, Q̄) correspond to time-like Killing spinors

studied in [28]. To use the results of [29] directly, we first focus on the real combination

ǫ = 1
2(q + q̄) which satisfies the two projection conditions

Γ3456ǫ = −ǫ (singlet under SU(2)1 × SU(2)2) , Γ+ǫ = 0 ,

and defines an SU(7) structure explained in [29]. Restoring both components (q, q̄) then

defines an SU(4) sub-structure of the Spin(7) structure. Having started by introducing an

ansatz, making the G-structure manifest entails a small frame rotation from the original

frame to the canonical G-structure frame. Similarly, for (Q, Q̄) we find an SU(4) sub-

structure of the SU(5) structure introduced in [28]. The conformal supercharges (S, S̄)

do not yield any new information because they are related to (Q, Q̄) by the conformal

symmetry generator and all bosonic symmetries are already built into our ansatz.

3.2 Killing spinor equations: summary

After a somewhat lengthy analysis to be presented in section 4, the Killing spinor equations

for the six supercharges give rise to a number of coupled equations for all the unknown

variables. They may be divided into three blocks.

1. Block A: The equations for (c1, h1, h2, h3) decouple from all other variables.

4h′1 − h′2 = −c′1(2h′1 + h′2)
2e6c1+2h2 , (3.7)

9c′1 = (9c′1 − 4h′1 + h′2)e
2h2 , (3.8)

2h′1 + h′2 = 6(h′1 + h′3)e
−6c1+2h1−2h2+2h3 , (3.9)

h′3 cosh(2h3) = −h′1 sinh(2h3) . (3.10)

The following auxiliary equations will also be useful,

cos ζ = eh2 , (3.11)

sin ζ = −1

3
(2h′1 + h′2)e

3c1+2h2 =
1

3c′1
(−ζ ′ cos ζ + 2e−3c1) . (3.12)
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2. Block B: With the solutions of Block A as an input, we can solve the equations for

(c3, k1, k2, k3).

k2 = −k3 , (3.13)

k1 = − 6c3
sin ζ

e3c1 , (3.14)

3c′3 + k1e
−6c1 = 6 sin ζ(c3 cosh(2h3) − sinh(2h3))e

3c1−2h1 , (3.15)

3c′3 = 2

(
k1e

−6c1 h
′
1 − h′2

2h′1 + h′2
− k3e

−3c1 sin ζ

)
. (3.16)

3. Block C: The last metric component c2 and all the remaining flux components are

determined algebraically by the solutions of Block A and Block B.

c2 =

(
1

4
k1e

−3c1

)2

, (3.17)

k4,1 = −3

2
(c3 + 1)e3c1 sin ζ − 1

4
k1(2e

−6c1+2h1+2h3 − e2h2) , (3.18)

k4,2 = −3

2
(c3 − 1)e3c1 sin ζ − 1

4
k1(2e

−6c1+2h1−2h3 − e2h2) , (3.19)

k5,1 = −3

2
(c3 − 1)e+4h2 , (3.20)

k5,2 = −3

2
(c3 + 1)e−4h2 , (3.21)

k6,1 = −h
′
1 + 2h′2 + 3h′3
3(h′1 + h′3)

e2h2 , (3.22)

k6,2 = −h
′
1 + 2h′2 − 3h′3
3(h′1 − h′3)

e2h2 , (3.23)

k7 = 6c′1e
−6c1+4h1 . (3.24)

3.3 Solution

Rather remarkably, the set of coupled equations listed above can be solved completely in

a closed form. We first note that (3.10) can be readily integrated to give

| sinh(2h3)| = βe−2h1 , (3.25)

where β is an integration constant. But, for any non-vanishing β, the metric is singular at

h3 = 0. To avoid the singularity, we are forced to set β = 0. Then, h3 vanishes identically.

Integrating the second half of (3.12), we find

∂y(sin ζe
3c1) = 2 ⇒ sin ζe3c1 = 2y . (3.26)

In principle, another integration constant should be introduced here. But, a non-zero

constant turns out to induce terms proportional to (log y) in e2h2 and e6c1 , leading to a

singular metric. So, we drop the constant.

Inserting the first half of (3.12) to the l.h.s. of (3.10) and integrating, we find

e2h1 = p− y2 , (3.27)
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Multiplying each side of (3.7) and (3.9), eliminating c′1 by using (3.8) and integrating, we

obtain the solution for h2,

e2h2 =
−3y4 − 2cy3 − 6py2 + p2

(p− y2)2
, (3.28)

Finally, solving (3.9) for e6c1 , we find

e6c1 =
(p− y2)2

p+ 1
2cy + y2

. (3.29)

Here, c an p are integral constants. By a rescaling of y and c, as well as an overall rescaling

of the whole metric, we can always set p = 1. Written in this form, the metric components

we have found are essentially identical to those of [15]. The condition for global regularity

of the solution discussed in [15] can be carried over to our case; we require the following

constraints on c and y

0 ≤ c < 4 , y1 ≤ y ≤ y2 , (3.30)

where y1 and y2 are the two real roots of the equation e2h2 = cos2 ζ = 0. In addition, we

must choose the period of w to be 2π to have a smooth geometry at both y1 and y2. The

regular solutions with these conditions are S2 fibrations over S2 × S2 [15].

It is straightforward to solve equations in Block B. For instance, by combining the

second and third equations, we obtain

c3 =
4by

3y(1 − y2)
. (3.31)

with b being an integration constant. Other equations in Block B are easier to solve. Block

C equations then determine the remaining unknown functions algebraically.

In summary, we have obtained the most general solution compatible with N = 2

super-Schrödinger symmetry and the global symmetry discussed in section 2. The solution

is parameterized by two real constants b and c. The final form of the solution may be most

neatly captured in terms of two quadratic polynomials,

g1 = 1 − y2 , g2 = 1 +
1

2
cy + y2 . (3.32)

The metric components are

e6c1 = g2
1g

−1
2 , c2 = b2g−2

1 g−1
2 , c3 =

4

3
byg−2

1 , (3.33)

e2h1 = g1 , e2h2 = 1 − 4y2e−6c1 , e2h3 = 1 , (3.34)

and the flux components are

k1 = −4bg−1
2 , k2 = −bg′2g−2

2 , k3 = bg′2g
−2
2 , (3.35)

k4,1 = −3y + b(2g−1
1 − g−1

2 ) k4,2 = +3y + b(2g−1
1 − g−1

2 ) , (3.36)

k5,1 = +
3

2
− 2ybg−2

1 k5,2 = −3

2
− 2ybg−2

1 , (3.37)

k6,1 = k6,2 = 1 − 4g2g
−2
1 , k7 = −4g′2g

−1
1 + 2g′1 + 3g′2 . (3.38)
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Ooguri-Park solution. In hindsight, our solution can be regarded as a one-parameter

generalization of the recently discovered solution of Ooguri and Park [14]. Their solution

was obtained by a judicious deformation of a known AdS5 solution in M-theory [15]. It

has two parameters β and c. It preserves two supercharges for β 6= 0 and six supercharges

for β = 0.

It is easy to compare our solution with the Ooguri-Park solution. To be consistent

with normalization conventions, we should relate our coordinates to theirs by

t = −2x+ , v =
1

2
x− , w =

1

2
ψ , (3.39)

and set n = 1 in their solution, although it is easy to generalize the comparison for arbitrary

n. Then it is immediately clear that our solution with b = 0 is identical to their solution

with β = 0. Note that the norm of the ‘time’ Killing vector ∂t vanishes when b = 0. In

this sense, the b→ 0 limit is not smooth;

Non-existence of spectator supercharges. Our original goal was to find the gravity

dual of the NR-ABJM theory with 14 supercharges. But, the Killing spinor equations for

the six N = 2 supercharges have already determined all unknown functions in our ansatz

completely. Proceeding with the same methods, it is not difficult to show that our solution

does not admit the other eight ‘spectator’ supercharges. We leave the technical proof of

this ’no-go’ theorem and discussion of physical implications for the concluding section.

4 Details of the computation

In this section, we present a detailed analysis of Killing spinor equations using the meth-

ods mentioned in subsection 3.1, which yielded the set of equations summarized in subsec-

tion 3.2.

4.1 Killing spinor equations

We want to solve the Killing spinor equation,

δψm = ∇mǫ+
1

12
(ΓmF − 3Fm) ǫ = 0

(
∇mǫ ≡ ∂mǫ+

1

4
(ωm)abΓ

abǫ

)
. (4.1)

where we defined, following [14],

F ≡ 1

4!
FmnpqΓ

mnpq , Fm ≡ 1

2
[Γm,F] . (4.2)

Our ansatz for the flux (2.41) obviously gives

F = e−3c1Γ+8
(
e−2c1k1Γ

12 + e4c1−2h1(e−2h3k4,1Γ
34 + e+2h3k4,2Γ

56)
)

+eh2Γ+9
(
e−2c1k2Γ

12 + e4c1−2h1(e−2h3k5,1Γ
34 + e+2h3k5,2Γ

56)
)

+ec1Γ97
(
e−3c1k3Γ

+8 + e4c1−2h1(e−2h3k6,1Γ
34 + e+2h3k6,2Γ

56)
)

+e8c1−4h1k7Γ
3456 , (4.3)
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and (in the orthonormal basis)

F+ = e−3c1Γ8
(
e−2c1k1Γ

12 + e4c1−2h1(e−2h3k4,1Γ
34 + e+2h3k4,2Γ

56) + ec1k3Γ
97
)

+eh2Γ9
(
e−2c1k2Γ

12 + e4c1−2h1(e−2h3k5,1Γ
34 + e+2h3k5,2Γ

56)
)
,

F− = 0 ,

F1 = −Γ+2(e−5c1k1Γ
8 + e−2c1+h2k2Γ

9) ,

F2 = +Γ+1(e−5c1k1Γ
8 + e−2c1+h2k2Γ

9) ,

F3 = +Γ4
(
e4c1−2h1−2h3(e−3c1k4,1Γ

+8 + eh2k5,1Γ
+9 + ec1k6,1Γ

97) + e8c1−4h1k7Γ
56
)
,

F4 = −Γ3
(
e4c1−2h1−2h3(e−3c1k4,1Γ

+8 + eh2k5,1Γ
+9 + ec1k6,1Γ

97) + e8c1−4h1k7Γ
56
)
,

F5 = +Γ6
(
e4c1−2h1+2h3(e−3c1k4,2Γ

+8 + eh2k5,2Γ
+9 + ec1k6,2Γ

97) + e8c1−4h1k7Γ
34
)
,

F6 = −Γ5
(
e4c1−2h1+2h3(e−3c1k4,2Γ

+8 + eh2k5,2Γ
+9 + ec1k6,2Γ

97) + e8c1−4h1k7Γ
34
)
,

F7 = −e−2c1k3Γ
+89 − e5c1−2h1Γ9(e−2h3k6,1Γ

34 + e+2h3k6,2Γ
56) ,

F8 = −e−3c1Γ+
(
e−2c1k1Γ

12 + e4c1−2h1(e−2h3k4,1Γ
34 + e+2h3k4,2Γ

56) + ec1k3Γ
97
)
,

F9 = −eh2Γ+
(
e−2c1k2Γ

12 + e4c1−2h1(e−2h3k5,1Γ
34 + e+2h3k5,2Γ

56)
)

+ec1Γ7
(
e−3c1k3Γ

+8 + e4c1−2h1(e−2h3k6,1Γ
34 + e+2h3k6,2Γ

56)
)
. (4.4)

We also list the contribution from the spin-connection, ωm ≡ 1
2(ωm)abΓ

ab (again in the

orthonormal basis):

ω+ = −e−3c1c2Γ
8+ + e−c1Γ8− +

1

2
eh2c′2Γ

9+ − e2c1+h2c′1Γ
9− − 3

4
ec1c′3Γ

97

+

{
1

2
e−2c1c2 −

3

4
e4c1−2h1−2h3(1 + c3)

}
Γ34 −

{
1

2
e−2c1c2 −

3

4
e4c1−2h1+2h3(1 − c3)

}
Γ56 ,

ω− = Γ34 − Γ56 − e−c1Γ+8 + e2c1+h2c′1Γ
+9 ,

ω1 = −e−c1Γ18 + e2c1+h2c′1Γ
19 ,

ω2 = −e−c1Γ28 + e2c1+h2c′1Γ
29 ,

ω3 = +
3

4
e4c1−2h1−2h3(1 + c3)Γ

4+ +
1

2
e5c1−2h1+h2−2h3Γ47 + e2c1+h2(−2c′1 + h′1 + h′3)Γ

39 ,

ω4 = −3

4
e4c1−2h1−2h3(1 + c3)Γ

3+ − 1

2
e5c1−2h1+h2−2h3Γ37 + e2c1+h2(−2c′1 + h′1 + h′3)Γ

49 ,

ω5 = −3

4
e4c1−2h1+2h3(1 − c3)Γ

6+ +
1

2
e5c1−2h1+h2+2h3Γ67 + e2c1+h2(−2c′1 + h′1 − h′3)Γ

59 ,

ω6 = +
3

4
e4c1−2h1+2h3(1 − c3)Γ

5+ − 1

2
e5c1−2h1+h2+2h3Γ57 + e2c1+h2(−2c′1 + h′1 − h′3)Γ

69 ,

ω7 =
1

2

{
3e−c1−h2(1 − c3) − e5c1−2h1+h2−2h3

}
Γ34

+
1

2

{
3e−c1−h2(1 + c3) − e5c1−2h1+h2+2h3

}
Γ56

+
3

4
ec1c′3Γ

+9 − e2c1+h2(c′1 + h′2)Γ
97 ,
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ω8 = −e−c1(1 − Γ−Γ+) + e2c1+h2c′1Γ
89 ,

ω9 = e2c1+h2c′1(1 − Γ−Γ+) +
3

4
ec1c′3Γ

7+ . (4.5)

4.2 Spinorial Lie derivatives

The Lie derivative of a spinor with respect to a Killing vector is defined by

LV ǫ = V m∇mǫ+
1

4
(∇aVb) Γabǫ . (4.6)

For the Killing vectors under consideration, the Lie derivatives are given by

LHǫ = −∂tǫ ,
LDǫ = (−2t∂t − xi∂i − r∂r)ǫ ,

LCǫ =

[
−t2∂t − t(xi∂i + r∂r) −

1

2
e−c1rΓ+(xiΓ

i + rΓ8)

]
ǫ

+
1

2
(~x2 + r2)

[
∂v +

1

2
(Γ34 − Γ56)

]
ǫ ,

LPi
ǫ = ∂iǫ ,

LGi
ǫ =

[
t∂i +

1

2
e−c1rΓ+i

]
ǫ− xi

[
∂v +

1

2
(Γ34 − Γ56)

]
ǫ ,

LJǫ =

[
x1∂2 − x2∂1 +

1

2
Γ12

]
ǫ ,

LMǫ =

[
∂v +

1

2
(Γ34 − Γ56)

]
ǫ ,

LRǫ =

[
∂w +

1

2
(Γ34 + Γ56)

]
ǫ ,

LVA
ǫ = VAǫ ,

LV ′

A
ǫ = V ′

Aǫ . (4.7)

We expect LMǫ = 0 for all supercharges, which simplifies LKǫ and LGi
ǫ somewhat. Here,

VA and V ′
A are Killing vectors for the SU(2)1 × SU(2)2 symmetry (see appendix A).

The dependence of Killing spinors on each coordinate is fixed by the Lie derivatives to

a large extent. For dynamical supercharges Q, we find

LHǫQ = LPi
ǫQ = LVA

ǫQ = LV ′

A
ǫQ = 0 , LDǫQ = ǫQ ⇒ ǫQ =

ec1

r
η(y) , (4.8)

The fact that Q is singlet under SU(2)1 × SU(2)2 implies that Q is independent of all

‘three-sphere’ coordinates (v, w, θi, φi). Then, by LM ǫ = 0, we find Γ3456η = −η. Next,

we can use [G, Q̄] = q to get

ǫq = Γ+

(
Γ1 + iΓ2

2

)
ηc , (4.9)
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where ηc denotes the charge conjugation of η. Note that Γ+ǫq = 0 holds automatically.

Similarly, we can use [K,Q] = S to get

ǫS =

[
t

r
ec1 − 1

2
Γ+(xiΓ

i + rΓ8)

]
η . (4.10)

All six supercharges (Q,S, q) of the N = 2 subalgebra are mapped to each other by the

bosonic generators. As a consequence, they all share the same η(y) and are independent

of (v, w, θi, φi) coordinates.

4.3 Kinematical supercharges and null Killing spinor

G-structure. In our problem, we have a pair of Killing spinors corresponding to a null

Killing vector; recall from (2.26) that {q̄, q} = 2M . The fully general analysis of the

geometry with a single (real) null Killing spinor was done in [29]. To import their language,

we focus on the real combination ǫ = 1
2(ǫq + ǫq̄) for the moment.

The algebraic relations of [29] on a null Killing spinor can be summarized as follows.

They take the orthonormal frame

ds2 = 2e+e− + eiei + e9e9 , (4.11)

with i = 1, · · · , 8 and

K = e+ . (4.12)

They further choose the Killing spinor to satisfy

Γ1234ǫ = Γ3456ǫ = Γ5678ǫ = Γ1357ǫ = −ǫ , Γ+ǫ = 0 . (4.13)

These conditions automatically implies Γ9ǫ = ǫ. Next, they show that this spinor defines

a Spin(7) structure within the R
8 subspace of the tangent bundle. In particular, they find

Ω = e+ ∧ e9 , Σ = e+ ∧ Φ , (4.14)

where Φ is the invariant four form defining the embedding of Spin(7) into Spin(8),

− Φ = e1234 + e1256 + e1278 + e3456 + e3478 + e5678

+e1357 − e1368 − e1458 − e1467 − e2358 − e2367 − e2457 + e2468 . (4.15)

Our choice of the orthonormal frame (2.39) is such that e+ is the dual one-form of M

in agreement with [29]. We also showed already that parts of the conditions (4.13), namely,

Γ3456ǫ = −ǫ and Γ+ǫ = 0 hold for the kinematical supercharges. On the other hand, it

is not clear whether the (8 + 1) splitting in the canonical G-structure frame (4.11) agrees

with our original choice of the frame (2.39). In fact, we will see that the two frames are

related to each other by a y-dependent rotation on the (89)-plane.
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Killing spinor equations. We showed earlier that the kinematical supercharges satisfy

Γ+ǫ = 0 , Γ3456ǫ = −ǫ , ∂mǫ = 0 (except for m = y) . (4.16)

These conditions simplify the KSE drastically:

δψ1,2,8 ⇒ Π1ǫ≡
[
− e−c1Γ8 + e2c1+h2c′1Γ

9

+
1

6
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) − 1

6
e8c1−4h1k7

]
ǫ = 0 ,

Γ3δψ3+Γ5δψ5 ⇒ Π2ǫ≡
[
2e2c1+h2(−2c′1 + h′1)Γ

9 +
1

2
e5c1−2h1+h2Γ7(e−2h3Γ34 + e+2h3Γ56)

−1

6
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) +

2

3
e8c1−4h1k7

]
ǫ = 0 ,

Γ3δψ3−Γ5δψ5 ⇒ Π3ǫ≡
[
2e2c1+h2h′3Γ

9 +
1

2
e5c1−2h1+h2Γ7(e−2h3Γ34 − e2h3Γ56)

−1

2
e5c1−2h1Γ97(e−2h3k6,1Γ

34 − e2h3k6,2Γ
56)

]
ǫ = 0 ,

δψ7 ⇒ Π4ǫ≡
[
e2c1+h2(c′1 + h′2)Γ

9 +
3

2
e−c1−h2Γ7(Γ34 + Γ56)

−1

2
e5c1−2h1+h2Γ7(e−2h3Γ34 + e2h3Γ56)

−1

3
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) − 1

6
e8c1−4h1k7

]
ǫ = 0 ,

δψ9 ⇒ Π5ǫ≡
[
2e2c1+h2Γ9∂y + e2c1+h2c′1Γ

9

−1

3
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) − 1

6
e8c1−4h1k7

]
ǫ = 0 ,

δψ+ ⇒ Π6ǫ≡
[
1

2
F+ +

3

4
ec1c′3Γ

97

+
3

4
e4c1−2h1(e−2h3(1 + c3)Γ

34 − e2h3(1 − c3)Γ
56)

]
ǫ = 0 . (4.17)

The last equation, δψ− = 0, is equivalent to LMǫ = 0.

Computation of Ω and determination of (e9
′

). We can use the projection conditions

to compute various components of Ω. Assuming for now that k7 6= 0, we find

ǭΓ+78(Π1 + Π2)ǫ = 0 ⇒ Ω+7 = 0 ,

ǭΓ+9Π1ǫ = 0 ⇒ Ω+9 =
6c′1
k7
e−6c1+4h1+h2 ,

ǭΓ+(3Π1 + Π2 + Π4)ǫ = 0 ⇒ Ω+8 =
2c′1
k7

(2h′1 + h′2)e
−3c1+4h1+2h2 . (4.18)
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It is also easy to show that Ω+i = 0 (i = 1, · · · , 6) in a similar way. Thus, we arrive at the

canonical form of Ω = e+ ∧ e9′ upon the following rotation among vielbein:
(
e8

′

e9
′

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
e8

e9

)
, (4.19)

where

cos ζ =
6c′1
k7
e−6c1+4h1+h2 , sin ζ = −2c′1

k7
(2h′1 + h′2)e

−3c1+4h1+2h2 . (4.20)

From cos2 ζ + sin2 ζ = 1, we find a non-trivial condition among the unknown functions,

4(c′1)
2e−12c1+8h1+2h2

[
9 + (2h′1 + h′2)

2e6c1+2h2

]
= k2

7 . (4.21)

Another non-trivial relation follows from

ǭΓ+(2Π2 − Π4)ǫ = 0 ⇒ k2
7 = 4c′1(9c

′
1 − 4h′1 + h′2)e

−12c1+8h1+2h2 , (4.22)

where we used the form of Ω+9 in (4.18). We can eliminate k7 from the two equations

above to obtain a relation among metric components only

4h′1 − h′2 = −c′1(2h′1 + h′2)
2e6c1+2h2 . (4.23)

Computation of Σ and confirmation of (e9
′

). We can also use the projection con-

ditions to compute components of Σ. For instance, we find

ǭΓ+9(Π2 + Π3)ǫ = 0 ⇒ Σ+7934 = 2e−3c1+2h1+2h3(h′1 + h′3) ,

ǭΓ+9(Π2 − Π3)ǫ = 0 ⇒ Σ+7956 = 2e−3c1+2h1−2h3(h′1 − h′3) , (4.24)

It follows from Σ+ij34 = Σ+ij56 that

h′1 sinh(2h3) + h′3 cosh(2h3) = 0 . (4.25)

Next, we can determine {k6,a}. Note that

ǭΓ+(3Π2 + Π3)ǫ = 0 ⇒ k6,1Σ+7934 = −4c′1
k7

(h′1 + 2h′2 + 3h′3)e
−9c1+6h1+2h2+2h3 ,

ǭΓ+(3Π2 − Π3)ǫ = 0 ⇒ k6,2Σ+7956 = −4c′1
k7

(h′1 + 2h′2 − 3h′3)e
−9c1+6h1+2h2−2h3 .(4.26)

Then, using (4.24), we find

k6,1 = −2c′1(h
′
1 + 2h′2 + 3h′3)

k7(h′1 + h′3)
e−6c1+4h1+2h2 ,

k6,2 = −2c′1(h
′
1 + 2h′2 − 3h′3)

k7(h′1 − h′3)
e−6c1+4h1+2h2 . (4.27)

From Σ = e+ ∧ Φ with the rotation taken into account, we deduce

Σ+7934 = − sin ζ

⇒ 2e2h3(h′1 + h′3) =
2c′1
k7

(2h′1 + h′2)e
2h1+2h2 . (4.28)
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Constancy of spinor and further relations. Recall that the canonical G-structure

frame (where Ω = e+ ∧ e9
′

holds) is related to our original frame (2.39) by the rota-

tion (4.19). Since the projection conditions are mapped to each other by

(− sin ζΓ8 + cos ζΓ9)ǫ = ǫ ⇐⇒ Γ9ǫ′ = ǫ′ , (4.29)

the Killing spinors in the two frames should be related by

ǫ′ = exp
[
(ζ/2)Γ89

]
ǫ =

[
cos(ζ/2) + Γ89 sin(ζ/2)

]
ǫ . (4.30)

We can now take advantage of another important result of [29] that ǫ′ is a constant spinor.

Plugging (4.30) this into the δψ9 = 0 condition in (4.17) and using dǫ′ = 0, we obtain

Π5ǫ =

[
ǫ2c1+h2ζ ′Γ8 + e2c1+h2c′1Γ

9 − 1

3
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56)

−1

6
e8c1−4h1k7

]
ǫ = 0 , (4.31)

which further implies

Π′
1ǫ ≡ (Π1 − Π5)ǫ

=

[
(−ζ ′e2c1+h2 − e−c1)Γ8 +

1

2
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56)

]
ǫ = 0 ,

Π′
4ǫ ≡ (Π4 − Π5)ǫ =

[
− ζ ′e2c1+h2Γ8 + h′2e

2c1+h2Γ9 +
3

2
e−c1−h2Γ7(Γ34 + Γ56)

−1

2
e5c1−2h1+h2Γ7(e−2h3Γ34 + e2h3Γ56)

]
ǫ = 0 ,

Π0ǫ ≡ −e
−8c1+4h1

k7
(2Π1 + Π5)ǫ

=
1

2

[
1 +

2

k7
e−6c1+4h1

(
(−ζ ′eh2 + 2e−3c1)Γ8 − 3c′1e

h2Γ9
)]
ǫ = 0 . (4.32)

Comparing Π0 with (4.20) and (4.29), we make the identification,

sin ζ =
2

k7
(−ζ ′eh2 + 2e−3c1)e−6c1+4h1 . (4.33)

Next, we have

ǭΓ+Π′
4ǫ = 0 ⇒ ζ ′ sin ζ = −h′2 cos ζ . (4.34)

Integrating it and using (4.20) again, we find

cos ζ = κ eh2 =
6c′1
k7
e−6c1+4h1+h2 ⇒ k7 =

6c′1
κ
e−6c1+4h1 , (4.35)

where κ is an integration constant. Combining it with (4.22), we also find

9c′1e
−2h2 = κ(9c′1 − 4h′1 + h′2) . (4.36)
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As a consistency check, we combine (4.20), (4.33) and (4.34) to find

4h′1 − h′2 = −c′1(2h′1 + h′2)
2e6c1+2h2 , (4.37)

which is identical to (4.23).

Combining Π′
1 with (4.27), (4.33) and (4.35) gives more projection conditions and

constraints on unknown functions

Π′
1ǫ = 0 ⇒ Γ34789ǫ = −ǫ , 2h′1 + h′2 = 6κ(h′1 + h′3)e

−6c1+2h1−2h2+2h3 . (4.38)

and we can easily check Π2,3 conditions are automatically satisfied with (4.38). The re-

maining projection conditions, Π′
4,Π6, produce the following conditions

Π′
4ǫ = 0 ⇒ κ = 1 , (4.39)

Π6ǫ = 0 ⇒ + sin ζ
(
e−2c1k3 + 3e4c1−2h1(c3 cosh(2h3) − sinh(2h3))

)

=
3

2
c′3e

c1 + e−3c1
(
e−2c1k1 + e4c1−2h1(e−2h3k4,1 + e2h3k4,2)

)
,

− cos ζ
(
e−2c1k3 + 3e4c1−2h1(c3 cosh(2h3) − sinh(2h3))

)

= eh2

(
e−2c1k2 + e4c1−2h1(e−2h3k5,1 + e2h3k5,2)

)
. (4.40)

Summary. We have found that the null Killing spinor equations impose several cou-

pled equations for the unknown functions {c1, h1, h2, h3, k6,1, k6,2, k7}. The independent

equations can be summarized as follows:

4h′1 − h′2 = −c′1(2h′1 + h′2)
2e6c1+2h2 ,

9c′1 = (9c′1 − 4h′1 + h′2)e
2h2 ,

2h′1 + h′2 = 6(h′1 + h′3)e
−6c1+2h1−2h2+2h3 ,

h′3 cosh(2h3) = −h′1 sinh(2h3) ,

k6,1 = −h
′
1 + 2h′2 + 3h′3
3(h′1 + h′3)

e2h2 ,

k6,2 = −h
′
1 + 2h′2 − 3h′3
3(h′1 − h′3)

e2h2 ,

k7 = 6c′1e
−6c1+4h1 .

The first four equations were obtained in (4.23), (4.36), (4.38) and (4.25), respectively;

recall also (4.39). They give Block A in section 3. The auxiliary equations in Block A

concerning cos ζ and sin ζ come from combinations of (4.35), (4.39), (4.20) and (4.33). The

equations for (k6,1, k6,2, k7) were obtained in (4.27) and (4.35). They give the last three

entries of Block C in section 3.

4.4 Dynamical supercharges and time-like Killing spinor

G-structure. The commutation relation {Q̄,Q} = H implies that an N = 2 super-

Schrödinger geometry should admit a time-like Killing spinor. The general study of ge-

ometries admitting a single time-like Killing spinor has been done in [28]. The metric takes
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the form

ds2 = −∆2(dt+ ω)2 + ∆−1gmndx
mdxn . (4.41)

The base manifold B with metric gmn is orthogonal to time direction and has SU(5) struc-

ture instead of Spin(7). The SU(5) structure is given by a pair of spinors (ǫQ̄, ǫQ).

ǫd ≡ 1√
2
(ǫQ̄ + ǫQ)

K = ǭdΓaǫd e
a = ∆2(dt + ω)

Ω = ǭdΓabǫd e
ab (4.42)

Here, K is the dual one-form of H and Ω is the Kähler form of the base manifold B. We can

always decompose ǫ by the eigenvalue of Γ+− and find the relation with the kinematical

supercharges

ǫd =
ec1

r

(
Γ+η1 + η2

)
,

ǫk ≡ 1

2
(ǫq + ǫq̄) =

1√
2
Γ+1η2 , (4.43)

where

Γ−ηi = 0 , Γ3456ηi = −ηi , (i = 1, 2)

η̄2Γ−η2 = −1 , η̄1Γ−η1 = −1

4
c2e

−2c1 . (4.44)

The last two relations are derived from the relation of the spinor bilinear K. The ηi’s are

orthogonal to each other and have zero-norm η̄iηj = 0.

Killing spinor equations. From the results of the previous subsection, we already have

some information about the dynamical supercharge

Γ3456ǫd = −ǫd , r∂rǫd = −ǫd , ∂mǫd = 0 (except for m = y, r) (4.45)

The Killing spinor equations for the component spinors ηi are given by

• δψ1,2

⇒
[
e−c1Γ8 − e2c1+h2c′1Γ

9 +
1

6
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h2k6,2Γ
56) − e8c1−4h1

1

6
k7

]
η1

+
1

6

[
F+ − 3

2
Γ−1F1

]
η2 = 0 ,

• Γ3δψ3 + Γ5δψ5

⇒
[
− 2(−2c′1 + h′1)e

2c1+h2Γ9 − 1

2
e5c1−2h1+h2Γ7(e−2h3Γ34 + e2h3Γ56)

−1

6
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) +

2

3
e8c1−4h1k7

]
η1

+

[
3

4
e4c1−2h1(e−2h3(1 + c3)Γ

34 − e2h3(1 − c3)Γ
56)

– 23 –



J
H
E
P
0
3
(
2
0
1
0
)
0
3
4

+
1

6

(
2F+ − 3

2
(Γ−3F3 + Γ−5F5

)]
η2 = 0 ,

• Γ3δψ3 − Γ5δψ5

⇒
[
−2h′3 e

2c1+h2Γ9 − 1

2
e5c1−2h1+h2Γ7(e−2h3Γ34 − e2h3Γ56)

−1

2
e5c1−2h1Γ97(e−2h3k6,1Γ

34 − e2h3k6,2Γ
56)

]
η1

+

[
3

4
e4c1−2h1(e−2h3(1 + c3)Γ

34 + e2h3(1 − c3)Γ
56) − 1

4
(Γ−3F3 − Γ−5F5)

]
η2 = 0 ,

• δψ7

⇒
[
−e2c1+h2(c′1 + h′2)Γ

9 − 3

2
e−c1−h2Γ7(Γ34 + Γ56) +

1

2
e5c1−2h1+h2Γ7(e−2h3Γ34 + e2h3Γ56)

−1

3
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) − 1

6
e8c1−4h1k7

]
η1

+

[
−3

4
ec1c′3Γ

79 +
1

6

(
F+ − 3

2
Γ−7F7

)]
η2 = 0 ,

• δψ8

⇒
[
3e−c1Γ8 − e2c1+h2c′1Γ

9 +
1

6
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) − 1

6
e8c1−4h1k7

]
η1

+
1

6

[
F+ − 3

2
Γ−8F8

]
η2 = 0 ,

• δψ9

⇒
[
−2e2c1+h2Γ9∂y − 3e2c1+h2c′1Γ

9

−1

3
e5c1−2h1Γ97(e−2h3k6,1Γ

34 + e2h3k6,2Γ
56) − 1

6
e8c1−4h1k7

]
η1

+

[
−3

4
ec1c′3Γ

79 +
1

6
(F+ − 3

2
Γ−9F9)

]
η2 = 0 ,

• δψ+

⇒
[
3

4
ec1c′3Γ

79 − 3

4
e4c1−2h1(e−2h3(1 + c3)Γ

34 − e2h3(1 − c3)Γ
56) +

1

2
F+

]
η1

+

[
c2e

−3c1Γ8 − 1

2
c′2e

h2Γ9

]
η2 = 0 . (4.46)

The equations for δψ1, δψ8 give a relation between η1 and η2,

η1 =
1

4

(
e2c1−2h1(e−2h3k4,1 + e2h3k4,2)Γ

34 − e−c1k3Γ
79 − e−c1+h2k2Γ

1289
)
η2 . (4.47)

Sufficiency of Killing spinor equations. In general, Killing spinor equations do not

restrict every single component of the metric and flux. To determine all components, we

must supplement the Killing spinor equations with some components of the equation of

motion. However, the situation is better for our problem. Note that we have the time-like

Killing vector H as well as the null Killing vector M . In addition, our flux does not have

components along the e− direction. These facts together imply that in our case, the Killing

spinor equations are sufficient to determine all components of the metric and flux [28].

Computation of Ω and further constraints. We wrote the dynamical Killing spinor

in terms of η2 which inherit the properties of the kinematical Killing spinor ǫk. The
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projection conditions on η2 are summarized by

Γ−η2 = 0 , Γ3456η2 = −η2 , Γ34789η2 = −η2 ,

(− sin ζΓ8 + cos ζΓ9)η2 = η2 . (4.48)

Using these and the relations (4.43), we can derive the explicit form of the Kähler form Ω

Ω =
1

2r2

[
−(c2e

+ + 2e2c1 e−)e9
′

+
(
e4c1−2h1(e−2h3k4,1 + e2h3k4,2) − ec1k3 sin ζ

)
(−e12 + e34 + e56)

+
(
e4c1−2h1(e−2h3k4,1 + e2h3k4,2) cos ζ + ec1+h2k2 sin ζ

)
e78

+
(
e4c1−2h1(e−2h3k4,1 + e2h3k4,2) sin ζ − ec1+h2k2 cos ζ − ec1k3

)
e79
]
.(4.49)

We used the condition iKΩ = 0 to derive Ω+a components. The G-structure equations

give further relations

Ω c
a Ω b

c = −KaK
b + δ baK

2

⇒ k2 = −k3 , c2 =
1

4

(
e3c1−2h1(e−2h3k4,1 + e2h3k4,2) − k3 sin ζ

)2
. (4.50)

From dΩ = iKF ,

k1 = −2
[
e6c1−2h1(e−2h3k4,1 + e2h3k4,2) − e3c1k3 sin ζ

]
,

k3 = −3

2
c′3e

3c1 sin ζ +
1

2
e−3c1k1 sin ζ +

1

4
∂y(e

2h2k1) ,

k4,1 =
3

2

[
−(c3 + 1)e3c1 sin ζ − 1

6
k1(2e

−6c1+2h1+2h3 − e2h2)

]
,

k4,2 =
3

2

[
−(c3 − 1)e3c1 sin ζ − 1

6
k1(2e

−6c1+2h1−2h3 − e2h2)

]
,

k5,1 =
1

4

[
6(c3 + 1) + e−3c1 sin ζ + ∂y(e

−6c1+2h1+2h3k1)
]
,

k5,1 =
1

4

[
6(c3 − 1) + e−3c1 sin ζ + ∂y(e

−6c1+2h1−2h3k1)
]
. (4.51)

We can use the Bianchi identity of k′1 = −4k2 and (3.25), (4.35) to simplify the equations

for k3, k5,i such that

3c′3 = 2

(
k1e

−6c1 h
′
1 − h′2

2h′1 + h′2
+ k3e

−3c1 sin ζ

)
,

e−2h3k5,1 − e2h3k5,2 = −3(c3 sinh(2h3) − cosh(2h3)) . (4.52)

By combining these results, we can further reduce the equation (4.40) to a simpler form,

k5,1 = −3

2
(c3 − 1) , k5,2 = −3

2
(c3 + 1) ,

3c′1 + k1e
−6c1 = 6 sin ζ(c3 cosh(2h3) − sinh(2h3))e

3c1−2h1 . (4.53)

It is straightforward to show that the solutions which satisfy all the equations we have

found so far will also satisfy the rest of Killing spinor equations.
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Summary. We can find one more relation for k1 and c3 from the super-Schrödinger

algebra; our solution for the Killing spinor realizes the commutation relation (2.26) if

k1 = − 6c3
sin ζ

e3c1 . (4.54)

Thus we have found all equations in Block B,

k2 = −k3 ,

k1 = − 6c3
sin ζ

e3c1 ,

3c′1 + k1e
−6c1 = 6 sin ζ(c3 cosh(2h3) − sinh(2h3))e

3c1−2h1 ,

3c′3 = 2

(
k1e

−6c1 h
′
1 − h′2

2h′1 + h′2
+ k3e

−3c1 sin ζ

)
, (4.55)

and the first five entries of Block C,

c2 =

(
1

4
k1e

−3c1

)2

,

k4,1 =
3

2

[
−(c3 + 1)e3c1 sin ζ − 1

6
k1(2e

−6c1+2h1+2h3 − e2h2)

]
,

k4,2 =
3

2

[
−(c3 − 1)e3c1 sin ζ − 1

6
k1(2e

−6c1+2h1−2h3 − e2h2)

]
,

k5,1 = −3

2
(c3 − 1) ,

k5,2 = −3

2
(c3 + 1) . (4.56)

The dynamical Killing spinor ǫd and Kähler form Ω is reduced to

ǫd =
ec1

r
(Γ+η1 + η2) =

ec1

r

(
− 1

8
e−4c1k1Γ

+34 + 1

)
η2 ,

Ω = − 1

2r2
(c2e

+ + 2e2c1e−)e9
′

+
k1

4r2
e−2c1(e12 − e34 − e56 + e78

′

) . (4.57)

We can see that Ω is really the Kähler form for the ten dimensional spatial manifold B by

redefining the spatial vielbeins

Ω = ē12 − ē34 − ē56 + ē78
′

+ ē9
′10′ . (4.58)

where

ei = ∆−1/2ēi , e10
′

= ∆−1 1

2r2
(c2e

+ + 2e2c1e−) ,

∆ =

(
c2e

2c1

r4

)1/2

=
k1e

−2c1

4r2
. (4.59)
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5 S
2 × T

2 solution

To date much of our understanding of non-relativistic geometric duals comes from work in

type IIB supergravity [18–22, 30–32]. A thorough account of the supersymmetry preserved

appeared in [19], and a prescription was given therein to construct a special subclass of

solutions based on five-dimensional Sasaki-Einstein spaces that realise the N = 2 Super-

Schrödinger algebra. In this section we consider an explicit example from that class, uplift

it to M-theory and comment on the Killing spinors preserved.

The general form of the solutions presented in [19] may be written as

ds2 = −hdt
2

r4
+

2dtdψ + dr2 + d~x2

r2
+ ds2SE5

,

F5 = (1 + ∗10)dx
+ ∧ dx− ∧ dx1 ∧ dx2 ∧ d(1/r4),

G3 = dx+ ∧ d(σ/r2). (5.1)

Here ds2SE5
denotes the metric on a five-dimensional Sasaki-Einstein space SE5 and σ is

a complex one-form on the Calabi-Yau cone CY3 dual to a Killing vector on SE5. The

function h is given by

h = |σ|2SE +
1

2
(ηSE)µLµ, L ≡ iLSE5

σ∗ σ, (5.2)

where ηSE is the one-form dual to the Reeb Killing vector on SE5 and L is given in terms

of the Lie-derivative with respect to the vector dual to σ∗.

In constructing an explicit example in this class we adopt the SE5 metric discovered

in [15, 33]

ds2SE5
=

1 − cy

6
(dθ2 + sin2 θdφ2) + e−6λ sec2 ζdy2 +

1

9
cos2 ζ(Dβ)2

+e6λ
(
dz +

ac− 2y + cy2

6(a− y2)
Dβ

)2

(5.3)

where

Dβ = dβ − cos θdφ ,

e6λ =
2(a− y2)

1 − cy
,

cos2 ζ =
a− 3y2 + 2cy3

a− y2
. (5.4)

In general preserving six supersymmetries requires a judicious choice for σ. As ex-

plained in [19], one requires σ is chosen so that its exterior derivative on CY3, d(
σ
r2

), is of

type (1,1) and primitive.5 Within these constraints, we choose σ to be the one-form dual

to the Killing vector Vσ = κ1∂φ − κ2

6 ∂z , which is the sum of two Cartans in three on (5.3)

5In the earlier non-supersymmetric solutions [20–22] σ was chosen dual to the Reeb vector meaning that

the exterior derivative was proportional to the Kähler two-form.
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and κ1 and κ2 are arbitrary complex constants. For this choice, L is zero and h follows

from (5.2), h = |σ|2SE .

By T-dualising to type IIA and uplifting this solution, we obtain a deformation of

the class of warped supersymmetric AdS5 ×M6 solutions with base space M4 = S2 × T 2,

originally discovered in [15]. The explicit solution has manifest Schrödinger symmetry and

may be expressed as follows

ds211D = e2λ

(
− h̃dt

2

r4
+

2dtDψ + dr2 + d~x2

r2

)
+ e2λds2M6

,

ds2M6
=

1 − cy

6
(dθ2 + sin2 θdφ2) + e−6λ sec2 ζdy2 +

1

9
cos2 ζ(Dβ)2 + e−6λ(dϕ2

1 + dϕ2
2) ,

F4 = −2

9
(1 − cy)dy ∧Dβ ∧ V ol(S2) + d

(
ac− 2y + cy2

6(a− y2)
Dβ ∧ dϕ1 ∧ dϕ2

)

+d

(
σ̃

r2

)
∧ dt ∧ (Im(κ1)dϕ1 −Re(κ1)dϕ2) , (5.5)

where

h̃ = |κ1|2σ̃2
M6

,

Dψ = dψ −Re(A)dϕ1 − Im(A)dϕ2 ,

A = κ1
ac− 2y − cy2

6(a− y2)
cos θ +

1

6
κ2 ,

σ̃ = −1

9
cos2 ζ cos θDβ +

1 − cy

6
sin2 θdφ . (5.6)

Here σ̃ is the dual one form of ∂φ with respect to the metric on M6, and one may check

that when κ1 = κ2 = 0, this reduces to the original undeformed solutions [15].

This explicit example (5.5) is supersymmetric, admitting six Killing spinors: two kine-

matical, two Poincaré and two superconformal Killing spinors. We now turn to detailing

how it preserves these supersymmetries and what form the Killing spinors take. Since these

solutions are deformations of solutions of [15] with parameters κ1, κ2, we can incorporate

some of the expressions from [15] wholesale.

In calculating the Killing spinors we can write the 11D gamma matrices as

Γa = ρa ⊗ γ7 ,

Γm = 1⊗ γm ,

γ7 ≡ γ1 . . . γ6 . (5.7)

where a, b = +,−, 1, 2, 3 and m,n = 1, 2, . . . , 6 are indices on Sch5 and M6 respectively.

Here we take the vielbein as

e+ =
eλ

r2
dt , e− = eλ

(
− h

2r2
dt+Dψ

)
,

e1 =
eλ

r
dx1 , e2 =

eλ

r
dx2 , e3 =

eλ

r
dr ,
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e4 = ec1
(

1 − cy

6

)1/2

σ1 , e5 = ec1
(

1 − cy

6

)1/2

σ2 ,

e6 = e−2λ sec ζdy , e7 =
eλ

3
cos ζDβ ,

e8 = e−2λdϕ1 , e9 = e−2λdϕ2 . (5.8)

The dynamical Killing spinors may then be written as

ǫd =
κ1

4r

[
−i2

3
cos ζ cos θΓ+78 +

√
2

3
(1 − cy)eiβ sin θΓ+58

]
η +

1

r
η (5.9)

and η is the product ψ ⊗ eλ/2ξ, with ψ denoting the AdS5 Killing spinors

∇aψ =
i

2
ρaψ , (5.10)

and ξ being further decomposed in terms of two orthogonal unit-norm chiral spinor ηi [15]

ξ =
√

2 cosαη1 +
√

2 sinα η∗2 (5.11)

where cos 2α = sin ζ. These two spinors satisfy the following projection conditions

γ12η1 = −γ34η1 = γ56η1 = iη1 ,

γ12η2 = γ34η2 = γ56η2 = −iη2 ,

γ3η∗2 = η1 . (5.12)

The original geometries preserve eight Killing spinors. In the presence of the deformation to

bring the geometry to a Schrödinger invariant form, we discover the additional projection

conditions

ρ3ψ = iψ ,

Γ−η = 0 . (5.13)

With these additional constraints, the spinor ǫd satisfies the Killing spinor equations. The

kinematical, ǫk, and superconformal, ǫs, Killing spinors can then be constructed from the

algebra as was illustrated in the earlier text

ǫk =
1√
2
Γ+1η ,

ǫs =

[
t− 1

2
rΓ+(xiΓ

i + rΓ3)

]
ǫd . (5.14)

6 Discussion

We saw in section 2 that the anti-commutations of two spectator supercharges give the

generators for SU(2)1 × SU(2)2 as well as the central element M .

{
q̄aȧ, qbḃ

}
=

1

2
δab δ

ȧ
ḃ
M − δabR

ȧ
ḃ + δȧ

ḃ
Rab , (6.1)
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From the geometric point of view, the spinor bi-linears ǭΓmǫ made of the Killing spinors

ǫaȧ corresponding to qaȧ should produce the Killing vectors for the generators on the right

hand side of (6.1). Now, recall that qaα̇ commute with (H,D,C, P, P̄ ,M). Inspecting the

spinorial Lie derivatives (4.7), especially LCǫ, we find that ǫaȧ must be annihilated by Γ+.

This implies that all bi-linears constructed from ǫaȧ can have non-zero components only in

the (x−)-directions much like the kinematical supercharges (q, q̄) discussed earlier:

ǭaȧΓmǫbḃ = 0 (except for m = −) . (6.2)

In particular, the generators for SU(2)1 × SU(2)2 symmetry cannot be produced by the

Killing spinors. We thus proved without much computation that the Killing spinors for

the spectator supercharges with desired algebraic property do not exist within our ansatz.

Even if we give up the SU(2)1×SU(2)2 generators in (6.1), it is still impossible to obtain

eight extra Killing spinors as one can see from the following counting argument. We argued

above for the projection condition Γ+ǫaȧ = 0. The fact that qaȧ transform in the same way

under the two SU(2) groups imply that ∂vǫaȧ = 0, which together with LM ǫaȧ = 0 yield

another projection condition, Γ3456ǫaȧ = −ǫaȧ. Finally, since ǫaȧ are null Killing spinors,

the results of [29] enforces yet another condition, Γ9ǫaȧ = ǫaȧ. Three mutually orthogonal

projection conditions leave at most 32/23 = 4 independent components, so the possiblity

of eight extra spinors is excluded.

We have shown that a supergravity background dual to the NR-ABJM theory preserv-

ing the super-Schrödinger symmetry and all the global symmetries does not exist. We do

not have a clear physical understanding of why this is the case. We end this paper with

two possible directions we may pursue to find an explanation.6

First, it is conceivable that the singularity problem of the unpolarized BW/LLM so-

lution mentioned in section 2 is unavoidable, so that even if we find a good way to take

the non-relativistic limit, the resulting geometry would be necessarily singular. If this is

true, we may need to doubt either the existence of the NR-ABJM theory as a quantum

field theory or the validity of non-relativistic holography.

Second, note that we have searched for a gravity solution preserving all Schrödinger

and global symmetries apart from the non-zero particle number (M -eigenvalue). Via holog-

raphy, it would correspond to a ground state of the NR-ABJM theory for a fixed non-zero

particle number that preserves all the symmetries. It is not obvious a priori whether such

a ground state should exist in the field theory. If holography works, the non-existence of

the fully symmetric gravity solution may be an indication that the ground states of the

field theory necessarily break some parts of the symmetries. It would be interesting to test

this idea by studying the spectrum of the field theory directly.

Acknowledgments

We are grateful for Oren Bergman, Seok Kim, Ki-Myeong Lee and Sungjay Lee for discus-

sions. SL is grateful to the Aspen Center for Physics for hospitality, where parts of this

6We thank Seok Kim for discussions on the second possibility.

– 30 –



J
H
E
P
0
3
(
2
0
1
0
)
0
3
4

work were carried out. The work of JJ, HK and SL is supported in part by the National

Research Foundation of Korea (NRF) Grants No. 2007-331-C00073, 2009-0072755 and

2009-0084601. The work of SL is also supported in part by the NRF Grant No. 2005-

0049409 through the Center for Quantum Spacetime (CQUeST) of Sogang University.

A Notations and conventions

11-dimensional supergravity. The bosonic part of the Lagrangian is

2κ2
11L = R ∗ 1 − 1

2
F ∧ ∗F − 1

6
A ∧ F ∧ F. (A.1)

The fermionic part of the SUSY transformation rule becomes

δψM = ∇Mǫ+
1

12 · 4!FIJKL
(
F IJKLM − 8δIMΓJKL

)
ǫ. (A.2)

Euler-angle coordinates. We take the metric of the R
4 to be

ds2 = dr2 +
r2

4
(σ2

1 + σ2
2 + σ2

3) , (A.3)

where the left-invariant one-forms are defined in terms of Euler angle coordinates by

σ1 = + sinψ dθ + cosψ sin θ dφ ,

σ2 = − cosψ dθ + sinψ sin θ dφ ,

σ3 = dψ − cos θ dφ . (A.4)

The SU(2)L action is generated by the Killing vectors,

V1 = + sinφ∂θ + cot θ cosφ∂φ + csc θ cosφ∂ψ ,

V2 = − cosφ∂θ + cot θ sinφ∂φ + csc θ sinφ∂ψ ,

V3 = −∂φ , (A.5)

while the SU(2)R action is generated by

V̂1 = − sinψ ∂θ − cot θ cosψ ∂ψ − csc θ cosψ ∂φ ,

V̂2 = + cosψ ∂θ − cot θ sinψ ∂ψ − csc θ sinψ ∂φ ,

V̂3 = −∂ψ . (A.6)

They satisfy the following relations,

[VA, VB ] = ǫABCVC , [V̂A, V̂B ] = ǫABC V̂C ,

dσA =
1

2
ǫABCσB ∧ σC , LVA

σB = 0 , LbVA
σB = ǫABCσC . (A.7)
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B Bena-Warner/Lin-Lunin-Maldacena solution

Review of LLM. The geometry is specified by a function z(x, y) defined on the upper

half plane (y ≥ 0). The function z satisfies the differential equation

∂2
xz + y∂y(y

−1∂yz) = 0 , (B.1)

with a boundary condition at y = 0. Regularity of the geometry requires that z = ±1/2

on the boundary. It is useful to introduce a few additional variables,

V : ∂xz = −y∂yV , ∂yz = y∂xV , (B.2)

G : z =
1

2
tanhG , (B.3)

h : h−2 = 2y coshG , (B.4)

H : H = h2 − h−2V 2 . (B.5)

In terms of these variables, the most general supergravity solution with sixteen supercharges

and SO(1, 2) × SO(4) × SO(4) isometry can be written as

ds2 = H−2/3(−dt2 + dw2
1 + dw2

2) +H1/3
[
h2(dy2 + dx2) + yeGdΩ2

3 + ye−GdΩ̃2
3

]
,

F = −d(H−1h−2V ) ∧ dt ∧ dw1 ∧ dw2

−1

4
H
[
e−3G ∗2 d(y

2e2G) ∧ dΩ̃3 + e3G ∗2 d(y
2e−2G) ∧ dΩ3

]
. (B.6)

Here, ∗2 is the flat epsilon symbol in the (x, y) plane.

Mass deformed AdS4 (without polarization). Section 4.2 of Bena-Warner gives

a solution describing the flux deformation of AdS4 × S7. It is instructive to rewrite the

solution in the LLM coordinates. How to translate between the two coordinates is explained

below.

The result is

z =
x

2
√
x2 + y2

[
1 − 3γ2y2

(x2 + y2)2

]
, (B.7)

V =
1

2
√
x2 + y2

[
1 +

γ2(2x2 − y2)

(x2 + y2)2

]
, (B.8)

h2 =
1

2
√
x2 + y2

[
1 +

6γ2x2

(x2 + y2)2
− 9γ4x2y2

(x2 + y2)4

]1/2

, (B.9)

H =
γ2

(x2 + y2)3/2

[
1 − γ2(4x2 + y2)

2(x2 + y2)2

] [
1 +

6γ2x2

(x2 + y2)2
− 9γ4x2y2

(x2 + y2)4

]−1/2

. (B.10)

The parameter γ is related to those of BW [7] by

γ2 = (128L6β2R6)BW . (B.11)

In the UV region (x, y ≫ γ), all the square brackets in (B.7)–(B.10) can be ignored,

and we recover the AdS4 × S7 geometry upon a suitable constant rescaling of coordinates.
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Relation between Bena-Warner and Lin-Lunin-Maldacena. We compare the no-

tations of Bena and Warner (BW) [7] and those of Lin, Lunin and Maldacena (LLM) [8].

This was already done in appendix C of [8], but it contained some minor errors.

The BW and LLM metrics read,

ds2BW = 16L4e2B0(−dt2 + dw2
1 + dw2

2) + e2B1−B0(du2 + dv2)

+u2e2B3−B0dΩ2
3 + v2e−2B3−B0dΩ̃2

3 , (B.12)

ds2LLM = H−2/3(−dt2 + dw2
1 + dw2

2)

+H1/3
[
h2(dy2 + dx2) + yeGdΩ2

3 + ye−GdΩ̃2
3

]
, (B.13)

which lead to the identifications,

H−2/3 = 16L4e2B0 , yeG = 4L2u2e2B3 , ye−G = 4L2e−2B3 ,

h2(dx2 + dy2) = 4L2e2B1(du2 + dv2) . (B.14)

Combining the G-B3 relations, we find

eG =
u

v
e2B3 , y = 4L2uv . (B.15)

Orthogonality of the coordinates implies

x = 2L2(u2 − v2) . (B.16)

Putting (B.15) and (B.16) back to (B.14), we find

h−2 = 4L2e−2B1(u2 + v2) . (B.17)

As a cross check, we note that inserting (B.15) and (B.17) into the LLM relation (B.4),

h−2 = y(eG + e−G) ,

reproduces eq. (43) of [7],

e−2B1(u2 + v2) = u2e2B3 + v2e−2B3 .

In translating the BW solution into the LLM form, it is most convenient to use first

2z =
e2G − 1

e2G + 1
=
u2e4B3 − v2

u2e4B3 + v2
, (B.18)

and then use the LLM formulas to compute other quantities.
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