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SELLING "MONEY" ON EBAY: A FIELD STUDY OF

SURPLUS DIVISION *

Alia Gizatulina† and Olga Gorelkina‡

August 11, 2017

Abstract

We study the division of trade surplus in a natural field experiment on German eBay.
Acting as a seller, we offer Amazon gift cards with face values of up to 500 Euro. A
random selection of buyers, the subjects of our experiment, make price offers according
to the rules of eBay. Using a novel decomposition method, we infer the offered shares
of trade surplus from the data and find that the average share proposed to the seller
amounts to about 30%. Additionally, we document: (i) insignificant effects of stake size;
(ii) poor use of strategically relevant public information; and (iii) differences between
East and West German subjects.

Keywords: Field experiment, surplus division, bargaining, Internet trade, eBay.
JEL codes: C72, C93, C57.

1 Introduction

Bilateral trade is at the core of economics. Trade occurs if it generates some surplus, that is,
if a buyer is willing to pay more than what a seller is willing to accept. When the buyer and
the seller bargain about the price, they bargain about the division of trade surplus.

Bargaining over the surplus division has been extensively studied in the literature, both
empirically and theoretically. Theoretical studies of bargaining take two approaches. The
first is the axiomatic approach, which was put forth by John Nash who looks at bargaining
outcomes that satisfy a set of desirable axioms.1 The second is the strategic approach, which

*We are grateful to Anna Petukhova for excellent research assistance. Further acknowledgements to be added.
†University of St. Gallen and Max Planck Institute for Research on Collective Goods; alia.gizatulina@unisg.ch
‡University of Liverpool Management School, Chatham Street, Liverpool L69 7ZH, UK; olga@liv.ac.uk
1The central axiomatic notions are the Nash bargaining solution, the Kalai-Smorodinski solution and the

Egalitarian solution. See, e.g., Thomson (1994). When two parties bargain over money and their utilities are
linear, all three solutions imply the same outcome: the equal division of surplus.

1



focusses on equilibrium outcomes of the bargaining games. The simplest bargaining game
involves two players and one take-it-or-leave-it offer of one player to the second one (Güth
et al., 1982). In a more complex game, players can exchange offers over several rounds, in-
cluding the extreme case of an infinite-horizon bargaining game (Rubinstein, 1982). Shifting
from a one-round bargaining game to an infinite-horizon model leads to a drastic increase in
the first mover’s offer to the second player (Selten, 1965).2

On the empirical side, several studies have tested the ultimatum game in the lab envi-
ronment. The main surprising finding in the literature is that a large proportion of opening
offers deviate from the unique subgame-perfect equilibrium of the ultimatum game, where
the first mover takes the entire pie for himself. Instead, the observed opening offers are rather
consistent with an infinitely repeated bargaining-game and with axiomatic solutions, where
in each case both sides get a positive share of surplus. However, given the general critique
that is usually applied to laboratory studies, see e.g. Levitt and List (2007), the question is
yet whether a non-trivial division of surplus observed in the lab is also observed in real life
bargaining situations.

The goal of our paper is to study bargaining outcomes in a natural field setting. In partic-
ular, we are interested in the share of surplus that the proposing party gives to the receiving
party during the first stage of a bargaining game with at most three rounds. To conduct our
experiment, we went to the online trading platform eBay.de and used the existing bargaining
mechanism that is known as the "Buy-it-now or Best offer" selling format.3 Mimicking the
typical eBay sellers of gift cards, we collected from buyers their price offers for Amazon gift
cards of different nominal values. The buyers made their offers privately (without observ-
ing others’ buyers offers). We were the second movers and buyers expected that we would
either accept the offer, reject it, make a counter-offer or not react at all. If a buyer succeeds to
buy the card, he would typically credit its nominal value to his Amazon account and use it
for purchasing anything available on Amazon. Hence, by knowing the face values of Ama-
zon gift cards, we have control over the variable which is typically unobserved, namely, the
buyer’s valuation.

On the other side of trade surplus is the seller’s outside option. From the viewpoint of
any buyer, trade surplus is the difference between his valuation and the seller’s opportunity
cost. The seller’s opportunity cost is defined by the possibility to trade with other buyers or
to use the card eventually on his own.4 All those are unknown to the buyer and he forms an
estimate of the seller’s opportunity cost. If the buyer offers to the seller strictly more than his

2See also Binmore et al. (2007) and references therein.
3This trading format should not to be confused with eBay’s second-price ascending auction, where the seller

set the starting price and bidders bid over a pre-defined period of time.
4Obviously, for the market of gift cards to exist, sellers’ own valuation of the card must be less than the

nominal value of the card.
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estimate of the seller’s outside option, he offers a non-zero share of trade surplus.

If the buyers’ estimates of the seller’s outside option were observable to us, solving for
the share of surplus that each buyer offers to the seller would be a trivial task. Obviously,
we do not observe those estimates. As the result, to identify the share of surplus that a given
buyer offers to the seller we have to infer the buyer’s belief about the seller’s opportunity
cost.

We developed a new statistical method to use our own data to infer the subjects’ beliefs.
In our model those beliefs could be any, i.e., we do not impose the requirements of consis-
tency with the publicly observed data or any kind of rationality or a common prior. As each
observed offer is a non-degenerate function of two variables, it is not feasible to decompose
the offers at the level of individual observations. However, under our model’s assumptions,
which we discuss below, we can implement an aggregate decomposition program, where the
observed distribution of offers is decomposed into a distribution of shares of surplus and a
distribution of the buyers’ beliefs about the seller’s expected opportunity cost.

In our setting, to decompose the observed distribution of normalized offers in two un-
derlying unobserved distributions we have to solve an integral equation with two unknown
functions. This problem is infinite-dimensional and computationally hard. To obtain a feasi-
ble program, we first reduce the dimensionality. For this, in line with the standard approxi-
mation theory, we restrict the set of possible distributions to be a family of finite polynomials.
Our search for fitting distribution starts with the uniform law as a candidate solution for both
functions. We consecutively raise the polynomial degree until the optimal solution passes a
pre-specified goodness-of-fit test. To check the robustness of the main method’s findings, we
also apply two further estimation methods, including a non-parametric one.

Our key finding is the following distribution of shares of surplus that buyers offer to the
seller:

Share of surplus: 0-10% 10-20% 20-30% 30-40% 40-50%

Percentage of subjects
offering the share : 33.2 3.7 3.6 16.6 43.0

Table 1: Estimated distribution of surplus shares offered by eBay users.

By the very nature of our estimation method, this distribution of shares is free from any
effects of competition among buyers or any other origins of buyers’ beliefs about the seller’s
outside option. Hence, it can be compared to the findings from experiments on a one-short
bilateral bargaining model, i.e., the ultimatum game.

As one can see, approximately 43% of subjects offer 40-50 % of trade surplus to the
counter-party. This implies that even in a large anonymous market like eBay, equal splitting
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of the total trade surplus is rather usual. Whether the equal split is due to social preferences,
cultural norms, its salience, simplicity, or the axiomatic properties of the egalitarian solution,
our results imply that its occurrence in the field is similar to that in the lab. On the other
side, about one third of all subjects have behaviour consistent with the maximization of in-
dividual monetary payoffs, offering no more than 10 % of the trade surplus. The average
share offered is 29.4 %, which falls within the range of estimates typically obtained in lab
experiments of the ultimatum game (e.g., Oosterbeek et al., 2004).

Our estimation technique rests on three assumptions. First, the card is worth its nominal
value to any buyer who makes a sizeable offer in the experiment. The money on the Amazon
account, can indeed be split, stored, combined with other payment methods and used for
purchasing goods from both Amazon and third-party sellers that operate on the platform. To
an Amazon customer, the money on his Amazon account is thus no different from the money
on a credit card.5 If, however, the cards are worth less than their nominal value to some
buyers then our results imply that the sharing is even more generous than our estimates
suggest. More precisely, the estimated distribution is first-order stochastically dominated by
the true one. In that sense, we have obtained a lower bound on the sharing intentions (see
also Section 5.1). Moreover, we do not need to assume that the subjects who make extremely
low offers fully appreciate the card’s value.

Second, we assume buyers’ risk-neutrality. In the lab studies of bargaining, this assump-
tion is standard. Moreover, our data suggests that the subjects are risk-neutral within the
relevant range of payoffs. This is shown by contradiction. If the subjects were risk-averse in
this range, we would have observed that the distribution of offers changed as we increased
the stake. This, however, is not the case in our data (see Section 5.2).

The third assumption postulates that subjects’ beliefs and sharing intentions are statis-
tically independent. This follows from the predominant economic approach to rationality,
which implies maximization of utility given subjective beliefs. Fundamentally, utility for-
malizes preferences over allocations and the belief function reflects the knowledge about the
game. We similarly regard sharing intentions as an expression of subjects’ preferences while
their beliefs are formed through their information and individual experiences from the game.

Regardless of all of the above assumptions we obtained a number of further results from
the regression analysis. First, as noted above, we find that the observed distributions of
normalized offers6 do not vary with the amount of money at stake. Second, we find that ob-
served buyer behaviour is insensitive to public information about the degree of competition,

5On the other hand, the gift cards are not worth their face value to those selling them, or generally non-
customers of Amazon. EBay customer protection service guarantees that the buyer gets all goods as described;
seller fraud is therefore not a determinant of the card’s value.

6A normalized offer is a price offer divided by the card’s face value. For example, the value of a normalized
offer that corresponds to 40 Euro for a 50-Euro gift card is 0.8.
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as well as to the public history of sellers’ responses to price offers. Third, we use data on
buyers’ postal codes to classify the subjects in two regions, East and West Germany. While
both groups of offers tend to cluster at 50% of the card’s value, the "naïve equal split" is more
prevalent among subjects in East Germany.7 Thereby, West German subjects are more likely
to make competitive offers, that is, to be consistent with the theoretical prediction of a model
with multiple buyers.

The present study is the first bargaining experiment to include a non-standard (non-
student) subject pool and to feature a field context in which the subjects undertake the task
naturally. Moreover, the subjects did not know that they were participating in an experi-
ment.8 Therefore, our experiment is a natural field experiment, according to the definition
of Harrison and List (2004).

The next section describes the experiment and its data. The decomposition strategy and
its results are presented in Section 3; robustness checks are described in Appendix A.4. Sec-
tion 4 reports on the regression analysis. Section 5 discusses the assumptions and the related
literature. Section 6 concludes.

2 Experiment

2.1 Amazon Gift Cards

We set up a controlled environment within an existing secondary market for Amazon gift
cards on the German site of eBay (www.ebay.de). Amazon gift cards are used primarily as
presents.9 Typically, the gift giver would go to the Amazon website, pay V Euros to get a
sixteen-digit code, and transmit the code to the gift receiver. Subsequently, the receiver logs
in to his Amazon account, enters the code and gets V Euros credited to his account. The
account credit can be used for purchasing any goods offered on the Amazon website,10 it can
be split, combined with other payment methods and stored for up to three years.

If the gift card owner does not intend to use the code, he puts it up for sale in a secondary
market. Upon purchase, the code is transmitted in a secure message. In Germany, reselling
Amazon gift cards on eBay is very common. For instance, 87 gift cards were on sale at 7
p.m. on June 13, 2014, and 1962 sales in total were posted within 114 days prior to that date.

7A 50% offer can be viewed as an equal split of trade surplus only under a "naïve" assumption that the
seller’s outside option is 0.

8The fact that we work with unaware eBay users is the distinction of our setup from Bolton and Ockenfels
(2014).

9Other uses include: reward for participation in internet surveys, including lottery prices, payment for
consumer-to-consumer online purchases, bonus to third-party promotions.

10The goods can be bought from Amazon.com, Inc. / Amazon EU S.a.r.l. as well as any other seller, private
or institutional, that uses Amazon as platform.
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Nominal values of gift cards ranged from 5 to 2500 Euro.11 The market turnover in Q4 2015
is estimated at 70 000 Euro.

2.2 The "Buy-it-now or Best Offer" format on Ebay

In the experiment, we employ the Buy-it-Now or Best Offer (BINBO) format of eBay, So-
fortverkauf oder Preisvorschlag in German. The BINBO sales format is an alternative to the
better-known eBay auction, which is an English auction where the bidders openly compete
with each other.

The rules of BINBO are as follows. Initially, the seller posts an ask price and invites the
buyers to either pay the ask price or make their own price offer. When a buyer makes an
offer, the seller has forty-eight hours (or less, if the listing expires earlier) to accept, reject, or
make a counter-offer. When a price offer is accepted, the card is sold and the game ends. A
listing becomes inactive if it expires or if the card is sold to a buyer. EBay users can browse
the history of inactive listings.

Figure 1: BINBO.

The BINBO game is illustrated in Figure 1.
The card value is normalized to 1. The buyer’s
offer is denoted bi, where i refers to a buyer-seller
pair. When bi is below the ask price, the seller
accepts or rejects; no reply is strategically equiv-
alent to a rejection. If the seller accepts he gets
bi, if he rejects he saves the opportunity cost of
trade ci. The seller’s cost of trade ci is due to the
opportunity to trade with other buyers and the
card’s usage value to the seller. The buyer gets
1− bi in case of acceptance and zero in case of re-
jection. If the buyer accepts the seller’s ask price,
bi equals the ask price and the seller is bound to
accept, i.e., to transfer the card code. When an of-
fer bi is accepted, the surplus 1− ci is effectively
split between the buyer who gets 1− bi and the
seller who "gets" bi − ci. Note that Figure 1 omits
the possibility of counter-offers; their role is dis-
cussed in Section 5.4.

11One may wonder that such expensive goods could be sold anonymously over the Internet. This is due, to a
large extent, to efficient consumer protection services offered by eBay, as well as the importance of reputation (see
Resnick et al. (2006)). Note also that Germany ranks high on the level of trust between strangers (see Fukuyama
(1995)). On the relation between culture and e-commerce diffusion see Gibbs et al. (2003).
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When an eBay user makes a price offer he becomes a subject of our study. The subject
(buyer) observes the posted price and the following information. First, he can observe the
total number of offers received by the seller: 0, 1, 2, etc., the timing and the status of each
offer: pending, rejected, counter-offer received. Second, the buyer observes the number of
minutes left before the listing expires, the seller’s feedback score, and the other items the
seller currently offers for sale. The buyers can also observe the history of previously offered
items of this seller. The most immediate information about the seller’s history is the list of
all feedback entries (positive, negative, neutral) that are left to the seller for the items that he
has sold.

Importantly, only the seller can see how much money is being offered. The buyers can
only observe how many competitors are present, if at all.12 Naturally, no-one observes how
many competitors there will have arrived until the listing expires, as that information per-
tains to the future.

2.3 Listings

We offer Amazon gift cards with a range of face values: 5, 10, 20, 50, 100, 200, and 500
Euro, i.e., in total seven treatments. In two waves of the experiment, March to July 2014 and
March 2015, we posted over 200 listings. Each listing lasts three days, the lowest possible
duration on eBay. We used five different seller accounts with feedback scores ranging from
no feedback and no tenure to 430 stars and 10 years tenure. Each seller account listed one
or two gift cards at a time, and the nominal values of the gift cards rotated between seller
accounts over the entire duration of the experiment.

The text of the announcement and the video illustration URL are given in Appendix A.1.

We drafted the listings in a way that mimics the common practice of the gift card sales
via the BINBO format. Relying on the history of similar posts, we used typical wording and
set the initial ask prices above the nominal value of the gift card13. On top of replicating the
common practice, the excessive ask price allowed us to limit the number of actually executed
transactions: rational buyers should not accept to pay more than the card’s nominal value.
To our surprise, the excessive ask price was accepted on a few occasions. The explanation of
overbidding is the focus of Malmendier and Lee (2011). As for this paper, we concentrate on
offers that do not imply a loss. Finally, to unify the sellers’ response to offers, we let all offers
to expire without any our response.

12Similarly, in Camerer (2003) and Roth et al. (1991), the proposers do not observe their competitors’ offers.
13E.g., we set the ask price of a 100 Euro gift card equal to 119 Euros

7



2.4 An Illustration

As an illustration, consider one round of the experiment. We list a gift card with the nominal
value of 100 Euro on June 1 at 1:08 p.m. We receive the first offer of 90 Euro from the buyer
having the user name “lu..er” and who has 6 eBay feedbacks as of June 3 10:16 a.m. and the
second offer of 80 Euros from the buyer “xx...30” with 60 feedbacks at 1:23 p.m.

At the moment “lu..er” placed his offer, he could observe that there were no offers out-
standing. In contrast, the second buyer “xx...30” could see that he was facing competition
from one other buyer.

We let both offers expire on June 4 at 1:08 p.m. This generated two observations. The
data collected per observation include the offered amount, the exact timing and order of the
offer, the buyer characteristics (eBay alias, feedback score and registered postal code), as well
as the seller’s information and the exact time the listing was posted. We also keep track of
the announcements that did not receive any offers.

2.5 Data

Figure 2: Cumulative distribution functions of the observed
(blue), and uniform (red) arrival times, normalized to one.

72 percent of the listings receive at least one
offer within the three-day period. The num-
ber of offers per listing ranges from 0 to 15,
with 1.6 offers made on average. One offer
per listing is both the median and the most
frequent number of offers, and corresponds
to the situation of bilateral trade.

The subjects come from all over the
country, 15 percent of the offers originate in
East Germany (former German Democratic
Republic).14 The most experienced buyer in
the sample was registered on eBay 16 years
prior to our experiment. On average, buyers
had 8.5 years of eBay experience.

The distribution of the arrival times of
price offers within the duration of sale is
plotted in Figure 2. The diagonal corresponds to the uniform distribution. The times are
normalized to one according to the formula toffer−tlisting

3×24×60 , where t is expressed in minutes. Con-
trary to the case of eBay’s ascending auction, where the bidding frequencies spike at the

14Five offers from Austria were not included in either East- or West-German group.
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end of sale (see, e.g., Roth and Ockenfels (2002)), we do not observe any such patterns in
the arrival rates in the BINBO format we use in the experiment. This is not surprising since
waiting to place an offer is not profitable in a BINBO sale.

Voucher Value All 5 e 10 e 20 e 50 e 100 e 200 e 500 e

No. of Listings 221 46 25 19 22 36 43 30
No. of Offers 358 42 45 38 57 60 74 43
Average Bid 0.73 0.71 0.77 0.73 0.77 0.70 0.72 0.71

Std. Err. 0.04 0.11 0.11 0.12 0.10 0.09 0.08 0.11
Std. Dev. 0.23 0.23 0.18 0.17 0.17 0.27 0.23 0.29
Median 0.80 0.80 0.80 0.75 0.80 0.80 0.79 0.82

Table 2: Descriptive statistics of normalized offers bi = Bi/Vi, "Offer / Nominal Value".

The offers in our sample range from 1 Euro, the lowest admissible offer on eBay, to the
nominal value of the gift card. To make the data comparable across treatments, we normalize
the offers by dividing each offer by the nominal value of the gift card. The pooled data
display clustering: the normalized offers concentrate around 0, 50, 80, and 90 percent of the
gift card value (see Figure 4).

The descriptive statistics, broken down with respect to nominal value treatments, are
reported in Table 2. Overall, the distribution of offers is right-skewed: every second offer
exceeds 80 percent of the nominal value. The average offer in our sample ranges from 71 to
77 percent of the nominal value and does not display monotonicity with respect to the gift
card’s nominal value. The same is true of median values that range from 75 to 82 percent of
the nominal value.

Figure 3: Gift card nominal values along the horizontal axis
in log scale. Normalized offers, mean, standard error band
along the vertical axis.

Figure 3 presents the data, where the
logarithm of the nominal card value is plot-
ted against the horizontal axis and the nor-
malized offer is the dependent variable on
the vertical axis. We use the one-way
ANOVA to test whether the empirical av-
erages vary across the nominal value treat-
ments. We find the null hypothesis of equal
means is not rejected,15 implying the nor-
malized offers’ invariance in scale. Pair-
wise linear and log-linear regressions yield
a similar finding: the nominal value does
not have a statistically significant effect on

the normalized price offers (see Table 5).Overall, our analysis indicates that stake size does

15ANOVA P-value = 0.50.
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not affect the normalized offers in the population of eBay buyers. Similar findings were
obtained in the lab settings by Cameron (1999), Munier and Zaharia (2002), Hoffman et al.
(1996), Slonim and Roth (1998).16

3 Decomposition of Offers

In this section we study the sharing intentions behind the subjects’ offers in the experiment.
Figure 4 is a histogram that presents the data pooled across value treatments.

Figure 4: Empirical frequency h(bi) of normalized offers bi = Bi/Vi. The relative offers bi are grouped into five-percent
bins and plotted against the horizontal axis. The bins include the upper bound of the interval, for instance, the last bin
corresponds to bi ∈ (0.95,1].

The experimental data displays substantial heterogeneity and irregular clustering: in par-
ticular, we observe clusters at around 0, 50 and between 80-90 percent of the card’s nominal
value. An offer of 50%, where we observe a spike in frequency, would correspond to an equal
splitting of surplus, if the seller’s outside option (cost) was zero. Similarly, the seller could
only accept an offer close to zero, if zero was his cost. In reality the seller’s cost of trade is
different from zero; this also appears to be the belief of the majority of subjects, who offer the
seller 80% of the card’s value or more.

16A meta-study by Oosterbeek et al. (2004) documents a small negative effect of increasing stake size. Slonim
and Roth (1998) and Roth and Erev (1995) find a positive effect when the game is played in the first round or
only played once.
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Overall, the observed pattern of offers points at stark heterogeneity in the subjects’ per-
ceptions of the game and (or) their intentions when playing it. Therefore, our treatment
of the data does not impose any structure on the subjects’ beliefs about the seller’s outside
option, in particular, we do not assume a common prior.

3.1 The Decomposition Problem (DP)

Our model allows for subject heterogeneity across two dimensions: the perceptions of the
seller’s outside option (seller’s cost) and the sharing motives. The perception of the seller’s
cost c is subject to uncertainty of the number of competing bids and of their sizes, as well as
the seller’s own usage value of the card, if any. In our model, the buyer’s perceptions of c
are captured by a distribution function Φi(c) that we refer to as the buyer i’s belief over c.17

The buyers’ beliefs are thus the first source of offers heterogeneity.

The second source of the observed subject heterogeneity is the sharing motive, or the
fraction of surplus that a subject offers in excess of the seller’s cost. Consider first a fixed
seller cost c. The surplus from trade is given by 1− c, the difference between the buyer’s
value and the seller’s cost. In the game of bargaining over the surplus 1− c the buyer’s price
offer implies how the surplus is split. Buyer i’s price offer bi leaves the seller with a share
si of surplus: si =

bi−c
1−c , where c is the seller’s true cost. For a fixed c, the price offer bi(c) is

therefore given by
bi(c) = c + si (1− c) . (1)

However, since c is uncertain, the offer is

bi =

ˆ
bi(c)dΦi(c) =

ˆ
[c + si (1− c)]dΦi(c)

= ci + si (1− ci) , (2)

where ci ≡
´

cdΦi(c). The observed offer bi is the solution of the bargaining problem in buyer
i’s subjective expectation over the seller’s cost c. Note that (2) implies that the first moment ci

of Φi(c) is sufficient information to calculate the buyer’s offer when si is known.

Equation (2) summarizes two sources of variation in offers that we observe. First, the
subjects vary in the normalized shares si they are willing to offer to the seller. Second, they
differ in their expectations ci of the seller’s opportunity cost c. To understand the prevalence
of sharing rules in the data, we have to extract si from the observed normalized offers bi.

17Formally, c = max
{

us,max
{

bj : j ∈ J
}}

where us is the seller’s own usage value, and J is the set of com-
petitors, bj is the bid of competitor j.
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Clearly ci and si cannot be identified from an observed offer bi. Since the observed offer is
a function of two unknowns, decomposing bi is infeasible at the level of individual observa-
tions. However, one can implement an aggregate decomposition of the observed distribution
of normalized offers into a distribution of shares si and a distribution of the first moments of
the belief functions ci. The aggregate decomposition implies splitting of the observed distri-
bution of offers into a distribution of shares si and a distribution of subjective expectations
(first moments of the belief functions) ci. The aggregate decomposition is a novel statistical
approach to analyse of partially controlled experiments. We drop the subscript i in what
follows.

To formally specify the Decomposition Problem (DP), we let f (s) and g (c) denote, re-
spectively, the unobserved distributions of the shares s and of the cost expectations (belief
first moments) c. Let h (b) be the observed distribution of offers. Capitals F, G, and H denote
the corresponding cumulative distribution functions. For simplicity we think of all three
distributions as having continuous supports. We assume that the supp(g) = [0,1], supp( f ) =
[0,0.5], where the 0.5 bound follows from the standard other-regarding preference theories.18

We demonstrate the robustness of the results by relaxing this bound in the Appendix Table
15. Note that “selfish” offers (maximizing individual payoffs given subjective beliefs) corre-
spond to si = 0 for all i and are therefore allowed in this specification.

Assuming that offered shares and cost expectations are distributed independently in the
population, the distributions are related through the following equations:

H (b) = Pr (c + s (1− c) < b) = Pr
(

c < b, s <
b− c
1− c

)
=

ˆ b

0

[ˆ b−c
1−c

0
f (s)ds

]
g (c)dc =

ˆ b

0
F
(

b− c
1− c

)
g (c)dc. (3)

The cumulative distribution function H on the left-hand side is given by the observations in
our experiment. The right-hand side integrates over all c and s that generate an offer less or
equal to b, according to (2). The essence of the decomposition problem (DP) is to find f (s)
and g (c) that best fit equation (3) given H(b) constructed from the experimental data.

3.2 Computational Issues and Uniqueness

Decomposing the observed distribution of normalized offers into two underlying unob-
served distributions is equivalent to solving an integral equation with two unknown func-
tions. As both f (.) and g(.) belong each to an infinite-dimensional space, the DP (3) is
infinite-dimensional and, therefore, computationally hard. Finding a solution calls for a

18See, e.g., Fehr and Schmidt (1999) [Proposition 1], Ockenfels and Bolton (2000) [Statement 3].
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reduction in the problem’s dimensionality to a point where optimization becomes computa-
tionally feasible. What complicates the analysis further is that while the solution to (3) exists
it may not be unique unless the space of functions f (.) and g(.) is restricted.19

Our approach to solving the DP (3) addresses both issues, the dimensionality reduction
and uniqueness. We run three alternative optimization programs to cross-check the findings.
Two programs are parametric; dimensionality reduction is achieved by restricting the solu-
tion to a space of parametric functions. The first, baseline program is reported in the next sec-
tion 3.3. It relies on the standard approximation theory and looks for a solution in the space
of polynomials. The second program, reported in the Appendix A.4.1 is non-parametric. The
dimensionality of the DP (3) is reduced by discretizing the supports of f and g. Finally, in
the Appendix A.4.2 we restrict f and g to the class of beta functions, which permits a global
search for four parameter estimates (two for each distribution). All three programs yield
similar results, however the beta approximation is rejected by the goodness-of-fit test.

In the following section we focus on the polynomial program and report its results in
Table 3.

3.3 Polynomial Approximation

Our baseline program achieves the reduction of dimensionality by restricting the solution to
a set of continuous functions, in particular, to a space of parametric functions. Following the
standard approximation theory, the space of finite polynomials is the best choice within a
parametric class.20 Hence, our goal is to identify a polynomial approximation of H. Conse-
quently, we treat both f and g as linear combinations of Chebyshev polynomials:

fn (s;γ) =
n

∑
k=0

γkTk (s) , 0≤ s ≤ 0.5, (4)

gm(c;δ) =
m

∑
i=0

δkTk (c) , 0≤ c ≤ 1, (5)

where Tk(x) is a k-degree Chebyshev polynomial of the first kind.

19There always exists a trivial corner solution, where h≡ g and f is a Dirac delta function with the entire prob-
ability mass concentrated at zero. Sadovnichy (1986) shows that, for a given kernel function F(b, c), a Volterra
integral equation such as (3) is a contraction mapping and hence has a unique solution g∗. Since both f and g are
restricted to the class of probability measures, Sadovnichy’s result does not imply that one can generate multiple
solutions by simply varying the kernel function.

20By the Stone-Weierstrass theorem, the subset of polynomials is dense in C[a,b] which means that any con-
tinuous function on a bounded interval can be approximated arbitrarily well by a sufficiently large degree poly-
nomial.
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The iterative procedure starts at n = m = 0. That is, the initial candidate solution for
f̂ p = f0 and ĝp = g0 is a pair of zero-degree polynomials, which corresponds to two uni-
form distributions. Subsequently, we raise the polynomial degree until the optimal solution
within the respective class passes a goodness-of-fit test.

More specifically, at each iteration we search for the vector of parameters (γ,δ) that min-
imizes the Kolmogorov-Smirnov distance between Ĥ and H

(γ∗n,δ∗m) = argmin
(γ,δ)

dKS (Hnm(·;γ,δ), H(·)) (6)

subject to
´ 0
−∞ fn (s;γ)ds= 0,

´ +∞
0.5 fn (s;γ) = 0, fn (s;γ)≥ 0;

´ 0
−∞ gn (c;δ)dc= 0,

´ +∞
1 gn (c;δ)dc=

0, gn (c;δ) ≥ 0, where the Kolmogorov-Smirnov distance is

dKS
(

Ĥ(·), H(·)
)
= supb∈[0,1]

∣∣Ĥ (b)− H (b)
∣∣ , (7)

and Hnm is a composition of

Hnm (b;γ,δ) =
ˆ b

0

ˆ b−c
1−c

0
fn (s;γ) gm (c;δ)dsdc. (8)

Once we find the best approximations ( fn(·;γ∗n), gm(·;δ∗m)) for fixed polynomial degrees n
and m, we take the respective composition Ĥ(·;γ∗n,δ∗n), and compare it to the observed cu-
mulative distribution H(·). We dismiss the solution if the respective Kolmogorov-Smirnov
distance between Ĥ(·;γ,δ) and H(·) exceeds the bootstrapped critical value and proceed to
the next iteration allowing for an extra polynomial term.21

At n = 3, m = 4 the hypothesis that Ĥ = H is no longer rejected. In other words Ĥ(·) is
statistically indistinguishable from the empirical H(·). To avoid overfitting we terminate the
procedure at this iteration and adopt the respective solution

(
f̂ p(·), ĝp(·)

)
= ( f3(·;γ∗4), g4(·;δ∗4 )).

As a robustness check, the procedure was reiterated with higher polynomial degrees up to
ten; this did not improve the distance significantly and each subsequent solution was qual-
itatively similar to

(
f̂ p(·), ĝp(·)

)
. In summary, the estimated

(
f̂ p(·), ĝp(·)

)
is stable, data-

consistent, and uniquely optimal polynomial approximation.

Remark We used Mathematica’s differential evolution fitting method, allowing for 500 iterations
at each round of search. The advantage of the differential evolution method is that it consistent at
finding the global solution. The search procedure requires that a continuous version of H is generated.
To that end, we derive a non-parametric kernel density function from the data, setting the bandwidth

21Bootstrap critical values corresponding to 358 observations are 0.049 for significance at 10%, 0.057 for sig-
nificance at 5%, and 0.071 for significance at 1%.
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at 0.015. This value allows for the used H to be sufficiently continuous while still preserving the
information contained in the empirically observed version of H.

3.4 Results of Polynomial Decomposition

The estimated distributions are presented in Table 3. (The corresponding Chebyshev coef-
ficient estimates are given in the Appendix, Table 11.) The estimate of the distribution of
sharing rules f implies that 43− 44% of the subjects offer 40 to 50% of the trade surplus to
the seller. One third of all our subjects make "greedy" offers and propose no more than 10 %
of the trade surplus to the seller. The remaining 25− 30% of the subjects make offers between
10 and 40%. The average offer to the seller amounts to 29.4% of the respective trade surplus.

s: 0-10% 10-20% 20-30% 30-40% 40-50%
f̂ p (s): 33.2 3.7 3.6 16.6 43.0

c: 0-10% 10-50% 50-60% 60-70% 70-80% 80-90% 90-100%
ĝp (c): 11.2 10.1 11.8 17.7 21.1 19.2 8.9

Table 3: Estimated distributions of sharing rules f̂ p (s) and cost expectations ĝp (c) in the population of eBay buyers (in
percentage points). dKS = 0.028.

The estimated g(.) evokes of a mixture of two distributions. (See also Figure 5 that reports
the quantitatively similar non-parametric estimates.) This suggests that there are two types
of beliefs that prevail in the population of bidders. There is a fraction of "naïve" subjects,
estimated at 11− 14%, who make their offers under the assumption that the seller’s outside
option (cost) is null. The first moments of the beliefs of the remaining "sophisticated" major-
ity of the subjects are described by a bell curve centered around the observed average offer
of 73%. This suggests a certain "crowd wisdom" manifests itself in the eBay market of Ama-
zon gift cards – the expectations of seller’s cost are correct, on average, in the "sophisticated"
group of subjects, even though there is noise around the value.

3.5 Robustness Checks

To verify whether the decomposition we found is robust, we have conducted further decom-
positions, using two alternative approaches. One approach, reported in Appendix (A.4.1), is
to discretize the support of distributions h, f , and g, in order to obtain a finite-dimensional
problem. Namely, we partition the support of the three distributions into equal-sized bins.
Given the upper limit on the support of sharing rules of 50% and a bin size of 10%, we obtain
a substantially simplified problem with fifteen unknowns. We use an iterative numerical op-
timization to assign a probability mass to each of the bins. This program yields distribution

15



functions similar to the baseline solution. The average offered share of surplus (the mean of
the estimated f np) amounts to 29.8% according to the non-parametric estimates. See Figure
5.

Figure 5: Estimated distributions of sharing rules f̂ np (s) and cost expectations ĝnp (c) in the population of eBay buyers
(in percentage points). dKS = 0.0077.

Our second robustness check, reported on in the Appendix A.4.2, employs a different
parametric program that restricts both f and g to the class of Beta probability distribu-
tions. The restriction to the Beta class boils the problem down to only four unknowns (each
beta distribution is described by two parameters). While the resulting fit measured by the
Kolmogorov-Smirnov distance is unsatisfactory, the similarity of the beta functions solution
to our main result suggests that the findings are robust.

4 Regression Analysis

The regression analysis is a separate exercise that we conducted on the raw data. The main
take-away from this section is to confirm that the offers cannot be explained by the observ-
able characteristics. It therefore suggests that the decomposition approach is necessary to
account for heterogeneity.

By the design of the experiment, we know exactly what information was available to the
buyer at the time he made his offer, as well as several characteristics of the buyer himself.
The dependent variable in all regressions is the normalized offer bi.

4.1 Competition Marks

We start by looking at the effects of information about the number of competitors for a gift
card. In BINBO, the buyers observe two signals informative of competition intensity. The
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first signal is the amount of time remaining before the listing expires: the more time is left,
the more buyers are expected to arrive by the end of sale, and the higher is the degree of
competition. The second signal is the number of offers already outstanding by the time a
given buyer makes his offer; naturally this signal conveys the information in a more direct
way. Both indicators are displayed next to the ask price and barely involve any search effort
(see the screen-cast URL p. 24). Both indicators should make buyers update their beliefs
about the seller’s outside option. This, in turn, should have an effect on the buyers’ normal-
ized offers. However the regression results demonstrate that both signals have insignificant
effects on the subjects’ normalized offers (see Table 5 in the Appendix).

We take a further step to verify whether the simplest binary indicator of competition pro-
duces an effect. Specifically, we split the offers in two groups: those arriving first on a listing
and those arriving when at least one other has been already made. The respective empiri-
cal distributions are presented in Figure 7 in the Appendix. Again, we find no significant
difference in both groups’ mean offers.22

Beside the obvious explanation that any updating, however simple, is inhibited by cog-
nitive costs, we offer two alternative reasons why the competition marks fail to produce any
significant effects in the experiment. First, the subjects may use a rule of thumb when mak-
ing offers, drawing on their past experience of gift card sales. Such an approach is aimed at
a longer-term market performance and substantiated by a large bulk of psychological liter-
ature, e.g., Tversky and Kahneman (1974), Newell et al. (1972), Gigerenzer (2007). Second,
the buyers may (rationally) expect that if the gift cards remain unsold by the deadline they
go on sale again in the future. Therefore, the expected stream of future offers may outweigh
any present competition, making the latter effect statistically insignificant.

4.2 Subjects’ Learning

Next, we test whether the normalized offers change over the course of our experiment, which
may occur due to subjects learning about the environment. The subjects get information
about the seller’s response strategy from two sources. First, the history of sales was avail-
able through eBay’s search engine at the time we conducted the experiment. For all five
accounts used in the experiment, browsing the history of the account revealed that a num-
ber gift cards were listed exclusively in BINBO format and remained unsold.23 While this
information could have stopped some buyers from making an offer, the regression analysis
suggests that the size of normalized offers was unaffected by history (see Tables 6 and 7 in
the Appendix). To proxy the opportunity of learning from history, we use calendar time:

22ANOVA P-value = 0.13.
23Apart from a few cases when we received offers to pay the posted price that exceeds the card’s value.
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subjects participating at the start of the experiment have less evidence on our response be-
haviour than those arriving toward the end of the experiment. This finding implies that the
subjects did not browse sale histories or did not take the information into account.

Second, buyers can learn from their own experiences of making an offer to a particular
seller. To study the possible effect, we look at the sub-sample of the recurrent buyers. In
total, 56 out of 277 buyers in our experiment made offers on multiple listings. We track
how those buyers’ offers change over time. Specifically, we calculate the increment of each
subsequent offer relative to the previous offer that buyer made. This variable captures the
subject’s learning dynamics due to his or her experience with one of the seller accounts we
use. Student’s test finds no statistically significant change in offers between two consecutive
rounds of a subject’s participation.24

4.3 Effects of Experience

Buyers’ eBay experience, reflected by their feedback score,25 has a mild positive effect on
normalized offer sizes (significance at 10%; see Tables 6, 7, 8 and 9 in the Appendix). Even if
the effect is present, its size is extremely small. For instance, an inexperienced buyer with no
feedback offers 1 percentage point less than the average buyer with 450 feedback entries.

A similarly sized effect, also statistically significant, is produced by the increase of the
seller’s feedback score. However, while the effect of buyer experience is linear, the marginal
effect of the seller’s experience decreases. Specifically, the effect on the normalized offer of
extra feedback that the seller receives decreases drastically after just 12 feedback entries.26

The effects of buyer and seller experience do not display complementarity, i.e., there is no
evidence that more experienced buyers make significantly higher or lower offers to more
experienced sellers.

4.4 East and West Germany

Using data about buyers’ registered postal codes, we identify the impact of each subject’s
location on the size of the offer. Our sample contains about 15% of offers stemming from
the states on the former GDR territory.27 Our main observation here is that when subjects
are grouped by region, there are important differences in the distribution of offers between

24P-value = 0.317.
25Note this is an imperfect measure of experience, due to the benevolent nature of ratings. In particular, the

sellers’ incentives to leave feedback are limited, since they can only leave positive feedback.
26There is a statistically significant effect of seller experience when we use the feedback score from 5 accounts

jointly (P-value is equal to 1.9× 10−4). Splitting the sample into two groups, for sellers with zero feedback and
at least 12 feedback entries results in P-value of 0.79 and 0.68, respectively.

27Postal codes are only indicative of current residency, not the subject’s origin.
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East and West Germany. In the latter group, we observe a larger number of offers that are
close to the competitive prediction – near 95 percent of the gift card value. By contrast, the
buyers from East Germany make more offers in a close neighbourhood of 50 percent of the
total value. (See Fig. 6 in the Appendix).

Can this variety in offers be attributed to the remaining cultural differences between East
and West Germany? From the previous analysis we know that a buyer’s experience affects
the average size of his offer to the seller: more experienced buyers tend to make slightly
higher offers. Since West German buyers in our sample have more experience with eBay,
the regional difference we observe may be due to the difference in experience. In order to
correct for the possible bias, we extract a sub-sample of buyers from West Germany that has
the same the distribution of feedback scores as the East German sample. After the correction,
the distributions of normalized offers remain virtually unchanged and the same difference
patterns emerge. The equal split of the "naive surplus" is a significantly more important focal
point for East German subjects, while the competitive offers are more common among the
West German subjects. In the next section, we also report on the difference between two
regions at the level of offered shares of surplus.

For instance, in a large scale empirical study Alesina and Fuchs-Schuendeln (2005) found
that East Germans displayed higher preference for equality and redistribution – something
that could reinforce the prevalence of equal splits. In two waves of a public good experiment,
Ockenfels and Weimann (1999) and Brosig-Koch et al. (2011) find important differences in
East and West German behaviour, which persisted two decades past the reunification. Focus-
ing on children and adolescents aged 10 to 18, John and Thomsen (2013) find more support
for other-regarding preferences in East than in West Germany.

5 Discussion

5.1 Subjects’ valuations

Suppose that the subjects do not always value the cards at their full nominal value. In that
case the distribution of bids is given by:

H (b) =

ˆ b

0

[ˆ 1

b
F
(

b− c
v− c

)
dW (v |v > b )

]
g (c)dc, (9)

where dW (v |v > b ) is the conditional distribution of the subject’s true valuation v. The
valuation of a rational subject cannot be lower than his bid b, but it cannot exceed 1 since
the gift card can be bought at the price of 1 on the Amazon website. Comparing the original
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problem with (9) we observe that our reported estimate F̂ is in this case is equivalent to the
expectation of F over the values v:

F̂
(

b− c
1− c

)
≡
ˆ 1

b
F
(

b− c
v− c

)
dW (v |v > b ) . (10)

Since function F is a c.d.f. and increasing, we obtain the inequality:

F̂
(

b− c
1− c

)
=

ˆ 1

b
F
(

b− c
v− c

)
dW (v |v > b )

≥
ˆ 1

b
F
(

b− c
1− c

)
dW (v |v > b ) = F

(
b− c
1− c

)
. (11)

Inequality (11) implies that our estimate F̂ is first-order stochastically dominated by F. There-
fore, if the subjects’ valuations are less that the card’s value then our estimate of sharing rules
provides a lower bound on the actual sharing.

One may argue that the subjects offering, for instance, 1 Euro for a 100 card value the card
lower than 100 and simply "try their luck". This is to a large extent inconsequential to our
estimates. To continue with the example, as long as the subject’s true value V < 100 is above
10 Euros his offer of 1 Euro will be allocated to the lowest 10% bin anyway (i.e., he still offers
between 0 and 10 percent of V). Therefore the results of the non-parametric decomposition
will not change. If however the subject’s value for a 100 Euro card is less than 10 Euros then
we are back to the lower bound.

5.2 Risk-neutrality assumption

We have assumed that our buyers are risk-neutral. This assumption is supported by our
own data and by the size of the stakes that we used. But it is also confirmed by the existent
literature. In particular, given the empirical evidence for an increased risk aversion at higher
monetary stakes (see, e.g., Holt and Laury (2002) and references therein), if buyers were
risk-averse we would observe a reduction, on average, of offers for the gift cards of a high
nominal value, e.g. 200 or 500 Euro.28 The regression results do not support this hypothesis
(see Tables 5-10 in Appendix). Similarly, Fehr-Duda et al. (2010) demonstrate that the risk
aversion is not identifiable in the data when the stakes are comparable to ours.

28In 2014, the monthly disposable median net income per capita in Germany amounted to 1644
Euro (European Commission data: http://ec.europa.eu/eurostat/web/gdp-and-beyond/quality-of-life/
median-income)
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5.3 Competition with other sellers

As the sellers of gift cards, we face competition from other sellers present on eBay through-
out the entire duration of the experiment. However, such competition is irrelevant for our
analysis, since a gift card bought at a discount gives to an Amazon customer an equivalent
amount of Amazon cash. As long as preferences for Amazon cash are insatiable, at least
locally, the demand for transaction does not depend on the presence of other sellers offering
similar cards.

5.4 The first stage of a multi-stage bargaining game

Figure 1 does not reflect the possibility of the seller’s counteroffer as a third possible action.
If the seller makes a counter-offer we are back to the top node where the buyer moves and
the game is repeated once (and only once) again.29 The game depicted in Figure 1 would be
repeated at most twice again and then terminate.

Our data does not support the hypothesis that subjects intend to play a multi-stage game.
If this intention were systematically present, then (i) most offers would arrive on the first day
of the listing (as the buyers would expect that they are starting a dialogue with the seller),
and (ii) low offers would be made more frequently than higher offers within the first hours.
Figure 2 in Section 2.5 suggests that there is no systematic difference in the timing of arrival
across 3 days of listing, therefore (i) does not hold. Table 5, and more generally the results
reported in Section 4.1, imply that (ii) is not true either.

Furthermore, even if our analysis failed to capture the fact that the subjects are actually
expecting to reach the stage where the seller makes a counter-offer, it is the subjects’ first
offers that are the most indicative of their true sharing intentions, i.e., the minimum surplus
that they would like to give to the seller.

5.5 Related Literature

According to Card et al. (2011), laboratory experiments constitute about three quarters of all
experimental economics. Following the agenda of Levitt and List (2009), List (2011), and Gal-
izzi and Navarro Martinez (2015) who emphasize the importance of the field experiments,
we study surplus sharing in the field and obtain estimates that can be contrasted with labora-
tory findings. In the lab, our setup is closest to the ultimatum game, which has been studied
extensively. See, e.g., Güth and Kocher (2013), van Damme et al. (2014), as well as Camerer

29EBay rules allow at most three exchanges of offers between a buyer and a seller. In practice, the sellers
barely ever respond with a counter-offer, thus the buyers should rationally expect to have only one chance to call
a price.
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(2003) and Bearden (2001). Comparing our findings to those studies, we see little difference
between the lab and the field – at least, when the focus is on surplus division.30

The prominence of the equal splitting of trade surplus that we document can be explained
by a theory of social preferences. One strand of this literature includes consequentialist the-
ories, where agents have preferences over the distribution of final payoffs: Fehr and Schmidt
(1999) and Ockenfels and Bolton (2000). An opposing view is that subjects’ behaviour is
motivated by reciprocity in response to actions and intentions of opponents, for instance:
Rabin (1993), Falk and Fischbacher (2006), Dufwenberg and Kirchsteiger (2004), Charness
and Rabin (2002). Taking a dynamic approach, Alger and Weibull (2013) rationalize social
preferences as a stable evolutionary outcome. Alternatively, the egalitarian division of sur-
plus is central to the theories of Boehm et al. (1993) and Henrich et al. (2006).

By the nature of data it studies, our paper contributes to the growing economic literature
on eBay users’ behaviour. This literature focuses predominantly on the effects of users’ rep-
utation on transaction prices (e.g., Resnick et al. (2006), Cabral and Hortascu (2010), Nosko
and Tadelis (2015)) or the benefits from gaming the mechanism, such as snipe bidding (e.g.,
Roth and Ockenfels (2002), Ely and Hossain (2009)). A notable exception is Bolton and Ock-
enfels (2014), who use the eBay platform to study the ultimatum game. They design a framed
experiment where they hire students and match them via the eBay platform, while keeping
the remaining features of the setup similar to the lab.

6 Conclusion

In this paper we present a natural field experiment31 on the amount of surplus offered by
the proposer during the first stage of a three-round bargaining game. The key goal of our
experiment is to document the distribution of surplus sharing rules prevalent on a market
place like eBay. We have established that the equal split of surplus is nearly as prevalent in
the field as it is in the lab. Thus, the share of surplus that is given by the proposers of the
price is one of the determinants of the price on eBay.

The key feature of our setup that makes it distinct from a typical lab experiment on the
ultimatum game is the uncertainty of the buyer about the overall number of competitors.32

Arguably, this feature is naturally present in many real world markets. As a result, compared
to the settings with a publicly-observed degree of competition, we do not observe buyers

30For the phenomenon of gift exchanges, in contrast, List (2006) finds less evidence for social preferences in
the field as compared to the lab in otherwise equivalent settings.

31For a definition, see (Harrison and List, 2004)
32In contrast, Roth et al. (1991), Fischbacher et al. (2009) look at the behaviour within the ultimatum game

where the number of competing proposers is commonly known.
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rallying up their offers to the whole nominal value of the card. Instead, there is a significant
dispersion in observed offers. This implies that there is some non-zero surplus from a match
of a given buyer and a seller (remember that the surplus in our setting is defined relative to
the competitor’s offer). In turn, such presence of a non-trivial surplus to be shared allows to
buyers to express more saliently their non-monetary preferences.

As usual, the downside of conducting a field experiment is that we do not perfectly con-
trol for players’ unobservable characteristics that define their behaviour. In particular, be-
cause of the uncertainty concerning the degree of competition, the beliefs of our subjects are
less predictable than in the lab. To handle this, our paper comes up with a new methodology
to decompose the observed distribution of offers into a distribution of unobserved expected
value of the seller’s opportunity cost and a distribution of unobserved shares of surplus
proposed by buyers.

Our main findings suggest that even in large one-shot interaction markets like eBay, par-
ticipants often offer to equally split the surplus. In particular, we find that up to 44% of
players offer to the seller roughly half of the total surplus, while selfish players (offering
0-10% of surplus) constitute less than a third of all our subjects. The estimated frequencies
of offered shares of surplus are not far from the estimates emerging from most of the lab
studies. This implies, that despite all the discrepancies between the lab and the field, lab
experiments on surplus division provide a number of valid insights into behaviour in the
field, both qualitatively and quantitatively.

To sum up, the eBay platform, featuring the stochastic arrival of buyers, could be consid-
ered as a fair representation of a generic market place found all over the world. Most of those
markets are dynamic and uncertain – the population of traders evolves over time, some par-
ticipants quit the market, while new participants enter at random. Traders do not possess
perfect and common information, instead they learn about going prices and the fierceness of
competition via their own private experiences of bargaining with different sellers or through
observations of how markets clear; all in the same way as what happens on eBay. Our analy-
sis suggests that because of such uncertain and evolving degrees of competition, even a large
market offers a scope to share the surplus non-trivially. Clearly, more research is needed
to fully understand how competition and strategic uncertainty interact with the individual
preferences for pro-social behaviour.
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A Appendix

A.1 Experiment

An example text used in the description box of a listing (German):

“Biete hier einen Amazon-Gutschein im Wert von 50 Euro an, gültig

bis zum xx.xx.20xx. Der Gutscheincode wird nach Zahlungseingang

auf meinem Konto am gleichen Tag via eBay Mitteilung versendet. Es

handelt sich um echte Geschenkgutscheine (keine Aktionsgutscheine!),

d.h. sie haben keinen Mindestbestellwert, es können mehrere

Gutscheine kombiniert werden, und eventuelles Restguthaben verbleibt

auf dem Amazon-Kundenkonto.”

English translation:

“I offer here an Amazon gift card worth 50 Euros, valid until

xx.xx.20xx. The card code is sent to you via eBay message on the

same day I receive payment. These are actual gift certificates

(not promotion coupons!), that is, there is no minimal purchase

requirement, multiple coupons can be combined, and any residual

credit would remain on the Amazon account.”

Watch a video illustration at:33

https://www.youtube.com/watch?v=dKCsOhItstw.

33ATTENTION Anonymous Referee: YouTube tracks viewers’ information, please take the necessary precau-
tions to protect your anonymity.
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A.2 Tables

A.2.1 Regression Analysis

Variable Description Range

normalized offer Offer divided by the card’s nominal value 0.02 .. 1
nominal Gift card’s nominal in euros 5 .. 500

time to deadline
Time left to listing expiry when offer

0.0007 .. 0.9988
is made divided by listing duration

order 1, if the offer arrives first on the listing, 2, if second etc. 1 ..15
trend Time elapsed since the arrival of the first offer, in days 0 .. 359.20
buyer_exp Number of buyer’s eBay stars when he makes offer 1.. 8847
seller_exp Number of seller’s eBay stars when he receives offer 1 .. 511

Table 4: Regression variables.

Dep.: normalized offer Model 1 Model 2 Model 3 Model 4 Model 5
constant 0.736*** 0.751*** 0.737*** 0.741*** 0.762***
nominal −6.5 · 10−5 −6.5 · 10−5 −6.8 · 10−5 −6.4 · 10−5

log(nominal) −5.8 · 10−3

time to deadline −1.8 · 10−3 2.1 · 10−3 4.6 · 10−3

order −2.1 · 10−3 −4.1 · 10−3

trend −1.2 · 10−4

N obs 358 358 358 358 358
R sq. 0.001 0.001 0.002 0.002 0.006

Table 5: Regression models 1-5.

Dep.: normalized offer Model 6 Model 7 Model 8 Model 9 Model 10
constant 0.733*** 0.747*** 0.751*** 0.763*** 0.753***
buyer_exp 2.9 · 10−5* 3.0 · 10−5** 2.8 · 10−5 * 2.9 · 10−5* 2.8 · 10−5 *
trend −1.24 · 10−4 −1.1 · 10−4 −1.4 · 10−4 −1.5 · 10−4 −1.1 · 10−4

order −5.0 · 10−3 −5.8 · 10−3 −5.2 · 10−3 −5.9 · 10−3

time to deadline 8.9 · 10−3 8.9 · 10−3 11 · 10−3

nominal −4.8 · 10−5 −5.0 · 10−5

log(nominal) −4.55 · 10−3

offer number −2.0 · 10−5

N obs 358 358 358 358 358
R sq. 0.01 0.01 0.01 0.02 0.02

Table 6: Regression models 6-10.
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Dep.: normalized offer Model 11 Model 12 Model 13 Model 14 Model 15
constant 0.684*** 0.695*** 0.69*** 0.701*** 0.716***
log(buyer_exp) 1.2 · 10−2* 1.2 · 10−2* 1.2 · 10−2 * 1.21 · 10−2 * 1.2 · 10−2*
trend −1.18 · 10−4 −1.3 · 10−4 −1.4 · 10−4 −1.3 · 10−4 −1.43 · 10−4

order −4.2 · 10−3 −4.7 · 10−3 −4.9 · 10−3 −4.5 · 10−3

time to deadline 11.6 · 10−3 10.3 · 10−3 10.3 · 10−3

nominal −5.8 · 10−5

log(nominal) −6.16 · 10−3

N obs 358 358 358 358 358
R sq. 0.01 0.012 0.012 0.014 0.014

Table 7: Regression models 11-15.

Dep.: normalized offer Model 16 Model 17 Model 18 Model 19 Model 20

constant 0.703*** 0.736*** 0.742*** 0.714*** 0.723***
buyer_exp 2.41 · 10−5 2.68 · 10−5* 2.55 · 10−5 2.43 · 10−5* 2.53 · 10−5*
seller_exp 9.9 · 10−5* 1.09 · 10−4 * 1.17 · 10−4 *
log(seller_exp) 1.60 · 10−2*** 1.52 · 10−2***
trend −1.2 · 10−4 −1.2 · 10−4 −1.37 · 10−4 −1.43 · 10−4

order −7.5 · 10−3 −8.55 · 10−3 −10.9 · 10−3 −10.2 · 10−3

time to deadline 1.11 · 10−2 1.75 · 10−2 1.76 · 10−2

nominal −7.04 · 10−5 −8.01 · 10−5

log(nominal) −4.68 · 10−3

N obs 358 358 358 358 358
R sq. 0.016 0.022 0.025 0.036 0.034

Table 8: Regression models 16-20.

Dep.: normalized offer Model 21 Model 22 Model 23 Model 24

constant 0.636*** 0.666*** 0.669*** 0.669***
log (buyer_exp) 0.98 · 10−2 1.07 · 10−2 1.05 · 10−2 1.1 · 10−2

log (seller_exp) 1.32 · 10−2 ** 1.51 · 10−2 *** 1.61 · 10−2 *** 1.52 · 10−2 ***
trend −1.41 · 10−4 −1.39 · 10−4 −1.47 · 10−4

order −8.7 · 10−3 −1.04 · 10−2 −9.66 · 10−3

time to deadline 2.11 · 10−2 2.13 · 10−2

nominal −8.4 · 10−5

log(nominal) −5.55 · 10−3

N obs 358 358 358 358
R sq. 0.023 0.032 0.036 0.034

Table 9: Regression models 21-24.
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Dep.: normalized offer NL Model 1 NL Model 2 NL Model 3 NL Model 4

constant 0.63*** 0.66*** 0.703*** 0.67***
log(seller_exp) 1.32 · 10−2** 5.8 · 10−3

log(buyer_exp) 9.83 · 10−3 5.1 · 10−3

log(buyer_exp) * log(seller_exp) 1.4 · 10−3

seller_exp 9.76 · 10−5 1.16 · 10−3*
buyer_exp 2.34 · 10−5 5.75 · 10−5*
seller_exp*buyer_exp 2.78 · 10−9

seller_exp² −2.25 · 10−6

buyer_exp² −6.54 · 10−9

N obs 358 358 358 358
R sq. 0.023 0.024 0.016 0.026

Table 10: Regression models 25-28.
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A.2.2 Decomposition

Coefficient γ̂0 γ̂1 γ̂2 γ̂3 γ̂4

Estimate -43.9533 73.5298 -52.4472 22.4486 -8.4939
Coefficient δ̂0 δ̂1 δ̂2 δ̂3 δ̂4

Estimate 8.39309 -11.4105 4.53588 0.639369 -2.1579

Table 11: Chebyshev polynomial coefficients.

s: 0-10% 10-20% 20-30% 30-40% 40-50%
f̂ np (s): 25.9 7.4 3.7 18.5 44.4

c: 0-10% 10-50% 50-60% 60-70% 70-80% 80-90% 90-100%
ĝnp (c): 14.3 7.1 5.4 17.9 23.2 21.4 10.7

Table 12: Non-parametric estimate of the distributions of sharing rules ( f̂ ) and beliefs (ĝ).

s: 0-10% 10-20% 20-30% 30-40% 40-50%
f̂ β (s): 23.5% 12.9% 12.0% 15.2% 36.4%

c: 0-10% 10-50% 50-60% 60-70% 70-80% 80-90% 90-100%
ĝβ (c): 0.4% 22.1% 11.9% 14.4% 16.6% 17.9% 16.7%

Table 13: Parametric estimates when f and g are restricted to the class of β distributions. α f = 0.230, β f = 0.031;
αg = 2.470, βg = 1.121, Kolmogorov-Smirnov distance = 0.066 (rejected).
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A.3 Figures

Figure 6: Smooth kernel histograms for the offers made by the East (red) and the West German participants (blue).

Figure 7: The histogram of the normalized offers (grey bars) and smooth kernel histograms for the offers made first (blue)
and all the higher-order offers (red).
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A.4 Robustness Checks

A.4.1 Note: Non-parametric Decomposition

As an alternative way to solve for f and g, we discretize the support of distributions in
(3) and we search for finite solution approximations using a non-parametric approach. In
an iterative procedure with the initial state where both f and g are uniform, we gradually
increase precision until the solution cannot be improved. The estimates of f and g are chosen
to minimize the Kolmogorov-Smirnov distance as a goodness-of-fit criterion, adapted to the
discrete case:

dKS
(

Ĥ, H
)
≡ sup
{bk}k=1,..,10

∣∣Ĥ (bk)− H (bk)
∣∣ , (12)

where both Ĥ and H are defined on a set of bins (b1,b2, ..,b10) = (0.1,0.2, ..,1). In the
discrete problem, we look for f̂ and ĝ that minimize (12), subject to f̂ (bk) = 0 for k = 6,7, ..,10,
and ∑k f̂ (bk) = ∑k ĝ (bk) = 1. (Recall that f̂ and ĝ define Ĥ according to (8)).

We estimate discretized versions of f and g simultaneously at each iteration. As a starting
point of recurrence, we consider uniform f and g that correspond to the maximal entropy in
both c and s (See Table 14 in the Appendix). That is, we assign equal mass to each of the 5
bins of f and 10 bins of g at the first iteration. The candidate solution can be represented as
a vector of ones: v1 = (1,1, ..,1); it corresponds to the distribution of probability mass across
bins before normalization. v1 is the unique candidate solution at the first iteration, thus we
set v∗1 = v1 At the second iteration, we consider all elements e2,k of the set {0,1}15 and the
respective v2,k = v1 + e2,k. This gives 215 = 32768 candidate solutions ( f , g) and we choose the
one that minimizes the Kolmogorov-Smirnov distance (after the appropriate normalization)
– v∗2 . Generally, in iteration t, we go through all possible constellations of adding one unit or
not changing the mass in the bins of distributions defined by v∗t−1 selected at iteration t− 1.
Among the pairs of f and gn we select the one that minimizes the Kolmogorov-Smirnov
distance and take it to iteration t + 1. The process is repeated until the result at a subse-
quent iteration stays unchanged. Note that as the depth of the binary search tree increases,
the estimates become increasingly precise. The results of the non-parametric approach are
presented in Table 12.

Define Ĥnp as in (8) by substituting in f̂ = f̂ np and ĝ = ĝnp from Table 12. Ĥ∗ is an
extremely good fit for H: the Kolmogorov-Smirnov distance is 7.7× 10−3, meaning that the
maximal divergence between Ĥnp and H across bins is less than 1 percentage point. The
corresponding bootstrap test does not distinguish between H and Ĥnp at the conventional
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significance levels,34 implying that H and Ĥ∗bp can be regarded as equivalent.

As a further robustness check, we relax the restriction on the support of f allowing six
bins; similar results are obtained (see Table 15).

A.4.2 Note: Parametric Decomposition with Beta Distributions.

As a further robustness check, we look for estimates f̂ β and ĝβ within the class of the beta
distributions. The beta class is chosen due to its support on [0, 1], small number of param-
eters and flexibility, as Beta distributions can have one or two modes.35 Since each of the
distributions f and g is pinned down by two parameters, the problem to find the suitable
Ĥ(.) in (7) is now (only) four-dimensional. We estimate the parameters by random grid
search. More precisely, we fix a grid size for each of four parameters and randomly choose
the grid position. For every intersection of the grid (a combination of four parameter values),
we compute the discretized versions of f and g, estimate the integral (8), then we calculate
the Kolmogorov-Smirnov distance and reiterate to find the best-performing combination of
parameters. By performing the procedure multiple times, we refine the search and narrow
down the parameters ranges. A random grid search permits us to trace out local minima
and find the global solution. We report the parametric estimates of distributions f̂ β and ĝβ

Table 13. The parametric Beta estimates f̂ β and ĝβ are dominated by both the parametric and
the non-parametric solutions reported in the main text of the paper (Kolmogorov-Smirnov
distance = 0.066). The distributions have a shape similar to the non-parametric estimates f̂ ∗

and ĝ∗, with the exception of the lowest bin in the distribution of cost estimates ĝ.

34Bootstrap critical values corresponding to 358 observations are 0.049 for significance at 10%, 0.057 for sig-
nificance at 5%, and 0.071 for significance at 1%.

35Excluding the uniform distribution.
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