
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

A Classification-Based Algorithm to Detect Forged
Embedded Machines in IoT Environments

Valerio Selis , Member, IEEE, and Alan Marshall, Senior Member, IEEE

Abstract—In the Internet of Things (IoT), interconnected de-
vices manage essential information related to people’s lives;
hence, securing this information is essential. The number of these
machines is rapidly growing; these are mostly embedded, and
therefore more susceptible to attacks. Recently, thousands of sub-
verted IoT embedded machines, such as surveillance cameras, were
used for launching distributed denial of service (DDoS) attacks. In
this scenario, attackers, who are not embedded machines, can emu-
late their behaviors to subvert the machine-to-machine network. In
this paper, we present a novel algorithm to detect such forged ma-
chines. This allows detection of virtualized and emulated systems
by observing their behaviors and can be used by IoT trust agents in
embedded machines. With the aim of creating a machine-agnostic
system, portable and applicable to future IoT machines, we propose
a classification-based algorithm as the detection mechanism. Ex-
tensive experiments with different system architectures and oper-
ating systems were performed, along with a comparison of several
feature selection and classification methods. The results show that
our method can quickly reveal illegitimate machines with a high
probability of detection, giving the opportunity for its use in power-
constrained machines. Our approach is also able to detect unknown
embedded systems and can be used to detect fake timing attacks.

Index Terms—Classification methods, Internet of Things (IoT),
machine-to-machine (M2M) communications, timing analysis,
trust, virtual machining.

I. INTRODUCTION

NOWADAYS, there are between 5 and 15 billion devices
already connected to the Internet, and it is expected there

will be 21 to 50 billion by 2020, of which 13 billion are likely to
be wirelessly connected [1]–[3]. These “things” have different
capabilities and complexities, starting from a simple smart sen-
sor to a high-end supercomputer. In the Internet of Things (IoT)
paradigm, their collaboration is important in order to reach spe-
cific and complex goals. The devices communicate to each other,
and some are connected to the Internet, including but not lim-
ited to, virtual and real objects. In this study, the term “object”
means everything that is not directly related to human beings. At
present, there are various applications that have started to emerge
across several fields, such as healthcare, smart robots, intelligent
transportation systems, manufacturing systems, smart building

Manuscript received March 26, 2017; revised November 3, 2017; accepted
March 30, 2018. This work was supported in part by the Engineering and
Physical Sciences Research Council under Grant 1566989. (Corresponding
author: Valerio Selis.)

The authors are with the Department of Electrical Engineering and Elec-
tronics, University of Liverpool, Liverpool L69 3GJ, U.K. (e-mail:, Valerio.
Selis@liverpool.ac.uk; Alan.Marshall@liverpool.ac.uk).

Digital Object Identifier 10.1109/JSYST.2018.2827700

technologies, and smart grids [4]–[8]. These IoT application
scenarios are widespread and so it is not practical to implement
conventional “enterprise”-type security measures, as for exam-
ple, many IoT devices will frequently encounter new devices
that are not part of a corporate system. This factor is enhanced
whenever public networks are used for data offloading and IoT
devices share information independently of the communication
infrastructure, location, and software applications used [9], [10].

In this context, real objects have the important role of manag-
ing the data collected from real environments. Most importantly,
the information gathered from the environment will be used to
actively give feedback and very likely, to intervene in people’s
lives in an autonomous way. For these reasons, their security is
a primary aspect that needs to be addressed [11]. Moreover, it is
widely recognized that most IoT devices are based on embed-
ded systems [4], [5]. Embedded machines generally have low
computational capability and are more susceptible to attacks.
In fact, to detect sophisticated attacks, machines need to ana-
lyze a large amount of information in a short period of time.
However, a machine with low computational capability is not
able to process this amount of information quickly enough to
detect an attack in real time or to detect it at all. An embedded
machine is therefore more susceptible to attacks compared to a
machine with high computational capabilities. In other words,
this means that embedded machines can be easily compromised,
and as such, can be a target for attackers.

From the real objects’ perspective, there are two main types
of communications:

1) machine-to-machine (M2M) communication;
2) machine-to-human (M2H) communication.
These types of communications can be subverted by an at-

tacker in order to create the following types of communications:
1) machine-to-fake machine (M2FM) communication, and

vice versa;
2) machine-to-fake human (M2FH) communication, and

vice versa, in which a fake human is a machine mimick-
ing human behaviors, e.g., a robot with an AI capability
of reproducing human behaviors.

Trust has an important role in securing against these subverted
communications. In fact, several trust management frameworks
(TMFs) have been proposed [12]–[18]. Nitti et al. [15]–[18] in-
corporate different trust weight values in their TMFs, for devices
with different computational capabilities as shown in Table I. As
shown in this table, these devices are mainly embedded, and by
considering M2FM communications, an attacker may prefer to
forge devices such as smartphones, tablets, and/or laptops. This

1937-9234 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/157675229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-1856-4707
mailto:Valerio.Selis@liverpool.ac.uk
mailto:Valerio.Selis@liverpool.ac.uk
mailto:Alan.Marshall@liverpool.ac.uk


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

Fig. 1. Threat model with a representation of multiple forged embedded machine attack in IoT in order to subvert M2M communications. (a) This shows A’s
view of the network from which there are apparently no issues. (b) This shows the actual network topology including the attacker faking B, C, and D.

TABLE I
ASSIGNED TRUST WEIGHT VALUES DEPENDING ON THE

COMPUTATIONAL CAPABILITIES OF MACHINES

is because these devices have a high trust weight value assigned
during the trust computation by the TMF and, therefore, their
initial trust value will be higher.

In M2FM communication scenario, a real machine aims to
access to the Internet by communicating with other machines.
Therefore, it will start to trust them accordingly, assuming its
neighbors are real. However, this machine is not able to assess if
the other machines are real or not. An attacker can use multiple
virtual or emulated systems in order to create forged embedded
machines and consequentially compromise the network or part
of it, as shown in Fig. 1. Fig. 1(a) shows an example in which
a real embedded machine “A” assumes that it is communicating
with other real embedded machines “B,” “C,” “D,” and “E” and
will trust them accordingly. However, as shown in Fig. 1(b), “A”
is communicating with an attacker faking “B,” “C,” and “D”
and creating an M2FM communication. This could allow the at-
tacker to collect data transmitted by “A” and to give to “A” false
recommendations about “E.” This may lead to security issues,
in particular for the data transmitted throughout the attacker. An
attacker can create a large amount of forged embedded machines
in order to attack the TMF. In this case, multiple forged embed-
ded machines in the network can attack it simultaneously by
launching several attacks such as good-mouthing attacks, self-
promoting attacks, on–off attacks, etc. For example, to launch
a good-mouthing attack, node “B” can increase the reputation
of node “C” by providing good recommendations to “A.” To
launch the attack using multiple forged embedded machines, a

powerful machine (with greater computational resources) may
be more preferable than an embedded machine. It can also mis-
inform “A” and/or poison the information it sends or receives,
e.g., Man-in-The-Middle attacks.

The aim of this paper is to remove the opportunity for an
attacker to create M2FM communications by detecting forged
embedded machines in the network. The method used to detect
these illegitimate machines can be used by trust agents to secure
the M2M communication. This will give the opportunity to
create trust relationships among devices in the network.

The main contributions of the paper are as follows:
1) Analysis and adoption of machine learning algorithms in

order to easily detect forged embedded machines in the
network.

2) Definition of a novel method to detect unreal embedded
machines quickly with a high detection rate, which is
independent of the network topology and architecture.

3) A large number of real, virtual, and emulated embedded
systems have been systematically tested in order to pro-
duce a valuable dataset to be used as a reference for the
detection.

4) Demonstration of the advantage of this solution and
its easy applicability to future IoT devices, by creating
trust relationships in M2M communications and remov-
ing M2FM communications from the network.

5) Testing the reliability of the detection method when ap-
plied to unknown embedded systems (UESs).

The rest of this paper is organized as follows. In Section II, the
work related to the detection of virtual and emulated systems is
presented. In Section III, we describe the proposed solution by
comparing different feature selection and classification meth-
ods. The results of these comparisons are shown and discussed
in Section IV. The proposed solution is tested against UESs in
Section V. Finally, in Section VI, we present our conclusion and
future research directions to apply this method to TMFs in IoT.

II. RELATED WORK

Research work on detecting forged embedded machines in
M2M communications and IoT is at an early stage and, as far as



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SELIS AND MARSHALL: CLASSIFICATION-BASED ALGORITHM TO DETECT FORGED EMBEDDED MACHINES IN IOT ENVIRONMENTS 3

we are aware, the work proposed by Selis and Marshall in [19] is
the first addressing this specific problem. Related works have fo-
cused on the detection of specific virtual and emulated systems,
in some cases, by using specific architecture-dependent infor-
mation from×86/×64 architectures. The detection of embedded
emulated systems like the Dalvik VM for Android-based sys-
tems is considered in [20] and [21] by using fingerprinting tests.
In the following sections, the detection mechanisms adopted in
the literature to detect virtual and emulated systems are shown.

A. CPU and Memory Tests

Information from the memory and CPU registers is gathered
for the detection [22]–[24]. These tests detect unreal machines
only if the architecture is based on the Intel Architecture at
32 bit. Moreover, if the virtual or emulated systems use the real
CPU, these tests can fail. For these reasons, CPU and memory
tests cannot be adopted to detect forged embedded machines in
IoT, because there are several different architectures, such as
embedded ×86, MIPS, ARM, PowerPC, etc. It is not feasible
to test all of these architectures to find, if any, specific infor-
mation from CPU and memory that can lead to the detection
of virtual and emulated environments. Furthermore, if there is
a new architecture, it needs to be tested in order to verify if
there is a possible way to use CPU and memory registers for
the detection. One way forward is to use system-on-chip with
customized architectures. However, this approach means that
there will be no previous knowledge of the architecture, and so
these detection methods are not feasible.

B. Architecture-Based Timing Tests

Specific CPU instructions are used to carry out a time analy-
sis and the information obtained is used for the detection [25],
[26]. These tests are based on measuring the time to access
specific CPU registers present in ×86/×64 architectures by us-
ing read and write instructions. As stated, these are architecture-
dependent operations, and difficult to apply across all the pro-
cessor architectures encountered in the IoT environment. In fact,
the detection should be done by treating the machine architec-
ture as a black box.

C. Remote Tests

Information from the TCP packets in the network is used for
the detection [27], [28]. Remote tests are based on using the
TCP timestamp option in TCP packets. This option is used by
default only in Linux-based machines and it is used to calculate
the clock skew of a system. Polčá et al. in [29] and [30] have
demonstrated that it is possible to easily remove it by using the
network time protocol (NTP) daemon. It is also possible to fake
it by mimicking a clock skew of another device as demonstrated
in [31].

D. Fingerprinting Tests

Specific “signature” from the system are collected for the de-
tection [20], [21], [25], [26], [28], [32]. Fingerprinting mecha-
nisms collect information from the system such as driver names,

running applications, system registry keys, hardware IDs such
as MAC-addresses, system APIs access where available, etc.
This information can be easily faked in virtual and emulated
environments, especially with open source OS. For example,
we were able to modify the kernel in order to display fake CPU
information that can be obtained from/proc/cpuinfo. This can
be also done for modules, drivers, and applications by changing
their information and recompiling them. It is also very easy to
fake the MAC address of network interfaces by adopting the
MAC-Changer application [33].

E. Behavioral Tests

System behaviors may also be used for detection. A behavior
test has been demonstrated to be efficient for detecting virtual
and emulated systems. In the work presented in [19], a machine
emulation detection algorithm is presented. This uses behav-
iors from real, virtual, and emulated embedded systems for the
detection. However, its main limitation is that the machine is rep-
resented with a feature space of one feature per time by applying
predefined threshold values. This can lead to a misclassification
of real embedded machines, or for forged embedded machines
to go undetected. Moreover, the time required to detect virtual or
emulated embedded systems in a network is very high (around
3.5 min). These performances mean that these tests are very un-
likely to be applied in IoT environments for three main reasons:
1) high detection uncertainty; 2) slowness in the detection; and
3) open to fake timing attacks, such attacks consist of using
powerful machines with a modified kernel in order to fake the
timing behaviors. These are very important factors for detecting
in mobile environments, and for devices with power-constrained
resources.

III. PROPOSED SOLUTION

In the previous section, we underlined that current detection
methods cannot be used for detecting forged embedded ma-
chines in the IoT environment. For this reason, a new method
is proposed. Virtual and emulated embedded systems (VESs)
are normally used by developers and researchers as test envi-
ronments. These are almost exclusively used to test and run
applications without having a real embedded hardware. In this
case, a VES needs to translate all instructions from the host
architecture to the virtualized or emulated system, called guest.
These translations are needed for each part of the embedded
system, such as CPU registers and instructions, memory man-
agement, physical devices management, etc. The execution of a
set of instructions in a VES should be the same as the execution
in a real embedded machine (REM). However, VESs introduce
various behaviors that cause differences in system resources
availability, timing dependencies, and I/O devices communica-
tion [34], [35]. In this paper, timing differences between REMs
and VESs are used as behaviors characterization method.

A. Detection Model

The detection model is based on “IoT trust agents” running
on IoT devices and capable of communicating with each other



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

Fig. 2. Representation of the detection model. Agent “A” requests to agent
“B” to run the characterization algorithm locally and starts counting the elapsed
time (1). Agent “B” performs the local characterization (2) and then it sends
back the timing results to agent “A” (3). Agent “A” estimates the round-trip
times, stops the counter, and performs the final detection (4).

inside the IoT architecture. From now on in this paper, these will
be called “agents.” Each agent gives the opportunity to another
agent in the network to run the characterization algorithm locally
as shown in Fig. 2.

The characterization algorithm consists of pinging localhost
(127.0.0.1) in device “B” n times with an interval between pings
of 0.2 s, this interval is used to speed up the characterization
time. The number of pings required to obtain a good detection
will be determined by changing the n value. Also, as expected,
reducing the number of pings leads to a corresponding decrease
in the overall detection time. For each ping, timing information,
such as ping response time (P) and system timestamp (T), is
collected. T is used as control time information. If an attacker
tries to fake P, the algorithm will rely on the changes in T and
vice versa. In fact, an attacker that tries to fake P and/or T values
needs to implement additional functions to fake the ping. These
new functions need to be translated from the host architecture
to the virtualized or emulated system and then executed. These
result in an increase in the time between two pings (T) and the
characterization time, leading to a detection.

There are several reasons why the ping command is adopted.
First, it is available in all systems that support connectivity.
Second, it provides precise timing information related to the
networking stack. In fact, when a VES uses the ping command,
it needs to create ping request and response packets, and manage
these packets in the kernel and user space. All these operations
need to be done by translating every single instruction from the
host architecture to the guest architecture. The rationale is that
all these tasks are going to cause a change in the timing behav-
iors. A third reason for using the ping command is that it makes
it difficult for a VES to fake the behavioral results, because this
command uses the network stack in order to perform the char-
acterization. If the method presented in here is applied, VESs
would need to check when a socket is created every time. This
task allows checking that the socket is created by the character-
ization algorithm. This leads to an increase in the overall delay
time and decrease in system performances. Additionally, this
requires a change to part of the kernel of a VES which is not
always possible. Finally, if the VES tries to slow down its time
in order to fake the characterization, the agent that requests the
characterization can use its local time to detect this. To do so, it

TABLE II
LIST OF REAL, VIRTUAL, AND EMULATED EMBEDDED SYSTEMS

has to simply measure the difference between the request (TReq)
and the response (TResp ) of the characterization as follows:

TResp − TReq ≈ TCh + ℮(RTTΔTCh) (1)

where TCh is the characterization time

TCh = npings · 0.2 s (2)

and ℮(RTTΔTCh) is the estimated round-trip times after TCh

seconds are elapsed. For example, if the characterization is sup-
posed to take 1 min, the difference should be around 1 min plus
network communication delays and not less than that.

Therefore, we apply several supervised learning methods in
which each machine is identified with two or more features
per time. The following sections highlight the steps adopted to
efficiently detect forged embedded machines in the network.

B. Dataset

The dataset is composed of information gathered from real,
virtual, and emulated embedded systems by using the character-
ization algorithm. Table II shows the systems considered here.
In order to create the dataset, 1000 tests for each system were
performed, half with normal CPU usage and half by stressing
the CPU (CPU usage around 100%). By varying the CPU usage,
it is possible to understand if the detection of forged embedded
machines is affected by unpredictable changes in system per-
formances. In fact, a machine could be able to run several appli-
cations at the same time that may affect its behaviors. However,
the CPU usage cannot be used to detect VESs, because it can be
modified in real time by running different applications. In sum-
mary, a total of 20 000 tests were carried out, out of which 10 000
were obtained from REMs and 10 000 from VESs. For each test,
information about the ping response time (P) and timestamp (T)
was collected and used as characterization metrics.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SELIS AND MARSHALL: CLASSIFICATION-BASED ALGORITHM TO DETECT FORGED EMBEDDED MACHINES IN IOT ENVIRONMENTS 5

TABLE III
CHARACTERIZATION FEATURES

C. Features Extraction

The information present in the dataset is related to P and
T. In order to calculate the variability of these measurements,
statistical methods were adopted, as shown in Table III. These
characterization features are used to understand how the timing
behaviors change over time. In particular, features obtained from
the central tendency, dispersion, and distribution of the data are
used. This choice is based on the hypothesis that, considering
the longer time VESs can take to perform the translation of
all instructions, these features are likely to give more accurate
results in detecting them. A total of 28 features were extracted,
14 for P and 14 for T.

At this stage, all features are preprocessed by adopting the
Min–Max normalization method calculated as follows:

x̃j
i =

xj
i − minj

maxj − minj
(3)

where xj
i is the ith value of the jth feature and, maxj and minj

are respectively the maximum and minimum values of the jth
feature. By using this method, all features are normalized within
values between 0 and 1 in order to avoid zero entries in sparse
data and increase the strength of features selection and classifi-
cation methods against small standard deviations of features.

D. Features Selection

The feature selection step is used to select the most important
features and decrease the computational time and complexity
to reach the detection. Our hypothesis is that REMs will have

similar timing behaviors during their functional operation. The
results from P and T are therefore expected to follow a specific
data distribution and we assume that central tendency features
will have an important role in detecting forged embedded ma-
chines. Different features selection methods were adopted in
order to obtain the best result and these are as follows:

1) Select-K-Best: select features according to the k high-
est scores with both ANOVA F-value (SKB-F) and Chi-
squared stats of nonnegative features (SKB-Chi2) [36].

2) Extremely randomized trees (ERT) [36], [37].
3) Recursive feature elimination (RFE) [36], [38].
4) L1-based feature selection (L1-FS) [36], [39].
These methods were applied in order to extract the best kth

features from P and the best kth features from T, where k is a
value between 1 and 14. It is very important to select always at
least one feature from P and one from T. In fact, if there are only
the best kth features of a specific measure and an attacker fakes
it, this may lead to a misdetection.

E. Classification

The classification step is a process used to identify if an
observation belongs to a specific category. In this case, it is
used to detect if an unknown embedded machine (observation)
is real or unreal (categories). This step is subdivided into two
main steps: learning and testing. In the first step, the classifier is
trained with a dataset, called training set, in which the class is
known for each sample. In this step, the classifier learns how to
recognize which sample belongs to a specific class. Moreover, a
cross-validation over the training set is applied in order to select
the best parameters for the classification methods, a tenfold
cross-validation is used. In the second step, the classifier uses
its experience to classify new data, called test set. Its classes
for each sample are known but not used by the classifier. In our
experiment, the dataset was subdivided into 75% for the training
set and 25% for the test set.

The following supervised learning methods for classification
problems were adopted:

1) Decision Tree (DT) [36], [40]–[42].
2) Naive Bayes (NB) [36], [43].
3) Stagewise Additive Modeling using a Multi-class Expo-

nential loss function (SAMME) [36], [44].
4) Random Forest (RF) [36], [45].
5) Support Vector Machine (SVM) [36], [46], [47]. Three

different kernels were adopted: linear (L-SVM), polyno-
mial (P-SVM), and radial basis function (R-SVM). These
algorithms use two parameters in order to obtain the max-
imum accuracy such as C and gamma. The first one is
the penalty for misclassification and the second one is the
deviation of the kernel. C was sampled at 10−2 , 10−1 , ...,
103 , while gamma at 10−9 , 10−8 , ..., 103 .

6) K-Nearest-Neighbor (k-NN) [36]. The number of k neigh-
bors was sampled at 1, 2, ..., 30.

7) Linear Discriminant Analysis [36], [44].
8) Quadratic Discriminant Analysis [36], [44].



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

F. Performance Evaluation

The performance evaluation is an important tool to check how
well the classification methods classify the test set. This is used
to understand the performance of classifiers in detecting forged
embedded machines in the network.

For the evaluation, four different measures were used for each
classifier:

1) Accuracy (A): measures how well the classifier is able to
classify the samples.

2) Precision (P): measures the percentage of samples that
are classified as positive and are really positive.

3) Recall (R): measures the percentage of positive samples
that are classified as positive.

4) F1-score (F1): this is the harmonic mean considering both
precision and recall.

These measurements return values between 0 and 1, where
1 is the best result. Measurements such as precision, recall,
and F1-score are calculated for both real and forged embedded
machines. Therefore, the average of these measurements from
REM and VES is calculated to have a final value to define the
performance of each classifier, termed overall detection perfor-
mance (ODP) as

ODPj
i =

Aj
i +

∑1
m=0 Pj

mi
+ Rj

mi
+ F1j

m i

7
(4)

where m is 0 (REM) or 1 (VES), i is the ith combination of
features selection method and classifier, j is the jth tuple of
features selected (kP, kT), where k is the number of the kth best
features, i.e., with k equal to 3, (3P, 3T) is a tuple with the
third best features from ping response time and the third best
features from timestamp. In this study, we do not consider the
combination of tuples of features like (kP, lT), where k could be
different from l, i.e., (3P, 2T) tuple.

The final evaluation is obtained by considering the charac-
terization time (TCh), the features extraction time required for
extracting a tuple of best features from a target (TFE), the clas-
sification time (TCl) and ODP. The features selection time is not
considered for the final evaluation as it will not be present during
the detection. For this reason, we define the overall detection
speed (ODS) for a possible target as

ODSj
i = TCh +

T j
FE + T j

Cli

N
(5)

where N is the number of samples in the test set, i is the ith
combination of features selection method and classifier, and j is
the jth tuple of features selected (kP, kT), where k is the number
of the kth best features.

G. Overall Evaluation

In order to find the best solution for every different number of
pings, the minimum ODS and the maximum ODP are calculated
for each tuple of features and each combination of features
selection methods and classifiers as

ODPmaxj
i = max(ODPj

i ) (6)

ODSminj
i = min(ODSj

i ). (7)

TABLE IV
EVALUATION SCORES FOR ODP AND SPEED

Then, a score is assigned to ODP and ODS between 5 and
0 for each tuple of features, and each combination of features
selection methods and classifiers are shown in Table IV, in
which, the value 5 represents the best result.

In this study, we give more importance to ODP than ODS
with respective ratios of 70% and 30%. This is because more
relevance is given to the proper identification of forged embed-
ded machines in a short time frame. In fact, by increasing the
ODS percentage and therefore saving time, it may happen that
a lower percentage of ODP is selected and this will increase the
uncertainty during the trust evaluation.

The final evaluation score (FES) is then calculated as follows:

FESj
i =

ODPscorej
i × 70

max(ODPscorej
i )

+
ODSscorej

i × 30
max(ODSscorej

i )
. (8)

In this case the value of a FES is between 0 and 100, where
the maximum value represents the best combination of features
selection and classification method for that features selected.

The best features selected are identified by using the rank of
a set as follows:

rank (Xi)

=
⋃

{
rank (y0) = 1

rank (yj ) = rank (yj−1) + 1
; for j = 1, . . . , n

(9)

where Xi is a sorted set composed of the sum of how many times
each feature is selected; by considering the ith combination of
features selection method and classifier that gives as result the
highest FES, yj is the jth element in Xi and n is the number of
elements in Xi .

IV. SIMULATION AND RESULTS

Simulations have been performed by using Python and the
Scikit-learn module [36]. The information gathered from VES
was obtained by using virtual and emulated applications with
default configurations in a Linux-based system with a quad-core
i3 CPU at 3.40 GHz and 8 GB of RAM.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SELIS AND MARSHALL: CLASSIFICATION-BASED ALGORITHM TO DETECT FORGED EMBEDDED MACHINES IN IOT ENVIRONMENTS 7

Fig. 3. Steps required for selecting the best combination of features selection
and classification method.

In the following part, results obtained from each step used
to select the best combination of features selection method and
classifier are presented. In the following, we show the results
obtained to perform the final detection of forged embedded
machines.

Fig. 3 shows a summary of steps required to choose the best
combination of features selection and classification methods in
order to detect forged embedded machines. These steps were
carried out for a total of seven times by changing the number of
pings each time, i.e., 1000, 500, 200, 100, 50, 25, and 15.

The timing information related to features extraction and
characterization steps is shown in Table V. It shows the
decreasing of these times for different number of pings, which
is very important in order to speed up the detection.

Fig. 4 shows the maximum time required by each features
selection method in order to select a tuple of best features from

TABLE V
TIMING INFORMATION RELATED TO THE CHARACTERIZATION

AND FEATURES EXTRACTION STEPS

Fig. 4. Maximum time required by features selection methods to select the
best features from the training set and for different number of pings.

Fig. 5. Maximum time required to classify all data present in the training set
for different number of pings.

the training set and for different number of pings. This shows
that the quickest features selection method is ERT. The same
timing information related to classification methods is shown
in Fig. 5, in which the quickest classification method is k-NN
by considering 1000 pings. Comparing the information from



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 6. Rank of how many times the features were selected by the best features
selection method for different number of pings. P. refers to ping response time,
T. to timestamp, and features abbreviations from Table III are used. For example,
P.L means lower bound value of ping response time.

Table V, and Figs. 4 and 5, it is possible to see that the limiting
factor is the characterization time.

After the features selection step, the rank of the features se-
lected for each number of pings is calculated as shown in Fig. 6.
The lower value represents the best feature chosen. It is possible
to see that features such as P.min and T.sum are very useful for
detecting forged embedded machines as the sum of their ranks
is very low.

Fig. 7 shows which features selection methods were adopted
in order to select the best tuple of features for different number
of pings. SKB-F works well to select the best two and four
features. L1-FS selects mostly the best 10 to 18 features. ERT
selects the best 2 to 26 features for different number of pings.
SKB-Chi2 works well in selecting the best 22 features. Finally,
RFE is adopted only five times (2, 4, 6, 24 and 26 features) for
100 and 200 pings. The (14P, 14T) tuple is not shown in the
figure as all features are used, therefore, in this case this tuple is
not needed for the selection.

Fig. 8 shows which classification methods return the highest
FES value. These methods were adopted in order to classify
the best tuple of features for different number of pings. k-NN
classifies real and forged embedded machines by using two and
four features for high and small number of pings. The RF results
show it to be the best classification method to properly classify
real and forged embedded machines for a wide range of number
of pings. DT and SAMME were adopted only few time each. All
the other classification methods returned a lower FES value. For
this reason, these methods are not shown and are not considered
for classifying.

Fig. 9 shows the information about ODP for different num-
bers of pings and feature tuples. In this figure, it is possible
to see that there is a saturation point when the best ten fea-
tures are selected. The results obtained from the combination of
Figs. 7–9 are summarized in Figs. 10 and 11. In these figures, the
best ten features which give the best FES from ERT and L1-FS

methods are shown in combination with RF and k-NN. Infor-
mation about the classification time is shown in Fig. 11. The
classification time is reported instead of ODS because the char-
acterization time is the limiting factor. This figure shows that
k-NN is faster than RF, however, RF is more reliable than k-NN
for detecting forged embedded machines as shown in Fig. 10.

As a result, it is possible to obtain an ODP value greater
than 99.5% with only 25 pings with L1-FS and RF. The best
ten features obtained by using L1-FS are P.min, P.median, P.L,
P.SKEW, P.KURT, T.sum, T.µ, T.range, T.L, and T.SKEW.
Moreover, by using ERT with RF for 200 pings, the ODP value
is 99.9% circa. In this case, the best ten features selected are
P.min, P.sum, P.µ, P.median, P.L, T.sum, T.mode, T.median, T.U,
and T.r. It is clear that by increasing the number of pings, there
is more information available and that different features can be
more accurate in detecting a forged embedded machine, while
some features only introduce uncertainty. Finally, it is important
to note that by adopting these combinations, the value of ODS
for 25 pings is equal to approximately 5 s; for 200 pings it is
around 40 s. This shows the high efficiency of our method in
terms of time required for the detection and the high detection
performance.

V. DETECTION OF UNKNOWN SYSTEMS

The final detection method is also tested against UESs in order
to check its performances on recognizing REMs and VESs that
are not present in the dataset. Two virtual embedded systems,
VMWare ESXi and VirtualPC, and one real embedded system,
the Zsun WiFi Card Reader were used. These systems are very
different from other systems present in the dataset. VMWare
ESXi is a hypervisor that runs directly on the physical hard-
ware, compared to other virtual or emulated systems that run on
a host Linux-based OS. VirtualPC is a virtual machine that runs
under a Windows-based OS. Finally, the Zsun WiFi Card Reader
is a card reader that provides access to files via WiFi, while other
real embedded systems in the dataset were development boards,
smartphones, and tablets with more resources and capabilities.
The same amount of characterization tests was carried out for
all these UESs. Fig. 12 shows the results obtained by using the
final detection method for 25 and 200 pings. It is possible to see
that, with 25 pings and L1-FS with RF, there is approximately
25% probability of recognizing an unknown REM as a VES, and
a very low uncertainty in recognizing unknown VESs. Mean-
while, with 200 pings and ERT with RF, an unknown REM is
correctly detected as well unknown VESs. These results show
that this method can still detect REMs and VESs that are not
present in the dataset with a very high accuracy.

Power consumption, CPU, and memory usage of the char-
acterization algorithm have been evaluated using 200 pings.
For this evaluation, the Raspberry Pi was used as a refer-
ence system. The VES used to forge the reference system was
QEMU. The Linux-based system used during the simulations in
Section IV has been employed for running QEMU. Results of
this evaluation are summarized in Table VI. It is possible to
see that the VES requires more CPU and power for running the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SELIS AND MARSHALL: CLASSIFICATION-BASED ALGORITHM TO DETECT FORGED EMBEDDED MACHINES IN IOT ENVIRONMENTS 9

Fig. 7. Features selection methods adopted in order to select the best tuple of features. The (14P, 14T) tuple is not shown because all features are selected.

Fig. 8. Classification methods adopted in order to classify the best tuple of features.

Fig. 9. ODP value related to best combination of features selection methods
and classifiers that give the highest FES for different number of pings and
features.

characterization algorithm than the REM. Moreover, QEMU
requires around 20% of the CPU of the Linux-based system.

Fig. 10. ODP value related to best combination of features selection methods
and classifiers for different number of pings and for the (5P, 5T) tuple.

Therefore, with this system, a maximum of four VESs can be
used at the same time without compromising its stability.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

Fig. 11. Time required to classify a sample by using the best combination of
features selection methods and classifiers for different number of pings and for
the (5P, 5T) tuple.

Fig. 12. Detection results by using the final detection method applied to UESs
for 25 and 200 pings.

TABLE VI
EVALUATION OF THE CHARACTERIZATION ALGORITHM WITH 200 PINGS

USING RASPBERRY PI AS REFERENCE SYSTEM

VI. CONCLUSION

In this paper, we present a novel method for detecting forged
embedded systems that has a high detection rate and a low de-
tection time. A wide range of embedded machines was used
to demonstrate its practical application. Behaviors of these em-
bedded machines were used for creating a reference dataset in
order to achieve reliable results. The results show that it can be
employed to recognize forged embedded machines in IoT/M2M
communications. Our method allows a quick trust assessment

to be performed and can therefore identify forged embedded
devices (potential attackers). In fact, by only adopting the trust
TMFs proposed in previous works [12]–[18], real embedded
machines will spend a lot of time trusting forged embedded ma-
chines by looking at their behaviors, reputations, relationships,
etc., in the network. We demonstrated that it is possible to elim-
inate a possible threat in the network in only 5 s with a detection
rate of more than 99.5%. Moreover, it is possible to increase the
detection rate to 99.9% circa in only 40 s being also able to cor-
rectly detect the UESs. This detection mechanism can be used as
pretrust evaluation by M2M embedded machines before agree-
ing to exchange information. These are very important aspects
in the context of power-constrained machines, near real-time
operations and dynamic networks, especially when applied to
security. Importantly, the proposed method is also architecture
and operating system independent. We are also able to show
that the solution proposed can also be used to detect fake timing
attacks (manuscript in preparation). Thanks to these features,
it can be easily applied to existing and future IoT embedded
machines.

Future research will involve the adoption of this trust evalua-
tion as a preliminary step before evaluating the trust of machines
in the network. This will avoid wasting energy and time to ex-
change information with other machines in the network in order
to collect data for evaluating their trust. Moreover, other detec-
tion methods will be studied for embedded machines that do
not support the ping functionality, like Bluetooth Low Energy
machines.

REFERENCES

[1] Ericsson, Ericsson Mobility Report, 2015. [Online]. Available: http://
www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility -re-
port-nov-2015.pdf

[2] Gartner Inc., “Gartner Says 6.4 Billion Connected ”Things” Will Be in
Use in 2016, Up 30 Percent From 2015,” 2015. [Online]. Available:
http://www.gartner.com/newsroom/id/3165317

[3] DHL Trend Research and Cisco Consulting Services, “Internet
of Things in Logistics,” 2015. [Online]. Available: http://www.dhl.
com/content/dam/Local_Images/g0/New_aboutus/innovation/D HLTren-
dReport_Internet_of_things.pdf

[4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[5] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, “M2M:
From mobile to embedded internet,” IEEE Commun. Mag., vol. 49, no. 4,
pp. 36–43, Apr. 2011.

[6] G. M. Lee, N. Crespi, J. K. Choi, and M. Boussard, “Internet of things,” in
Evolution of Telecommunication Services. New York, NY, USA: Springer,
2013, pp. 257–282.

[7] J. A. Guerrero-ibanez, S. Zeadally, and J. Contreras-Castillo, “Integration
challenges of intelligent transportation systems with connected vehicle,
cloud computing, and internet of things technologies,” IEEE Wireless
Commun., vol. 22, no. 6, pp. 122–128, Dec. 2015.

[8] F. Chiti, R. Fantacci, D. Marabissi, and A. Tani, “Performance evalu-
ation of an efficient and reliable multicast power line communication
system,” IEEE J. Sel. Areas Commun., vol. 34, no. 7, pp. 1953–1964,
Jul. 2016.

[9] W. Moreira and P. Mendes, “Pervasive data sharing as an enabler for
mobile citizen sensing systems,” IEEE Commun. Mag., vol. 53, no. 10,
pp. 164–170, Oct. 2015.

[10] M. Seufert, T. Griepentrog, V. Burger, and T. Hoßfeld, “A simple WiFi
hotspot model for cities,” IEEE Commun. Lett., vol. 20, no. 2, pp. 384–387,
Feb. 2016.

[11] P. K. Verma et al., “Machine-to-machine (M2M) communications: A
survey,” J. Netw. Comput. Appl., vol. 66, pp. 83–105, 2016.

http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility -report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility -report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility -report-nov-2015.pdf
http://www.gartner.com/newsroom/id/3165317
http://www.dhl.com/content/dam/Local_Images/g0/New_aboutus/innovation/D HLTrendReport_Internet_of_things.pdf
http://www.dhl.com/content/dam/Local_Images/g0/New_aboutus/innovation/D HLTrendReport_Internet_of_things.pdf
http://www.dhl.com/content/dam/Local_Images/g0/New_aboutus/innovation/D HLTrendReport_Internet_of_things.pdf


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SELIS AND MARSHALL: CLASSIFICATION-BASED ALGORITHM TO DETECT FORGED EMBEDDED MACHINES IN IOT ENVIRONMENTS 11

[12] J. Guo, A. Marshall, and B. Zhou, “A new trust management framework
for detecting malicious and selfish behaviour for mobile ad hoc networks,”
in Proc. IEEE 10th Int. Conf. Trust, Security Privacy Comput. Commun.,
Nov. 2011, pp. 142–149.

[13] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT: A
trust management model based on fuzzy reputation for internet of things,”
Comput. Sci. Inform. Syst., vol. 8, no. 4, pp. 1207–1228, 2011.

[14] F. Bao and I.-R. Chen, “Dynamic trust management for internet of things
applications,” in Proc. Int. Workshop Self-Aware Internet Things, 2012,
pp. 1–6.

[15] M. Nitti, R. Girau, L. Atzori, A. Iera, and G. Morabito, “A subjective
model for trustworthiness evaluation in the social internet of things,” in
Proc. IEEE 23rd Int. Symp. Personal Indoor Mobile Radio Commun.,
Sep. 2012, pp. 18–23.

[16] Y. B. Saied, A. Olivereau, D. Zeghlache, and M. Laurent, “Trust manage-
ment system design for the internet of things: A context-aware and multi-
service approach,” Comput. Security, vol. 39, pp. 351–365, Nov. 2013.

[17] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness management in the
social internet of things,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 5,
pp. 1253–1266, May 2014.

[18] Z. Chen, R. Ling, C.-M. Huang, and X. Zhu, “A scheme of access service
recommendation for the social internet of things,” Int. J. Commun. Syst.,
vol. 29, pp. 694–706, 2015.

[19] V. Selis and A. Marshall, “MEDA: A machine emulation detection al-
gorithm,” in Proc. 12th Int. Joint Conf. e-Business Telecommun., 2015,
vol. 4, pp. 228–235.

[20] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in Proc. 9th ACM Symp. Inf., Comput. Commun. Security,
2014, pp. 447–458.

[21] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu, “Morpheus: automatically gener-
ating heuristics to detect android emulators,” in Proc. 30th Annu. Comput.
Security Appl. Conf., Dec. 2014, pp. 216–225.

[22] J. Rutkowska, “Red Pill: Detect VMM using (almost) One CPU
Instruction,” 2004. [Online]. Available: http://web.archive.org/web/
20041130172213/http://invisiblethings.org/pa pers/redpill.html

[23] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing
CPU emulators,” in Proc. 18th Int. Symp. Softw. Testing Anal., 2009,
pp. 261–272.

[24] H. Shi, A. Alwabel, and J. Mirkovic, “Cardinal pill testing of system virtual
machines,” in Proc. 23rd USENIX Security Symp., 2014, pp. 271–285.

[25] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”
in Information Security. New York, NY, USA: Springer, 2007, pp. 1–18.

[26] W. Jia-Bin, L. Yi-Feng, and C. Kai, “Virtualization detection based on
data fusion,” in Proc. Comput. Sci. Inf. Process., 2012, pp. 393–396.

[27] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fin-
gerprinting,” IEEE Trans. Dependable Secure Comput., vol. 2, no. 2,
pp. 93–108, 2005.

[28] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in Proc. Dependable Syst. Netw. FTCS DCC, 2008,
pp. 177–186.

[29] L. Polčák and B. Franková, “On reliability of clock-skew-based remote
computer identification,” in Proc. 11th Int. Conf. Security Cryptograph.,
2014, pp. 291–298.

[30] L. Polčák, J. Jirásek, and P. Matousek, “Comment on “remote physical
device fingerprinting,” IEEE Trans. Dependable Secure Comput., vol. 11,
no. 5, pp. 494–496, 2014.

[31] L. Polčák and B. Franková, “Clock-skew-based computer identification:
Traps and pitfalls,” J. Universal Comput. Sci., vol. 21, no. 9, pp. 1210–
1233, 2015.

[32] D. Quist and V. Smith, “Further down the VM spiral-detection of full
and partial emulation for IA-32 virtual machines,” Proc. Defcon, vol. 14,
2006, pp. 1–8.

[33] A. L. Ortega, MAC Changer, 2013. [Online]. Available: http://www.
gnu.org/software/macchanger

[34] J. S. Robin and C. E. Irvine, “Analysis of the intel pentiums ability to
support a secure virtual machine monitor,” in Proc. 9th Conf. USENIX
Security Symp., 2000, vol. 9, p. 129.

[35] S. T. King and P. M. Chen, “Subvirt: Implementing malware with virtual
machines,” in Proc. IEEE Symp. Security Privacy, May 2006, pp. 3314–
3327.

[36] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[37] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[38] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for can-
cer classification using support vector machines,” Mach. Learn., vol. 46,
no. 1–3, pp. 389–422, 2002.

[39] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblin-
ear: A library for large linear classification,” J. Mach. Learn. Res., vol. 9,
pp. 1871–1874, 2008.

[40] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
Regression Trees, The Wadsworth Statistics/Probability series. Belmont,
CA, USA: Wadsworth International Group, 1984, vol. 19.

[41] J. R. Quinlan, C4.5: Programs for Machine Learning, vol. 1, no. 3. Burlin
gton, MA, USA: Morgan Kaufmann, 1993. [Online]. Available: http://
portal.acm.org/citation.cfm?id=152181

[42] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, no. 2. New York, NY,
USA: Springer, 2009, [Online]. Available: http://www.springerlink.
com/index/D7X7KX6772HQ2135.pdf

[43] H. Zhang, “The optimality of Naive Bayes,” AA, vol. 1, no. 2, p. 3, 2004.
[44] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statist.

Interface, vol. 2, no. 3, pp. 349–360, 2009.
[45] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,

2001.
[46] I. Guyon, B. Boser, and V. Vapnik, “Automatic capacity tuning of very

large VC-dimension classifiers,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 5, 1993, pp. 147–155.

[47] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

Valerio Selis (M’13) was born in Cagliari, Sar-
dinia, Italy, in 1983. He received the M.Sc. degree
in computer science from the University of Cagliari,
Cagliari, Italy. He is currently working toward the
Ph.D. degree in electrical engineering and electron-
ics at the University of Liverpool, Liverpool, U.K.

He was a Research Assistant with the Cross Layer
Techniques for Intrusion Tolerant Network Design
Project, Queen’s University Belfast, Belfast, U.K.
Since 2011, he has been a Development Engineer
in wireless network security with Traffic Observation

& Management Ltd. His research interests include wireless networks, Internet
of Things, network security, trust management, and machine-to-machine com-
munications.

Alan Marshall (M’88–SM’00) received the Ph.D.
degree from the University of Aberdeen, Aberdeen,
U.K., in 1991. He holds the Chair in Communications
Networks with the University of Liverpool, where he
is the Director of the Advanced Networks Research
Group. He is also a Fellow of the IET with over
24 years working in the Telecommunications and De-
fense Industries. He has been a Visiting Professor in
network security with the University of Nice/CNRS,
France, and an Adjunct Professor for Research with
Sunway University Malaysia. He has published more

than 200 scientific papers and holds a number of joint patents in the areas
of communications and network security. He has formed a successful spin-
out company Traffic Observation & Management Ltd specializing in intrusion
detection & prevention for wireless networks. His research interests include
network architectures and protocols, mobile and wireless networks, network se-
curity, high-speed packet switching, quality of service & experience (QoS/QoE)
architectures, and distributed haptics.

http://web.archive.org/web/20041130172213/http://invisiblethings.org/pa pers/redpill.html
http://web.archive.org/web/20041130172213/http://invisiblethings.org/pa pers/redpill.html
http://www.gnu.org/software/macchanger
http://www.gnu.org/software/macchanger
http://portal.acm.org/citation.cfm?id=152181
http://portal.acm.org/citation.cfm?id=152181
http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf
http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf

