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1 Introduction

Seiberg has proposed sometime ago several classes of 5-dim N = 1 superconformal field

theories [1]. Especially an interesting class is the Sp(N) gauge theories with Nf fundamen-

tal hypermultiplets and one antisymmetric hypermultiplet which appear naturally on N

D4-branes near the Nf D8 branes on top of a single O8 orientifold plane in the so-called

type I′ string theory. The infinite coupling limit of the gauge theory in the symmetric

phase is the superconformal fixed point with superconformal group F (4) whose bosonic

part consists of SO(2, 5) conformal symmetry and SU(2) R-symmetry. These theories with

SO(2Nf ) flavor symmetry and U(1) for instanton number are expected to have enhanced

global symmetries ENf+1 for Nf ≤ 7 at the superconformal point [1–6]. While the Coulomb

phase moduli of these theories are the coordinates for the positions of D4 branes away from

the orientifolds, the Higgs phase of these theories are known to be the center moduli space

of N ENf+1 instantons.

In this work we set up the superconformal index calculation of these gauge theories

on S1 × S4 and evaluate it by the localization method with suitable chemical potentials

turned on. This index has both perturbative contribution and nonperturbative instanton

and anti-instanton contribution. In our index calculation for the Sp(1) theory to three and

four instanton contributions for Nf ≤ 5, the chemical potentials for the SO(2Nf ) flavor

symmetry and the U(1) instanton charge are merged to the characters for the enhanced

ENf+1. However the difficult pole structure appears in calculation of the instanton contri-

butions for Nf = 6, 7 and so in this case we suggest a few leading order expression for the

index based on the general pattern. Similar obstacle exists for N ≥ 2.

These 5d N = 1 supersymmetric gauge field theories are nonrenormalizable with Yang-

Mills kinetic term and ultra-violet incomplete. However each of them may be regarded as a

relevant perturbation of a 5d UV-complete superconformal field theory which corresponds

the infinite gauge coupling limit of the gauge theory interacting with hypermultiplets. One

should not be wary of the infinite coupling limit where the Yang-Mills action can be ignored.

A most typical such example is the CP (N) model which is written with one auxiliary gauge

field. That can be regarded as the infinite coupling limit of the abelian Higgs model with

the multiple flavor and FI term turned on. The gauge kinetic term gives more weight to

the smooth field configurations in the path integral. In the infinite gauge coupling limit, all

the gauge field configurations contribute with the equal weight. The result is the constraint

leading to the CP (N) model. For our Sp(1) gauge theory at the conformal limit also, one

has to sum over all gauge fields with equal weight.

In 5d gauge theory with Yang-Mills action, the inverse of the gauge coupling constant

1/g2YM has the mass dimension which is also the mass scale of instanton solitons. While the

BPS instantons form a massive tensor multiplet in the maximally supersymmetric N = 2

case due to the gaugino zero modes, they form a massive hypermultiplet in the N = 1

case. For the N = 1 Sp(1) gauge theory with fundamental Nf flavor, there would be

additional zero modes due to the spinors in the fundamental representation. These zero

modes produce no spin but just flavor charge. Instantons and anti-instantons appear as

chiral 2
Nf−1
+1 and its complex conjugate 2̄

Nf−1
−1 representations of flavor group SO(2Nf ) and

the U(1) instanton number, respectively.
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We choose the mass for the hypermultiplet to vanish. The enhancement of the global

symmetry occurs at the conformal point. At the infinite coupling limit, instantons also

become massless. Seiberg has argued that the flavor symmetry SO(2Nf ) and the instanton

number charge U(1)I get merged into a global symmetry ENf+1 ⊃ SO(2Nf ) × U(1)I [1].

Besides the exceptional groups E8, E7, E6, the remaining ones are E5 = Spin(10), E4 =

SU(5), E3 = SU(3)× SU(2), E2 = SU(2)×U(1) and E1 = SU(2).

The 5d N = 1 supersymmetric gauge theories can have many origins. One is the theory

on D4 branes with other branes, say D8 and O8, like in our setting. Further exploration of

5d gauge theories and D4 on D8 branes and O8 orientifolds has shown one can have Ẽ1 with

U(1) symmetry and E0 without any global symmetry. All these class of theories appear

naturally on the M-theory compactification on Calabi-Yau 3-fold with the contracted del

Pezzo surfaces [2, 3, 5].

The superconformal index on S1 × S4 is a tool to examine the enhancement of the

global symmetry. A method for calculating the index is by evaluating the path integral

by the localization. We are turning on all chemical potential allowed by our choice of

the supercharges which define the index. The contributions consist of perturbative and

nonperturbative parts. They are localized at north and south poles. With our convention

at south pole instantons contribute and at north pole anti-instantons contribute. While

the calculation of the perturbative part is somewhat straightforward, the instanton and

anti-instanton contributions can be obtained from somewhat indirect approach, which is

to evaluate the D0 branes contribution on D4 branes with the orientifold O8 and D8 branes

via the ADHM method.

The gauge group on k D0 branes turns out to be O(k) which consists of the connected

subgroup O+(k) = SO(k) and the disconnected part O−(k) of minus one determinant.

The D0 brane contributions are composed of these two parts whose detail identification

need some effort. Once one obtains the D0-brane contribution to the index, one has to

integrate over the loop-variables along the circle to get the gauge invariant expression.

Here we are turning on all the chemical potentials for the flavor group SO(2Nf ) which

can be regarded as the mass parameter for each hypermultiplet and the fugacity for the

instanton number. The evaluation of the instanton contribution goes well for the cases

Nf ≤ 5. While we do not know the closed form of the index, our method here leads to a

series expansion whose coefficients are expressed in terms of the characters of the enhanced

global symmetry ENf+1. Especially the leading nontrivial contribution is given by the

character of the adjoint representation of ENf+1. We reach, however, some obstacles for

Nf = 6, 7 whose solution is not obvious to us at this moment. For Nf = 6, 7, the characters

for the adjoint representation of E7, E8 have the contribution from two (anti)instantons,

besides the perturbative parts and the single (anti)instanton contribution.

The rest of the paper is organized as follows. In section 2 we review the 5d N = 1

gauge theories and their superconformal limit. Global symmetry enhancement raining at

the conformal fixed point is discussed. In section 3 we define the superconformal index

and approach it with localization method. It has both perturbative and nonperturbative

contributions. The superconformal index for Sp(N) and U(N) are presented as an holon-

omy integral form. In section 4 we explicitly calculate the index for Sp(N) and show the
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global symmetry enhancement by showing they are expressed in terms of the characters of

the enhanced symmetry. In section 5 we conclude with some perspective and remarks. In

appendices we collect various related formulas.

2 5d superconformal theories

We review the salient features of the 5d N = 1 supersymmetric gauge theory with focus

made on the theory in the infinite gauge coupling limit. This theory has the vector multiplet

and the hypermultiplet. The vector multiplet consists of a gauge field Aµ, a real scalar φ,

and a symplectic-Majorana fermion λA (where A denotes the SU(2)R R-symmetry doublet

index) in the adjoint representation of gauge group G. The Lagrangian for the vector

multiplet Φ is encoded in the prepotential F . For generic gauge group G, the classical

prepotential is given by [1, 5]

F =
1

2g2cl
trΦ2 +

κ

6
trΦ3, (2.1)

where g2cl is the classical gauge coupling and κ is a real number which is quantized. The

first term gives rise to the usual 5d Yang-Mills term which drops out in the infinite coupling

limit.

The cubic term leads to the Chern-Simons term and its supersymmetric completions [1,

5, 7–9]

Lcubic = Lcs + Lκ ,

Lcs =
κ

24π2
tr

[

A ∧ F ∧ F +
i

2
A ∧A ∧A ∧ F − 1

10
A ∧A ∧A ∧A ∧A

−3λ̄γµνλFµν + 6iλ̄σIDIλ

]

,

Lκ =
κ

2π2
tr
[

φLYM

]

=
κ

2π2
trφ

[

− 1

2
FµνF

µν −DµφD
µφ+

i

2
Dµλ̄γ

µλ− i

2
λ̄γµDµλ+DIDI + iλ̄[φ, λ]

]

,

(2.2)

where DI (I = 1, 2, 3) are auxiliary scalars transforming as a triplet of SU(2)R, and Dµ =

∂µ − iAµ is the covariant derivative. See appendix A for the detail notation. The trace is

taken over the gauge indices of the adjoint matrices T a and it follows that the cubic terms

are proportional to the totally symmetric structure constant of the gauge group G

dabc =
1

2
trT a{T b, T c}. (2.3)

We note that dabc is nonzero only for SU(N) with N ≥ 3, and thus one neglects this

classical cubic term for other gauge groups than SU(N). (Of course, the cubic term exists

for abelian case.)

– 4 –
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The theory is invariant under the supersymmetry (SUSY) transformations

δAµ = iλ̄γµǫ ,

δφ = λ̄ǫ ,

δλ =
1

2
Fµνγ

µνǫ− iDµφγ
µǫ+ iDIσIǫ ,

δλ̄ = −1

2
Fµν ǭγ

µν − iǭγµDµφ− iǭσIDI ,

δDI = Dµλ̄γ
µσIǫ− [φ, λ̄]σIǫ, (2.4)

where σI are the usual Pauli matrices and the R-symmetry indices are contracted as λ̄ǫ ≡
λ̄Aǫ

A. The supersymmetry parameters ǫ are symplectic-Majorana spinors defined as

ǭA = (ǫT )BεBAΩ, (2.5)

where εAB is the invariant tensor of SU(2)R while Ω is the invariant tensor of Sp(2)1

which corresponds to the Lorentz rotation in five dimensions. More precisely, the SUSY

parameter ǫAm transforms as the doublet of SU(2)R (A = 1, 2) and also as the spinor of

Sp(2) (m = 1, 2, 3, 4).

The hypermultiplet consists of a complex scalar qA (an SU(2)R doublet) and a complex

fermion ψ in a representation of the gauge group. With the matter coupling, the prepo-

tential receives quantum corrections [10]. For example, when the SU(N) gauge theory is

coupled to a fundamental matter field with real mass m, the quantum contribution to the

prepotential is given by [10]

Fquantum = − sgn(m)
1

2
trΦ3, (2.6)

which comes from one-loop computations. Since the prepotential is at most locally cubic,

the one-loop correction is exact. One can regard the classical cubic term as a quantum

mechanically induced prepotential by integrating out the massive fundamental hypermul-

tiplets. We note that the gauge invariance restricts the coefficient κ of the cubic terms to

be [5, 10]

κeff = κ−
∑

i

sgn(mi)
1

2
∈ Z, (2.7)

Here, the sum is taken over all the hypermultiplets coupled to the vector multiplet. The

classical Chern-Simons level κ is therefore quantized: integer or half-integer depending on

even or odd number of fundamental matters, respectively. In particular, when the number

of matter hypermultiplets is odd, the classical Chern-Simons level κ cannot be zero. This

means that the classical cubic term always exists and thus parity symmetry is broken.

The gauge theories have the Coulomb branch and the Higgs branch. The vacuum ex-

pectation value of the real scalar field φ in the vector multiplet parametrizes the Coulomb

branch of the classical vacua of the low energy theory. The effective theory at low energy is

1To be more precise, Sp(2) should be USp(2, 2) = SO(1, 4).
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described by the diagonal elements of φ in the Cartan subalgebra of G. The exact prepo-

tential for the arbitrary gauge group G with various flavors of masses mi is expressed as [5]

F =
1

2g2cl
trφ2 +

κ

6
trφ3 +

1

12





∑

R

|R · φ|3 −
∑

i

∑

w∈Wi

|w · φ+mi|3


 , (2.8)

where R are the roots of G and Wi is the weight space of G in the representation for

i-th hypermultiplet. This prepotential is obtained by integrating out all the massive fields

at generic point of Coulomb branch where the charged matters acquire additional masses

from the gauge coupling to φ. The last two terms are the quantum corrections arising from

the massive vector multiplet and the massive hyper multiplets, respectively.

The Higgs branch is where the scalar fields in the hypermultiplet take nonzero vacuum

expectation value. The Higgs branch moduli space is a hyper-Kähler manifold. From the

point of view of D4–D8 system, N D4 branes on Nf D8 branes appear as N instantons

in SU(Nf ) gauge theory, and thus the Higgs branch of D4 is the moduli space of N

instantons in SU(Nf ) gauge theory. The Sp(N) theories on D4-branes with an additional

O8 orientifold have SO(2Nf ) global flavor symmetry where they are interact with Nf

hypermultiplets, which corresponds to Nf D8 brans in the D-brane picture. The Higgs

branch in this case is the moduli space of N instantons in the SO(2Nf ) gauge theory.

It should be stressed that instantons are associated with the U(1)I current

J = ∗ tr (F ∧ F ), (2.9)

which is topological and always conserved [1]. This U(1)I charge corresponds to the in-

stanton number. The instantons in 5d maximally supersymmetric theory play the role of

Kaluza-Klein (KK) modes from a circle compactification of 6d (2, 0) theory and its mass

is identified with KK momentum [11–15]. In our case, however, the instanton solitons in

5d gauge theory form massive hypermultiplet and participate in the enhancement of global

symmetry at the conformal point. The U(1)I provides an extra Cartan for the enhanced

global symmetry ENf+1 [1, 2, 4]. The way the instantons contribute the symmetry en-

hancement is one of our main points of the paper and will be explained throughout the

paper, especially in section 4.

2.1 Conformal limit

A non-trivial conformal field theory emerges in the infinite coupling limit of the 5d gauge

theory. The N = 1 superconformal theory in five dimensions enjoys F (4) superconformal

symmetry whose bosonic part is SO(2, 5)× SU(2)R where SO(2, 5) is conformal group and

SU(2)R are R-symmetry group [16, 17].

When the gauge group is U(1) or SU(N) (N ≥ 3), the Lagrangian describing the

conformal fixed point is the Chern-Simons action given in (2.2). This Lagrangian preserves

8 Poincaré and 8 conformal supersymmetries. The supersymmetry transformation then

– 6 –
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extends from (2.4) to

δAµ = iλ̄γµǫ ,

δφ = λ̄ǫ ,

δλ =
1

2
Fµνγ

µνǫ− iDµφγ
µǫ+ iDIσIǫ− 2i

5
φγµDµǫ ,

δλ̄ = −1

2
Fµν ǭγ

µν − iǭγµDµφ− iǭσIDI − 2i

5
Dµǭγ

µφ ,

δDI = Dµλ̄γ
µσIǫ− [φ, λ̄]σIǫ− 1

5
λ̄σIγµDµǫ , (2.10)

where the SUSY parameters are ǫ = ǫq + x · γǫs with the constant spinors ǫq and ǫs. The

commutator of two SUSY transformations leads to the superconformal algebra

[δ1, δ2]Aµ = ξν∂νAµ + ∂µξ
νAν +DµΛ,

[δ1, δ2]φ = ξµ∂µφ+ i[Λ, φ] + ρφ,

[δ1, δ2]λ = ξµ∂µλ+
1

4
Θµνγ

µνλ+ i[Λ, λ] +
3

2
ρλ+

3

4
RIJσIJλ,

[δ1, δ2]D
I = ξµ∂µD

I + i[Λ,DI ] + 2ρDI + 3RIJDJ . (2.11)

where the parameters are defined by

ξµ = −2iǭ1γ
µǫ2,

Λ = 2iǭ1γ
µǫ2Aµ + 2ǭ1ǫ2φ,

Θµν = D[µξν] + ξλωµν
λ ,

ρ = −2i

5
Dµ(ǭ1γ

µǫ2),

RIJ = −2i

5
(ǭ1γ

µσIJDµǫ2 −Dµǭ1γ
µσIJǫ2). (2.12)

The Killing vector ξµ generates the SO(2, 5) conformal transformation and RIJ is the

SU(2)R R-symmetry generator, and Λ is the gauge transformation parameter. This is a

part of superconformal F (4) algebra which is expected for the fixed point theories.

For the matter hypermultiplet, the canonical Lagrangian is already superconformal

invariant. The matter Lagrangian is given by

Lmatter = |Dµq|2 − iψ̄γµDµψ + q̄φ2q − qσI q̄DI −
√
2ψ̄λq +

√
2q̄λ̄ψ − iψ̄φψ, (2.13)

which is invariant under the SUSY transformation

δqA =
√
2iǭAψ,

δq̄A =
√
2iψ̄ǫA,

δψ =
√
2

(

−Dµq
AγµǫA + φqAǫA − 3

5
qAγµDµǫA

)

,

δψ̄ =
√
2

(

ǭAγµDµq̄A + ǭAq̄Aφ+
3

5
Dµǭ

Aγµq̄A

)

. (2.14)

– 7 –



J
H
E
P
1
0
(
2
0
1
2
)
1
4
2

The supersymmetry algebra closes on-shell

[δ1, δ2]q
A = ξµ∂µq

A + iΛqA +
3

2
ρ qA +

3

4
RIJ(σIJq)A,

[δ1, δ2]ψ = ξµ∂µψ +
1

4
Θµνγ

µνψ + iΛψ + 2ρψ + (e.o.m.), (2.15)

where the e.o.m. term is given by

(

ǭ2ǫ1 − (ǭ2γ
νǫ1)γν

)(

iγµDµψ + iφψ − i
√
2qλ
)

. (2.16)

When the gauge group is Sp(N), unlike the SU(N) case, the Lagrangian for the vector

multiplet at the conformal fixed point does not exist. It is because there is no Chern-

Simons term for Sp(N). Nevertheless, the theory itself exists and it is believed that such a

theory flows to non-trivial interacting fixed point as well. Moreover, at the strong coupling

limit, the conformal theories for Sp(N) also enjoy the same superconformal symmetry F (4).

The supersymmetry transformation rules are presumably the same as those of the SU(N)

case (2.10). On the other hand, the canonical Lagrangian of the hypermultiplets remains

invariant under the same SUSY transformation (2.14).

The physical observables of the conformal field theory we are interested in are the

gauge invariant operators. Once the superconformal algebra is given, the gauge invariant

operators are classified according to their representations of the superconformal algebra.

These operators correspond to the physical states in a radially quantized theory. We will

be interested in radially quantized theories on R × S4. Physical states are then labeled

by the charges of the Cartan generators of the bosonic subalgebra SO(2, 5)× SU(2)R: the

energy ǫ0 is the dilatation of the original theory, the angular momenta j1, j2 are the charges

of SU(2)1 × SU(2)2 ⊂ Sp(2) ∼= SO(5), and jR is the SU(2)R-charge.

The supercharge QA
m and the conformal supercharge Sm

A are conjugate each other in the

radially quantized theories and they have the dilatation charge +1
2 and −1

2 , respectively.

Their commutator gives a multiplet shortening condition often called BPS bound and the

multiplet satisfying such a shortening condition is called the short (or BPS) multiplet. The

commutator of QA
m and Sm

A reads [18, 19]

{QA
m, S

n
B} = δnm δ

A
BD + 2 δABMm

n − 3 δnmRB
A , (2.17)

where D is the dilatation, M n
m are the SO(5) rotations, and RB

A are the SU(2)R R-

symmetry generators. As the BPS states satisfy the BPS bound of (2.17) their spectrum

is protected by the supersymmetry. This property allows us to count the exact spectrum

of the BPS states (or operators) in the conformal field theory. We will count the spectrum

in section 3 with the superconformal index which is a kind of partition function counting

BPS states.

2.2 Global symmetry enhancement

Let us first focus on the Sp(1) ∼= SU(2) gauge theory with Nf fundamental hypermulti-

plet matters. This is the simplest example revealing non-trivial fixed point in the strong

coupling limit. To see such fixed point, it is instructive to review D-brane descriptions for

this.

– 8 –
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To begin with, let us consider familiar D-brane configuration of Type I string theory.

Type I theory has 16 D9-branes required to cancel the gravitational anomaly arising from

the spacetime filling O9 orientifold plane. The gauge group of this background is SO(32).

We introduce a D5-brane to this system. The worldvolume theory of the D5-brane is

a six dimensional SU(2) gauge theory coupled to Nf = 16 hypermultiplets. This Higgs

phase of this gauge theory is the center moduli space of a single SO(32) instanton. We

compactify the theory on a small circle S1 along the D5-brane worldvolume direction and

then perform T-duality transformation. It gives rise to the brane configuration of a D4-

brane on 10d background compactified on S1/Z2 interval with two orientifolds at the ends

of the interval. The two O8 orientifolds at the tip of the interval S1/Z2 are the T-dual

of the O9 orientifold plane in Type I theory. This theory is often referred to as Type I′

theory. The location of the D4-brane on the S1/Z2 (from x9 = 0 to x9 = π) corresponds

to the Coulomb branch of the moduli space of the gauge theory which is parametrized by

the scalar component of the vector multiplet. In Type I picture this corresponds to the

SU(2) Wilson line of the D5-brane appearing after the circle compactification. There are

also 16 D8-branes filling the nine dimensions transverse to the compact direction. They

are T-dual of 16 D9-branes in Type I theory and their positions on the S1/Z2 are again

SO(32) Wilson lines on the compact circle. For generic U(1)16 Wilson lines or equivalently

the positions of the D8-branes, the SO(32) symmetry is spontaneously broken to U(1)16

subgroup.

Of particular interest is the dynamics near one of the O8 orientifold fixed points, say at

x9 = 0. We put a D4-brane and Nf D8-branes close to x9 = 0 and thus the moduli can be

seen as R
1/Z2. This D4-brane worldvolume theory then describes five-dimensional SU(2)

gauge theory with Nf fundamental hypermultiplets. The moduli space of the D4-brane

becomes R
+ which coincides with the Coulomb branch of the moduli space of the gauge

theory. The strings stretched between D4- and D8-branes provide Nf hypermultiplets

whose nonzero masses correspond to the distances of D8-branes from the fixed point. The

Higgs branch becomes the center moduli space of N instantons in Nf gauge theory.

Now let us analyze the field theory described by the above D-brane configuration. For

SU(2) gauge group, the Coulomb branch is one-dimensional given by φ = diag(a,−a).
Without loss of generality we can take a ≥ 0 using the unbroken Weyl symmetry of SU(2)

gauge group. The corresponding moduli space is R+. Along the Coulomb branch the gauge

group is broken to U(1). Clearly there is a singularity at the boundary of the moduli space

a = 0 where additional massless vector fields arise and as a result the SU(2) symmetry is

restored.

As mentioned earlier, the classical cubic term vanishes because the totally symmetric

structure constant dabc does not exit. According to (2.8) the prepotential for the abelian

gauge theory in the Coulomb branch gets corrected by the quantum effect and the effective

gauge coupling is

1

g2eff
=

1

g2cl
+ 8a− 1

2

Nf
∑

i=1

|a−mi| −
1

2

Nf
∑

i=1

|a+mi| (2.18)

where mi are the masses for Nf fundamental flavors. For consistency of the theory, the
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effective coupling should be non-negative on the entire Coulomb branch of the moduli

space. This cannot be guaranteed if Nf > 8. There always exists the finite point ac of the

moduli space away from the origin where the effective coupling geff diverges. Beyond ac
the effective coupling flips its sign and thus the theory becomes sick. This reflects the fact

that the quantum theories for Nf > 8 are not renormalizable [1].

When Nf ≤ 8, on the other hand, the effective gauge coupling is positive everywhere

on the Coulomb branch and therefore the Lagrangian description of the 5d gauge theory

is still valid even for the quantum level. Let us place all Nf D8-branes at the fixed point.

It follows that the effective coupling becomes

1

g2eff
=

1

g2cl
+ (8−Nf )a. (2.19)

As we take the classical gauge coupling gcl to be positive there is no singularity on the

Coulomb branch when Nf ≤ 8. Moreover, if the classical gauge coupling is taken to the

infinity, gcl → ∞, there can be a scale invariant fixed point at the origin of the Coulomb

branch where a = 0 [1]. Hence, the 5d gauge theories with the condition above are reliable

field theories over the entire Coulomb branch of the moduli space. The field theory at the

conformal fixed point is very strongly interacting since the effective coupling diverges. We

note that when Nf = 8, the infinite coupling limit yields the vanishing of the metric on

the entire Coulomb moduli space, and thus the 5d description becomes not meaningful.

The global flavor symmetry of the theory is SO(2Nf ) and there is conserved U(1) charge

for the instanton soliton numbers in 5d Sp(1) gauge theory. Together, the global symmetry

is expected to be enhanced to ENf+1 at the conformal fixed point for Nf < 8 [1, 5], which is

related to the gauge symmetry enhancement of the heterotic string theory on the self-dual

radius. We note that the Higgs branch is also enhanced and thus it becomes the moduli

space of ENf+1 instantons [1, 20].

The symmetry enhancement from the point of view of the heterotic string theories is as

follows. Consider the eleven-dimensional M-theory compactified on an interval S1/Z2 with

a radius R11 along the 11-th direction. The orbifold action Z2 introduces ten-dimensional

orientifold plane at each tip of the interval. To cancel gravitational anomalies arising from

two hyperplanes, we need to place a 10d E8 gauge theory at each end of the interval.

This theory realizes the strong coupling limit of the E8 ×E8 heterotic string theory in ten

dimensions [21, 22]. The heterotic string coupling constant gh is related to the radius of

11d circle by R11 ∼ g
2/3
h and, at small coupling limit, M-theory on a S1/Z2 reduces to the

E8 × E8 heterotic string theory.

One further compactifies the heterotic string on a circle with the radius Rh, which

exhibits the gauge symmetry enhancement at the special point of the moduli space. More

explicitly, one can turn on the Wilson lines that break the gauge symmetry to SO(14)2 ×
U(1)2 × U(1)2 where the later U(1)2 are given by right and left-moving winding modes.

Then, there is symmetry enhancement at the self-dual radius to E8 ×E8 ×U(1)2 [23, 24].

One may view the symmetry enhancement in the heterotic string theory from the point of

view of Type I′ string theory using the heterotic/Type I and Type I/Type I′ string theory
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dualities. The gauge coupling and the radius of the circle S1 with Rh are mapped as follows

RI′ =
√

Rhgh , gI′ =
√

R3
h/gh , (2.20)

where gI′ , RI′ are the gauge coupling and the radius of the compact circle in Type I′ string

theory, respectively. Thus, at the self-dual radius Rh = Rsd ∼ 1 and the strong coupling

limit gh = ∞ in the heterotic theory, the dual Type I′ theory is at weak coupling region with

the infinity radius RI′ of the circle S1/Z2 [23, 24]. The dual description of SO(14)×U(1)

preserving Wilson line is one D8-brane away from a fixed point while 7 D8-branes are

located exactly at the fixed point.

The string coupling gI′ which is the dilaton expectation value diverges and the per-

turbative description breaks down precisely at which we hope to see the symmetry en-

hancement. Since D8-branes are the dilaton sources the existence of D8-branes causes

the dilaton gradient. So, as the eighth D8-brane approaches to the fixed point, the string

coupling at the orientifold diverges, which implies that D0-branes become massless and

they can provides the massless gauge bosons that are necessary for E8 gauge symmetry

enhancement.

From the heterotic string theory point of view, D4-branes on Nf D8-branes at the O8

orientifold fixed point can be interpreted as the instantons of the ENf+1 gauge symmetry

in the heterotic theory. The string duality relates the D4-branes to the NS5-branes in the

heterotic theory. In the heterotic theory, the five-branes couples to the gauge symmetry

which corresponds to SO(2Nf ) global symmetry at finite coupling of the D4-brane theory.

The Higgs branch of the moduli space in the five-brane worldvolume theory is known to be

the moduli space of SO(2Nf ) instantons. One may notice that the Sp(N) gauge symmetry

of N D4-brane theory coincides with the gauge symmetry of the N instanton moduli space

of SO(2Nf ) gauge theories. As the global symmetry is enhanced to ENf+1 in the D4-brane

theory at the infinite coupling limit, the gauge symmetry of the heterotic theory is also

enhanced to ENf+1 gauge symmetry in this regime. Therefore the Higgs branch of N

D4-branes describes the N instanton moduli space of ENf+1 gauge theory.

The conformal fixed point can exit for other gauge groups as well [5]. The condition for

the non-trivial fixed point is determined by the matter content of the theories as done in the

Sp(1) = SU(2) case, where the matter content is restricted by the positivity of the effective

gauge coupling. Among other gauge theories of the fixed point, we pay special attention

to the Sp(N) gauge theories, as Sp(N) gauge theory describes the worldvolume theory on

N coincident D4-branes on the orientifold fixed point. Take the Sp(N) gauge theory with

Na antisymmetric and Nf fundamental hypermultiplets of the gauge group. The Coulomb

branch moduli is again given by the vacuum expectation value of the vector multiplet scalar,

φ = diag(a1, · · · , aN ,−a1, · · · ,−aN ). We can always choose ai ≥ 0 (i = 1, · · · , N) using

the unbroken Weyl symmetry. The effective gauge coupling receives one-loop corrections [5]

(g−2
eff )ii = 2

[

(N − i)ai +
i−1
∑

k=1

ak

]

(1−Na) + ai(8−Nf ),

(g−2
eff )i<j = 2(1−Na)aj , (2.21)
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where we have assumed the classical gauge coupling 1
g2
cl

= 0. The eigenvalue of this effective

coupling is positive semi-definite only for Na = 0, Nf ≤ 2N + 4 or Na = 1, Nf ≤ 7. This

shows there is an interesting fixed point when the above conditions for the matter content

are satisfied. In particular, N D4-branes on the Z2 fixed point correspond to Na = 1 and

Nf ≤ 7 cases. The global symmetry SO(2Nf ) is also enhanced to ENf+1 at the conformal

fixed point just as the aforementioned Sp(1) = SU(2) gauge theories. The Sp(1) theories

are, in fact, a special example of such enhancement where the antisymmetric hypermultiplet

is decoupled because it is a gauge singlet.

3 Superconformal index

In this section, as a tool for counting BPS states, we introduce the superconformal index [18]

for the 5d superconformal theories of the gauge group G, with various hypermultiplets (here

Nf flavors). We choose a superchargeQA=1
m=2 ≡ Q among others to define the superconformal

index, so that we count the BPS states which are annihilated by the supercharge Q and

its conjugate supercharge S = Q†. This means that we count 1
8 BPS states. It follows

from (2.17) that

∆ ≡ {Q,S} = ǫ0 − 2j1 − 3R, (3.1)

where the energy or the dilatation is denoted by ǫ0, the Cartan generators of SU(2)1 ×
SU(2)2 ⊂ Sp(2) are j1, j2, and the Cartan generator for R-symmetry (or R-charge) is R.

The BPS bound is saturated when ∆ = 0 or ǫ0 = 2j1+3R. Each of three Cartan generators

∆, j1+R, j2 of F (4) commuting with the superchargesQ and S have the chemical potentials

e−β , x = e−γ1 , and y = e−γ2 , respectively. The instanton number k also commute with

the supercharges. The Cartan generators Hi(i = 1, 2, · · ·Nf ) of the flavor symmetry and

the instanton charge k have the chemical potential e−imi and q, respectively. We then use

these Cartan generators to label the BPS states. With these ingredients, we define the

superconformal index

I(x, y,mi, q) = tr
[

(−1)F e−β{Q,S}x2(j1+R)y2j2e−i
∑

i Himiqk
]

, (3.2)

where F is the fermion number operator. The trace is taken over the Hilbert space on S4

after radial quantization. It is easy to see that the index counts only the number of BPS

states (∆ = 0) because the states with non-zero ∆ pairwise cancel out due to (−1)F . As

a result, the index does not depend on the chemical potential e−β .

The index (3.2) admits a functional integral representation. Let us consider radial

quantization of a conformal theory and compactification along the Euclidean time direction

after Wick rotation x0 = −iτ . It is equivalent to put the conformal theory on S1 × S4.

The index then can be expressed as a path integral of the Euclidean action on S1 × S4:

I(x, y,mi, q) =

∫

S1×S4

DΨe−SE [Ψ]. (3.3)

The factor (−1)F enforces both bosonic fields and fermionic fields satisfy periodic boundary

conditions along the time circle S1 of radius β. The insertion of the chemical potentials
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leads to the twisted boundary condition

Ψ(τ + β) = e−(−2j1−3R)β−2(j1+R)γ1−2j2γ2−iHimiΨ(τ). (3.4)

Equivalently, we can shift the time derivatives in the action

∂τ → ∂τ +
2β − 2γ1

β
j1 −

2γ2
β
j2 +

3β − 2γ1
β

R− i
mi

β
Hi, (3.5)

with the usual periodic boundary condition. From here on, we regard all the time deriva-

tives as this shifted one (3.5).

3.1 Localization

The localization technique [25] is very powerful in evaluating the superconformal index. The

superconformal index is independent not only of the parameter β but also of any continuous

deformation of the theory as long as the deformation preserves the chosen supercharge Q.

This means that under deformation of the Lagrangian with arbitrary Q-exact terms and a

continuous parameter t

L → L+ t{Q, V }, (3.6)

the result of the path integral is not altered. In particular, when we take t to infinity, the

path integral is localized around a set of the classical solutions to the saddle point equation

{Q, V } = 0. In this limit the Gaussian integral over the quadratic fluctuations near the

saddle points yields the exact result of the superconformal index.

To apply the localization, let us choose a Killing spinor ǫ parametrizing the SUSY

transformation of Q+ S

ǫ ≡ ǫq + ǫs = e
1

2
θ1γ51

e
1

2
θ2γ12

e
1

2
θ3γ23

e
1

2
θ4γ34

ǫq0 + γ5e
1

2
θ1γ51

e
1

2
θ2γ12

e
1

2
θ3γ23

e
1

2
θ4γ34

ǫs0, (3.7)

where ǫq0 and ǫs0 are the constant spinors corresponding to Q and S, respectively. The

spinor ǫ satisfies the Killing spinor equation

∇µǫ =
1

2
γµγ

5ǫ̃ , (3.8)

where another Killing spinor ǫ̃ is given as ǫ̃ = −ǫq + ǫs. Here the twist of the time

derivatives (3.5) should be understood. The supercharge Q has definite charges under the

bosonic symmetries of the superconformal algebra: ǫ0 =
1
2 , j1 = −1

2 and R = 1
2 . It is then

easy to see that the constant spinor ǫq0 obeys the projection condition

γ5ǫq0 = iγ12ǫq0 = σ3ǫq0 = −1. (3.9)

It follows from S = Q† that

(ǫq∗0 )mA = εABΩ
mn(ǫs0)

B
n . (3.10)
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(See appendix A and B for the gamma matrix convention and the metric of S1 × S4 in

detail.) The square of this supercharges Q+ S takes the form

δ2ǫ = −iLτ + iΛ + i
2γ1
β

(j1 +R) + i
2γ2
β
j2 −

mi

β
Hi, (3.11)

where Lτ is the Lie derivative along the S1 (or time) direction and the symmetry generators

j1, j2, R and Hi appear due to the twist of the time derivative (3.5). Here, Λ generates the

gauge transformation and its action on the fields is determined by the representations of

the fields. Later we will see that Λ is replaced by the holonomy variable Aτ which is the

remaining moduli of the superconformal index after localizing all field configurations.

We now deform the Lagrangian by adding the Q-exact term

δL = t δǫ

(

(δǫλ)
†λ
)

, (3.12)

where δǫλ is the gaugino variation with respect to the SUSY parameter ǫ. When we take

t→ +∞ limit, this deformation localizes the vector multiplet part of the path integral near

the critical points of the bosonic potential given by

Vb = (δǫλ)
†δǫλ

= FτµF
τµ + cos2

θ1
2
(F−

ij − ω−
ijφ)

2 + sin2
θ1
2
(F+

ij − ω+
ijφ)

2 + (∇µφ)
2 −D2, (3.13)

where F±
ij = 1

2 [Fij ∓ ∗4Fij ] are the self/anti-self dual part of the field strength on S4 (∗4
is the Hodge star operator on S4) and

ω+
ij =

i

2 sin2 θ1
2

¯̃ǫRγ5γijǫR , ω−
ij =

i

2 cos2 θ1
2

¯̃ǫLγ5γijǫL , ω+
ijω

+ij = ω−
ijω

−ij = 1 ,

γ5ǫR = ǫR , γ5ǫL = −ǫL. (3.14)

The deformed potential is obviously positive semi-definite apart from the D-term potential

which comes with minus sign in front. The D-term potential, in fact, is positive semi-

definite as well. It is because when we put the theory on the Euclidean space through

analytic continuation, the field D is also analytically continued to be pure imaginary.

Therefore, the critical points of the bosonic potential are those at which all the square

terms in the potential vanish. This is very similar to the Q-exact deformation done in [25]

for the localization of the S4 partition function. Except for the time derivatives in the

kinetic terms of (3.13), the rest bosonic potential terms are exactly the same as those of

the vector multiplet part in the S4 partition function computation [25].

We can evaluate the path integral exactly using the saddle point approximation around

the classical solutions to the bosonic potential (3.13). Let us first analyze the classical

saddle points of the deformed potential. The first term and the last two terms in (3.13)

imply that both Fτi and DA vanish and φ is covariantly constant everywhere on S4 at the

critical point. It follows from the Bianchi identity that the remaining terms, the second and

third terms, yield the classical solution Fij = 0 and φ = 0 away from the north and south

poles [25]. Thus we can only turn on the holonomy α, which take values in the Cartan
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subalgebra of the gauge group G, along the time circle as a smooth classical solution to

the saddle point equations. (Other terms in the vector multiplet are set to zero.)

We, however, note that singular instanton solution can be localized exactly at the

south pole (θ1 = π) of S4 and singular anti-instanton solution can be localized at the

north pole (θ1 = 0) [25]. At the north or south pole, the constraint on the field strength

F+ = F− = 0 can be relaxed because either cos θ1
2 or sin θ1

2 becomes zero. Since the anti-

self-dual condition F− = 0 solves the saddle point equations, the singular configuration

corresponding to point-like anti-instantons can be located at the north pole. The self-dual

condition F+ = 0 also solves the saddle point equations, but this yields that point-like

instantons are located at south pole.

To localize the integral over the matter fields in the hypermultiplets, we shall use the

original matter Lagrangian (2.13). This follows from the fact that the superconformal

index does not depend on the continuous parameter of the theory. We can always pull

out a continuous parameter, say t, from the matter Lagrangian by the field redefinition,

and use t as a deformation parameter. As in the vector multiplet localization, we take the

limit t → ∞ and localize the matter field integral around the critical point of the bosonic

potential. Due to the conformal mass terms associated with the coupling to the curvature

of S4, there is no zero modes from the matter fields. Thus we set the classical values of all

bosonic fields in the hypermultiplets to zero.

In summary, the path integral receives the perturbative contributions with holonomy α

on the entire S4 and, in addition, the instanton and anti-instanton contributions localized

at the south pole and the north pole on S4, respectively. Indeed, the one-loop perturbative

contribution can also be localized to the south and north poles of S4 [26] at which the

equivariant rotations j1 and j2 of (3.11) become singular. One then deduce that the

superconformal index becomes the holonomy integral of the product of contributions from

the south/north poles,

I(x, y,mi, q) =

∫

[dα] Isouth(α, x, y,mi, q)Inorth(α, x, y,mi, q
−1) , (3.15)

where the integral is taken over the holonomy α and [dα] involves the Haar measure of

the gauge group G. The integrand Isouth and Inorth contain both one-loop perturbative

contributions and instanton contributions2 from the south and north poles,

Isouth(α, x, y,mi, q) = I1−loop
south × I instsouth ,

Inorth(α, x, y,mi, q
−1) = I1−loop

north × I instnorth . (3.16)

Notice that Isouth is a function of q reflecting that the instantons are localized at the south

pole while Inorth is a function of q−1 reflecting that the anti-instantons are localized at the

north pole.

3.2 One-loop contribution

The one-loop perturbative contribution can be computed using the Atiyah-Singer equivari-

ant index theorem [27]. Recall the S4 partition function in four dimensions was obtained

2The classical Chern-Simons term modifies instanton dynamics through induced Chern-Simons term on

the instanton moduli space, which affects instanton contributions. More detail is explained in section 3.3
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from the index theorem [25, 26]. 5d calculation is not much different from the 4d calcula-

tion. We have already noted that the algebra (3.11) and the Q-exact deformation (3.13)

are analogous to those in [25, 26]. The only difference arises from the momentum modes

along the time circle in 5d calculation. With this in mind, we will follow each step of 4d

perturbative computation in [25, 26] and extend it to the 5d case with the insertion of the

time circle dependence whenever necessary.

Let us start with the cohomological formulation of the supersymmetry transformation

by Q.3 The supercharge Q behaves as an equivariant differential operator on a superman-

ifold formed by the bosonic and fermionic fields including the ghost fields in the gauge

fixed theory. The bosonic and fermionic fields can be regarded as differential forms on a

supermanifold such that they form the Q-complex as

QΨb,f = Ψ′
f,b , QΨ′

f,b = HΨb,f , (3.17)

where Ψb and Ψf are the bosonic and fermionic fields respectively. It follows from (3.11)

that H is given by

Q2 = H ≡ Lτ − i
α

β
− 2γ1

β
(j1 +R)− 2γ2

β
j2 − i

mi

β
Hi. (3.18)

Therefore Q2 produces a combination of U(1) symmetry transformations and the gauge

rotation by the holonomy α. The Q is nilpotent only in the subspace of H-invariant fields

and the cohomology of the Q is the H-equivariant cohomology of the supermanifold.

We expand the gauge fixedQ-invariant terms to quadratic order in the field fluctuations

Ψb and Ψf and evaluate the Gaussian integral for the quadratic terms. There occurs huge

pairwise cancellation between the bosonic and the fermionic fluctuations, as they are paired

by the Q-complex. The remaining contribution arises only from the kernel and cokernel

spaces of the operator D that is the quadratic operator acting on Ψb and Ψf in the Q-exact

term (3.12). The one-loop determinant becomes [25]

I1−loop =

(

detcokerDH|f
detkerDH|b

)1/2

. (3.19)

The fermionic contribution comes to the numerator while the bosonic contribution comes

to the denominator due to their statistics. This one-loop determinant is the equivariant

Euler class of the normal bundle whose sections are Ψb and Ψf . It is given by the product

of the weights of irreducible representations with respect to the group action H. We can

compute the weights of the representations from the equivariant index (or the equivariant

Chern character) of the operator D. The equivariant index is expressed as the sum over

weights and one can easily convert it into a product of weights such as

indDH ≡
∑

i

ǫie
wi →

∏

i

w−ǫi
i , (3.20)

where wi is a weight and ǫi is the multiplicity of wi representation.

3Before evaluating the path integral, we need to gauge fix the theory. We introduce the standard ghost

fields and BRST transformations. The supercharge Q here is a linear sum of the original supercharge Q+S

and BRST operator. From now on, we also assume the Q-exact term (3.12) includes the gauge fixing terms.

It is known [25] that the saddle points of the gauge fixed Q-exact term remains the same as those of (3.12).
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To compute the equivariant index of the operator D we use the equivariant Atiyah-

Singer index theorem. The Atiyah-Singer index theorem is defined as follows: Let E and

F be vector bundles over a manifold M , and Γ(E), Γ(F ) be the space of sections. A

differential operator D is a map of sections, D : Γ(E) → Γ(F ). For a compact Lie group G
acting on M , let T = U(1)n be the maximal torus of G. We can define the G-equivariant
index with respect to t ∈ T

indD(t) = trkerDt− trcokerDt. (3.21)

The equivariant index is an alternating sum over the cohomologies constructed by the

differential D, which receives the contributions only from the kernel and the cokernel of D

as mentioned above. The index is not altered under small deformation and thus topological.

It turns out that the index can be expressed as a sum over the contributions from the fixed

points of the group action T . Then the Atiyah-Singer index theorem states that [27]

indD(t) =
∑

fixed point p

trE(p)t− trF (p)t

detTMp(1− t)
, (3.22)

where we have assumed there are discrete number of fixed points p. Therefore when there

are fixed points of the action T the index reduces to the summation of the equivariant

index around each fixed point.

The fixed points of the group action H are the south and north poles of S4, which are

the critical points of the Lorentz rotation j1 and j2. We consider the equivariant index

around these two fixed points. Since the operator D does not mix the vector multiplet

and hypermultiplet complexes, we compute the equivariant indices for these two multiplets

independently. Let us first compute the equivariant index of the vector multiplet. Near the

south pole, the operator D for the vector multiplet is isomorphic to the self-dual complex

(d, d+) [25, 26]

Ω0 d→ Ω1 d+→ Ω2+, (3.23)

where Ω0, Ω1, and Ω2+ denote zero-forms, one-forms and self-dual two-forms, respectively,

and d+ is the self-dual projection. On the other hand, this operator is isomorphic to the

anti-self-dual complex (d, d−) near the north pole

Ω0 d→ Ω1 d−→ Ω2−, (3.24)

where Ω2− stands for anti-self-dual two-forms, and d− involves the anti-self-dual projection.

In the neighborhood of the south pole on S4, we take a local manifold R
4 = C

2. The H
acts on the local coordinate as (z1, z2) → (eiǫ1z1, e

iǫ2z2) where z1, z2 are the C
2 coordinates.

These U(1)ǫ1×U(1)ǫ2 rotations correspond to the diagonal and off-diagonal combinations

of the Cartan generators in SU(2)1×SU(2)2=SO(4) respectively. The rotation parameters

ǫ1, ǫ2 are related to the chemical potentials γ1, γ2 by

ǫ1 = i
γ1 + γ2
β

, ǫ2 = i
γ1 − γ2
β

. (3.25)

– 17 –



J
H
E
P
1
0
(
2
0
1
2
)
1
4
2

Recall that Ω0, Ω1 and Ω2+ in the self-dual complex take the representations of SO(4) as

(0,0), (1
2
, 1
2
) and (1,0), respectively. Therefore the fields consisting of the self-dual complex

also rotate under the U(1)2 action according to their representations. As an example, let us

compute the equivariant index of the self-dual complex with the torus T = U(1)ǫ1×U(1)ǫ2 .

The Atiyah-Singer equivariant index theorem (3.22) tells us that the index of the self-dual

complex on C
2 is expressed as [26]

ind(DSD) =
(2 + eiǫ1+iǫ2 + e−iǫ1−iǫ2)− (eiǫ1 + e−iǫ1 + eiǫ2 + e−iǫ2)

(1− eiǫ1)(1− e−iǫ1)(1− eiǫ2)(1− e−iǫ2)

=
1 + eiǫ1+iǫ2

(1− eiǫ1)(1− eiǫ2)
(3.26)

The numerator in the first line is the Chern character of the vector bundle associated with

the self-dual complex. One can easily read off this from the representations of U(1)2 action

on the form fields given above. The denominator in the first line is from C
2 coordinate

dependence of the sections of the vector bundle, where U(1)2 acts on the coordinate as

(z1,2, z̄1,2) → (eiǫ1,2z1,2, e
−iǫ1,2 z̄1,2).

Let us then compute the equivariant index with H action which includes not only the

U(1)ǫ1×U(1)ǫ2 but also additional U(1) actions such as the S1 translation, the gauge trans-

formation, and the flavor rotation. We can consider the S1 circle as a U(1) line bundle

over C2 and expand the elements of the self-dual complex by the eigenmodes of the circle

momentum as Ψ =
∑

n∈ZΨne
2πin
β . As the self-dual complex is formed by the fields in the

vector multiplet, Ψn are in the adjoint representation of the gauge group and the flavor

rotation will not act on them. From (3.26) one can obtain the equivariant index for the

vector multiplet

ind(Dvec) = − 1 + eiǫ1+iǫ2

2(1− eiǫ1)(1− eiǫ2)

∑

R

e
−iR·α

β

∑

n∈Z

e
2πin
β , (3.27)

where R is the roots of the gauge group. Here we have summed over all the eigenmodes

of Lτ . The factor −1
2 follows from both the consideration of the statistics and the fact

that the self-dual complex for the vector multiplet is real. To read the weights and the

degeneracies of the representations for H action, we need to expand this index in a power

series of eiǫ1,2 but there are various ways of expansion depending on whether |eiǫ1,2 | < 1

or |eiǫ1,2 | > 1. It turns out [25] that we should expand the index (3.27) in positive powers

of eiǫ1,2 at the north pole, while we should expand the index in negative powers of eiǫ1,2

at the south pole, or equivalently we flip all the signs of the chemical potentials other

than ǫ1, ǫ2. This argument also holds for the equivariant index of the hypermultiplets

which we will compute shortly. For the adjoint vector multiplet or hypermultiplets in

the real representation, two indices from the north and south poles yield the same results

since the roots and the weight space of the gauge group are invariant under the sign

flip.
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Then the one-loop perturbative contribution at the south pole from the vector multiplet

reads

I1−loop
vec,south =

∞
∏

n=−∞

∞
∏

n1,n2=0

∏

R

[

2πn

β
+ n1ǫ1 + n2ǫ2 −

R · α
β

] 1

2

(3.28)

[

2πn

β
+ (n1 + 1)ǫ1 + (n2 + 1)ǫ2 −

R · α
β

] 1

2

=

∞
∏

n1,n2=0

∏

R

sinh

[

(n1 + n2)γ1 + (n1 − n2)γ2 + iR · α
2

] 1

2

sinh

[

(n1 + n2 + 2)γ1 + (n1 − n2)γ2 + iR · α
2

] 1

2

.

In the second line, we factor out the divergent constant which is independent of chemical

potentials and set it to unity [28]. The contribution from the north pole differs from that of

the south pole only by the signs of chemical potentials, which means that the contribution

at the north can be obtained from complex conjugation of the the contribution at the south

pole

I1−loop
vet,north(γ1, γ2, α) = I1−loop

vet,south(γ1, γ2,−α) =
(

I1−loop
vet,south

)∗
. (3.29)

It is more convenient to rewrite the one-loop result in terms of the single letter index as

Ĩ1−loop
vec = xǫ0exp

[

∞
∑

n=1

1

n
f̃vec(x

n, yn, nα)

]

, f̃vec(x, y, α) = − 1 + x2

(1− xy)(1− x/y)

∑

R

e−iR·α ,

(3.30)

where ǫ0 is the Casimir energy and we can regularize it to be unity using the procedure

in appendix B.3 of [29]. However, this is not the appropriate 1-loop result which we

want to compute. This is because the single letter index f̃vec includes the contribution

corresponding to Haar measure on the gauge group manifold, which we already factored

out in front in the measure of the path integral [dα]. Therefore, we have to subtract Haar

measure contribution −∑R e
−iR·α from f̃vec and obtain the proper one-loop determinant

for the vector multiplet

I1−loop
vec = exp

[

∞
∑

n=1

1

n
fvec(x

n, yn, nα)

]

,

fvec(x, y, α) = f̃vec +
∑

R

e−iR·α = − x(y + 1/y)

(1− xy)(1− x/y)

∑

R

e−iR·α. (3.31)

One may notice that the single letter index for the vector multiplet f̃vec is very similar

to the equivariant index of the self-dual complex (3.27) if we ignore the U(1) line bundle

contribution. This similarity can also be found in the hypermultiplet determinant.

In a similar way we can compute the one-loop determinant for a matter hypermultiplet.

The bosonic and fermionic fields in the hypermultiplet are the sections of the spin bundles

of positive and negative chiralities on C
2 respectively. The differential operator acting on

– 19 –



J
H
E
P
1
0
(
2
0
1
2
)
1
4
2

these fields is the Dirac operator that is a map from the spin bundle of positive chirality

to that of negative chirality,

DDirac : Ω
( 1
2
,0) → Ω(0, 1

2
), (3.32)

which implies that the field content of a hypermultiplet forms a Dirac complex associated

with the operator DDirac. It is straightforward to compute the equivariant index of the

Dirac complex (3.32) with respect to U(1)ǫ1 ×U(1)ǫ2 action using Atiyah-Singer index

theorem. The result is given by [26]

ind(DDirac) =
(ei(ǫ1+ǫ2)/2 + e−i(ǫ1+ǫ2)/2)− (ei(ǫ1−ǫ2)/2 + e−i(ǫ1−ǫ2)/2)

(1− eiǫ1)(1− e−iǫ1)(1− eiǫ2)(1− e−iǫ2)

=
ei(ǫ1+ǫ2)/2

(1− eiǫ1)(1− eiǫ2)
. (3.33)

We now compute the equivariant index with H action from this result. We again

expand all the fields in the Dirac complex by the eigenmodes of Lτ , and also consider the

gauge and flavor symmetry acting on the fields. For the hypermultiplet in the fundamental

representation of the gauge group with Nf flavor symmetry, the equivariant index has the

form

ind(Dmat) =
ei(ǫ1+ǫ2)/2

(1− eiǫ1)(1− eiǫ2)

∑

w∈W

Nf
∑

i=1

e
−i

w·α+mi
β

∑

n∈Z

e
2πin
β . (3.34)

Just as the vector multiplet case, we perform a series expansion in positive power of eiǫ1,2

at the south pole, and read off the one-loop determinant contributions of Nf matter hy-

permultiplet at the south pole

I1−loop
mat,south=

∞
∏

n=−∞

∞
∏

n1,n2=0

∏

w∈W

Nf
∏

i=1

[

2πn

β
+
(

n1 +
1

2

)

ǫ1 +
(

n2 +
1

2

)

ǫ2 −
w · α+mi

β

]−1

(3.35)

=
∞
∏

n1,n2=0

∏

w∈W

Nf
∏

i=1

sinh

[

(n1 + n2 + 1)γ1 + (n1 − n2)γ2 + iw · α+ imi

2

]−1

.

As mentioned earlier, the contribution from the north pole differs from that of the south

pole only by the signs of chemical potentials α,mi. Therefore, we see that two results are

related to each other by complex conjugation

I1−loop
mat,north(γ1, γ2, α,mi) = I1−loop

mat,south(γ1, γ2,−α,−mi) =
(

I1−loop
mat,south

)∗
. (3.36)

Combining two pole contributions and rewriting them in terms of the single letter index,

we find that the one-loop determinant for the fundamental hypermultiplet is given by

I1−loop
mat = x−ǫ0exp

[

∞
∑

n=1

1

n
fmat(x

n, yn, nα, nm)

]

,

fmat(x, y, α) =
x

(1− xy)(1− x/y)

∑

w∈W

Nf
∑

i=1

(e−iw·α−imi + eiw·α+imi). (3.37)
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letter ǫ0 (j1, j2) R

qA 3
2 (0, 0) ±1

2

ψ 2 (±1
2 , 0)⊕ (0,±1

2) 0

∂µ 1 (±1
2 ,±1

2)⊕ (0, 0) 0

Table 1. The “letters” in a hypermultiplet and the derivatives acting on them.

The Casimir energy ǫ0 is again regularized to be zero. The result for the hypermulti-

plets in other representation R can be obtained by replacing the weight space W for the

fundamental representation by the corresponding weight space WR.

One can also evaluate the one-loop determinant for the hypermultiplet by computing

the single letter partition function. In other words, the path integral for the hypermultiplet

in the trivial background can be evaluated with the canonical action (2.13) at the weak

coupling limit. This is possible because there is no zero modes in the hypermultiplet. The

single letter index is defined as a trace over the single letter operators and its derivatives

saturating the BPS bound ǫ0− 2j1− 3R = 0 modulo the equation of motion. (The charges

of the single letters in the hypermultiplet under the superconformal symmetry are listed

in the table 1.) Since only the BPS operator qA=1 (= qA=+) and the arbitrary number of

derivatives ∂+± acting on it contribute to the letter index, one can easily read off the single

letter index for the hypermultiplet

fmatter = tr letters

[

(−1)Fx2(j1+R)y2j2
]

=
x

(1− xy)(1− x/y)
. (3.38)

One then evaluates the single letter index with the holonomy α and the chemical potentials

for the flavor symmetry, which indeed reproduces the same letter index in (3.37) computed

using the index theorem.

3.3 Instanton contribution

We have shown in section 3.1 that the path integral of the superconformal index localizes

on the space of the instanton F+ = 0 and the anti-instanton F− = 0 solutions at the

south and north poles of the four-sphere, respectively. Near one of the fixed points, the

spacetime manifold looks like a product space S1 × R
4 and the path integral over the

solution space of the instanton equation F+(orF−) = 0 reduces to Nekrasov’s instanton

partition function [30–32] of 5d theory on a compact circle, which has the meaning of

the Witten index counting BPS instanton particles living on the 5d theory [15, 30]. The

product of these 5d instanton partition functions (or the indices) from two fixed points will

give the instanton contributions to the superconformal index.

It is known [30, 31] that the instanton partition function can be computed by putting

the theory in the Ω-background and thus using the equivariant localization technique.

Or, equivalently, one can compute the Witten index of the 1d quantum mechanics on

the instanton moduli space, which can be understood as the Higgs branch of D0-brane

worldvolume theory describing D0-D4 brane bound states, using the localization technique

as in [15].
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5d instanton index is related to 4d Nekrasov’s partition function by the dimensional

reduction along the compact circle upon the suitable identification of the parameters in 4d

partition function such as the Ω-deformation parameters with the chemical potentials in

5d index. This is possible because the our supercharge Q near the fixed points is identical

to the supercharges used in the computation of the 4d partition function. Our strategy to

obtain the 5d instanton index is to use the known results of 4d instanton partition functions

to convert them into 5d instanton index by carefully considering all KK-modes along the

compact circle. 4d instanton partition functions for the classical groups that we are mainly

interested in have been computed in various literature [30, 31, 33, 34].

In the presence of the classical Chern-Simons term, the instanton carry nonzero electric

charge and thus the moduli space dynamics should be modified. The Chern-Simons term in

5d theory induces the Chern-Simons term of the Lagrangian in the 1d instanton quantum

mechanics [35, 36]

L1d
CS = κ

∫

dt tr(At − φ), (3.39)

where At and φ are the gauge field and the scalar component of the vector multiplet in the

adjoint representation of the gauge group U(k) in the 1d quantum mechanics, respectively.

This term preserves half of the supersymmetries in the instanton moduli space which of

course includes our supercharge Q. This allows us to recycle the localization technique

used for the case of no Chern-Simons term, but we need to take into account the classical

contribution from (3.39).

Introducing the fugacity q for labeling the instanton number, we get the instanton

contribution from the south pole

I instsouth(γ1, γ2, α,mi, q) =
∞
∑

k=0

qkIk(γ1, γ2, α,mi), (3.40)

where Ik is the instanton index with charge k and Ik=0 = 1. As the anti-instanton index

can be obtained by the sign flip of the chemical potentials α,mi of the instanton index, we

find the instanton contribution from the north pole as

I instnorth(γ1, γ2, α,mi, q) =
∞
∑

k=0

q−kIk(γ1, γ2,−α,−mi). (3.41)

Here the instanton sum is given in negative power of q because the instanton charge

for the anti-instantons is negative. I instnorth(γ1, γ2, α,mi, q) is basically the complex con-

jugation of I instsouth(γ1, γ2, α,mi, q) where the complex conjugation exchanges (α,mi, q) to

(−α,−mi, q
−1).

3.4 U(N) gauge theories

As a simple example that one can apply the localization technique, we compute the su-

perconformal index for U(N) gauge theories with Nf fundamental flavor hypermultiplets.

Classical Chern-Simons term exists for all N unlike SU(N) for which it exists when N ≥ 3.
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We include the Chern-Simons term of level κ in superconformal index calculations. After lo-

calization the Chern-Simons term does not contribute to perturbative part, but contributes

nonperturbative part as explained. The gauge invariance demands the quantization condi-

tion κ+Nf/2 ∈ Z.

The the superconformal index takes the form

I
Nf

U(N)κ
(x, y,mi, q, κ) =
∫

[dα]PE
[

fmat(x, y, e
iα, eim) + fvec(x, y, e

iα)
]∣

∣

∣
I inst(x, y, eiα, eim, q, κ)

∣

∣

∣

2
(3.42)

where the invariant Haar measure is given by

[dα] =
1

N !

[

N
∏

i=1

dαi

2π

]

∏

i<j

[

2 sin

(

αi − αj

2

)]2

. (3.43)

The PE in the integrand is the Plethystic exponential

PE
[

f(·)
]

= exp
[

∞
∑

n=1

1

n
f(·n)

]

, (3.44)

which is used to obtain the multi particle index from a free single particle index f(·). Here
fvec and fmat are the single particle indices for the vector and hypermultiplets respectively

fvec = − x(y + 1/y)

(1− xy)(1− x/y)

N
∑

i,j

e−iαi+iαj ,

fmat =
x

(1− xy)(1− x/y)

N
∑

i=1

Nf
∑

l=1

(

e−iαi−iml + eiαi+iml
)

. (3.45)

The instanton index I inst for U(N) gauge group can be read off from [33, 34] in which

the 4d Nekrasov’s partition functions are written as the contour integral formula over the

Cartan subalgebra of U(k) gauge group of the instanton moduli space. As mentioned in

the previous section, the 4d instanton partition function can be uplifted to 5d instanton

index by taking into account the full KK modes along the time circle. In addition, we need

to insert the classical Chern-Simons contribution eκφI in the matrix integral [37]. This is

from the induced Chern-Simons term on the instanton moduli space. For k instantons, the

integral formula of the U(N) instanton index is given by

Ik =
(2i)k(Nf−2N−1)

k!
∮ k
∏

I=1

(

dφI
2π

eiκφI
∏Nf

l=1 sin
φI+ml

2
∏N

i=1 sin
φI−αi−iγ1

2 sin −φI+αi−iγ1
2

)

∏

I 6=J sin
φIJ

2

∏

I,J sin
φIJ−2iγ1

2
∏

I,J sin
φIJ−iγ1−iγ2

2 sin φIJ−iγ1+iγ2
2

(3.46)

where φI (I = 1, · · · , k) is the U(k) gauge transformation parameter that takes a value

in U(1)k Cartan subalgebra, and φIJ = φI − φJ . The U(k) gauge invariance is attained
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by integration over φI . We briefly comment on the sine factors in (3.46): the sine factors

in the numerator in the bracket come from the fermion zero modes of Nf fundamental

hypermultiplets, and the rest of sine factors is the contributions from the ADHM data in

the instanton moduli space of the pure U(N) Yang-Mills theory.

Using the residue theorem this integral can be explicitly evaluated. Let us define

zI = eiφI and consider all poles enclosed by the contour around unit circles |zI | < 1, with

the assumption |e−γ1 |≪ |e−γ2 |≪1. Note that irrelevant poles at zI = 0 can appear when

Nf ≥ 2N . This pole is unphysical as it corresponds to φI = i∞. The contributions from

the poles zI = 0 should be excluded from the result. In addition, more irrelevant poles

apart from zI = 0 appear when we introduce other types of hypermultiplets, for example,

an adjoint hypermultiplet which we will compute shortly. The contributions from such

poles must also be excluded otherwise we will get the wrong index.

For U(k) gauge theories, we can avoid this notorious pole problems with the help of

the localization on the instanton quantum mechanics as noted in [15]. The path integral

of the 1d quantum mechanics on the instanton moduli space can be completely localized

around the set of classical saddle points by turning on the FI parameter ζ as well as

other chemical potentials. At the saddle points, the U(k) gauge symmetry is completely

broken and there is no remaining gauge transformation parameter to be integrated. In this

way, we can compute the path integral without the contour description. See [15] for more

details. Though two prescriptions for the instanton index may look different, they give

the same result. Moreover, one can find the one-to-one map between the physical poles in

the contour integral and the classical fixed points of the path integral of the 1d quantum

mechanics, which also supports the fact that the poles at zI = 0 as well as poles from

hypermultiplet contributions are irrelevant since there is no corresponding fixed point in

the second prescription.

The poles of the contour integral can be classified by N-colored Young diagram {Y1, Y2,
· · · , YN} [30, 31]. Each Young diagram Yi contains ki boxes and the total number of boxes

in Young diagrams is k =
∑

i ki. We denote the position in the i-th Young diagram by

s = (m,n)(∈ Yi), wherem and n are the vertical and horizontal position from the upper-left

corner of the Young diagram Yi, respectively. The corresponding pole is given by

φ(s) = αi + iγ1 + i(m− 1)(γ1 + γ2) + i(n− 1)(γ1 − γ2) . (3.47)

For a given colored Young diagram, we can fully evaluate the contour integral and write it

in the simple form [30, 31, 38]

I{Y1,Y2,··· ,YN} =
N
∏

i

∏

s∈Yi

eiκφ(s)
∏Nf

l=1 2i sin
φ(s)+ml

2
∏N

j=1(2i)
2 sin

Eij

2 sin
Eij+2iγ1

2

, (3.48)

where

Eij = αi − αj + i(γ1 + γ2)hi(s)− i(γ1 − γ2)(vj(s) + 1) . (3.49)

Here hi(s) and vj(s) are the distance from s ∈ Yi to the right end of the i-th Young diagram

and the bottom end of the j-th Young diagram respectively. To obtain the index for k
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instantons, we need to sum over all possible Young diagram configurations with total k

boxes. Then the full instanton index is given by

I instU(N) =

∞
∑

k=0

qkIk , Ik =
∑

Y

I{Yi(ki)} ,
∑

i

ki = k , (3.50)

where Ik=0 = 1. This is the instanton index at the south pole on S4. The complex

conjugation of the instanton index gives the anti-instanton index at the north pole.

Note that the Chern-Simons term provides the coupling of instantons with the holon-

omy variables αi, which reflects the fact that the instantons carry U(N) electric charges.

As discussed in section 2, the Chern-Simons term can be induced by integrating out the

massive fundamental hypermultiplets. This can be seen from our instanton index by taking

large mass limitml → i∞ for nf hypermultiplet. Provided that the divergence arising from

the large mass limit is regularized to unity, one sees an additional Chern-Simons term is

induced and the Chern-Simons level is shifted as

κeff = κ− nf
2
, (3.51)

which agrees with the expected result from [10].

Now we consider the U(N) gauge theory with one adjoint hypermultiplet (correspond-

ing to so-called N = 2∗ theory in 4d). The single particle index for the matter hypermul-

tiplet in the adjoint representation of U(N) is given by

fmat =
x

(1−xy)(1−x/y)(e
im + e−im)

∑

i,j

e−iαi+iαj , (3.52)

while that for the vector multiplet remains the same as before. Here m is the chemical

potential of U(1) flavor symmetry which is enhanced to SU(2) as the hypermultiplet is in

the real adjoint representation of the gauge group. In 4d limit, this chemical potential

becomes the mass parameter of the adjoint hypermultiplet.

The 5d instanton index for N = 2∗ theory was computed in [15]. Adding the Chern-

Simons term to the result of [15] is straightforward and we get4

I{Y1,Y2,··· ,YN} =
N
∏

i,j=1

∏

s∈Yi

eκφ(s)
sin

Eij+i(γ1+m)
2 sin

Eij+i(γ1−m)
2

sin
Eij

2 sin
Eij+2iγ1

2

. (3.53)

Two sine factors in the numerator correspond to the adjoint hypermultiplet. This result is

derived directly from the contour integral formula, eq.(5.15) in [15]. Note that the adjoint

hypermultiplet introduces many irrelevant poles that should be discarded from the contour.

The instanton index for U(N) theory with an adjoint hypermultiplet, (3.53), is obtained

by considering only the residues for the relevant poles.

4Chemical potentials here and those in [15] are related as (γ1, γ2, αi,m)here → (iγR,−iγ1, iαi, γ2) of [15].
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3.5 Sp(N) gauge theories

We now compute the index for Sp(N) gauge theories. These theories are of our main

interest as they exhibit intriguing global symmetry enhancements at the conformal fixed

point. Firstly, we consider Sp(N) gauge theory with Nf fundamental flavors and later

add one additional hypermultiplet in the antisymmetric representation of Sp(N) which is

required to see the global symmetry enhancement when N ≥ 2. In this case, there is no

classical Chern-Simons terms because the symmetric structure constant dabc is identically

zero.

Considering the perturbative part and the instanton part all together we find the

superconformal index for the Sp(N) gauge theory with Nf flavors as follows

I
Nf

Sp(N)(x, y,mi, q) =

∫

[dα] PE
[

fmat(x, y, e
iα, eim) + fvec(x, y, e

iα)
]∣

∣

∣
I inst(x, y, eiα, eim, q)

∣

∣

∣

2
,

[dα] =
2N

N !

[

N
∏

i=1

dαi

2π
sin2 αi

]

∏

i<j

[

2 sin

(

αi − αj

2

)]2 [

2 sin

(

αi + αj

2

)]2

, (3.54)

where the single letter indices for the vector and hypermultiplets are given by

fvec = − x(y + 1/y)

(1− xy)(1− x/y)





N
∑

i<j

(

e−iαi−iαj + e−iαi+iαj + eiαi−iαj + eiαi+iαj
)

+
N
∑

i=1

(

e−2iαi + e2iαi
)

+N

]

,

fmat =
x

(1− xy)(1− x/y)

N
∑

i=1

Nf
∑

l=1

(

e−iαi−iml + eiαi−iml + e−iαi+iml + eiαi+iml
)

, (3.55)

after taking into account the root and fundamental weight of the Lie algebra of Sp(N)

gauge symmetry.

For the instanton part I inst, we borrow the result of [33, 34] in which the 4d Nekrasov’s

partition functions for Sp(N) gauge theories was computed. These 4d instanton partition

functions are obtained from the ADHM construction of the instanton moduli spaces. It was

noticed [33] that the dual gauge group GD on the instanton moduli space of Sp(N) gauge

theory is O(k) whereas the instanton calculus is done only for SO(k) dual gauge group

in [33, 34]. O(k) group is different from SO(k) group by Z2 factor and the consideration

of this difference is crucial to obtain the correct instanton index.

One needs to carefully consider the O(k) group action on the instanton moduli space.

The O(k) group has two components. One component contains the group elements whose

determinants are +1 and the other contains the elements of the determinant −1. The

former component forms a group itself and is called SO(k) group, which we denote by

O(k)+, and the latter component does not form a group itself, which we denote by O(k)−
for convenience. The torus action of the dual gauge group is generated by the following

elements: for O(k)+ ,

eiφ+ =

{

diag(eiσ2φ1 , · · · , eiσ2φn) for even k ,

diag(eiσ2φ1 , · · · , eiσ2φn , 1) for odd k,
(3.56)
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and for O(k)−,

eiφ− =

{

diag(eiσ2φ1 , · · · , eiσ2φn−1 , σ3) for even k ,

diag(eiσ2φ1 , · · · , eiσ2φn ,−1) for odd k,
(3.57)

where k = 2n+χ (χ = 0 or 1).As there are two disjoint torus actions for O(k) gauge group,

there are two corresponding disjoint contour integral formulas for the instanton index: Ik+
and Ik− which come from the torus actions eiφ+ and eiφ−, respectively. The correct way

of imposing O(k) gauge singlet constraint is to take an average of these indices I+ and I−
after performing contour integration.

Let us first obtain the contour integral representation of the instanton index with

O(k)+ = SO(k) dual gauge group. Taking into account the torus action on the ADHM

data, we obtain

Ik+ = (2i)k(Nf−2N−2)−nin+2χ

∮

[dφ]

[

∏Nf

l=1 sin
ml

2

sinh γ1±γ2
2

∏N
i=1 sin

iγ1±αi

2

n
∏

I=1

sin(φI±2iγ1
2 )

sin φI±iγ1±iγ2
2

]χ

×
n
∏

I=1

[

sinh γ1

sinh γ1±γ2
2 sin 2φI±iγ1±iγ2

2

∏Nf

l=1 sin
ml±φI

2
∏N

i=1 sin
φI±αi±iγ1

2

]

n
∏

I<J

[

sin φI±φJ±2iγ1
2

sin φI±φJ±iγ1±iγ2
2

]

,(3.58)

where [dφ] is the Haar measure for SO(k) and we used a succinct notation, sin(a ± b) ≡
sin(a + b) sin(a − b) and so on.5 This is the 5d version of Nekrasov’s partition function

for Sp(N) gauge theories with Nf matter hypermultiplets (the corresponding 4d partition

function was computed in [33, 39, 40]). We can decompose this formula into the contribu-

tions from the vector multiplet and the Nf fundamental hypermultiplets separately. The

fundamental hypermultiplet contribution is

z
Nf

fund =





Nf
∏

l=1

2i sin
ml

2





χ
n
∏

I=1

Nf
∏

l=1

2i sin
ml ± φI

2
(3.59)

which comes from the fermion zero modes in the fundamental representation of O(k). Here

we have considered the mass shift ml → ml + iγ1 in the hypermultiplet contribution which

was first noticed in [41]. The remaining factors are the vector multiplet contribution.

The integrations are taken over the SO(k) algebra elements φI . As in the previous

U(N) instanton case, we define zI = eiφI and take contours around unit circles. We

assume |e−γ1 |≪|e−iγ2 |≪1 and only keep the residues from the poles inside the unit circles

on zI planes. Then it provides the clear pole prescription for this contour integral. The

relevant poles for zI are located at

zI = e−γ1±iαi , e−γ1±γ2 , e
−γ1±γ2

2 , −e
−γ1±γ2

2 , (3.60)

which are from the denominators of the first and second brackets in (3.58). The poles from

the last bracket are determined by the relative size of radii of |zJ | and |e±γ1±γ2 |.
5For example, sin φI±αi±iγ1

2
≡ sin φI+αi+iγ1

2
sin φI+αi−iγ1

2
sin φI−αi+iγ1

2
sin φI−αi−iγ1

2
.
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There also exist unphysical poles at zI = 0 when Nf ≥ 6. The residues from these

irrelevant poles should not be considered in our computation. We will subtract the con-

tributions from the residues of the irrelevant poles from our instanton index. However it

turns out that the naive subtraction of the irrelevant pole contributions seems not to give

sensible answer in this case. We will explicitly evaluate these integrals for lower k’s in the

next section and discuss subtleties arising from irrelevant poles.

Now we turn to the instanton index with the O(k)− torus action. As the torus actions

for odd k and even k are different, we have to treat them separately as shown in ap-

pendix D.1. For odd k, the contour integral formula of the instanton index with O(k)− is

Ik:odd− =
(2i)k(Nf−2N−2)−n

iNf−2N−n−2

∮

[dφ]

[

∏Nf

l=1 cos
ml

2

sinh γ1±γ2
2

∏N
i=1 cos

iγ1±αi

2

n
∏

I=1

cos(φI±2iγ1
2 )

cos φI±iγ1±iγ2
2

]

×
n
∏

I=1

[

sinh γ1

sinh γ1±γ2
2 sin 2φI±iγ1±iγ2

2

∏Nf

l=1 sin
ml±φI

2
∏N

i=1 sin
φI±αi±iγ1

2

]

n
∏

I<J

[

sin φI±φJ±2iγ1
2

sin φI±φJ±iγ1±iγ2
2

]

,

(3.61)

and the formula for even k is

Ik:even− = (2i)(k−1)(Nf−2N)− 5

2
kin+4

∮

[dφ]

[

cosh γ1

cosh γ1±γ2
2 sinh2 γ1±γ2

2

∏Nf

l=1 sinml
∏N

i=1 sin(iγ1 ± αi)

]

×
n−1
∏

I=1

[

sinh γ1 sin(φI ± 2iγ1)

sinh γ1±γ2
2 sin 2φI±iγ1±iγ2

2 sin(φI ± iγ1 ± iγ2)

∏Nf

l=1 sin
ml±φI

2
∏N

i=1 sin
φI±αi±iγ1

2

]

×
n−1
∏

I<J

[

sin φI±φJ±2iγ1
2

sin φI±φJ±iγ1±iγ2
2

]

. (3.62)

Here [dφ]’s denote the Haar measures for O(k)− whose explicit expressions are listed in ap-

pendix E. We can evaluate these contour integrations using the pole prescription discussed

above. The physical poles whose residues give nontrivial contributions to the instanton

index appear at

zI = e−γ1±iαi , −e−γ1±γ2 , e
−γ1±γ2

2 , −e
−γ1±γ2

2 , (3.63)

for odd k and

zI = e−γ1±iαi , −e−γ1±γ2 , e−γ1±γ2 , e
−γ1±γ2

2 , −e
−γ1±γ2

2 , (3.64)

for even k, respectively. We note that the poles from sin φI±φJ±iγ1±iγ2
2 factors in the

denominator must be chosen if they are inside unit circles |zI | < 1.

Unlike U(N) gauge theories, there is neither proper Young diagram correspondence for

the physical poles in the contour integration nor closed form of the index after performing

all the contour integral. We have to evaluate the contour integrations case by case using the

pole prescription given above. Evaluating all the contour integrations the final instanton

index contribution at the south pole is given by

I instSp(N) =
∞
∑

k=0

qkIk , Ik =
1

2

[

Ik+ + Ik−

]

. (3.65)
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The anti-instanton contribution at the north pole can be obtained from this instanton

index by complex conjugation which flips the sign of chemical potentials, αi → −αi and

ml → −ml, and reverses q to q−1.

Finally let us introduce the antisymmetric hypermultiplet of Sp(N). The single letter

index of the matter hypermultiplets in the perturbative part is modified by this antisym-

metric hypermultiplet contribution which is given by

fasymmat =

x

(1− xy)(1− x/y)
(eim + e−im)





N
∑

i<j

(

e−iαi−iαj + e−iαi+iαj + eiαi−iαj + eiαi+iαj
)

+N



 ,

(3.66)

where m is the chemical potential for Sp(1) global symmetry acting on the antisymmetric

matter.

The introduction of the antisymmetric hypermultiplet modifies the field content of the

instanton moduli space or the instanton quantum mechanics. It provides, for example,

four k × k symmetric bosonic fields and their superpartners describing the positions of

D0-branes transverse to the D4-branes (but on D8-branes). The field content of the D0-

brane quantum mechanics with D4-branes on the Type I′ system is listed in [42, 43] and in

appendix D. These additional zero modes contribute to the instanton moduli space integral.

The equivariant index for the antisymmetric hypermultiplet can be read off from symmetry

properties of these zero modes, or it can also be read off from eq. (5.14) in [34]. With the

SO(k) dual gauge group, the additional terms induced by the antisymmetric hypermultiplet

are

zasym,+ = (2i)2k(N−1)

[

∏N
i=1 sin

m±αi

2

sin m±iγ1
2

n
∏

I=1

sin φI±iγ2±m
2

sin φI±iγ1±m
2

]χ

×
n
∏

I=1

[

sin m±iγ2
2

∏N
i=1 sin

φI±αi±m
2

sin m±iγ1
2 sin 2φI±iγ1±m

2

]

n
∏

I<J

sin φI±φJ±iγ2±m
2

sin φI±φJ±iγ1±m
2

(3.67)

The supplementary terms with O(k)− are

zk:oddasym,− =
(2i)2k(N−1)

i2N

[

∏N
i=1 cos

m±αi

2

sin m±iγ1
2

n
∏

I=1

cos φI±iγ2±m
2

cos φI±iγ1±m
2

]

×
n
∏

I=1

[

sin m±iγ2
2

∏N
i=1 sin

φI±αi±m
2

sin m±iγ1
2 sin 2φI±iγ1±m

2

]

n
∏

I<J

sin φI±φJ±iγ2±m
2

sin φI±φJ±iγ1±m
2

(3.68)

for odd k and

zk:evenasym,− = (2i)2(kN−k−N) cos
m±iγ2

2

∏N
i=1 sin(m± αi)

cos m±iγ1
2 sin2

(

iγ1±m
2

)

×
n−1
∏

I=1

[

sin m±iγ2
2 sin(φI ± iγ2 ±m)

∏N
i=1 sin

φI±αi±m
2

sin m±iγ1
2 sin 2φI±iγ1±m

2 sin(φI ± iγ1 ±m)

]

n−1
∏

I<J

sin φI±φJ±iγ2±m
2

sin φI±φJ±iγ1±m
2

(3.69)
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for even k, respectively. The contour integral of the full instanton index including the

antisymmetric hypermultiplet contribution should be evaluated with these zasym terms in

the integrand as well as the vector and Nf fundamental hypermultiplet terms. It seems that

these additional factors provide extra poles apart from the poles from the vector multiplet

factors. However, as we saw from the contour integration for the instanton index of N = 2∗

U(N) gauge theory, these extra poles are all irrelevant. New poles from the antisymmetric

matter factors zasym are always irrelevant poles and thus their contribution should not

be included in the instanton index computation. However, as for theories without the

antisymmetric hyper matter, we have encountered an obstacle that the naive elimination

of these irrelevant contributions does not seem to yield a sensible answer. One needs to

develop an appropriate prescription for this.

Let us briefly comment about the role of the antisymmetric hypermultiplet. The

scalar field in the antisymmetric hypermultiplet represents the fluctuation of a D4-brane

along the transverse directions to its worldvolume on the orientifold plane. For Sp(1),

the antisymmetric representation is trivial, so it decouples from the gauge theory and we

expect it does not affect the instanton dynamics. However we can see that if we keep the

antisymmetric hyper even though it decouples from the theory, then its instanton index

contribution becomes non-trivial. This would imply that the instanton index seems to

contain extra information when the antisymmetric hypermultiplet is involved. It turns out

that it captures the D0-D8 brane bound state information.

As there is no integral variable in the integral formulas for k = 1, we do not need to

consider the subtleties arising from the pole description. Thus the one instanton results

from the above indices give the correct result without pole ambiguity for any N and Nf .

The one instanton index of the Sp(1) gauge theory with the antisymmetric hypermultiplet

shows interesting factorization structure as

1

32i2

[

sin m±α1

2

∏Nf

l=1 2i sin
ml

2

sinh γ1±γ2
2 sin m±iγ1

2 sin iγ1±α1

2

+
cos m±α1

2

∏Nf

l=1 2 cos
ml

2

sinh γ1±γ2
2 sin m±iγ1

2 cos iγ1±α1

2

]

(3.70)

=
1

32

[

∏Nf

l=1 2i sin
ml

2

i2 sinh γ1±γ2
2 sin iγ1±α1

2

+

∏Nf

l=1 2 cos
ml

2

sinh γ1±γ2
2 cos iγ1±α1

2

]

+

∏Nf

l=1 2i sin
ml

2 +
∏Nf

l=1 2 cos
ml

2

32i2 sinh γ1±γ2
2 sin m±iγ1

2

.

The first two terms in the bracket agrees with the one instanton index of the Sp(1) theory

without the antisymmetric hypermultiplet. The last term is the extra contribution from

the antisymmetric hypermultiplet. This extra index is exactly the same as the index for a

single D0-brane floating freely on Nf D8-brane background with the orientifold

Ik=1
D0 =

∏Nf

l=1 2i sin
ml

2 +
∏Nf

l=1 2 cos
ml

2

32i2 sinh γ1±γ2
2 sin m±iγ1

2

. (3.71)

Let us review the partition function of a single D0-brane sitting at the orientifold plane

to compare to this index. The partition function corresponding to the 8 translational zero

modes of a single D0-brane is given by

1

(1− e±γ1±γ2)(1− e±γ1±im)
∼ 1

sinh2 γ1±γ2
2 sin2 m±iγ1

2

(3.72)
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Here the chemical potential m for Sp(1) global symmetry is identified with that for SU(2)R′

symmetry in SU(2)1×SU(2)2×SU(2)R×SU(2)R′ ⊂ SO(4)1×SO(4)2 where SO(4)1 (SO(4)2)

is the rotation symmetry along (transverse to) the D4-branes. The broken supersymmetries

by the presence of D0- and D8-branes provide the fermionic oscillators on the D0-brane

quantum mechanics. The corresponding 8 fermion zero modes transform in the (1,2,2,1)

and (2,1,1,2) representations of the symmetry group and, after quantizing the zero modes,

their partition function is

(

e
γ1±γ2

2 − e−
γ1±γ2

2

)(

e
γ1±im

2 − e−
γ1±im

2

)

∼ sinh
γ1 ± γ2

2
sin

m± iγ1
2

. (3.73)

Multiplying these partition functions together, we obtain the denominator of the D0-brane

index (3.71). The numerator comes from the open strings connecting one D0- and Nf

D8-branes. As the lightest states of the 0-8 strings are in the Ramond-sector, we have the

Nf fermions in the fundamental representation of O(k) (O(1) = Z2 in this case). Therefore

the quantization of Nf fermion zero modes gives 2Nf−1 and its conjugate representation of

SO(2Nf ), and O(1) gauge constraint leaves only 2Nf−1 representation which is the spinor

representation of SO(2Nf ) group. The numerator in (3.71) yields the expected spectrum

of 2Nf−1 states.

The instanton states we are interested in are the D0-D4 bound states which are the

degrees of freedom in the interior of the Higgs branch in the D0-brane quantum mechanics.

The factorization of the above instanton index indicates that our instanton calculation

captures the states in both the Coulomb branch and the Higgs branch. We are not able

to restrict it only to the Higgs branch. This might be related to the fact that the non-

commutativity of the instanton moduli space cannot be turned on for the simple gauge

groups. We have to remove the Coulomb branch index by hand.

The extra D0-brane index is also included for higher rank gauge group Sp(N) with

the antisymmetric hypermultiplet. Therefore we argue that the correct instanton index

is obtained by subtracting the extra index (3.71). Therefore, the one instanton index for

Sp(N) is given by

Ik=1
Sp(N) =

1

32i2

[

∏Nf

l=1 2i sin
ml

2

∏N
i=1 2i sin

m±αi

2

sinh γ1±γ2
2 sin m±iγ1

2

∏N
i=1 2i sin

iγ1±αi

2

+

∏Nf

l=1 2 cos
ml

2

∏N
i=1 2 cos

m±αi

2

sinh γ1±γ2
2 sin m±iγ1

2

∏N
i=1 2 cos

iγ1±αi

2

]

− Ik=1
D0 (3.74)

For higher instantons, the factorization structure of the Coulomb and Higgs branch indices

is unclear because irrelevant poles start to appear when k > 1. So we have no good

prescription to factor out the free D0-brane index from our result for higher instanton

cases at the moment.

4 Enhanced global symmetry

In the worldvolume theory on a D4-brane, the ENf+1 symmetry enhancement occurs at

the origin of the Coulomb branch when the classical gauge coupling constant diverges [1].
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With Nf < 8 massless hypermultiplets, the global flavor symmetry of the 5d gauge theory

is SO(2Nf ) × U(1)I . The instantons of Sp(1) gauge group, which are D0 branes on the

D4 brane, play a crucial role for this symmetry enhancement. The instantons have masses

proportional to the inverse gauge coupling as 1/g2YM and they become massless at the

infinite coupling limit. They mix with the excitations of the elementary fields and form

certain representations of the enhanced global symmetry ENf+1. The instanton charge

behaves as the U(1)I Cartan generator of the SO(14)×U(1)I subgroup of ENf+1 symmetry

group. In this way, at the conformal point, the global symmetry is enhanced to ENf+1

symmetry: E8, E7, E6, E5 = SO(10), E4 = SU(5), E3 = SU(3)× SU(2), E2 = SU(2)× U(1)

and E1 = SU(2).

4.1 Superconformal index for Sp(1)

We now present the results of the index computations for Sp(1). As explained earlier, there

are perturbative part and instanton part in the superconformal index. For the perturbative

part, we obtain merely the spectrum for the global symmetry SO(2Nf ). This is the case

where the U(1)I charge is zero. For the instanton part which is associated with non-

zero U(1)I charges, we find the spectrum for the enhanced symmetry ENf+1. The U(1)I
provides an extra Cartan and thus leads to symmetry enhancements from SO(2Nf )×U(1)I
to ENf+1.

An instructive example is the case with Nf = 3. The global symmetry for this case

is SO(6). It follows from (3.54) that, dropping the instanton part I inst, we find the lowest

energy states appear at x2 order in the superconformal index

Ipert = 1 +
(

e−im1−im2 + · · ·+ eim2+im3 + 3 + 1
)

x2 +O(x3), (4.1)

where the constant 1 is a singlet of the global symmetry, and the chemical potentials mi are

arranged to form the (15-dim) adjoint representation of SO(6), e−im1−im2+· · ·+eim2+im3+

3. In terms of the character, we express it as

Ipert = 1 +
(

1 + χ
SO(6)
15

)

x2 + · · · , (4.2)

where SO(6) characters are denoted by χ
SO(6)
irrep with dimension of irreducible representa-

tions written in the subscript. If we take into account the instantons, we find that the

superconformal index contains extra contributions coming from the instantons

I = 1 +
(

1 + χ
SO(6)
15 + q χ

SO(6)
4 + q−1 χ

SO(6)

4

)

x2 + · · · , (4.3)

where the power of the fugacity q represents the U(1)I charges or instanton number. It is

then clear that the first two characters of x2 are from the perturbative part and the last two,

which are the spinor representations of SO(6), are from the instanton part with the opposite

U(1)I charges, i.e., one instanton contribution arises in one of two spinor representations;

the anti-instanton contribution arises in the other spinor representation. This shows how

symmetry enhancement takes place. On top of the adjoint representation of SO(6), the

instanton contributions come into play in symmetry enhancement to E4 providing an extra
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Cartan generator in the form of fugacity q attached to the spinor representations of SO(6).

In other words, it follows from the embedding of SO(6)

SU(5) ⊃ SO(6)×U(1)I

24 = 10 + 150 + 41 + 4−1, (4.4)

where the subscript denotes U(1) charges, that the SO(6) characters in x2 of (4.3) are

captured in the character of the (24-dim) adjoint representation of E4 = SU(5), and hence

one is allowed to write (4.3) as

I = 1 +
(

χ
SO(6)
1 + χ

SO(6)
15 + q χ

SO(6)
4 + q−1 χ

SO(6)

4

)

x2 + · · ·
≡ 1 + χE4

24 x
2 + · · · . (4.5)

Higher U(1)I charges (or instanton number) appear as we go along with higher powers of x

(or higher energies in the sense that the power of x in the index is 2j1+2R that is roughly

proportional to the energy ǫ0 for the BPS states6). For this case, two instantons start to

contribute from order x4, and three instantons from order x6, and so on.

The pattern of the symmetry enhancement for other cases is very similar except for

E7 and E8. For a given Nf , the perturbative part of the index is the superconformal index

takes the form

INf
= 1 + χ

ENf+1

adj x2 + · · · , (4.6)

with the following generic embedding

ENf+1 = SO(2Nf )×U(1)I ,

adj
ENf+1 ⊃ 1

SO(2Nf )
0 + adj

SO(2Nf )
0 + 2

Nf−1
1 + 2′

Nf−1
−1 , (4.7)

where 2
Nf−1
1 and 2′

Nf−1
−1 are two spinor representations denoted by their dimensions (they

can be conjugate or self-conjugate depending of Nf ), and the subscripts are the U(1)

charges. The following table summarizes the relevant embeddings:

Nf = 2 : E3 = SU(3)× SU(2) ⊃ SO(4)×U(1)I ◦

SU(3) ⊃ SU(2)×U(1)I ◦ −−•
I

8 = 10 + 30 + 21 + 2−1.

Nf = 3 : E4 = SU(5) ⊃ SU(4)×U(1)I

◦
|
◦ −− ◦ −− •

I

24 = 10 + 150 + 41 + 4−1

6At least, 2(j1 + R) = 2

3
ǫ0 at the leading order of x, because the single letter q1(= q+) for the hyper-

multiplet does not carry j1 charges.
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Nf = 4 : E5 = SO(10) ⊃ SO(8)×U(1) ◦ −−
◦
|
◦ −− ◦ −−•

I

45 = 10 + 280 + 8−1 + 81

Nf = 5 : E6 ⊃ SO(10)×U(1) ◦ −− ◦ −−
◦
|
◦ −− ◦ −− •

I

78 = 10 + 450 + 16−1 + 161

Nf = 6 : E7 ⊃ SO(12)×U(1)I ◦ −− ◦ −− ◦ −−
◦
|
◦ −− ◦ −−•

I

133 = 10 + 660 + 321 + 32−1 + 12 + 1−2

Nf = 7 : E8 ⊃ SO(14)×U(1)I ◦ −− ◦ −− ◦ −− ◦ −−
◦
|
◦ −− ◦ −− •

I

248 = 10 + 910 + 641 + 64−1 + 142 + 14−2

The Dynkin diagram which are made out of the empty nodes represent the Dynkin diagram

for SO(2Nf ) and the filled node •
I
denotes the extra Cartan stems from the instanton

contributions which is connected to the node associated with a spinor representation of

SO(2Nf ), and thus all together the nodes account for enhanced ENf+1 Dynkin diagrams.

In other words, we see, by tracing the structure of the index, that the perturbative

part and the instanton part together form a single state in the adjoint representation of

ENf+1 at the leading order of x, at order x2. The perturbative part comprises two states in

the representations of SO(2Nf ): the singlet and the adjoint representation. One instanton

and anti-instanton parts, on the other hand, both provide two states in the spinor and its

conjugate representations of SO(2Nf ). These states altogether make the SO(2Nf )×U(1)I
decomposition of the adjoint representation of ENf+1 for Nf < 6, at order x2.

Notice that, in the above embedding, the Nf = 6, 7 cases do contain the extra rep-

resentations of higher instanton charges. This implies that unlike the lower Nf (up to

5) cases, two instantons start to contribute non-trivially to the leading power of x in the

superconformal index. For the moment, we do not have a clear understanding of why the

enhancements to E7 and E8 is slightly different from the cases for Nf ≤ 5, regarding the

instanton contributions. We see, at least, complications in the pole structures for such cases

that appear in the contour integral formula for the index we have discussed in section 3.5,

which may reflect such difference. In the next subsections, we present the superconfor-

mal index result that we computed to order x6, and then discuss the complications in the

Nf = 6, 7 cases.
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4.2 Index for Nf ≤ 5

To proceed with higher powers of x, we first restrict ourselves to lower Nf that is Nf ≤ 5.

The goal of this subsection is to present the superconformal index result to order x6 (or

x8 for Nf = 3, 4) and to show how the multi-instantons contribute to the global symmetry

enhancement.

• For Nf = 0, the global symmetry is U(1)I and one expects that this symmetry is

enhanced to E1 = SU(2)

SU(2) ⊃ U(1)I . (4.8)

The superconformal index for this is given by

I = 1 + χE1

3 x2 + χ2(y)
[

1 + χE1

3

]

x3 +
(

χ3(y)
[

1 + χE1

3

]

+ 1 + χE1

5

)

x4

+
(

χ4(y)
[

1 + χE1

3

]

+ χ2(y)
[

1 + χE1

3 + χE1

5

]

)

x5

+
(

χ5(y)
[

1 + χE1

3

]

+ χ3(y)
[

1 + χE1

3 + χE1

5 + χE1

3 χE1

3

]

+ χE1

3 + χE1

7 − 1
)

x6

+
(

χ6(y)
[

1 + χE1

3 ] + χ4(y)
[

2 + 4χE1

3 + 2χE1

5

]

+ χ2(y)
[

1 + 3χE1

3 + 2χE1

5 + χE1

7

]

)

x7

+
(

χ7(y)
[

1 + χE1

3 ] + χ5(y)
[

3χE1

5 + 5χE1

3 + 4
]

+ χ3(y)
[

2χE1

7 + 3χE1

5 + 7χE1

3 + 2
]

+ χE1

9 + 2χE1

5 + 2χE1

3 + 3
)

x8 +O(x9). (4.9)

where χn(y) stands for SU(2) character for fugacity y with dimension n. For instance,

2-dim representation is given by χ2(y) = y + 1/y. Here, χE1
n is the character for E1 =

SU(2) with dimension n, whose formula is given in appendix F. As higher dimensional

representations are associated to higher instanton numbers, we see that the two instantons

start to contribute to the index at order x4, through χE1

5 . Likewise, the three instantons

contributes at order x6 through χE1

7 , and so on. From the point of view of D0 branes, this

case is when there is no D8 branes involved, and a D4 probes the theory and thus, D0s

are bounded to the D4. We note that −1 at order x6 implies that a fermionic contribution

arise as a singlet of SU(2).

• For Nf = 1, the global symmetry is SO(2)×U(1)I and one expects that this symmetry

is enhanced to E2 = SU(2) × U(1), where the Cartan generator for SU(2) comes form a

linear combination of the Cartan generators of SO(2) and U(1)I

SU(2) 1

2
(m1+w) ×U(1) 1

2
(7m1−w) ⊃ SU(2)m1

×U(1)Iw, (4.10)

where w is the chemical potential for U(1)I identified as q = ei
w
2 and m1 is the chemical

potential associated withe SO(2). The superconformal index for Nf = 1 is then given by

I = 1 + χE2

4 x2 + χ2(y)
[

1 + χE2

4

]

x3 +
(

χ3(y)
[

1 + χE2

4

]

+ 1 + χ
SU(2)
5 − χ4(f)

)

x4 (4.11)

+
(

χ4(y)
[

1 + χE2

4

]

+ χ2(y)
[

χE2

4 + χ
SU(2)
3 + χ

SU(2)
5 − χ4(f)

]

)

x5
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+
(

χ5(y)
[

1 + χE2

4

]

+ χ3(y)
[

4χE2

4 + 2χ
SU(2)
5 − χ4(f)

]

+ χ
SU(2)
7 + 3χ

SU(2)
3 + 1

)

x6

+
(

χ6(y)
[

1 + χE2

4 ] + χ4(y)
[

5χE2

4 + 2χ
SU(2)
3 + 2χ

SU(2)
5 − χ4(f)

]

+ χ2(y)
[

6χE2

4 + 2χ
SU(2)
5 + χ

SU(2)
7 − χ

SU(2)
3 χ4(f)

]

)

x7

+
(

χ7(y)
[

1 + χE2

4 ] + χ5(y)
[

9χE2

4 + 3χ
SU(2)
5 − χ4(f)

]

+ χ3(y)
[

9χE2

4 + 2χ
SU(2)
7 + 4χ

SU(2)
5

+2χ
SU(2)
3 −(χE2

4 +χ
SU(2)
3 )χ4(f)

]

+3χE2

4 +χ
SU(2)
9 +2χ

SU(2)
5 +2− χE2

4 χ4(f)
)

x8+O(x9),

where χE2

4 = 1+χ
SU(2)
3 is the adjoint representation of E2 and χ4(f) = (ei

ρ
2 + e−i ρ

2 )χ
SU(2)
2

with U(1) charge ρ. This index shows that states are in SU(2) and U(1) representations,

and it is clear that the pattern that multi-instantons appear follows that of the Nf = 0

case. On the other hand, we observe that the fermionic contribution (with the negative

sign in front) appears quite differently compared with the Nf = 0 case. The fermionic

contribution appears not as a singlet but as χ4(f) that is the fundamental representations

of SU(2) with the opposite U(1) charges. Moreover, it continues to appear in higher powers

of x. It is not clear for us, for the moment, how instanton contributions give rise to such

fermionic contributions in the process of the global symmetry enhancement for Nf = 0, 1.

• For Nf = 2, the global symmetry is SO(4) × U(1)I ∼= SU(2) × SU(2) × U(1)I and

one expects that this symmetry is enhanced to E3 = SU(3) × SU(2). The symmetry

enhancement is understood from the embedding

SU(3)× SU(2) ⊃ SU(2)m1
× SU(2)m2

×U(1)I , (4.12)

where m1,m2 the chemical potentials of two SU(2)s in the right hand side properly arrange

themselves to yield the enhancement to E3

E3 = SU(3)× SU(2) 1

2
(m1−m2)

(4.13)

with the following SU(2) and U(1) charges

SU(3) ⊃ SU(2) 1

2
(m1+m2)

×U(1)I

8 = 10 + 30 + 21 + 2−1. (4.14)

For our convenience, we write this E3 decomposition as

E3 = SU(3)× SU(2) ⊃ SU(2)× SU(2)×U(1)I

(8,1) = (1,1)0 + (3,1)0 + (2,1)1 + (2,1)−1. (4.15)

The superconformal index for Nf = 2 is then given by

I = 1 +
(

χE3

(8,1)+(1,3)

)

x2 + χ2(y)
(

1 + χE3

(8,1)+(1,3)

)

x3 (4.16)

+
(

χ3(y)
[

1 + χE3

(8,1)+(1,3)

]

+ 1 + χE3

(27,1)+(1,5)

)

x4

+
(

χ4(y)
[

1 + χE3

(8,1)+(1,3)

]

+ χ2(y)
[

1 + χE3

(8,1)+(1,3) + χE3

(27,1)+(1,5) + χE3

(8,3)+(10,1)+(10,1)

]

)

x5

– 36 –



J
H
E
P
1
0
(
2
0
1
2
)
1
4
2

+
(

χ5(y)
[

1 + χE3

(8,1)+(1,3)

]

+ χ3(y)
[

1 + χE3

(8,1)+(1,3) + χE3

(27,1)+(1,5) + χE3

[(8,1)+(1,3)]⊗[(8,1)+(1,3)]

]

+ 2χE3

(8,1)+(1,3) + χE3

(8,3)+(10,1)+(10,1)
+ χE3

(64,1)+(1,7)

)

x6

+
(

χ6(y)
[

1 + χE3

(8,1)+(1,3)

]

+ χ4(y)
[

3 + 2χE3

(27,1)+(1,5) + 2χE3

(10,1)+(10,1)
+ 3χE3

(8,3) + χE3

(8,1)

+ 4χE3

(8,1)+(1,3)

]

+ χ2(y)
[

χE3

(64,1)+(1,7)+(35,1)+(35,1)
+ 3χE3

(8,1)+(1,3)

+ χE3

[(8,1)+(1,3)]⊗[(8,1)+(1,3)] + χE3

(27,1)+(1,5) + 1
]

)

x7

+
(

χ7(y)
[

1 + χE3

(8,1)+(1,3)

]

+ χ5(y)
[

2 + χE3

(27,1)+(1,5) + 2χE3

[(8,1)+(1,3)]⊗[(8,1)+(1,3)] + 3χE3

(8,1)+(1,3)

]

+ χ3(y)
[

2 + 2χE3

(64,1)+(1,7)+(27,1)+(1,5)+(35,1)+(35,1)+(10,1)+(10,1)
+ χE3

(27,3)+(27,1)+(8,5)+(8,3)

+ 7χE3

(8,1)+(1,3) + χE3

[(8,1)+(1,3)]⊗[(8,1)+(1,3)]

]

+ 2 + χE3

(35,1)+(35,1)+(27,1)+(10,3)+(10,3)

+ χE3

[(8,1)+(1,3)]⊗[(8,1)+(1,3)]+(8,1)+(1,3)+(27,1)+(1,5) + χE3

(125,1)+(1,9)

)

x8 +O(x9),

where we used the following shorthand notation

χE3

(8,1)+(1,3) = χE3

(8,1) + χE3

(1,3), (4.17)

and tensor product of (8,1) + (1,3) is given by

χE3

[(8,1)+(1,3)]⊗[(8,1)+(1,3)] = χE3

[(8,1)+(1,3)]⊗A[(8,1)+(1,3)] + χE3

[(8,1)+(1,3)]⊗S [(8,1)+(1,3)] (4.18)

= χE3

(8,1)+(1,3)+(8,3)+(10,1)+(10,1)
+ χE3

(27,1)+(1,5)+(8,3)+(8,1)+2(1,1).

Two instanton contributions start to appear at order x4 where the character χE3

(27,1)+(1,5)

contain q2 and q−2. In a similar way, the three instanton contributions start to appear at

order x6 in χE3

(64,1)+(1,7), and four instantons contributions appear at order x8, χE3

(125,1)+(1,9),

and so on.

• For Nf = 3 case, the global symmetry is SO(6)×U(1) and one expects the symmetry
is enhanced to E4 = SU(5). The superconformal index for this is given by

I = 1 + χE4

24
x2 + χ2(y)

[

1 + χE4

24

]

x3 +
(

χ3(y)
[

1 + χE4

24

]

+ 1 + χE4

200

)

x4

+
(

χ4(y)
[

1 + χE4

24

]

+ χ2(y)
[

1 + χE4

24
+ χE4

126
+ χE4

126
+ χE4

200

]

)

x5

+
(

χ5(y)
[

1 + χE4

24

]

+ χ3(y)
[

2 + 3χE4

24
+ χE4

75
+ χE4

126
+ χE4

126
+ 2χE4

200

]

+ 2χE4

24
+ χE4

126
+ χE4

126
+ χE4

1000

)

x6

+
(

χ6(y)
[

1 + χE4

24
] + χ4(y)

[

2 + 2χE4

200
+ 2χE4

126
+ 2χE4

126
+ χE4

75
+ 5χE4

24

]

+ χ2(y)
[

χE4

1000
+ χE4

1050
+ χE4

1050
+ 2χE4

200
+ χE4

126
+ χE4

126
+ χE4

75
+ 5χE4

24
+ 2
]

)

x7

+
(

χ7(y)
[

1 + χE4

24
] + χ5(y)

[

3χE4

200
+ 2χE4

126
+ 2χE4

126
+ 2χE4

75
+ 7χE4

24
+ 4
]

+ χ3(y)
[

2χE4

1000
+ 2χE4

1050
+ 2χE4

1050
+ χE4

1024
+ 4χE4

200
+ 3χE4

126
+ 3χE4

126
+ χE4

75
+ 9χE4

24
+ 3
]

+ χE4

3675
+ χE4

1050
+ χE4

1050
+ χE4

224
+ χE4

224
+ χE4

1024
+ 3χE4

200
+ χE4

126
+ χE4

126
+ χE4

75
+ 3χE4

24
+ 3
)

x8

+O(x9) (4.19)
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where we used the branching rules

SU(5) ⊃ SO(6)×U(1)

24 = 10 + 41 + 4−1 + 150

200 = 10 + 41 + 4−1 + 102 + 10−2 + 150 + 361 + 36−1 + 840

1000 = 10 + 41 + 4−1 + 102 + 10−2 + 150 + 203 + 20−3 + 361 + 36−1

+ 702 + 70−2 + 840 + 1601 + 160−1 + 3000,

3765 = 10 + 41 + 4−1 + 150 + 102 + 10−2 + 203 + 20−3 + 354 + 35−4

+ 361 + 36−1 + 702 + 70−2 + 840 + 1203 + 120−3 + 1601 + 160−1

+ 3000 + 2702 + 270−2 + 5001 + 500−1 + 8250.

From U(1) charges, we see that the two instantons start to contribute from x4 order; it is

captured in the character in χE4

200. Three instanton contribution first appears at order x6,

χE4

1000, and four instanton contribution appears at order x8, χE4

3765.

• For Nf = 4 case, the global symmetry is SO(8)×U(1)I and the symmetry is enhanced
to E5 = Spin(10). The superconformal index for this is given by

I = 1 + χE5

45
x2 + χ2(y)

[

1 + χE5

45

]

x3 +
(

χ3(y)
[

1 + χE5

45

]

+ 1 + χE5

770

)

x4 (4.20)

+
(

χ4(y)
[

1 + χE5

45

]

+ χ2(y)
[

1 + χE5

45
+ χE5

770
+ χE5

945

]

)

x5

+
(

χ5(y)
[

1 + χE5

45

]

+ χ3(y)
[

2 + 2χE5

45
+ χE5

54
+ χE5

210
+ 2χE5

770
+ χE5

945

]

+ 2χE5

45
+ χE5

945
+ χE5

7644

)

x6

+
(

χ6(y)
[

1 + χE5

45

]

+ χ4(y)
[

2χE5

770
+ 2χE5

945
+ χE5

54
+ χE5

210
+ 4χE5

45
+ 2
]

+ χ2(y)
[

χE5

7644
+ 2χE5

17920
+ χE5

945
+ 2χE5

770
+ χE5

54
+ χE5

210
+ 4χE5

45
+ 2
]

)

x7

+
(

χ7(y)
[

1 + χE5

45

]

+ χ5(y)
[

3χE5

770
+ 2χE5

945
+ 2χE5

210
+ 2χE5

54
+ 5χE5

45
+ 4
]

+ χ3(y)
[

2χE5

7644
+ 2χE5

17920
+ χE5

1386
+ χE5

5940
+ 3χE5

945
+ 3χE5

770
+ χE5

210
+ χE5

54
+ 8χE5

45
+ 3
]

+ χE5

52920
+ χE5

17920
+ χE5

8085
+ χE5

4125
+ χE5

945
+ 3χE5

770
+ χE5

210
+ χE5

54
+ 2χE5

45
+ 3
)

x8 +O(x9).

where we used the branching rule

SO(10) ⊃ SO(8)×U(1) (4.21)

45 = 10 + 81 + 8−1 + 280

770 = 10 + 81 + 8−1 + 280 + 352 + 350 + 35−2 + 1601 + 160−1 + 3000

7644 = 10 + 81 + 8−1 + 280 + 352 + 350 + 35−2 + 1123 + 1121 + 112−1 + 112−3

+ 1601 + 160−1 + 3000 + 5672 + 5670 + 567−2 + 14001 + 1400−1 + 19250

52920 = 10 + 81 + 8−1 + 280 + 352 + 350 + 35−2 + 1123 + 1121 + 112−1 + 112−3

+ 1601 + 160−1 + 2944 + 2942 + 2940 + 294−2 + 294−4 + 3000

+ 5672 + 5670 + 567−2 + 14001 + 1400−1 + 15683 + 15681 + 1568−1 + 1568−3

+ 19250 + 43122 + 43120 + 4312−2 + 78401 + 7840−1 + 89180.

Note that even though SO(8) has triality automorphism, the representations 8, 35 and so

on are all higher dimensional spinor representations due to fermionic zero modes to which
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the instantons couple. The result shows that the two instantons again starts to contribute

from x4 order in χE5

770. Three instanton contribution is at order x6; it is captured in the

character χE5

7644. Four instanton contribution first appears in the character χE5

52920.

• For Nf = 5 case, the global symmetry is SO(10)×U(1) and the symmetry is enhanced
to E6. The superconformal index for this is given by

I = 1 + χE6

78
x2 + χ2(y)

[

1 + χE6

78

]

x3 +
(

χ3(y)
[

1 + χE6

78

]

+ 1 + χE6

2430

)

x4

+
(

χ4(y)
[

1 + χE6

78

]

+ χ2(y)
[

1 + χE6

78
+ χE6

2430
+ χE6

2925

]

)

x5

+
(

χ5(y)
[

1 + χE6

78

]

+ χ3(y)
[

2 + 2χE6

78
+ χE6

650
+ 2χE6

2430
+ χE6

2925

]

+ 2χE6

78
+ χE6

2925
+ χE6

43758

)

x6

+
(

χ6(y)
[

1 + χE6

78

]

+ χ4(y)
[

2 + 4χE6

78
+ χE6

650
+ 2χE6

2430
+ 2χE6

2925

]

+ χ2(y)
[

2 + 4χE6

78
+ χE6

650
+ 2χE6

2430
+ χE6

2925
+ χE6

43758
+ χE6

105600

]

)

x7

+
(

χ7(y)
[

1 + χE6

78

]

+ χ5(y)
[

4 + 5χE6

78
+ 2χE6

650
+ 3χE6

2430
+ 2χE6

2925

]

+ χ3(y)
[

3 + 8χE6

78
+ χE6

650
+ 3χE6

2430
+ 3χE6

2925
+ χE6

34749
+ 2χE6

43758
+ 2χE6

105600

]

+ 3 + 2χE6

78
+ χE6

650
+ 3χE6

2430
+ χE6

2925
+ χE6

70070
+ χE6

105600
+ χE6

537966

)

x8 +O(x9), (4.22)

where we used the branching rule

E6 ⊃ SO(10)×U(1)

78 = 10 + 161 + 16−1 + 450

2430 = 10 + 161 + 16−1 + 450 + 126−2 + 1262 + 2100 + 5601 + 560−1 + 7700

43758 = 10 + 161 + 16−1 + 450 + 126−2 + 1262 + 2100 + 5601 + 560−1 + 7700

+ 672−3 + 6723 + 14401 + 1440−1 + 3696′
−2 + 3696

′

2 + 59400 + 76440

+ 80641 + 8064−1

537966 = 10 + 161 + 16−1 + 450 + 126−2 + 1262 + 2100 + 5601 + 560−1

+ 6723 + 672−3 + 7700 + 14401 + 1440−1 + 2772−4 + 27724 + 3696′
−2 + 3696

′

2

+ 59400 + 6930′
−2 + 6930

′

2 + 76440 + 80641 + 8064−1 + 89100

+ 172803 + 17280−3 + 349921 + 34992−1 + 46800−2 + 468002 + 529200

+ 705601 + 70560−1 + 737100. (4.23)

The result shows that the two instantons again starts to contribute from x4 order in χE6

2430.

Three instanton contribution is at order x6; it is captured in the character χE6

43758, and

four instanton contribution appear at order x8 with the character χE6

537966.

4.3 Index for Nf = 6, 7

As stated before, the way that instanton contributions for Nf = 6, 7 cases appear in the

index is different from the lower Nf cases. Namely, two instanton contributions for such

cases do show up in lower powers of x, starting at order x2.

To better understand these case, recall how the symmetry enhancement works for

Nf < 6. By tracing the structure of the index, we deduce that the perturbative part and

the instanton part together form a single state in the adjoint representation of ENf+1 at
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the leading order of x, at order x2. The perturbative part comprises two states in the

representations of SO(2Nf ): the singlet and the adjoint representation. One instanton

and anti-instanton parts, on the other hand, both provide two states in the spinor and its

conjugate representations of SO(2Nf ). These states altogether fit into the SO(2Nf )×U(1)I
decomposition of the adjoint representation of ENf+1 at order x2, and for this reason, they

can be viewed as the states of the adjoint representation of ENf+1 for Nf < 6.

For the Nf = 6, 7 cases, the adjoint representations of ENf+1 are big enough to have

rooms for other SO(2Nf ) representations than the spinor and adjoint representations. More

specifically, the adjoint representation of ENf+1 contains the extra states with the U(1)I
charge of ±2 in the decomposition to SO(2Nf )×U(1)I which correspond to two instanton

contributions. If we believe the ENf
symmetry enhancement of the conformal theories,

these extra states must be seen at order x2 of the superconformal index. It seems, however,

difficult to extract the extra states at order x2 from two instanton contributions due to the

pole structure of the integral formula (3.58). In other words, if we evaluate the integral by

taking into account all poles inside the unit circle |eiφ1 | = 1, the expansion of two instanton

index in powers of x starts at order x4 rather than at order x2 regardless of the number

of flavors Nf . This is troublesome for Nf = 6, 7, because two instanton contribution is

supposed to appear at order x2. This means that naive pole prescription does not lead to

the right result and thus it should be treated with care.

The subtlety arises because the unphysical pole at eiφ1 = 0 appears in the contour

integral when Nf ≥ 6. Unfortunately, we could not find a consistent prescription for this

unphysical pole. One can naively try to exclude the contribution from the pole at eiφ1 = 0.

However this attempt yields two instanton states at order less than x2. There are no

other states to be combined with these two instanton states in order to form an irreducible

representation of ENf+1.

We here instead write our prediction for two instanton contributions to order x3, based

on the symmetry enhancement that naturally leads to the adjoint representation of ENf+1.

We see that the perturbative and one instanton contributions of Nf = 6, 7 cases give the

right spectrum for the symmetry enhancement and thus two instanton contributions should

arrange themselves to yield the adjoint representation of ENf+1.

It follows from the perturbative and one instanton contributions that the index for

Nf = 6 is given by

I = 1 +
(

1 + χ
SO(12)
66 + q χ

SO(12)
32 + q−1 χ

SO(12)
32 + · · ·

)

x2

+ χ2(y)
[

1 + (1 + χ
SO(12)
66 + q χ

SO(12)
32 + q−1 χ

SO(12)
32 + · · · )

]

x3 +O(x4), (4.24)

where · · · represents two instanton contributions which we have not been able to compute.

An obvious guess for the index is that the superconformal index, taken into account the

correct two instanton contribution, would be expressed as

I = 1 +
(

1 + χ
SO(12)
66 + q χ

SO(12)
32 + q−1 χ

SO(12)
32 + q2 + q−2

)

x2

+ χ2(y)
[

1 + (1 + χ
SO(12)
66 + q χ

SO(12)
32 + q−1 χ

SO(12)
32 + q2 + q−2)

]

x3 +O(x4). (4.25)

= 1 + χE7

133 x
2 + χ2(y)

[

1 + χE7

133

]

x3 +O(x4), (4.26)
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which is based on the branching rules

E7 ⊃ SO(12)×U(1)I

133 = 660 + 321 + 32−1 + 12 + 10 + 1−2. (4.27)

It would then again exhibit global symmetry enhancement to E7 with not only one instan-

ton but also two instantons appearing at order x2.

In the same way, the superconformal index forNf = 7 up to one instanton contributions

is given by

I = 1 +
(

1 + χ
SO(14)
91 + q χ

SO(14)
64 + q−1 χ

SO(14)

64
+ · · ·

)

x2

+ χ2(y)
[

1 + (1 + χ
SO(14)
91 + q χ

SO(14)
64 + q−1 χ

SO(14)

64
+ · · · )

]

x3 +O(x4). (4.28)

When combined with correct two instanton contributions, this would exhibit symmetry

enhancement to E8 with the following form

I = 1 +
(

1 + χ
SO(14)
91 + q χ

SO(14)
64 + q−1 χ

SO(14)

64
+ q2 χ

SO(14)
14 + q−2 χ

SO(14)

14

)

x2

+χ2(y)
[

1+(1+χ
SO(14)
91 +q χ

SO(14)
64 +q−1 χ

SO(14)

64
+q2 χ

SO(14)
14 +q−2 χ

SO(14)

14
)
]

x3+O(x4)

= 1 + χE8

248 x
2 + χ2(y)

[

1 + χE8

248

]

x3 +O(x5), (4.29)

where the branching rule is

E8 ⊃ SO(14)×U(1)I

248 = 10 + 910 + 641 + 64−1 + 142 + 14−2. (4.30)

Just as the Nf = 6 case, both one and two instanton contributions appear at order x2.7

We close this section by reporting an observation. It is clear that not all representations

of ENf+1 appear in the superconformal index for Nf . Singlets and only representations

associated with the adjoint representation show up. One may notice that the representa-

tions of SO(2Nf ) combine themselves to yields the products of the adjoint representations

of ENf+1.

To make this observation concrete, let us call the adjoint representation adj. The

tensor product of two adj’s splits into symmetric and antisymmetric parts

adj ⊗ adj = (adj ⊗ adj)A + (adj ⊗ adj)S . (4.31)

The 2nd symmetrized tensor products are generically written as

(adj ⊗ adj)A = adj ⊕R
(2)
A ,

(adj ⊗ adj)S = 1⊕R
(2)
S ⊕ adj2, (4.32)

where the notation adjk to denote the irreducible representations whose weight is given as

k times that for the adjoint representation, and R
(2)
A and R

(2)
S represent remaining other

7String origin of the massless two instanton states (1±2 for E7 and 14±2 for E8) is discussed in [44].
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representations. The superconformal indices that we have computed for Nf = 2, . . . , 5 then

take the form

I = 1 + χadj x
2 + χ2(y)

[

1 + χadj

]

x3 +
(

χ3(y)
[

1 + χadj

]

+ 1 + χadj2

)

x4

+
(

χ4(y)
[

1 + χadj

]

+ χ2(y)
[

1 + χadj2 + χ(adj⊗adj)A

]

)

x5

+
(

χ5(y)
[

1+χadj

]

+χ3(y)
[

1+χadj+χadj2+χadj⊗adj

]

+χadj+χadj3+χ(adj⊗adj)A

)

x6

+O(x7), (4.33)

where χadjk (= χ
ENf+1

adjk
) is the character of adjk of the enhanced global symmetry group

ENf+1, and χ(adj⊗adj) = χadjχadj. Recall that as adj is associated with one instanton

contribution, its second order tensor products contain two instanton contributions. In par-

ticular, adj2 is the representation that precisely possesses the two instanton contributions

which appears from order x4. In a similar way, the third order tensor products contain

three instanton contributions, and adj3 is the representation first appears at order x6 and

possesses three instantons. This pattern is expected to proceed to higher orders in x: adjk

appear at x2k of the superconformal index and are those which first show k instanton

contributions for Nf = 2, . . . , 5. The products of these Nf are given in appendix F.2.

Even though we do not have enough data for higher order terms in x for Nf = 6, 7, one

may anticipate that the index for them would follow the pattern of the index (4.33) as well,

irrespective of how the instanton contributes the enhancements. If so, the superconformal

index for Nf = 6 would take the form

I = 1 + χE7

133 x
2 + χ2(y)

[

1 + χE7

133

]

x3 +
(

χ3(y)
[

1 + χE7

133

]

+ 1 + χE7

7371

)

x4

+
(

χ4(y)
[

1 + χE7

133

]

+ χ2(y)
[

1 + χE7

7371 + χE7

(133⊗133)A

]

)

x5

+
(

χ5(y)
[

1+χE7

133

]

+χ3(y)
[

1+χE7

133+χ
E7

7371+χ
E7

133⊗133

]

+χE7

133+χ
E7

238602+χ
E7

(133⊗133)A

)

x6

+O(x7), (4.34)

where adj ∼ 133, adj2 ∼ 7371, and adj3 ∼ 238602. A few relevant tensor products of

the adjoint representation of E7 are given as

(133× 133)S = 1+ 1539+ 7371,

(133× 133)A = 133+ 8645. (4.35)

For Nf = 7, the superconformal index would take the form

I = 1 + χE8

248 x
2 + χ2(y)

[

1 + χE8

248

]

x3 +
(

χ3(y)
[

1 + χE8

248

]

+ 1 + χE8

27000

)

x4

+
(

χ4(y)
[

1 + χE8

248

]

+ χ2(y)
[

1 + χE8

27000 + χE8

(248⊗248)A

]

)

x5

+
(

χ5(y)
[

1+χE8

248

]

+χ3(y)
[

1+χE8

248+χ
E8

27000+χ
E8

248⊗248

]

+χE8

248+χ
E8

1763125+χ
E8

(248⊗248)A

)

x6

+O(x7), (4.36)
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where adj ∼ 248, adj2 ∼ 27000, and adj3 ∼ 1763125, and relevant tensor products of

the adjoint representation of E8 are

(248× 248)S = 1+ 3875+ 27000,

(248× 248)A = 248+ 30380. (4.37)

It would be interesting to see whether the index respects the pattern and whether there is

a closed form for the result like a sort of Plethystic expansion.

4.4 Superconformal index for Sp(2)

When N ≥ 2, as discussed in Sec 3.5, an additional antisymmetric hypermultiplet does

not decouple and contribute to symmetry enhancement. In this case, we have the chemi-

cal potential m for SU(2) global symmetry of the antisymmetric hypermultiplet. Similar

difficult pole structures as the case for N = 1 still reside when we evaluate two instanton

contributions. We believe that correct prescription will take care of irrelevant poles.

We computed the superconformal index for various Nf and found that there is a

universal expression for Nf ≤ 6. We see that the global symmetry SO(2Nf ) is enhancement

to ENf+1, as expected, and the index is given by

I = 1 + χ2(e
im)x+

(

χ2(y)χ2(e
im) + 2χ3(e

im) + χadj

)

x2

+
(

χ3(y)χ2(e
im) + χ2(y)[2 + 2χ3(e

im) + χadj] + 2χ4(e
im) + χ2(e

im) + 2χ2(e
im)χadj

)

x3

+
(

χ4(y)χ2(e
im)+χ3(y)[2+3χ3(e

im)+χadj]+χ2(y)[3χ2(e
im)χadj+3χ4(e

im)+5χ2(e
im)]

+ 3χ5(e
im) + χ3(e

im) + 3χ3(e
im)χadj + 3 + χ(adj⊗adj)S + χadj

)

x4 +O(x5), (4.38)

where χadj stands for the character of the adjoint representation for ENf+1 and their

tensor products are given in appendix F.2. χdim(y) is the SU(2) character for the fugacity

y and χdim(e
im) is the SU(2) character for the chemical potential m. For instance, the

2-dim representation is χ2(e
im) = eim + e−im and the 3-dim representation is χ3(e

im) =

e2im + 1 + e−2im.

As a representative the index for such hypermultiplets, we write the superconformal

result for Nf = 5

I = 1 + χ2(e
im)x+

(

χ2(y)χ2(e
im) + 2χ3(e

im) + χE6

78

)

x2

+
(

χ3(y)χ2(e
im) + χ2(y)[2 + 2χ3(e

im) + χE6

78 ] + 2χ4(e
im) + χ2(e

im) + 2χ2(e
im)χE6

78

)

x3

+
(

χ4(y)χ2(e
im)+χ3(y)[2+3χ3(e

im)+χE6
78 ]+χ2(y)[3χ2(e

im)χE6

78+3χ4(e
im)+5χ2(e

im)]

+ 3χ5(e
im) + χ3(e

im) + 3χ3(e
im)χE6

78 + 4 + χE6
2430 + χE6

650 + χE6
78

)

x4 +O(x5). (4.39)

Here, χE6

78 = χadj and 1+χE6
2430+χ

E6
650 = χ(adj⊗adj)S . As for the Sp(1) cases, one instanton

start to contribute at x2 through χadj while two instanton contributions would first appear

at x4 through χadj2 which is contained in χ(adj⊗adj)S . We note that we have encountered
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similar obstacles in evaluating pole integral arising when one deals with two instanton

contribution as for Sp(1) case. So we leave this issue as it is, and here our expression for

the two instanton contribution should be understood as an educed guess. All terms are well

organized as above except for terms proportional to q±4 that is supposed to be taken care

of from the pole integration associated with two instanton contributions. For this reason,

the index for Nf = 6, 7 are to be resolved as one finds the correct pole prescriptions.

5 Conclusion and discussions

In this work we have set up and calculated the superconformal index for 5-dim gauge

theories. The index has both perturbative and nonperturbative instanton contributions.

For Sp(1) gauge group and Nf ≤ 5 fundamental hypermultiplets, we explicitly computed

superconformal index up to four-instanton contributions. Our result for the superconformal

index precisely shows the enhancement of the global symmetry from SO(2Nf ) × U(1) to

ENf+1 for Nf ≤ 5, which is expected to exist at the conformal fixed point. The characters

of SO(2Nf ) × U(1) appearing in the index reorganize themselves so that they belong to

the characters of ENf+1. For lower powers of x which is an expansion parameter related

to energy, there is a universal pattern on how the ENf+1 characters appears as forms of

(anti-)symmetric products of the adjoint representation of ENf+1. The Nf = 0, 1 cases

show fermionic contributions in the process of the symmetry enhancement to E1, E2, in

terms of a singlet and the fundamental representation, respectively. The Nf ≥ 2 cases,

however, no fermionic contributions appear at least to order x8 that we have explicitly

computed. It would be interesting to explore further how these fermionic contributions

arise as instanton contributions. For Nf = 6, 7, we obtained one-instanton contribution

only which also shows the symmetry enhancement to that order. Two or higher instanton

contributions give rise difficult pole structures in the contour integral which we do not have

a clear prescription to avoid irrelevant poles.

For N ≥ 2, we expect the superconformal index also exhibits the symmetry enhance-

ment. As a simple example, we computed the superconformal index for Sp(2) to the order

which contains one-instanton contributions. To this order, we see that the index indeed

shows the symmetry enhancement to ENf+1 as well. To include two or higher instanton

contributions, just as for the Nf = 6, 7 of Sp(1), we have encountered similar obstacle

related to pole structures.

There are several directions to pursue from this point. We would like to resolve the ob-

stacles that are mentioned above. The investigation of other 5-dim conformal field theories

by our method may shed some new light on these theories. It would be interesting to eval-

uate the partition function on S5 which also contains the information about the symmetry

enhancement and the degrees of freedom in large N limit. See the recent work [45–47] for

the perturbative part of the partition function of 5-dim supersymmetric YM theory on S5.

An interesting application with our result would be the dimensional reduction along

S1 to 4d theories on S4 type manifold. The 4d reduction then leads to the 4d theories

whose base manifold S4 is squashed by the background gauge fields coupled to both the

KK modes and the internal symmetries due to the chemical potentials we have turned

on in 5d theories. Concretely, we turned on the chemical potentials for the generators
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2(j1 +R) and 2j2, which obviously break the isometry on the base S4 into U(1)1 ×U(1)2.

Upon the dimensional reduction, the resulting 4-manifold at which 4d theories are defined

becomes the ellipsoid with U(1)2 isometries. As we can trade the generator 2(j1 + R) to

other combinations of ǫ0, j1, and R using the BPS relation, there is indeed a family of

4d ellipsoids with U(1)2 isometries. The 4d ellipsoid given in [48] would probably be one

of these ellipsoids after correctly identifying the chemical potentials with the squashing

parameters in the ellipsoid. The simplest case would occurs when the generator 2(j1 +R)

is replaced by ǫ0 − R. In this case the base manifold is deformed only by j2 and thus it

becomes 4d manifold preserving SU(2)1 × U(1)2 whose local geometry at the equator is

the squashed S3 investigated in [49, 50]. The chemical potential γ2 is identified with the

squashing parameter u ∼ (l−1 − l̃−1)1/2 on the squashed four-sphere.

We expect that our superconformal index reduces to 4d partition function on the

squashed S4 after the reduction along the time circle. The reduction of the index can be

easily achieved by removing the nonzero KK modes from our perturbative and instanton

indices. One may already notice that the one-loop determinants (3.28) and (3.35), and the

instanton indices (3.46) and so on are identical to the corresponding 4d results upon the

KK reduction on S1 and the identification of the chemical potentials to the 4d parameters.

However, we may not be able to get the classical contribution in 4d partition function,

proportional to the square of scalar vev of the vector multiplet, from our index, which is

analogous to the cases of 4d to 3d reduction considered in [51–54] where 3d Chern-Simons

terms cannot be obtained under the reduction. This would imply that 4d reduction of

our indices leads to 4d partition functions on the generalized four-spheres apart from the

classical contributions.

Our index may count some M theoretic objects wrapping degenerate del Pezzo surfaces

which also appear naturally in the (p,q)-web description of our theory with enhanced

exceptional groups [55]. The detail identification would be interesting. As our Higgs phase

is the moduli space of ENf+1 instantons, our calculation for Sp(1) may have something to

say the moduli space of a single ENf+1 instanton. While our calculation is done for small

N = 1, one can imagine the large N limit and compare to the gravity calculation which is

also needed to be done.

We finally make remarks on the AdS/CFT correspondence of the 5d conformal theories.

The gravity dual of the Sp(N) gauge theory with Nf fundamental flavors is a warped

product of AdS6×S4 whose gauge/gravity duality is studied in various literatures [56–58].

The spectrum of the gauge invariant operators in the boundary field theory we counted here

amounts to the gravity spectrum in the bulk and the KK spectrum of the ENf+1 twisted

sector living on the boundary of the gravity theory on wrapped AdS6 × S4 background.

The duality maps the ENf+1 neutral operators in the field theory to the bulk gravitons,

and the ENf+1 charged operators maps to the twisted sectors. It would be interesting to

see how our index matches to the index on the gravity side in the large N limit.
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A Notation

In 5d Lorentzian flat spacetime, we can choose 4 × 4 gamma matrices using 2 × 2 Pauli

matrices σ1,2,3 as follows:

γ0 = −i1⊗ σ3 , γ1 = σ1 ⊗ σ1 , γ2 = σ2 ⊗ σ1 , γ3 = σ3 ⊗ σ1 , γ4 = 1⊗ σ2 . (A.1)

They satisfy the Clifford algebra {γµ, γν} = ηµν and

γ01234 = i , γµνλρ = iǫµνλρσγσ (ǫ012345 = 1) ,

γµνλ = γµγνλ + 2γ[νηλ]µ = γνλγµ + 2ηµ[νγλ] , (A.2)

with a flat metric η = diag(−1,+1,+1,+1,+1). In five dimensions, the spinor represen-

tation is the fundamental of Sp(2) ∼= SO(1, 4) Lorentz rotation, so it is pseudo-real. This

implies that the ordinary Majorana condition cannot be imposed on 5d spinors. Instead,

we can impose symplectic-Majorana reality condition on the spinors if they carry SU(2)R
symmetry charges. When a spinor λA is a doublet of SU(2)R, the symplectic-Majorana

condition is given by

λ̄A = (λT )BεBAΩ , (A.3)

where A,B = 1, 2, the R-symmetry indices, and ε = iσ2 is the SU(2)R invariant tensor. Ω

is the symplectic form of Sp(2) defined as

Ω = γ24 = iσ2 ⊗ σ3 . (A.4)

The 5d gamma matrices satisfy the following Fierz identities:

δ q
p δ

n
m =

1

4
δ n
p δ q

m +
1

4
(γµ) n

p (γµ)
q

m − 1

8
(γµν) n

p (γµν)
q

m ,

(γµ) q
p (γµ)

n
m = δqpδ

n
m + δnp δ

q
m − (γµ) n

p (γµ)
q

m , (A.5)

where m,n = 1, 2, 3, 4 are the Sp(2) indices.

B Theories on S1 × S4 and S5

We consider the Euclidean version of the Chern-Simons Lagrangian (2.2). The flat space

Lagrangian can easily be obtained by the Wick rotation, x0 = −iτ . Then the Lagrangian on

the Riemannian curved manifold can be derived from the flat Lagrangian by the conformal
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mapping, whenever the curved manifold is related to the flat space by the conformal trans-

formation. Using this fact, the Chern-Simons Lagrangian on the curved space is derived

from the Lagrangian (2.2)

L = Lcs + Lκ ,

Lcs = −i κ

24π2
tr

[

A ∧ F ∧ F +
i

2
A ∧A ∧A ∧ F − 1

10
A ∧A ∧A ∧A ∧A

+ 3iλ̄γµνλFµν + 6λ̄Dλ

]

,

Lκ =
κ

2π2
trφ

[

1

2
FµνF

µν+∇µφ∇µφ+
R

12
φ2 − i

2
∇µλ̄γ

µλ+
i

2
λ̄γµ∇µλ−DIDI − iλ̄[φ, λ]

]

,

(B.1)

where R is the Ricci curvature for the curved manifold and λ̄ ≡ λ†. The covariant derivative

∇µ includes the connection on the curved space as well as the gauge connection. For

example, the covariant derivative acting on a spinor field is ∇µ = Dµ + 1
4ωµabγ

ab where

Dµ = ∂µ − iAµ and ωµab is the spin connection. As the 5d rotational symmetry group

is pseudo-real SO(5), the SU(2)R doublet spinors λA is restricted to be the symplectic-

Majorana spinor satisfying λ̄A = (λT )BεBAΩ. The action on the curved space is invariant

under the following supersymmetry transformation:

δAµ = iλ̄γµǫ ,

δφ = λ̄ǫ ,

δλ =
1

2
Fµνγ

µνǫ− i∇µφγ
µǫ+ iDIσIǫ− 2i

5
φγµ∇µǫ ,

δλ̄ = −1

2
Fµν ǭγ

µν − iǭγµ∇µφ− iǭσIDI − 2i

5
∇µǭγ

µφ ,

δDI = ∇µλ̄γ
µσIǫ− [φ, λ̄]σIǫ− 1

5
λ̄σIγµ∇µǫ , (B.2)

where ǫ is the Killing spinor satisfying the Killing spinor equation

∇µǫ = γµǫ̃ , (B.3)

with an arbitrary spinor ǫ̃.

The Lagrangian for the hypermultiplet can also be obtained by the conformal mapping

from the flat space Lagrangian (2.13). It is almost the same as the flat space Lagrangian

but the scalar fields acquire the conformal mass term proportional to the scalar curvature

R, which reflects that the fields on the curved space non-trivially couples to the curvature.

The matter Lagrangian is then

Lmatter = |∇µq|2 − iψ̄γµ∇µψ+
3

16
R q̄q+ q̄φ2q− qσI q̄DI −

√
2ψ̄λq+

√
2q̄λ̄ψ− iψ̄φψ (B.4)

This Lagrangian is invariant under the supersymmetry transformation of the matter fields

δqA =
√
2iǭAψ ,

– 47 –



J
H
E
P
1
0
(
2
0
1
2
)
1
4
2

δq̄A =
√
2iψ̄ǫA ,

δψ =
√
2

(

−∇µq
AγµǫA + φqAǫA − 3

5
qAγµ∇µǫA

)

,

δψ̄ =
√
2

(

ǭAγµ∇µq̄A + ǭAq̄Aφ+
3

5
∇µǭ

Aγµq̄A

)

. (B.5)

B.1 Killing spinors on S1 × S4

The explicit forms of the conformal Killing spinors on S1 ×S4 depend on the choice of the

metric and the vielbein basis. We choose the S1 × S4 metric as follows:

ds2 = dτ2 + ds2S4 ,

ds2S4 = dθ21 + sin2 θ1dθ
2
2 + sin2 θ1 sin

2 θ2dθ
2
3 + sin2 θ1 sin

2 θ2 sin
2 θ3dθ

2
4 , (B.6)

where the radii of the S1 and S4 are set to unit radius. We choose the vielbein basis as

the following standard form:

e1 = dθ1 , e2 = sin θ1dθ2 , e3 = sin θ1 sin θ2dθ3 , e4 = sin θ1 sin θ2 sin θ3dθ4 , e5 = dτ .

(B.7)

With this choice, one can easily compute the spin connection whose components are

given by

ω1
2 = − cos θ1dθ2 , ω2

3 = − cos θ2dθ3 , ω3
4 = − cos θ3dθ4 ,

ω1
3 = − cos θ1 sin θ2dθ3 , ω2

4 = − cos θ2 sin θ3dθ4 , ω3
4 = − cos θ1 sin θ2 sin θ3dθ4 . (B.8)

The manifold S1 × S4 admits 8 independent Killing spinors taking of the forms

ǫq = e−
1

2
τe

1

2
θ1γ51

e
1

2
θ2γ12

e
1

2
θ3γ23

e
1

2
θ4γ34

ǫq0 , ǫs = γ5e
1

2
τe

1

2
θ1γ51

e
1

2
θ2γ12

e
1

2
θ3γ23

e
1

2
θ4γ34

ǫs0 .

(B.9)

where ǫq,s0 are constant spinors. They satisfy the Killing spinor equations

∇µǫ
q = −1

2
γµγ

5ǫq, ∇µǫ
s =

1

2
γµγ

5ǫs. (B.10)

The supercharges QA
m and Sm

A appearing in the superconformal algebra are parametrized

by these Killing spinors. The superconformal algebra requires the symplectic-Majorana

condition on the constant spinor parameters

(ǫq0)
∗ = εΩ ǫs0 (B.11)

C Q-exact deformation

In section 3.1, we localize the path integral by deforming the Lagrangian with Q-exact

terms which respect the supercharge Q + S. We now present the Q-exact terms used for

the localization explicitly.

Firstly, we introduce the following Q-exact terms for the vector multiplet:

δL = tr
[

tδǫ((δǫλ)
†λ)
]

. (C.1)
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Here δǫ is the SUSY transformation with respect to the SUSY parameter ǫ defined in (3.7).
The parameter ǫ is a Grassmann-even spinor and normalized as ǭǫ = 1 throughout the
localization procedure. Then the bosonic terms become

(δǫλ)
†δǫλ =

=

(

−1
2
ǭγµνFµν+iǭγ

µ∇µφ+iǭσ
IDI+

2i

5
φ∇µǭγ

µ

)(

1

2
Fµνγ

µνǫ−i∇µφγ
µǫ+iDIσIǫ− 2i

5
φγµ∇µǫ

)

= ǭǫ
1

2
FµνF

µν − 1

4
ǭγµνλρǫFµνFλρ + ǭǫ(∇µφ)

2 + ¯̃ǫǫ̃φ2 − i

2
(¯̃ǫγ5γµνǫ+ ǭγµνγ5ǫ̃)φFµν − ǭǫD2

= FτµF
τµ +

1

2
FijF

kl +
1

4
cosθ1ǫ

ijkl5FijFkl − i¯̃ǫγ5γijǫφFij + (∇µφ)
2 + φ2 −D2

= FτµF
τµ + cos2

θ1
2
(F−

ij − ω−
ijφ)

2 + sin2
θ1
2
(F+

ij − ω+
ijφ)

2 + (∇µφ)
2 −D2, (C.2)

with the following definitions

F±
ij =

1

2
[Fij ∓ ∗Fij ] ,

ω+
ij =

i

2 sin2 θ1
2

¯̃ǫRγ5γijǫR , ω−
ij =

i

2 cos2 θ1
2

¯̃ǫLγ5γijǫL , ω+
ijω

+ij = ω−
ijω

−ij = 1, (C.3)

where γ5ǫR = ǫR, γ5ǫL = −ǫL. The fermionic terms are obtained by

δǫ(δǫλ)
†λ =

= −i∇µ(λ̄γνǫ)ǭγ
µνλ+ i∇µ(λ̄ǫ)ǭγ

µλ− 2i

5
∇µǭγ

µλ(λ̄ǫ) + i[λ̄γµǫ, φ]ǭγµλ

+i

(

Dµλ̄γ
µσIǫ− [φ, λ̄]σIǫ− 1

5
λ̄σIγµ∇µǫ

)

ǭσIλ

= −i(λ̄γνǫ)ǭγνγµ∇µλ+ 3i(λ̄γνǫ)¯̃ǫγ
νλ− 2i¯̃ǫλ(λ̄ǫ)− i(λ̄σAǫ)ǭσIγµ∇µλ− i¯̃ǫσIλ(λ̄σIǫ)

−i[φ, λ̄γµǫ]ǭγµλ− i[φ, λ̄σAǫ]ǭσIλ

= −iλ̄γµ∇µλ− i[φ, λ̄]λ− 2iǭσI ǫ̃λ̄σIλ+ iǭγµσI ǫ̃λ̄γµσ
Iλ+

i

2
ǭγµν ǫ̃λ̄γµνλ . (C.4)

Here we used for the last equality the 5d Fierz identities given in appendix A.

For the localization of the hypermultiplet parts, we need to realize the off-shell super-

symmetry for the hypermultiplet. We do not have the off-shell extension of the action (B.4)

and the SUSY transformation (B.5) which exhibits the full superconformal algebra of the

theory. Instead one can find the off-shell formalism for any chosen supercharge, which

partially breaks the superconformal algebra, using the method suggested in [59]. For any

symplectic-Majorana spinor ǫ, we can always find a pair of ǫ̂A
′

which satisfy [59]

ǭǫ = ¯̂ǫǫ̂ , ǭAǫ̂
A′

= 0 , ǭγµǫ+ ¯̂ǫγµǫ̂ = 0 . (C.5)

where ¯̂ǫA′ = (ǫ̂T )B
′

εB′A′Ω and εA′B′ is the invariant tensor of the new SU(2)′ symmetry

under which ǫ̂A
′

transforms as a doublet. The 4-component spinors ǫA and ǫ̂A
′

are all

Grassmann-even spinors. Let us introduce a pair of complex auxiliary scalars FA′

and add

the following Lagrangian

∆L = −F̄A′FA′

. (C.6)

– 49 –



J
H
E
P
1
0
(
2
0
1
2
)
1
4
2

Then this Lagrangian is invariant under the following off-shell supersymmetry transforma-

tion with respect to any spinor ǫ and the corresponding ǫ̂

δqA =
√
2iǭAψ ,

δq̄A = −
√
2iψ̄ǫA ,

δψ =
√
2

(

−∇µq
AγµǫA + φqAǫA − 3

5
qAγµ∇µǫA + iǫ̂A′FA′

)

,

δψ̄ =
√
2

(

ǭAγµ∇µq̄A + ǭAq̄Aφ+
3

5
∇µǭ

Aγµq̄A + iF̄A′(ǫ̂†)A
′

)

,

δFA′

=
√
2(ǫ̂†)A

′

(γµ∇µψ + φψ −
√
2λAq

A) ,

δF̄A′ =
√
2(∇µψ̄γ

µ − ψ̄φ−
√
2q̄Aλ̄

A)ǫ̂A′ . (C.7)

One can easily check that the off-shell SUSY algebra closes such as

δ2qA = ξµ∂µq
A + iΛqA +

3

2
ρqA +

3

4
RIJ(σIJq)A ,

δ2ψ = ξµ∂µψ +
1

4
Θµνγ

µν + iΛψ + 2ρψ ,

δ2FA′

= ξµ∂µF
A′

+ iΛFA′

+
5

2
ρFA′

+
5

4
R̂IJ(σ̂IJF )A

′

, (C.8)

where

ξµ = −iǭγµǫ ,
Λ = iǭγµǫAµ + ǭǫφ ,

Θµν = D[µξν] + ξλωµν
λ ,

ρ = − i

5
∇µ(ǭγ

µǫ) ,

RIJ = −2i

5
ǭγµσIJ∇µǫ ,

R̂IJ =
2i

5
¯̂ǫγµσ̂IJ∇µǫ̂ . (C.9)

Hence, the square of the supercharge gives rise to the bosonic transformations in the

superconformal algebra and the new SU(2)′ transformation generated by R̂IJ .

The localization of the hypermultiplets is straightforward. Since the superconformal

index does not depend on the continuous deformation of the theory, it is possible to deform

the original action (B.4) with an continuous parameter t in front and take t → +∞ limit

without altering the index. As a result, the path integral for the hypermultiplets localizes

to the saddle points at which the scalars in the hypermultiplets become trivial: qA = 0 and

FA′

= 0.

D Sp(N) instanton quantum mechanics

The instanton moduli space of 5d Sp(N) gauge theories with Nf fundamental flavors can be

described by the 1d quantum mechanics of the k D0-branes with N D4- and Nf D8-branes
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near the orientifold plane. The 1d quantum mechanics is then O(k) gauge theory preserving

4 real supersymmetries and its Higgs branch is equivalent to the instanton moduli space of

the 5d gauge theory. The quantum mechanics has the global symmetry

SO(4)E × SO(4)R × Sp(N)× SO(2Nf ) . (D.1)

The SO(4)E is identified with the spatial rotation along the D4-branes and the SO(4)R is

identified with the rotation transverse to the D4-branes but on D8-branes. The Sp(N) is

the flavor symmetry coming from the D0-D4 connecting string modes and the SO(2Nf ) is

the flavor symmetry from D0-D8 connecting string modes. The Lagrangian and the field

content are known in [42, 43]. The field content is given by

X1,2,3,4 X5,6,7,8 λ λ̄ J ψ ψ̄ ξ At, X9 χ χ̄

SO(4)E (2,2) (1,1) (1,2) (2,1) (2,1) (1,1) (1,1) (1,1) (1,1) (2,1) (1,2)

SO(4)R (1,1) (2,2) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (1,1) (2,1) (1,2)

Sp(N) 1 1 1 1 2N 2N 2N 1 1 1 1

SO(2Nf ) 1 1 1 1 1 1 1 2Nf 1 1 1

O(k) k(k+1)
2

k(k+1)
2

k(k+1)
2

k(k+1)
2

k̄ k̄ k̄ k adj adj adj

It is convenient to divide the field content into three groups. The first group consists

of the bosonic fields At, X9, X1,2,3,4, J and the fermionic fields λ, ψ, χ. The k×k symmetric

bosonic fields X1,2,3,4 parametrize the positions of D0-branes along D4-branes and the

2N ×k bosonic field J represents the Sp(N) gauge orientation modes. The fermionic fields

λ and ψ are their superpartners. If we restrict ourselves to Higgs branch in which X1,2,3,4

and J take nonzero expectation values, the moduli space made of the first group is identical

to the instanton moduli space in the 5d pure Sp(N) gauge theory. The adjoint fields At

and X9 are lifted in the Higgs branch. In fact, the matrices X1,2,3,4 and J coincide with

the ADHM fields for the ADHM construction of the instanton moduli space. The Higgs

branch constraints on those matrices are equivalent to the ADHM constraints which are

given by [33, 60]

µ12 = [B1, B
∗
1 ] + [B2, B

∗
2 ] + J†

1J
1 − J†

2J
2 = 0,

µ11 = [B1, B2] + J†
2J

1 = 0, (D.2)

where B1 ≡ X1 + iX2 and B2 ≡ X3 + iX4. Here the field J is subject to the reality con-

dition (JA
i )∗ = εABΩ

ijJB
j where i, j are fundamental indices and Ωij is the antisymmetric

invariant tensor of Sp(N) group. The ADHM constraint µAB(σI)AB is a triplet under

SU(2)1R symmetry of SU(2)1R × SU(2)2R ∈ SO(4)R.

The second group consists of the bosonic X5,6,7,8 and the fermionic λ̄, ψ̄, χ̄. The matri-

ces B̃1 ≡ X5+iX6 and B̃2 ≡ X7+iX8 describe the positions of D0-branes perpendicular to

D4-branes and they are lifted in the Higgs branch. The degrees of freedom from this group

in the Higgs branch describes the moduli space of the antisymmetric hypermultiplet on the
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instanton background in the 5d theory. The SU(2) global symmetry of the hypermultiplet

is identified with the SU(2)2R. The last group is formed by the fermionic field ξ which

represents the fermionic zero modes of Nf fundamental hypermultiplets of the 5d theory.

D.1 Equivariant Chern character

The instanton index of 5d Sp(N) gauge theories can be obtained from the index of the 1d

quantum mechanics with the above matter content as U(N) instanton case done in [15].

Equivalently we can also use the localization technique used in [30, 61] by regarding the

fields in the quantum mechanics as the ADHM data of the instanton moduli space. We

then first construct a cohomological formulation of the above field content with a twisted

supercharge Q by identifying SU(2)1E ⊂ SO(4)E and SU(2)1R, and evaluate the index

through the localization procedure. This allows us to easily read off the instanton part

of the equivariant index from the weights of the torus actions on the ADHM data. The

conversion from the equivariant index to the instanton index is also very easy and we

present it below.

Let us first compute the equivariant index (or the equivariant Chern character) for the

Sp(N) gauge multiplet, which gets contributions from the fields in the first group. In the

cohomological formulation, the BRST-like charge Q acts on the fields as

Qφ = 0 , Qφ̄ = η ≡ ǫα̇β̇χ
α̇β̇ , Qη = [φ, φ̄] ,

QJ α̇ = ψα̇ , Qψα̇ = −J α̇φ+ aJ α̇ + 2iγ1j1J
α̇ ,

QBα̇β = λα̇β , Qλα̇β = [φ,Bα̇β ] + 2i(γ1j1 + γ2j2)B
α̇β ,

Qχα̇β̇ = µα̇β̇ , Qµα̇β̇ = [φ, χα̇β̇ ] + 2iγ1j1χ
α̇β̇ , (D.3)

with the equivariant parameters γ1, γ2 and

a = diag(α1, α2, · · · , αN )⊗ σ3. (D.4)

The indices α̇, β̇ are for the diagonal subgroup of SU(2)1E×SU(2)1R and the indices α, β are

for the SU(2)2E . The k×k scalar φ denotes the combination At+X9. The localization lifts

the off-diagonal components of the φ and leaves only the diagonal components φ± defined

in (3.56) and (3.57) which play the role of the equivariant gauge parameter of O(k) dual

gauge group. We note that the dual gauge group is divided into two components O(k)+ and

O(k)−. It is sufficient for the equivariant index to know the torus action Tγ1 ×Tγ2 ×Ta×Tφ
only for the J,B and χ since the other fields are Q-exact from (D.3).

J 1̇ → eiaJ 1̇e−iφ±e−γ1 ,

B1̇1 → eiφ±B1̇1e−iφ±e−γ1−γ2 , B1̇2 → eiφ±B1̇2e−iφ±e−γ1+γ2 ,

χ1̇1̇ → eiφ±χ1̇1̇e−iφ±e−2γ1 . (D.5)

We need to compute the equivariant index for two distinct actions by eiφ+ and eiφ− inde-

pendently. For O(k)+, the equivariant index of each field is [33, 34]

J α̇ → e−γ1

[ n
∑

I=1

N
∑

i=1

(

eiαi+iφI + e−iαi+iφI + eiαi−iφI + e−iαi−iφI

)

(D.6)
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+ χ
N
∑

i=1

(

eiαi + e−iαi
)

]

,

Bα̇β → (e−γ1−γ2 + e−γ1+γ2)

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+

n
∑

I=1

(

e2iφI + e−2iφI

)

+ χ

n
∑

I=1

(

eiφI + e−iφI

)

+ n+ χ

]

,

χα̇β̇ → −e−2γ1

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+ χ
n
∑

I=1

(

eiφI + e−iφI

)

+ n

]

.

The overall minus sign of the last index comes from the consideration of the fermionic

statistic of the χα̇β̇ . For O(k)−, the last entries of eiφ− actions for odd and even k are

different, which are −1 for odd k and σ3 for even k. The element −1 in the O(k)− action

here has to be regarded as eiπ. We need to carefully handle them in the eiφ− action. Then

the equivariant index with the O(k)− action for odd k is given by

J α̇ → e−γ1

[ n
∑

I=1

N
∑

i=1

(

eiαi+iφI + e−iαi+iφI + eiαi−iφI + e−iαi−iφI

)

+ eiπ
N
∑

i=1

(

eiαi + e−iαi
)

]

Bα̇β → (e−γ1−γ2 + e−γ1+γ2)

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+
n
∑

I=1

(

e2iφI + e−2iφI

)

+ eiπ
n
∑

I=1

(

eiφI + e−iφI

)

+ n+ 1

]

χα̇β̇ → −e−2γ1

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+ eiπ
n
∑

I=1

(

eiφI + e−iφI

)

+ n

]

(D.7)

and the equivariant index for even k is given by

J α̇ → e−γ1

[ n−1
∑

I=1

N
∑

i=1

(

eiαi+iφI + e−iαi+iφI + eiαi−iφI + e−iαi−iφI

)

(D.8)

+ (1 + eiπ)
N
∑

i=1

(

eiαi + e−iαi
)

]

,

Bα̇β → (e−γ1−γ2 + e−γ1+γ2)

[ n−1
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+
n−1
∑

I=1

(

e2iφI + e−2iφI

)

+ (1 + eiπ)
n−1
∑

I=1

(

eiφI + e−iφI

)

+ (n+ 1 + eiπ)

]

,
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χα̇β̇ → −e−2γ1

[ n−1
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+ (1 + eiπ)
n−1
∑

I=1

(

eiφI + e−iφI

)

+ n− 1 + eiπ
]

.

We use a conversion rule from the equivariant index to the Euler class

∑

i

ǫie
iwi →

∏

i

(

sin
wi

2

)−ǫi
, (D.9)

which follows from the conversion rule explained in section 3.3 after considering the mo-

mentum modes along the time circle. This is analogous to the Plethystic exponential of

a single letter index if we regard the above equivariant index as single letter index. The

instanton index is the O(k) gauge invariant projection of the Euler class. Therefore, in-

serting the proper Haar measure of O(k) gauge group, we derive from (D.6), (D.7), (D.8)

the vector multiplet contribution to the Sp(N) instanton index in (3.58), (3.61), (3.62),

respectively.

We now turn to the equivariant index for the antisymmetric hypermultiplet on the in-

stanton background, which gets contributions from the fields in the second group: B̃α̇a, λ̄α̇a,

ψ̄a, and χ̄αa where the superscript a = ± denotes the SU(2)2R doublet index of the global

symmetry of the hypermultiplet. The equivariant transformations of these fields under the

torus action are given by

ψ̄+ → eiaψ̄+e−iφ±eim,

B̃1̇+ → eiφ±B̃1̇+e−iφ±eim−γ1 , B̃2̇+ → e−iφ±B̃2̇+e−iφ±eim+γ1 ,

χ̄1+ → eiφ±χ̄1+e−iφ±eim−γ2 , χ̄2+ → eiφ±χ̄2+e−iφ±eim+γ2 . (D.10)

Here we do not consider the contribution from λ̄ as it is Q-exact. One can then easily

compute the equivariant index from (D.10). For O(k)+ action, the equivariant index of an

antisymmetric hypermultiplet is given by

ψ̄a → −eim
[ n
∑

I=1

N
∑

i=1

(

eiφI+iαi + e−iφI+iαi + eiφI−iαi + e−iφI−iαi

)

+ χ

N
∑

i=1

(

eiαi + e−iαi
)

]

,

B̃α̇a → eim(eγ1 + e−γ1)

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+
n
∑

I=1

(

e2iφI + e−2iφI

)

+ χ
n
∑

I=1

(

eiφI + e−iφI

)

+ n+ χ

]

,

χ̄αa → −eim(eγ2 + e−γ2)

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+ χ
n
∑

I=1

(

eiφI + e−iφI

)

+ n

]

. (D.11)
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Similarly, for O(k)− with odd k, the equivariant index is given by

ψ̄a → −eim
[ n
∑

I=1

N
∑

i=1

(

eiφI+iαi + e−iφI+iαi + eiφI−iαi + e−iφI−iαi

)

(D.12)

+ eiπ
N
∑

i=1

(

eiαi + e−iαi
)

]

,

B̃α̇a → eim(eγ1 + e−γ1)

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+
n
∑

I=1

(

e2iφI + e−2iφI

)

+ eiπ
n
∑

I=1

(

eiφI + e−iφI

)

+ n+ 1

]

,

χ̄αa → −eim(eγ2 + e−γ2)

[ n
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+ eiπ
n
∑

I=1

(

eiφI + e−iφI

)

+ n

]

,

and, for O(k)− with even k, it is given by

ψ̄a → −eim
[ n−1
∑

I=1

N
∑

i=1

(

eiφI+iαi + e−iφI+iαi + eiφI−iαi + e−iφI−iαi

)

(D.13)

+ (1 + eiπ)
N
∑

i=1

(

eiαi + e−iαi
)

]

,

B̃α̇a → eim(eγ1 + e−γ1)

[ n−1
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+
n−1
∑

I=1

(

e2iφI + e−2iφI

)

+ (1 + eiπ)
n−1
∑

I=1

(

eiφI + e−iφI

)

+ (n+ 1 + eiπ)

]

,

χ̄αa → −eim(eγ2 + e−γ2)

[ n−1
∑

I<J

(

eiφI+iφJ + e−iφI+iφJ + eiφI−iφJ + e−iφI−iφJ

)

+ (1 + eiπ)

n−1
∑

I=1

(

eiφI + e−iφI

)

+ n− 1 + eiπ
]

.

Using the conversion rule (D.9) from the equivariant index, we can derive the antisymmetric

matter part of the Sp(N) instanton index (3.67), (3.68), and (3.69).

Finally, we compute the equivariant index for the fermion zero modes ξ corresponding

to 0-8 string modes. The field ξ rotates under the torus action as

ξl → eiφ±ξle
iml (D.14)

Then equivariant index for the ξ is

−
Nf
∑

l=1

eiml

[ n
∑

I=1

(eiφI + e−iφI ) + χ

]

for O(k)+
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−
Nf
∑

l=1

eiml

[ n
∑

I=1

(eiφI + e−iφI ) + eiπ
]

for O(k)− with odd k,

−
Nf
∑

l=1

eiml

[ n−1
∑

I=1

(eiφI + e−iφI ) + 1 + eiπ
]

for O(k)− with even k, (D.15)

which also yield the fundamental matter part of the instanton index in (3.58), (3.61),

and (3.62).

E Haar measure of O±(N)

In the main text, we have used the Haar measure to obtain gauge invariant quantities in

the path integral. Here we list the Haar measure [dα] for the classical groups:

For U(N),

[dα] =
1

N !

[

N
∏

k=1

dαk

2π

]

N
∏

j<k

[

2 sin

(

αi − αj

2

)]2

. (E.1)

For O+(2N) (= SO(2N)),

[dα] =
1

2N−1N !

[

N
∏

k=1

dαk

2π

]

N
∏

i<j

[

2 sin

(

αi − αj

2

)]2 [

2 sin

(

αi + αj

2

)]2

. (E.2)

For O+(2N + 1) (= SO(2N + 1)),

[dα] =
2N

N !

[

N
∏

k=1

dαk

2π
sin2

αk

2

]

N
∏

i<j

[

2 sin

(

αi − αj

2

)]2 [

2 sin

(

αi + αj

2

)]2

. (E.3)

For O−(2N + 2) and Sp(N),

[dα] =
2N

N !

[

N
∏

k=1

dαk

2π
sin2 αk

]

N
∏

i<j

[

2 sin

(

αi − αj

2

)]2 [

2 sin

(

αi + αj

2

)]2

. (E.4)

For O−(2N + 1),

[dα] =
2N

N !

[

N
∏

k=1

dαk

2π
cos2

αk

2

]

N
∏

i<j

[

2 sin

(

αi − αj

2

)]2 [

2 sin

(

αi + αj

2

)]2

. (E.5)

The normalization constants are chosen such that

∫ 2π

0
· · ·
∫ 2π

0
[dα] = 1.
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F Characters and branching rules

F.1 Characters

• SO(N)

The superconformal index can be represented in terms of the character of the representa-

tions of SO(2Nf ) together with the U(1)I factor which we will denote by the powers of q.

The Weyl character formula for SO(2Nf ) is given by [62]

χ(h, µ) =
det[sinh(µi(hj +Nf − j))] + det[cosh(µi(hj +Nf − j))]

det[cosh(µi(Nf − j))]
, (F.1)

where h denotes the highest weight with (h1, h2, · · · , hNf−1, hNf
) subject to the condition

that h1 ≥ h2 ≥ · · · ≥ hNf−1 ≥ |hNf
| ≥ 0, µi denotes the chemical potentials, and i, j =

1, . . . , Nf .

• SU(N)

The SU(2) character is given by

χSU(2)[m] =
ei(2m+1)r − e−i(2m+1)r

eir − e−ir
. (F.2)

For example, we used in section 4.2 that χ
SU(2)
3 = ei

m
2 + e−im

2 and χ
SU(2)
3 = eim +1+ e−im

with a chemical potential m.

The SU(3) part is given by

χSU(3)[m,n] =

∣

∣

∣

∣

∣

∣

∣

ym+n+2
1 y−m−n−2

2 (y2/y1)
m+n+2

yn+1
1 y−n−1

2 (y2/y1)
n+1

1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y21 y
−2
2 (y2/y1)

2

y11 y
−1
2 (y2/y1)

1

1 1 1

∣

∣

∣

∣

∣

∣

∣

. (F.3)

In this way, one can easily obtain character formulas for SU(N).

F.2 Branching rules

Here we list branching rule associated with non-semi-simple embedding ENf+1⊃ SO(2Nf )×
U(1)I that is discussed in section 4.

• E3 = SU(3)× SU(2) ⊃ SO(4)×U(1)I
With the embedding

E3 = SU(3)× SU(2) ⊃ SO(4)×U(1)I ∼= SU(2)× SU(2)×U(1)I , (F.4)

to yield

SU(3) ⊃ SU(2)×U(1)I
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8 = (1,1)0 + (3,1)0 + (2,1)1 + (2,1)−1. (F.5)

The adjoint representation of E3 = SU(3) × SU(2) is expressed as (8,1) + (1,3), and its

products are given as follows:

adj = (8,1) + (1,3),

adj2 = (27,1) + (1,5),

adj3 = (64,1) + (1,7),

adj4 = (125,1) + (1,9),

(adj × adj)S = (27,1) + (1,5) + (8,3) + (8,1) + 2(1,1),

(adj × adj)A = (8,1) + (1,3) + (8,3) + (10,1) + (10,1). (F.6)

• E4 = SU(5)

SU(5) ⊃ SO(6)×U(1)I (F.7)

24 = 10 + 41 + 4−1 + 150

75 = 150 + 20−1 + 201 + 20′0

126 = 4−1 + 6−2 + 150 + 20−1 + 361 + 450

126 = 41 + 62 + 150 + 201 + 36−1 + 450

200 = 10 + 41 + 4−1 + 102 + 10−2 + 150 + 361 + 36−1 + 840

224 = 4−3 + 6−2 + 10−2 + 20′′−1 + 20−1 + 350 + 450 + 84′1

224 = 43 + 62 + 102 + 20
′′
1 + 201 + 350 + 450 + 84

′
−1

1000 = 10 + 41 + 4−1 + 150 + 102 + 10−2 + 361 + 36−1 + 203 + 20−3

+ 702 + 70−2 + 840 + 1601 + 160−1 + 3000

1024 = 150 + 20−1 + 200 + 201 + 361 + 36−1 + 450 + 450 + 601 + 60−1

+ 64−2 + 642 + 840 + 140−1 + 1401 + 1750

1050 = 4−1 + 6−2 + 10−2 + 150 + 20−1 + 20−3 + 361 + 36−1 + 450

+ 64−2 + 702 + 840 + 84′1 + 140−1 + 1601 + 2560

1050 = 41 + 62 + 102 + 150 + 201 + 203 + 36−1 + 361

+ 450 + 642 + 70−2 + 840 + 84
′
−1 + 1401 + 160−1 + 2560

3765 = 10 + 41 + 4−1 + 150 + 102 + 10−2 + 203 + 20−3 + 354 + 35−4

+ 361 + 36−1 + 702 + 70−2 + 840 + 1203 + 120−3 + 1601 + 160−1

+ 3000 + 2702 + 270−2 + 5001 + 500−1 + 8250,

where the 4 of SO(6) is associated with χ
SO(6)

[ 1
2
, 1
2
, 1
2
]
, and the 4 of SO(6) is with χ

SO(6)

[ 1
2
, 1
2
,− 1

2
]
.

Besides,

20SO(6) = χ
SO(6)

[ 3
2
, 1
2
, 1
2
]
, 20′SO(6) = χ

SO(6)
[2,0,0], 20′′SO(6) = χ

SO(6)

[ 3
2
, 3
2
, 3
2
]
,

84SO(6) = χ
SO(6)
[2,2,0], 84′SO(6) = χ

SO(6)

[ 5
2
, 3
2
, 3
2
]
, 84′′SO(6) = χ

SO(6)
[3,3,3],
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For E4 case, adj is 24-dimensional, and some relevant tensor products are

(24× 24)S = 1+ 24+ 75+ 200,

(24× 24)A = 24+ 126+ 126,

(24× 24× 24)S = 1+ 2× 24+ 75+ 126+ 126+ 200+ 1024+ 1000,

(24× 24× 24)A = 1+ 24+ 75+ 126+ 126+ 200+ 224+ 224+ 1024. (F.8)

• E5 = Spin(10)

SO(10) ⊃ SO(8)×U(1)I (F.9)

45 = 10 + 8s−1 + 8s1 + 280

54 = 1−2 + 10 + 12 + 8s−1 + 35s0 + 8s1

210 = 280 + 35c0 + 35v0 + 56c−1 + 56c1

770 = 10 + 8s1 + 8s−1 + 280 + 35s2 + 35s0 + 35s−2 + 160s1 + 160s−1 + 300s0

945 = 8s−1 + 8s1 + 282 + 2× 280 + 28−2 + 35s0 + 56c1 + 56c−1 + 160s1 + 160s−1 + 3500

1386 = 12 + 1−2 + 10 + 8s3 + 2× 8s1 + 2× 8s−1 + 8s−3 + 282 + 280 + 28−2

+ 35s2 + 2× 35s0 + 35s−2 + 112s1 + 112−1 + 160s1 + 160s−1 + 567s0

4125 = 35s0 + 160s1 + 160s−1 + 3002 + 3000 + 300−2 + 3500 + 840′
c1 + 840c0 + 840′

c−1

5940 = 280 + 35c0 + 35v0 + 56c1 + 56c−1 + 160s1 + 160s−1 + 224s1 + 224s−1 + 224′
c1

+ 224′
c−1 + 3000 + 3502 + 2× 3500 + 350−2 + 567v0 + 567c0 + 840′

c1 + 840′
c−1

7644 = 10 + 8s−1 + 8s1 + 280 + 35s−2 + 35s0 + 35s2 + 112s−3 + 112s−1 + 112s1 + 112s3

+ 160s−1 + 160s1 + 3000 + 567s−2 + 567s0 + 567s2 + 1400s−1 + 1400s1 + 19250

8085 = 282 + 280 + 28−2 + 35v2 + 35v0 + 35v−2 + 35c2 + 35c0 + 35c−2 + 56c3 + 2× 56c1

+ 2× 56c−1 + 56c−3 + 160s1 + 160s−1 + 224s1 + 224s−1 + 224′
c1 + 224′

c−1

+ 3502 + 2× 3500 + 350−2 + 567s0 + 840s0 + 840v0 + 1296s1 + 1296s−1

17920 = 8s1 + 8s−1 + 282 + 2× 280 + 28−2 + 35s2 + 2× 35s0 + 35s−2 + 56c1 + 56c−1

+ 112s1 + 112s−1 + 160s3 + 3× 160s1 + 3× 160s−1 + 160s−3 + 3002 + 2× 3000

+ 300−2 + 3502 + 2× 3500 + 350−2 + 567s2 + 2× 567s0 + 567s−2

+ 840s1 + 840s−1 + 1296s1 + 1296s−1 + 1400s1 + 1400s−1 + 40960

52920 = 10 + 8s1 + 8s−1 + 280 + 35s2 + 35s0 + 35s−2 + 112s3 + 112s1 + 112s−1 + 112s−3

+ 160s1 + 160s−1 + 294s4 + 294s2 + 294s0 + 294s−2 + 294s−4 + 3000 + 567s2

+ 567s0 + 567s−2 + 1400s1 + 1400s−1 + 1568s3 + 1568s1 + 1568s−1 + 1568s−3

+ 19250 + 4312s2 + 4312s0 + 4312s−2 + 7840s1 + 7840s−1 + 89180.

Our convention for representations of SO(8) with the same dimensions is as follows:

8v = χ
SO(8)
[1,0,0,0], 8s = χ

SO(8)

[ 1
2
, 1
2
, 1
2
, 1
2
]
, 8c = χ

SO(8)

[ 1
2
, 1
2
, 1
2
,− 1

2
]
, (F.10)

where spinor and conjugate spinor representations differ by the the sign for the last weight,

and in addition,

224s = χ
SO(8)

[ 5
2
, 1
2
, 1
2
, 1
2
]
, 224′c = χ

SO(8)

[ 3
2
, 3
2
, 3
2
,− 1

2
]
,
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840v = χ
SO(8)
[2,2,2,0], 840c = χ

SO(8)
[3,1,1,−1], 840′c = χ

SO(8)

[ 5
2
, 3
2
, 1
2
,− 1

2
]
. (F.11)

Some relevant tensor products are

(45× 45)S = 1+ 54+ 210+ 770,

(45× 45)A = 45+ 945,

(45× 45× 45)S = 2× 45+ 210+ 945+ 1386+ 5940+ 7644,

(45× 45× 45)A = 1+ 54+ 210+ 770+ 945+ 4125+ 8085. (F.12)

• E6

E6 ⊃ SO(10)×U(1)I (F.13)

78 = 10 + 161 + 16−1 + 450

650 = 10 + 102 + 10−2 + 161 + 16−1 + 450 + 540 + 1441 + 144−1 + 2100

2430 = 10 + 161 + 16−1 + 450 + 126−2 + 1262 + 2100 + 5601 + 560−1 + 7700

2925 = 161+16−1+450+450+1202+120−2+1441+144−1+2100+5601+560−1+9450

34749 = 10+103+10−3+2× 161+2× 16−1+2× 450+540+1202+120−2+126−2+1262

+ 1443 + 2× 1441 + 2× 144−1 + 144−3 + 3× 2100 + 3202 + 320−2 + 2× 5601 + 2× 560−1

+ 7201 + 720−1 + 7700 + 2× 9450 + 10500 + 10500 + 12001 + 1200−1 + 13860

+ 14401 + 1440−1 + 17282 + 1728−2 + 36961 + 3696−1 + 59400

43758 = 10 + 161 + 16−1 + 450 + 126−2 + 1262 + 2100 + 5601 + 560−1 + 672−3 + 6723

+ 7700 + 14401 + 1440−1 + 3696′
−2 + 3696

′

2 + 59400 + 76440 + 80641 + 8064−1,

70070 = 450 + 540 + 1202 + 120−2 + 1262 + 126−2 + 2× 1441 + 2× 144−1 + 2× 2100

+ 3202 + 320−2 + 5603 + 2× 5601 + 2× 560−1 + 560−3 + 7201 + 720−1 + 7700

+ 3× 9450 + 10500 + 10500 + 2× 12001 + 2× 1200−1 + 17282 + 1728−2

+ 29702 + 2970−2 + 36961 + 3696−1 + 41250 + 59400 + 80850 + 88001 + 8800−1

105600 = 161 + 16−1 + 2× 450 + 1202 + 120−2 + 126−2 + 1262 + 1441 + 144−1 + 2× 2100

+ 3× 5601 + 3× 560−1 + 2× 7700 + 2× 9450 + 10500 + 10500 + 12003 + 12001

+ 1200−1 + 1200−3 + 14401 + 1440−1 + 17282 + 1728−2 + 29702 + 2970−2 + 36961

+3696−1+3696′
−2+3696

′

2+2× 59400+80641+8064−1+88001+8800−1+179200

537966 = 10 + 161 + 16−1 + 450 + 126−2 + 1262 + 2100 + 5601 + 560−1

+ 6723 + 672−3 + 7700 + 14401 + 1440−1 + 2772−4 + 27724 + 3696′
−2 + 3696

′

2

+ 59400 + 6930′
−2 + 6930

′

2 + 76440 + 80641 + 8064−1 + 89100

+ 172803 + 17280−3 + 349921 + 34992−1 + 46800−2 + 468002 + 529200

+ 705601 + 70560−1 + 737100, (F.14)

where we used a Mathematica application LieART (ver 1.0.1) [63, 64] to obtain the branch-

ing rules above. For E6 case, adj is 78-dimensional and relevant tensor products of the

adjoint representation of E6 are as follows:x

(78× 78)S = 1+ 650+ 2430,

(78× 78)A = 78+ 2925,
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(78× 78× 78)S = 78+ 650+ 2925+ 34749+ 43758,

(78× 78× 78)A = 1+ 650+ 2430+ 2925+ 70070. (F.15)

• E7

E7 ⊃ SO(12)×U(1)I

133 = 660 + 321 + 32−1 + 12 + 10 + 1−2,

912 = 12−1 + 121 + 32−2 + 320 + 322 + 220−1 + 2201 ++3320

1463 = 660 + 772 + 770 + 77−2 + 352′1 + 352′−1 + 4620

1539 = 10 + 32′1 + 32′−1 + 662 + 660 + 66−2 + 770 + 352′1 + 352′−1 + 4950

7371 = 14 + 12 + 10 + 10 + 1−2 + 1−4 + 323 + 321 + 321 + 32−1 + 32−1 + 32−3

+ 662 + 660 + 66−2 + 4622 + 4620 + 462−2 + 4950 + 16380 + 17281 + 1728−1

adj ∼ 133, adj2 ∼ 7371, and adj3 ∼ 238602 and some relevant tensor products of

the adjoint representation of E7 are as follows:

(133× 133)S = 1+ 1539+ 7371,

(133× 133)A = 133+ 8645,

(133× 133× 133)S = 133+ 1463+ 8645+ 152152+ 238602,

(133× 133× 133)A = 1+ 1539+ 7371+ 8645+ 365750. (F.16)

• E8

E8 ⊃ SO(14)×U(1)I

248 = 910 + 142 + 14−2 + 10 + 641 + 64−1. (F.17)

adj ∼ 248, adj2 ∼ 27000, and adj3 ∼ 1763125, and relevant tensor products of the

adjoint representation of E8 are as follows:

(248× 248)S = 1+ 3875+ 27000,

(248× 248)A = 248+ 30380,

(248× 248× 248)S = 248+ 30380+ 779247+ 1763125,

(248× 248× 248)A = 1+ 3875+ 30380+ 27000+ 2450240. (F.18)
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[21] P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions,

Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].

– 62 –

http://dx.doi.org/10.1016/S0550-3213(96)00690-6
http://arxiv.org/abs/hep-th/9610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/9610251
http://dx.doi.org/10.1016/S0550-3213(97)00279-4
http://arxiv.org/abs/hep-th/9702198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
http://dx.doi.org/10.1016/S0370-2693(97)00645-X
http://arxiv.org/abs/hep-th/9703098
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703098
http://dx.doi.org/10.1143/PTP.105.323
http://arxiv.org/abs/hep-ph/0010288
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0010288
http://dx.doi.org/10.1088/1126-6708/2001/06/051
http://arxiv.org/abs/hep-th/0104113
http://inspirehep.net/search?p=find+EPRINT+hep-th/0104113
http://dx.doi.org/10.1088/1126-6708/2002/10/045
http://arxiv.org/abs/hep-th/0205230
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205230
http://dx.doi.org/10.1016/0550-3213(96)00212-X
http://arxiv.org/abs/hep-th/9603150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603150
http://arxiv.org/abs/hep-th/9712117
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712117
http://dx.doi.org/10.1007/JHEP02(2011)011
http://arxiv.org/abs/1012.2880
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2880
http://dx.doi.org/10.1007/JHEP01(2011)083
http://arxiv.org/abs/1012.2882
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2882
http://dx.doi.org/10.1007/JHEP02(2012)013
http://arxiv.org/abs/1109.6454
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6454
http://dx.doi.org/10.1007/JHEP12(2011)031
http://arxiv.org/abs/1110.2175
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2175
http://dx.doi.org/10.1016/0550-3213(78)90218-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B135,149
http://dx.doi.org/10.1016/0550-3213(86)90517-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B269,691
http://arxiv.org/abs/hep-th/9712074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712074
http://dx.doi.org/10.1088/1126-6708/2008/02/064
http://arxiv.org/abs/0801.1435
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1435
http://dx.doi.org/10.1016/0550-3213(96)00243-X
http://arxiv.org/abs/hep-th/9602120
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602120
http://dx.doi.org/10.1016/0550-3213(95)00621-4
http://arxiv.org/abs/hep-th/9510209
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510209


J
H
E
P
1
0
(
2
0
1
2
)
1
4
2
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