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1 Introduction

In 2012, the ATLAS and CMS Collaborations at the LHC discovered a new particle [1, 2], an important
milestone in the understanding of the mechanism of electroweak (EW) symmetry breaking [3—5]. Both
experiments have confirmed that the spin, parity and couplings of the new particle are consistent with
those predicted for the Standard Model (SM) Higgs boson [6-8] (denoted by /4 throughout this paper).
They measured its mass to be my, = 125.09 + 0.21(stat) + 0.11(syst) GeV [9] and reported recently on a
combination of measurements of its couplings to other SM particles [10].

One important question is whether the newly discovered particle is part of an extended scalar sector as
postulated by various extensions to the Standard Model such as the two-Higgs-doublet model 2HDM) [11].
These extensions predict additional Higgs bosons, motivating searches in an extended range of mass.

This paper reports on two searches for a heavy resonance decaying into two SM Z bosons, encompassing
the final states ZZ — "¢ ¢*¢~ and ZZ — ¢*{"vv where € stands for either an electron or a muon
and v stands for all three neutrino flavours. These final states are referred to as £*¢ ¢*¢~ and "¢ vv
respectively.

It is assumed that an additional Higgs boson (denoted as H throughout this paper) would be produced
predominantly via gluon—gluon fusion (ggF) and vector-boson fusion (VBF) processes, but that the ratio
of the two production mechanisms is unknown in the absence of a specific model. For this reason, the
results are interpreted separately for the ggF and VBF production modes, with events being classified
into ggF- and VBF-enriched categories in both final states, as discussed in Sections 5 and 6. With good
mass resolution and a high signal-to-background ratio, the ¢*¢~¢* ¢~ final state is well suited to a search
for a narrow resonance with mass mpy between 200 GeV and 1200 GeV. The ¢ vv search covers the
300 GeV < my < 1400 GeV range and dominates at high masses due to its larger branching ratio.

These searches look for an excess in distributions of the four-lepton invariant mass, mge, for the £+~ €+€~
final state, and the transverse invariant mass, mr, for the £*£~ v final state, as the escaping neutrinos do
not allow the full reconstruction of the final state. The transverse invariant mass is defined as:

N

where my is the mass of the Z boson, p?}" is the transverse momentum of the lepton pair and E;niss is
the missing transverse momentum, with magnitude E7". In the absence of such an excess, limits on the
production rate of different signal hypotheses are obtained from a simultaneous likelihood fit to the two
mass distributions. The first hypothesis is the ggF and VBF production of a heavy Higgs boson (spin-0
resonance) under the narrow-width approximation (NWA). The upper limits on the production rate of a
heavy Higgs boson are then translated into exclusion contours in the context of the two-Higgs-doublet
model. As several theoretical models favour non-negligible natural widths, large-width assumption (LWA)
models, assuming widths of 1%, 5% and 10% of the resonance mass, are also studied. The interference
between the heavy scalar and the SM Higgs boson as well as between the heavy scalar and the gg — ZZ
continuum background are taken into account in this study. Limits are also set on the Randall-Sundrum
(RS) model [12, 13] with a warped extra dimension giving rise to a spin-2 Kaluza—Klein (KK) excitation
of the graviton Ggg.
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Other searches for diboson resonances decaying into WW or ZZ or WZ have been performed by AT-
LAS [14-16] and CMS [17].



With a significant increase in integrated luminosity and an improved discovery potential from the higher
parton luminosities [18] at a centre-of-mass energy of /s = 13 TeV as compared to /s = 8 TeV, the results
of this paper improve upon previous results published by the ATLAS Collaboration from a search for an
additional heavy Higgs boson [19]. Results of a similar search from the data collected at the LHC with
/s = 8 TeV have also been reported by the CMS Collaboration [20].

2 ATLAS detector

The ATLAS experiment is described in detail in Ref. [21]. ATLAS is a multi-purpose detector with
a forward-backward symmetric cylindrical geometry and a solid-angle' coverage of nearly 47. The
inner tracking detector (ID), covering the region || < 2.5, consists of a silicon pixel detector, a silicon
microstrip detector and a transition-radiation tracker. The innermost layer of the pixel detector, the
insertable B-layer (IBL) [22], was installed between Run 1 and Run 2 of the LHC. The inner detector is
surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a finely segmented
lead/liquid-argon (L. Ar) electromagnetic calorimeter covering the region || < 3.2. A steel/scintillator-tile
hadronic calorimeter provides coverage in the central region || < 1.7. The end-cap and forward regions,
covering the pseudorapidity range 1.5 < |n| < 4.9, are instrumented with electromagnetic and hadronic
LAr calorimeters, with steel, copper or tungsten as the absorber material. A muon spectrometer (MS)
system incorporating large superconducting toroidal air-core magnets surrounds the calorimeters. Three
layers of precision wire chambers provide muon tracking in the range || < 2.7, while dedicated fast
chambers are used for triggering in the region |n7| < 2.4. The trigger system, composed of two stages, was
upgraded [23] before Run 2. The first stage, implemented with custom hardware, uses information from
calorimeters and muon chambers to reduce the event rate from about 40 MHz to a maximum of 100 kHz.
The second stage, called the high-level trigger (HLT), reduces the data acquisition rate to about 1 kHz
on average. The HLT is software-based and runs reconstruction algorithms similar to those used in the
offline reconstruction.

3 Data and Monte Carlo samples

The proton—proton (pp) collision data used in these searches were collected by the ATLAS detector at a
centre-of-mass energy of 13 TeV with a 25 ns bunch-spacing configuration during 2015 and 2016. The
data are subjected to quality requirements: if any relevant detector component is not operating correctly
during a period in which an event is recorded, the event is rejected. After these quality requirements, the
total accumulated data sample corresponds to an integrated luminosity of 36.1 fb~!.

Simulated events are used to determine the signal acceptance and some of the background contributions
to these searches. The particle-level events produced by each Monte Carlo (MC) event generator were
processed through the ATLAS detector simulation [24] within the GEANT 4 framework [25]. Additional
inelastic pp interactions (pile-up) were overlaid on the simulated signal and background events. The
MC event generator used for this is PytrHia 8.186 [26] with the A2 set of tuned parameters [27] and

' The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the
centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the
y-axis points upward. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the
z-axis. The pseudorapidity is defined in terms of the polar angle 6 as n = — Intan(6/2).



the MSTW2008LO [28] parton distribution functions (PDF) set. The simulated events are weighted to
reproduce the observed distribution of the mean number of interactions per bunch crossing in data (pile-
up reweighting). The properties of the bottom and charm hadron decays were simulated by the EvTGEN
v1.2.0 program [29].

Heavy spin-0 resonance production was simulated using the PowneG-Box v2 [30] MC event generator.
Gluon—gluon fusion and vector-boson fusion production modes were calculated separately with matrix
elements up to next-to-leading order (NLO) in QCD. PowHeG-Box was interfaced to PyThia 8.212 [31]
for parton showering and hadronisation, and for decaying the Higgs boson into the H —» ZZ — "¢~ ¢+ ¢~
or H— ZZ — ¢*¢ vy final states. The CT10 PDF set [32] was used for the hard process. Events from
ggF and VBF production were generated in the 300 GeV < mpy < 1600 GeV mass range under the NWA,
using a step of 100 (200) GeV up to (above) 1000 GeV in mass. For the £*¢~¢* ¢~ final state, due to the
sensitivity of the analysis at lower masses, events were also generated for my = 200 GeV.

In addition, events from ggF production with a boson width of 5%, 10% and 15% of the scalar mass
mp were generated with MADGrAaPHS_aMC@NLO v2.3.2 [33] interfaced to PyTHia 8.210 for parton
showering and hadronisation for both final states. For the ¢*¢~¢*¢~ final state, the my, distribution is
parameterised analytically as described in Section 5.3, and the samples with a width of 15% of mpy are
used to validate the parameterisation. For the ¢*¢~vv final state, a reweighing procedure as described in
Section 6.3 is used on fully simulated events to obtain the reconstructed mr distribution at any value of
mass and width tested. To have a better description of the jet multiplicity, MADGrRAPHS_aMC@NLO was
also used to generate events for the process pp — H + > 2 jets at NLO QCD accuracy with the FxFx
merging scheme [34].

The fraction of the ggF events that enter into the VBF-enriched category is estimated from the MaD-
GraPHS5_aMC@NLO simulation.

Spin-2 Kaluza—Klein gravitons from the Bulk Randall-Sundrum model [35] were generated with MAD-
Graru5_aMC@NLO at leading order (LO) in QCD. The dimensionless coupling &/ Mp,, where Mp; =
Mp,/ V8x is the reduced Planck scale and k is the curvature scale of the extra dimension, is set to 1. In
this configuration, the width of the resonance is expected to be ~ 6% of its mass.

Mass points between 600 GeV and 2 TeV with 200 GeV spacing were generated for the £*¢~ vy final
state. These samples were processed through a fast detector simulation [24] that uses a parameterisation
of the response of electromagnetic and hadronic calorimeters [36], while the response of the ID and MS
detectors is fully simulated.

The q¢§ — ZZ background for the ¢*¢~vv final state was simulated by the Pownec-Box v2 event
generator [30] and interfaced to PyTHia 8.186 [26] for parton showering and hadronisation. The CT10nLo
PDF set [32] was used for hard-scattering processes. Next-to-next-to-leading-order (NNLO) QCD and
NLO EW corrections are included [37-39] as a function of the invariant mass mzz of the ZZ system. For
the £*¢~¢* ¢~ final state, this background was simulated with the SHERPA v2.2.1 [40-42] event generator,
with the NNPDF3.0 NNLO PDF set [43] for the hard-scattering process. NLO accuracy is achieved in the
matrix-element calculation for O- and 1-jet final states and LO accuracy for 2- and 3-jet final states. The
merging with the SHERPA parton shower [44] was performed using the MEPs @ NLO prescription [45].

NLO EW corrections were applied as a function of mzz [39, 46]. In addition, SHERPA v2.2.1 was used
for the ¢*¢~vv final state to scale the fraction of events in the VBF-enriched category obtained from
PowHEG-Box simulation, because the SHERPA event generator calculates matrix elements up to one parton
at NLO and up to three partons at LO. The EW production of a ZZ pair and two additional jets via



vector-boson scattering up to O(agw) was generated using SHERPA, where the process ZZZ — 4{qq is
also taken into account.

The gg — ZZ production was modelled by Suerpa v2.1.1 at LO in QCD for the ¢*¢~¢*¢~ final state
and by GG2VV [47] for the £* ¢~ vV final state, both including the off-shell & boson contribution and the
interference between the 4 and ZZ backgrounds. The K-factor accounting for higher-order QCD effects
for the gg — ZZ continuum production was calculated for massless quark loops [48-50] in the heavy-
top-quark approximation [51], including the gg — H* — ZZ process [52]. Based on these studies, a
constant K-factor of 1.7 is used, and a relative uncertainty of 60% is assigned to the normalisation in both
searches.

The WW and WZ diboson events were simulated by Pownec-Box, using the CT10nLo PDF set and
PyTtHia 8.186 for parton showering and hadronisation. The production cross section of these samples is
predicted at NLO in QCD.

Events containing a single Z boson with associated jets were simulated using the SHERPA v2.2.1 event
generator. Matrix elements were calculated for up to two partons at NLO and four partons at LO using
the Comix [41] and OpenLoops [42] matrix-element generators and merged with the SHERPA parton
shower [44] using the ME+PS @NLO prescription [45]. The NNPDF3.0 NNLO PDF set was used in
conjunction with dedicated parton-shower tuning developed by the SHERPA authors. The Z + jets events
are normalised using the NNLO cross sections [53].

The triboson backgrounds ZZZ, WZZ, and WWZ with fully leptonic decays and at least four prompt
charged leptons were modelled using SHErPA v2.1.1. For the fully leptonic 7 + Z background, with four
prompt leptons originating from the decays of the top quarks and Z boson, MapGraru5_aMC@NLO
was used. The ¢7 background, as well as the single-top and Wt production, were modelled using PowHEG-
Box v2 interfaced to PyTHia 6.428 [54] with the Perugia 2012 [55] set of tuned parameters for parton
showering and hadronisation, to PHOTOS [56] for QED radiative corrections and to Tavora [57, 58] for
the simulation of 7-lepton decays.

In order to study the interference treatment for the LWA case, samples containing the gg — ZZ continuum
background (B) as well as its interference (/) with a hypothetical heavy scalar (S) were used and are referred
to as SBI samples hereafter. In the £*¢~¢* ¢~ final state the MCFM NLO event generator [59], interfaced
to PytHia 8.212, was used to produce SBI samples where the width of the heavy scalar is set to 15% of its
mass, for masses of 200, 300, 400, 500, 600, 800, 1000, 1200 and 1400 GeV. Background-only samples
were also generated with the MCFM event generator, and are used to extract the signal-plus-interference
term (SI) by subtracting them from the aforementioned SBI samples. For the {*¢~vv final state, the SBI
samples were generated with the GG2VV event generator. The samples include signal events with a scalar
mass of 400, 700, 900, 1200 and 1500 GeV.

4 Event reconstruction

Electrons are reconstructed using information from the ID and the electromagnetic calorimeter [60].
Electron candidates are clusters of energy deposits associated with ID tracks, where the final track—cluster
matching is performed after the tracks have been fitted with a Gaussian-sum filter (GSF) to account for
bremsstrahlung energy losses. Background rejection relies on the longitudinal and transverse shapes of
the electromagnetic showers in the calorimeters, track—cluster matching and properties of tracks in the ID.
All of this information, except for that related to track hits, is combined into a likelihood discriminant.



The selection used combines the likelihood with the number of track hits and defines two working points
(WP) which are used in the analyses presented here. The £*¢~¢*{~ analysis uses a “loose” WP, with
an efficiency ranging from 90% for transverse momentum pt = 20 GeV to 96% for pt > 60 GeV. A
“medium” WP was chosen for the £* £~ vv analysis with an efficiency increasing from 82% at py = 20 GeV
to 93% for pr > 60 GeV. The electron’s transverse momentum is computed from the cluster energy and
the track direction at the interaction point.

Muons are formed from tracks reconstructed in the ID and MS, and their identification is primarily based
on the presence of the track or track segment in the MS [61]. If a complete track is present in both the
ID and the MS, a combined muon track is formed by a global fit using the hit information from both the
ID and MS detectors (combined muon), otherwise the momentum is measured using the ID, and the MS
track segment serves as identification (segment-tagged muon). The segment-tagged muon is limited to
the centre of the barrel region (|| < 0.1) which has reduced MS geometrical coverage. Furthermore,
in this central region an ID track with pr > 15 GeV is identified as a muon if its calorimetric energy
deposition is consistent with a minimum-ionising particle (calorimeter-tagged muon). In the forward
region (2.5 < |n| < 2.7) with limited or no ID coverage, the MS track is either used alone (stand-alone
muon) or combined with silicon hits, if found in the forward ID (combined muon). The ID tracks associated
with the muons are required to have a minimum number of associated hits in each of the ID subdetectors
to ensure good track reconstruction. The stand-alone muon candidates are required to have hits in each of
the three MS stations they traverse. A “loose” muon identification WP, which uses all muon types and has
an efficiency of 98.5%, is adopted by the £*¢~¢*¢~ analysis. For the £*{~ vV analysis a “medium” WP is
used, which only includes combined muons and has an efficiency of 97%.

Jets are reconstructed using the anti-k, algorithm [62] with a radius parameter R = 0.4 implemented
in the FastJeT package [63], and positive-energy clusters of calorimeter cells as input. The algorithm
suppresses noise and pile-up by keeping only cells with a significant energy deposit and their neighbouring
cells. Jets are calibrated using a dedicated scheme designed to adjust, on average, the energy measured
in the calorimeter to that of the true jet energy [64]. The jets used in this analysis are required to satisfy
pr > 20 GeV and |n| < 4.5. To reduce the number of jet candidates originating from pile-up vertices,
an additional requirement that uses the track and vertex information inside a jet is imposed on jets with
pr < 60 GeV and |n| < 2.4 [65].

Jets containing b-hadrons, referred to as b-jets, are identified by the long lifetime, high mass and decay
multiplicity of b-hadrons, as well as the hard b-quark fragmentation function. The ¢*¢~ vV analysis
identifies b-jets of pt > 20 GeV and |n7| < 2.5 using an algorithm that achieves an identification efficiency
of about 85% in simulated ¢ events, with a rejection factor for light-flavour jets of about 33 [66, 67].

Selected events are required to have at least one vertex with two associated tracks with pr > 400 MeV,
and the primary vertex is chosen to be the vertex reconstructed with the largest p%. As lepton and
jet candidates can be reconstructed from the same detector information, a procedure to resolve overlap
ambiguities is applied. If an electron and a muon share the same ID track, the muon is selected unless
it is calorimeter-tagged and does not have a MS track, or is a segment-tagged muon, in which case
the electron is selected. Reconstructed jets which overlap with electrons (muons) in a cone of size

AR = +/(An)? + (A¢)? = 0.2 (0.1) are removed.

The missing transverse momentum E;niss, which accounts for the imbalance of visible momenta in the
plane transverse to the beam axis, is computed as the negative vector sum of the transverse momenta of
all identified electrons, muons and jets, as well as a “soft term”, accounting for unclassified soft tracks
and energy clusters in the calorimeters [68]. This analysis uses a track-based soft term, which is built



by combining the information provided by the ID and the calorimeter, in order to minimise the effect of
pile-up which degrades the E;niss resolution. The soft term is computed using the momenta of the tracks
associated with the primary vertex, while the jet and electron momenta are computed at the calorimeter
level to allow the inclusion of neutral particles. Jet—-muon overlap is accounted for in the E%mss calculation.
This corrects for fake jets due to pile-up close to muons and double-counted jets from muon energy
losses.

5 H>ZZ -ttt event selection and background estimation

5.1 Event selection

Four-lepton events are selected and initially classified according to the lepton flavours: 4u, 2e2u, 4e,
called “channels” hereafter. They are selected with single-lepton, dilepton and trilepton triggers, with
the dilepton and trilepton ones including electron(s)-muon(s) triggers. Single-electron triggers apply
“medium” or “tight” likelihood identification, whereas multi-electron triggers apply “loose” or “medium”
identification. For the bulk of the data, recorded in 2016, the lowest pr threshold for the single-electron
(muon) triggers used is set to 26 (26) GeV, for the dielectron (dimuon) triggers to 15 (10) GeV and
for the trielectron (trimuon) triggers to 12 (6) GeV. For the data collected in 2015, the instantaneous
luminosity was lower so the trigger thresholds were lower; this increases the signal efficiency by less than
1%. Globally, the trigger efficiency for signal events passing the final selection requirements is about
98%.

In each channel, four-lepton candidates are formed by selecting a lepton-quadruplet made out of two
same-flavour, opposite-sign lepton pairs, selected as described in Section 4. Each electron (muon) must
satisfy pr > 7 (5) GeV and be measured in the pseudorapidity range of || < 2.47 (2.7). The highest-pt
lepton in the quadruplet must satisfy pr > 20 GeV, and the second (third) lepton in pr order must satisfy pr
> 15 GeV (10 GeV). In the case of muons, at most one calorimeter-tagged, segment-tagged or stand-alone
(2.5 < |n| < 2.7) muon is allowed per quadruplet.

If there is ambiguity in assigning leptons to a pair, only one quadruplet per channel is selected by keeping
the quadruplet with the lepton pairs closest (leading pair) and second closest (subleading pair) to the
Z boson mass, with invariant masses referred to as m, and ms34 respectively. If multiple quadruplets
from different channels are selected, only the quadruplet from the channel with the highest expected
signal rate is retained, in the order: 4u, 2e2u, 4e. In the selected quadruplet, m;, is required to be
50 GeV < mjy < 106 GeV, while m3y is required to be less than 115 GeV and greater than a threshold that
is 12 GeV for my, < 140 GeV, rises linearly from 12 GeV to 50 GeV with my, in the interval of [140 GeV,
190 GeV] and is fixed to 50 GeV for my4e > 190 GeV.

Selected quadruplets are required to have their leptons separated from each other by AR > 0.1 if they
are of the same flavour and by AR > 0.2 otherwise. For 4u and 4e quadruplets, if an opposite-charge
same-flavour lepton pair is found with m., below 5 GeV, the quadruplet is removed to suppress the
contamination from J /¢ mesons.

The Z + jets and 7 background contributions are reduced by imposing impact-parameter requirements
as well as track- and calorimeter-based isolation requirements on the leptons. The transverse impact-
parameter significance, defined as the impact parameter calculated with respect to the measured beam line
position in the transverse plane divided by its uncertainty, |dy|/c4,, for all muons (electrons) is required



to be lower than 3 (5). The normalised track-isolation discriminant, defined as the sum of the transverse
momenta of tracks, inside a cone of size AR = 0.3 (0.2) around the muon (electron) candidate, excluding
the lepton track, divided by the lepton pr, is required to be smaller than 0.15. The larger muon cone size
corresponds to that used by the muon trigger. Contributions from pile-up are suppressed by requiring
tracks in the cone to originate from the primary vertex. To retain efficiency at higher pr, the track-isolation
cone size is reduced to 10 GeV/pr for pr above 33 (50) GeV for muons (electrons).

The relative calorimetric isolation is computed as the sum of the cluster transverse energies Et, in the
electromagnetic and hadronic calorimeters, with a reconstructed barycentre inside a cone of size AR = 0.2
around the candidate lepton, divided by the lepton pt. The clusters used for the isolation are the same as
those for reconstructing jets. The relative calorimetric isolation is required to be smaller than 0.3 (0.2) for
muons (electrons). The measured calorimeter energy around the muon (inside a cone of size AR = 0.1)
and the cells within 0.125x0.175 in 7 X ¢ around the electron barycentre are excluded from the respective
sums. The pile-up and underlying-event contributions to the calorimeter isolation are subtracted event
by event [69]. For both the track- and calorimeter-based isolation requirements, any contribution arising
from other leptons of the quadruplet is subtracted.

An additional requirement based on a vertex-reconstruction algorithm, which fits the four-lepton candidates
with the constraint that they originate from a common vertex, is applied in order to further reduce the
Z +jets and 7 background contributions. A loose cut of y?/ndof < 6 for 4u and < 9 for the other channels
is applied, which retains a signal efficiency larger than 99% in all channels.

The QED process of radiative photon production in Z boson decays is well modelled by simulation. Some
of the final-state-radiation (FSR) photons can be identified in the calorimeter and incorporated into the
¢~ ¢ ¢ analysis. The strategy to include FSR photons into the reconstruction of Z bosons is the same
as in Run 1 [19]. It consists of a search for collinear (for muons) and non-collinear FSR photons (for
muons and electrons) with only one FSR photon allowed per event. After the FSR correction, the lepton
four-momenta of both dilepton pairs are recomputed by means of a Z-mass-constrained kinematic fit.
The fit uses a Breit—-Wigner Z boson line-shape and a single Gaussian function per lepton to model the
momentum response function with the Gaussian width set to the expected resolution for each lepton. The
Z-mass constraint is applied to both Z candidates, and improves the m4, resolution by about 15%.

In order to be sensitive to the VBF production mode, events are classified into four categories: one for the
VBF production mode and three for the ggF production mode, one for each of the three channels. If an
event has two or more jets with pt greater than 30 GeV, with the two leading jets being well separated in
1, |An;j| > 3.3, and having an invariant mass mj; > 400 GeV, this event is classified into the VBF-enriched
category; otherwise the event is classified into one of the ggF-enriched categories. Such classification is
used only in the search for a heavy scalar produced with the NWA.

The signal acceptance, defined as the ratio of the number of reconstructed events passing the analysis
requirements to the number of simulated events in each category, is shown in Table 1, for the ggF and
VBF production modes as well as different resonance masses. The contribution from final states with 7
leptons decaying into electrons or muons is found to be negligible.

5.2 Background estimation

The main background component in the H — ZZ — (*¢~¢*¢~ final state, accounting for 97% of the
total expected background events, is non-resonant ZZ production. This arises from quark—antiquark



Table 1: Signal acceptance for the £*¢~¢*{~ analysis, for both the ggF and VBF production modes and resonance
masses of 300 and 600 GeV. The acceptance is defined as the ratio of the number of reconstructed events after all
selection requirements to the number of simulated events for each channel/category.

ggF-enriched categories

Mass Production mode 4y channel 2¢24 channel 4e channel VBF-enriched category
ggF 56% 48% 40% 1%

300 Gev VBE 36% 30% 24% 21%
ggF 64% 56% 48% 3%

600 Gev VBF 36% 34% 32% 26%

annihilation (86%), gluon-initiated production (10%) and a small contribution from EW vector-boson
scattering (1%). The last is more important in the VBF-enriched category, where it accounts for 16%
of the total expected background. These backgrounds are all modelled by MC simulation as described
in Section 3. Additional background comes from the Z + jets and 7 processes, which contribute at the
percent level and decrease more rapidly than the non-resonant ZZ production as a function of m4,. These
backgrounds are estimated using data where possible, following slightly different approaches for final
states with a dimuon (£€ + pu) or a dielectron (€€ + ee) subleading pair [70].

The €€ + pu non-ZZ background comprises mostly ¢ and Z + jets events, where in the latter case the
muons arise mostly from heavy-flavour semileptonic decays and to a lesser extent from n/K in-flight
decays. The contribution from single-top production is negligible. The normalisations of the Z + jets
and #f backgrounds are determined using fits to the invariant mass of the leading lepton pair in dedicated
data control regions. The control regions are formed by relaxing the y? requirement on the vertex fit, and
by inverting and relaxing isolation and/or impact-parameter requirements on the subleading muon pair.
An additional control region (euuu) is used to improve the ¢7 background estimate. Transfer factors to
extrapolate from the control regions to the signal region are obtained separately for ¢f and Z + jets using
simulated events.

The main background for the €€ + ee process arises from the misidentification of light-flavour jets as
electrons, photon conversions and the semileptonic decays of heavy-flavour hadrons. The ¢£ + ee control-
region selection requires the electrons in the subleading lepton pair to have the same charge, and relaxes the
identification and isolation requirements on the electron candidate, denoted X, with the lower transverse
momentum. The heavy-flavour background is completely determined from simulation, whereas the light-
flavour and photon-conversion background is obtained with the sPlot [71] method, based on a fit to the
number of hits in the innermost ID layer in the data control region. Transfer factors for the light-flavour
jets and converted photons, obtained from simulated samples, are corrected using a Z + X control region
and then used to extrapolate the extracted yields to the signal region. Both the yield extraction and the
extrapolation are performed in bins of the transverse momentum of the electron candidate and the jet
multiplicity.

The WZ production process is included in the data-driven estimates for the ££ + ee final states, while it is
added from simulation for the ¢ + pu final states. The contributions from ¢V (where V stands for either
a W or a Z boson) and triboson processes are minor and taken from simulated samples.
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Figure 1: (a) Parameterisation of the four-lepton invariant mass (m4,) spectrum for various resonance mass (mg)
hypotheses in the NWA. Markers show the simulated my4, distribution for three specific values of mg (300, 600,
900 GeV), normalised to unit area, and the dashed lines show the parameterisation used in the 2e2 u channel for these
mass points as well as for intervening ones. (b) RMS of the four-lepton invariant mass distribution as a function of
mpg.

5.3 Signal and background modelling

The parameterisation of the reconstructed four-lepton invariant mass mg, distribution for signal and
background is based on the MC simulation and used to fit the data.

In the case of a narrow resonance, the width in my, is determined by the detector resolution, which is
modelled by the sum of a Crystal Ball (C) function [72, 73] and a Gaussian (&) function:

Py(mae) = fo X Clmae; , 0¢, ac,ne) + (1 — fo) X G(mae; p, og).

The Crystal Ball and the Gaussian functions share the same peak value of my4, (1), but have different
resolution parameters, o¢c and og. The a¢ and ne parameters control the shape and position of the
non-Gaussian tail and the parameter f; ensures the relative normalisation of the two probability density
functions. To improve the stability of the parameterisation in the full mass range considered, the parameter
n¢ is set to a fixed value. The bias in the extraction of signal yields introduced by using the analytical
function is below 1.5%. The function parameters are determined separately for each final state using signal
simulation, and fitted to first- and second-degree polynomials in scalar mass mpy to interpolate between
the generated mass points. The use of this parameterisation for the function parameters introduces an extra
bias in the signal yield and m g extraction of about 1%. An example of this parameterisation is illustrated in
Figure 1, where the left plot shows the mass distribution for simulated samples at mg = 300, 600, 900 GeV
and the right plot shows the RMS of the m4, distribution in the range considered for this search.

In the case of the LWA, the particle-level line-shape of my, is derived from a theoretical calculation, as
described in Ref. [74], and is then convolved with the detector resolution, using the same procedure as for
the modelling of the narrow resonance.

The my, distribution for the ZZ continuum background is taken from MC simulation, and parameterised
by an empirical function for both the quark- and gluon-initiated processes:

Jaqzzggzz(mar) = (fi(mae) + fo(mag)) X H(mo — mag) X Co + f3(mag) X H(mae — mo),
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where:

fi(mae) = exp(ar + az - mye),

1 1 may — b 1
fz(m4t’)={§+56rf( Mb 1)}X Y
2 1 +exp (—m“l‘;: ')

2 2.7
Sfa(myr) = exp (cl +Cy My + €3 My, + C4 - My, ) ,

_ f3(mo)
filmo) + fo(mo)”

Co

The function’s first part, fi, covers the low-mass part of the spectrum where one of the Z bosons is off-
shell, while f, models the ZZ threshold around 2-mz and f3 describes the high-mass tail. The transition
between low- and high-mass parts is performed by the Heaviside step function H(x) around mg = 240 GeV.
The continuity of the function around my is ensured by the normalisation factor Cy that is applied to the
low-mass part. Finally, a;, b; and c; are shape parameters which are obtained by fitting the m4, distribution
in simulation for each category. The uncertainties in the values of these parameters from the fit are found
to be negligible. The MC statistical uncertainties in the high-mass tail are taken into account by assigning
a 1% uncertainty to c4.

The ma, shapes are extracted from simulation for most background components (¢17V, VVV, €€ + up and
heavy-flavour hadron component of ££ + ee), except for the light-flavour jets and photon conversions in
the case of ££ + ee background, which is taken from the control region as described in Section 5.2.

Interference modelling

The gluon-initiated production of a heavy scalar H, the SM /4 and the gg — ZZ continuum background all
share the same initial and final state, and thus lead to interference terms in the total amplitude. Theoretical
calculations described in Ref. [75] have shown that the effect of interference could modify the integrated
cross section by up to O(10%), and this effect is enhanced as the width of the heavy scalar increases.
Therefore, a search for a heavy scalar Higgs boson in the LWA case must properly account for two
interference effects: the interference between the heavy scalar and the SM Higgs boson (denoted by H-h)
and between the heavy scalar and the gg — ZZ continuum (denoted by H-B).

Assuming that H and / bosons have similar properties, they have the same production and decay amplitudes
and therefore the only difference between the signal and interference terms in the production cross section
comes from the propagator. Hence, the acceptance and resolution of the signal and interference terms are
expected to be the same. The H—h interference is obtained by reweighting the particle-level line-shape of
generated signal events using the following formula:

2-Re[# 1

s=sg  (s=sp)"
w(mae) = 1 :

ls=sp |2

where 1/(s — sg ) is the propagator for a scalar (H or h). The particle-level line-shape is then convolved
with the detector resolution function, and the signal and interference acceptances are assumed to be the
same.
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Figure 2: Particle-level four-lepton mass m4, model for signal only (red), H—h interference (green), H—B interference
(blue) and the sum of the three processes (black). Three values of the resonance mass my (400, 600, 800 GeV)
are chosen, as well as three values of the resonance width I'yy (1%, 5%, 10% of mp). The signal cross section,
which determines the relative contribution of the signal and interference, is taken to be the cross section of the
expected limit for each combination of my and I'y. The full model (black) is finally normalised to unity and the
other contributions are scaled accordingly.

In order to extract the H—B interference contribution, signal-only and background-only samples are
subtracted from the generated SBI samples. The extracted particle-level my, distribution for the H-B
interference term is then convolved with the detector resolution.

Figure 2 shows the overlay of the signal, both interference effects and the total line-shape for different
mass and width hypotheses assuming the couplings expected in the SM for a heavy Higgs boson. As can
be seen, the two interference effects tend to cancel out, and the total interference yield is for the most part
positive, enhancing the signal.
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6 H—ZZ — t*t~vv event selection and background estimation

6.1 Event selection

The analysis is designed to select ZZ — "¢~ vv events (with £ = e, u), where the missing neutrinos are
identified by a large E%"iss, and to discriminate against the large Z + jets, W Z and top-quark backgrounds.

Events are required to pass either a single-electron or a single-muon trigger, where different pt thresholds
are used depending on the instantaneous luminosity of the LHC. For the 2015 data the electron and muon
triggers had pr thresholds of 24 GeV and 20 GeV respectively, while for 2016 the muon trigger threshold
was increased to 24 GeV. For both triggers, the threshold is set to 26 GeV when the instantaneous
luminosity exceeds the value of 103 cm=2s™!. The trigger efficiency for signal events passing the final
selection is about 99%.

Events are selected if they contain exactly two opposite-charge leptons of the same flavour and “medium”
identification, with the more energetic lepton having pr > 30 GeV and the other one having pt > 20 GeV.
The same impact-parameter significance criteria as defined in Section 5.1 are applied to the selected
leptons. Track- and calorimeter-based isolation criteria as defined in Section 5.1 are also applied to the
leptons, but in this analysis the isolation criteria are optimised by adjusting the isolation threshold so that
their selection efficiency is 99%. If an additional lepton with pr > 7 GeV and “loose” identification is
found, the event is rejected to reduce the amount of WZ background. In order to select leptons originating
from the decay of a Z boson, the invariant mass of the pair is required to be in the range 76 to 106 GeV.
Moreover, since a Z boson originating from the decay of a high-mass particle is boosted, the two leptons
are required to be produced with an angular separation of AR, < 1.8.

Events with neutrinos in the final state are selected by requiring E;mss > 120 GeV, and this requirement
heavily reduces the amount of Z + jets background. In signal events with no initial- or final-state radiation
the visible Z boson’s transverse momentum is expected to be opposite the missing transverse momentum,
and this characteristic is used to further suppress the Z + jets background. The azimuthal angle between
the dilepton system and the missing transverse momentum (A¢(£¢, E;niss)) is thus required to be greater

missjet _ p§€|/ pf#, to be less than 20%, where

than 2.7 and the fractional pr difference, defined as |p;

miss,jet _ | Zmiss - jet
Pr - |ET + z:jetpT |

Additional selection criteria are applied to keep only events with E%mss originating from neutrinos rather
than detector inefficiencies, poorly reconstructed high-pr muons or mismeasurements in the hadronic
calorimeter. If at least one reconstructed jet has a pr greater than 100 GeV, the azimuthal angle between
the highest-pr jet and the missing transverse momentum is required to be greater than 0.4. Similarly, if
E}“iss is found to be less than 40% of the scalar sum of the transverse momenta of leptons and jets in the
event (Hr), the event is rejected. Finally, to reduce the ¢f background, events are rejected whenever a
b-tagged jet is found.

The sensitivity of the analysis to the VBF production mode is increased by creating a dedicated category
of VBF-enriched events. The selection criteria, determined by optimising the expected signal significance
using signal and background MC samples, require the presence of at least two jets with pt > 30 GeV
where the two highest-pr jets are widely separated in 7, |An;;| > 4.4, and have an invariant mass m;;
greater than 550 GeV.

The signal acceptance, defined as the ratio of the number of reconstructed events passing the analysis
requirements to the number of simulated events in each category, is shown in Table 2, for the ggF and VBF
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Table 2: Signal acceptance for the £*£~vv analysis, for both the ggF and VBF production modes and resonance
masses of 300 and 600 GeV. The acceptance is defined as the ratio of the number of reconstructed events after all
selection requirements to the number of simulated events for each channel/category.

ggF-enriched categories

Mass Production mode " 1~ channel et o channel VBF-enriched category
ggF 6% 5% <0.05%

300 Gev VBE 2.6% 2.4% 0.7%
ggF 44% 44% 1%

600 GeV VBE 27% 27% 13%

production modes as well as for different resonance masses. The acceptance increases with mass due to
a kinematic threshold determined by the EI"* selection criteria. Hence the £*£~v¥ search considers only
masses of 300 GeV and above, where its inclusion improves the combined sensitivity.

6.2 Background estimation

The dominant and irreducible background for this search is non-resonant ZZ production, which accounts
for about 60% of the expected background events. The second largest background comes from WZ
production (~30%) followed by Z + jets production with poorly reconstructed E;mss (~6%). Other sources
of background are the WW, 7, Wt and Z — 77 processes (~3%). Finally, a small contribution comes
from W + jets, tf, single-top-quark and multi-jet processes, with at least one jet misidentified as an electron
or muon, as well as from ¢7V/VVV events. In both the ggF- and in the VBF-enriched signal regions, the
Z 7 background is modelled using MC simulation and normalised using SM predictions, as explained in
Section 3. The remaining backgrounds are mostly estimated using control samples in data.

The WZ background is modelled using simulation but a correction factor for its normalisation is extracted
as the ratio of data to simulated events in a dedicated control region, after subtracting from data the
non-WZ background contributions. The WZ-enriched control sample, called the 3¢ control region, is
built by selecting Z — ¢¢ candidates with an additional electron or muon. This additional lepton is
required to satisfy all selection criteria used for the other two leptons, with the only difference that its
transverse momentum is required to be greater than 7 GeV. The contamination from Z + jets and ¢7
events is reduced by vetoing events with at least one b-tagged jet and by requiring the transverse mass
of the W boson (m‘TV ), built using the additional lepton and the E%“iss vector, to be greater than 60 GeV.
The distribution of the missing transverse momentum for data and simulated events in the 3¢ control
region is shown in Figure 3(a). The correction factor derived in the 3¢ control region is found to be
1.29 £ 0.09, where the uncertainty includes effects from the number of events in the control region as
well as from experimental systematic uncertainties. Since there are few events after applying all the
VBEF selection requirements to the WZ-enriched control sample, the estimation for the VBF-enriched
category is performed by including in the 3¢ control region only the requirement of at least two jets with
pt > 30 GeV. Finally, a transfer factor is derived from MC simulation by calculating the probability of
events satisfying all analysis selection criteria and containing two jets with pr > 30 GeV to satisfy the
|An;j| > 4.4 and mj; > 550 GeV requirements.
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Figure 3: Missing transverse momentum E%“iss distribution (a) for events in the 3¢ control region as defined in the
text and (b) for e*u* lepton pairs after applying the dilepton invariant mass requirement. The backgrounds are
determined following the description in Section 6.2 and the last bin includes the overflow. The error bars on the data
points indicate the statistical uncertainty, while the systematic uncertainty in the prediction is shown by the hatched
band. The lower panels show the ratio of data to prediction.

The non-resonant background includes mainly WW, 7 and Wt processes, but also Z — 77 events in
which the 7 leptons produce light leptons and E‘Tniss. It is estimated by using a control sample of events
with lepton pairs of different flavour (e* ™), satisfying all analysis selection criteria.

Figure 3(b) shows the missing-transverse-momentum distribution for e*u™ events in data and simulation
after applying the dilepton invariant-mass selection but before applying the other selection requirements.
The non-resonant background in the e*e™ and u* u~ channels is estimated by applying a scale factor (f)
to the selected events in the e* u™ control region, such that:

bkg _ 1 data,sub bkg _ 1 data,sub 1
Nee _EXNe” X f, N/l/l _EXNe,u X?,

bk bk
where N,,¢ and N,

Hp
stm’sub is the number of events in the e*u™ control sample with ZZ, WZ and other small backgrounds

subtracted using simulation. The factor f takes into account the different selection efficiencies of e*e™
and u* ™ pairs at the level of the Z — € selection, and is measured from data as f> = N33/ Nﬁzm, where
NY%@ and N ,‘jf}a are the numbers of events passing the Z boson mass requirement (76 < mgy < 106 GeV) in
the electron and muon channel respectively. Asno events survive in the e*u™ control region after applying
the full VBF selection, the background estimation is performed by including only the requirement of at
least two jets with pr > 30 GeV. The efficiency of the remaining selection requirements on |An;;| and m;;
is obtained from simulated events.

are the numbers of electron- and muon-pair events estimated in the signal region and
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The number of Z + jets background events in the signal region is estimated from data, using a so-
called ABCD method [76], since events with no genuine E;niss in the final state are difficult to model
using simulation. The method combines the selection requirements presented in Section 6.1 (with np_ag
representing the number of b-tagged jets in the event) into two Boolean discriminants, V; and V,, defined
as:

Vi = Ef™ > 120 GeV and Ef™/Hr > 0.4,

Va = |pp = plly/ptf < 0.2 and Ag(¢6, EM) > 2.7 and ARpe < 1.8 and mp.ags = 0,

with all events required to pass the trigger and dilepton invariant-mass selections. The signal region (A)
is thus obtained by requiring both V; and V; to be true, control regions B and C require only one of the
two Boolean discriminants to be false (V; and V, respectively) and finally control region D is defined by
requiring both V| and V, to be false. With this definition, an estimate of the number of events in region
A is given by th = Ngbs X (NBObs / NB"S), where N)‘;bs is the number of events observed in region X after
subtracting non-Z-boson backgrounds. This relation holds as long as the correlation between V; and V; is
small, and this is achieved by introducing two additional requirements on control regions B and D, namely
E%“iss > 30 GeV and E%“iss/ Hr > 0.1. The estimation of the Z + jets background was cross-checked with
another approach in which a control region is defined by inverting the analysis selection on EF"*/Hr
and then using Z + jets MC simulation to perform the extrapolation to the signal region, yielding results
compatible with the ABCD method. Finally, the estimate for the VBF-enriched category is performed by
extrapolating the inclusive result obtained with the ABCD method to the VBF signal region, extracting
the efficiency of the two-jet, |An;;| and mj; selection criteria from Z + jets simulation.

The W + jets and multi-jet background contributions are estimated from data using a so-called fake-factor
method [77]. A control region enriched in fake leptons or non-prompt leptons from decays of hadrons
is designed by requiring one lepton to pass all analysis requirements (baseline selection) and the other
one to not pass either the lepton “medium” identification or the isolation criteria (inverted selection).
The background in the signal region is then derived using a transfer factor, measured in a data sample
enriched in Z + jets events, as the ratio of jets passing the baseline selection to those passing the inverted
selection.

Finally, the background from the 7V and VVV processes is estimated using MC simulation.

6.3 Signal and background modelling

The modelling of the transverse mass mr distribution for signal and background is based on templates
derived from fully-simulated events and afterwards used to fit the data. In the case of a narrow resonance,
simulated MC events generated for fixed mass hypotheses as described in Section 3 are used as the inputs
in the moment-morphing technique [78] to obtain the mr distribution for any other mass hypothesis.

The extraction of the interference terms for the LWA case is performed in the same way as in the £+~ €+£~
final state, as described in Section 5.3. In the case of the £T£~v¥ final state a correction factor, extracted
as a function of mzz, is used to reweight the interference distributions obtained at particle level to account
for reconstruction effects. The final expected LWA mr distribution is obtained from the combination of the
interference distributions with simulated m distributions, which are interpolated between the simulated
mass points with a weighting technique using the Higgs propagator, a method similar to that used for the
interference.
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7 Systematic uncertainties

The systematic uncertainties can be classified into experimental and theoretical uncertainties. The first
category relates to the reconstruction and identification of leptons and jets, their energy scale and resolution,
and the integrated luminosity. Systematic uncertainties in the data-driven background estimates are also
included in this category. The second category includes uncertainties in the theoretical description of the
signal and background processes.

In both cases the uncertainties are implemented as additional nuisance parameters (NP) that are constrained
by a Gaussian distribution in the profile likelihood ratio, as discussed in Section 8.1. The uncertainties
affect the signal acceptance, its selection efficiency and the discriminant distributions as well as the
background estimates for both final states. Each source of uncertainty is either fully correlated or anti-
correlated among the different channels and categories.

7.1 Experimental uncertainties

The uncertainty in the combined 2015 and 2016 integrated luminosity is 3.2%. This is derived from a
preliminary calibration of the luminosity scale using x—y beam-separation scans performed in August
2015 and May 2016, following a methodology similar to that detailed in Ref. [79].

The lepton identification and reconstruction efficiency and energy/momentum scale and resolution are
derived from data using large samples of J/yy — €€ and Z — ¢¢ decays. The uncertainties in the
reconstruction performance are computed following the method described in Ref. [61] for muons and
Ref. [60] for electrons. Typical uncertainties in the identification and reconstruction efficiency are in
the range 0.5%—3.0% for muons and 1.0%—1.7% for electrons. The uncertainties in the electron energy
scale, the muon momentum scale and their resolutions are small, and are fully correlated between the two
searches (¢Y¢~ €€~ and £* ¢~ vv final states).

The uncertainties in the jet energy scale and resolution have several sources, including uncertainties
in the absolute and relative in sifu calibration, the correction for pile-up, the flavour composition and
response [64]. These uncertainties are separated into independent components, which are fully correlated
between the two searches. They vary from 4.5% for jets with transverse momentum pr = 20 GeV,
decreasing to 1% for jets with pr = 100-1500 GeV and increasing again to 3% for jets with higher pr, for
the average pile-up conditions of the 2015 and 2016 data-taking period.

Uncertainties in the lepton and jet energy scales are propagated to the uncertainty in the E%“ss . Additionally,
the uncertainties from the momentum scale and resolution of the tracks that are not associated with any
identified lepton or jet contribute 8% and 3% respectively, to the uncertainty in the Ef"™* value.

The efficiency of the lepton triggers in events with reconstructed leptons is nearly 100%, and hence the
related uncertainties are negligible.

7.2 Theoretical uncertainties
For simulated signal and backgrounds, theoretical modelling uncertainties associated with the PDFs,

missing QCD higher-order corrections (via variations of factorisation and renormalisation scales), and
parton showering are considered.
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For all signal hypotheses under consideration, the largest theoretical modelling uncertainties are due to
missing QCD higher-order corrections and parton showering. The missing QCD higher-order corrections
for ggF production events that fall into the VBF-enriched category are accounted for by varying the scales
in MADGrAPHS_aMC@NLO and affect the signal acceptance by 10%. Parton showering uncertainties
are of order 10% and are estimated by comparing PyTnia 8.212 to HErwic++ [80].

For the g¢§ — ZZ background, the effect of the PDF uncertainties in the full mass range varies between
2% and 5% in all categories, and that of missing QCD higher-order corrections is about 10% in the ggF-
enriched categories and 30% in the VBF-enriched category. The parton-shower uncertainties result in less
than 1% impact in the ggF-enriched categories and about 10% impact in the VBF-enriched category.

For the gg — ZZ background, as described in Section 3, a 60% relative uncertainty in the inclusive cross
section is considered, while a 100% uncertainty is assigned in the VBF-enriched category.

8 Results and interpretations

8.1 Statistical procedure

The statistical treatment of the data follows the procedure for the Higgs-boson search combination [81,
82], and is implemented with RooFit [83] and RooStats [84]. The test statistic employed for hypothesis
testing and limit setting is the profiled likelihood ratio A(e, €), which depends on one or more parameters
of interest @, and additional nuisance parameters #. The parameter of interest is the cross section times
branching ratio for heavy-resonance production, assumed to be correlated between the two searches. The
nuisance parameters represent the estimates of the systematic uncertainties and are each constrained by a
Gaussian distribution. For each category of each search, a likelihood fit to the kinematic distribution of a
discriminating variable is used to further separate signal from background. The ¢*¢~£*¢~ final state uses
myy as the discriminant in each category, while the £*¢~vv final state uses mr in each category except for
the VBF-enriched one where only the overall event counts are used.

As discussed in Section 7, the signal acceptance uncertainties, and many of the background theoretical
and experimental uncertainties, are treated as fully correlated between the searches. A given correlated
uncertainty is modelled in the fit by using a nuisance parameter common to all of the searches. The impact
of a systematic uncertainty on the result depends on the production mode and the mass hypothesis. For
ggF production, at lower masses the luminosity uncertainty, the modelling uncertainty of the Z + jets
background and the statistical uncertainty in the eu control region of the £*£~vv final state dominate, and
at higher masses the uncertainties in the electron-isolation efficiency become important, as also seen in
VBF production. For VBF production, the dominant uncertainties come from the theoretical predictions
of the ZZ events in the VBF category. Additionally at lower masses, the pile-up reweighting and the
jet-energy-resolution uncertainties are also important. Table 3 shows the impact of the leading systematic
uncertainties on the predicted signal event yield when the cross section times branching ratio is set to
the expected upper limit (shown in Figure 6), for ggF and VBF production modes. The impact of the
uncertainty in the integrated luminosity, 3.2%, enters both in the normalisation of the fitted number of
signal events as well as in the background predicted by simulation. This leads to a luminosity uncertainty
which varies from 4% to 7% across the mass distribution, depending on the signal-to-background ratio.
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Table 3: Impact of the leading systematic uncertainties on the predicted signal event yield which is set to the
expected upper limit, expressed as a percentage of the yield for the ggF (left) and VBF (right) production modes at
mpg = 300, 600, and 1000 GeV.

ggF production VBF production

Systematic source Impact [%] | Systematic source Impact [%]
mp = 300 GeV

Luminosity 4 Parton showering 9

Z + jets modelling (£ €~ vv) 3.3 | Jet energy scale 4

Parton showering 3.2 | Luminosity 4

ey statistical uncertainty €*€~vv 3.2 | q¢§ — ZZ QCD scale (VBF-enriched category) 4
mpg = 600 GeV

Luminosity 6 Parton showering 6

Pile-up reweighting 5 Pile-up reweighting 6

Z + jets modelling (£ €~ vv) 4 Jet energy scale 6

QCD scaleof gg — ZZ 3.1 | Luminosity 4
mpg = 1000 GeV

Luminosity 4 Parton showering 6

QCD scaleof gg — ZZ 2.3 | Jet energy scale 5

Jet vertex tagger 1.9 | Z + jets modelling (¢* ¢~ vv) 4

Z + jets modelling (€€~ vv) 1.8 | Luminosity 4

Table 4: £+¢~¢*¢~ search: expected and observed numbers of events for myr > 130 GeV, together with their
statistical and systematic uncertainties, for the ggF- and VBF-enriched categories.

ggF-enriched categories

Process VBF-enriched category

4 channel 2e2u channel 4e channel
zZ 297+ 1 +40 480+ 1 60 193+ 1 £25 15+ 0.1 £6.0
ZZ (EW) 1.92 £0.11 £0.19 336 £0.14 + 0.33 1.88 £0.12 £ 0.20 30+ 0.1 £22
Z +jets/ttiWZ 37+ 0.1 £0.8 78+ 0.1 1.1 44+ 0.1 £038 0.37 £0.01 + 0.05
Other backgrounds 51+ 01 +£06 87+ 0.1 £1.0 40+ 0.1 £0.5 0.80 +0.02 = 0.30
Total background 308+ 1 +40 500+ 1 +60 203+ 1 £25 195+ 02 £8.0
Observed 357 545 256 31

8.2 General results

The numbers of observed candidate events with mass above 130 GeV together with the expected back-
ground yields are presented in Table 4 for each of the four categories of the £*¢~¢*¢™ analysis. The my,
spectrum for the ggF-enriched and VBF-enriched categories is shown in Figure 4.

Table 5 contains the number of observed candidate events along with the background yields for the
¢+ ¢~ vv analysis, while Figure 5 shows the mr distribution for the electron and muon channels with the
ggF-enriched and VBF-enriched categories combined.

In the £Y¢€ €1 ¢~ search, two excesses are observed in the data for my4, around 240 and 700 GeV, each
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Figure 4: Distribution of the four-lepton invariant mass ma, in the £*¢~¢*{~ search for (a) the ggF-enriched category
and (b) the VBF-enriched category. The backgrounds are determined following the description in Section 5.2 and the
last bin includes the overflow. The simulated mg = 600 GeV signal is normalized to a cross section corresponding
to five times the observed limit given in Section 8.3.1. The error bars on the data points indicate the statistical
uncertainty, while the systematic uncertainty in the prediction is shown by the hatched band. The lower panels show
the ratio of data to prediction.

Table 5: £*¢~vv search: expected and observed number of events together with their statistical and systematic
uncertainties, for the ggF- and VBF-enriched categories.

ggF-enriched categories

Process VBF-enriched category

e*e” channel u* y~ channel
Z7Z 177+ 3 +21 180+ 3 +21 21+ 02 £0.7
wz 93+ 2 +4 995+ 23 +£3.2 1.29 + 0.04 = 0.27
WWittiWtlZ —- v 92+ 22 14 107+ 25 £09 0.39+£0.24+0.26
Z + jets 17+ 1 +11 19+ 1 +17 0.8+ 0.1 +£0.5

Other backgrounds  1.12 + 0.04 £ 0.08 1.03 £ 0.04 + 0.08 0.03 £ 0.01 + 0.01
Total background 297+ 4 +24 311+ 5 =27 46+ 04 £09
Observed 320 352 9
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Figure 5: Transverse mass mr distribution in the £*£~vv search for (a) the electron channel and (b) the muon channel,
including events from both the ggF-enriched and the VBF-enriched categories. The backgrounds are determined
following the description in Section 6.2 and the last bin includes the overflow. The simulated my = 600 GeV signal
is normalized to a cross section corresponding to five times the observed limit given in Section 8.3.1. The error
bars on the data points indicate the statistical uncertainty and markers are drawn at the bin centre. The systematic
uncertainty in the prediction is shown by the hatched band. The lower panels show the ratio of data to prediction.

with a local significance of 3.60 estimated in the asymptotic approximation, assuming the signal comes
only from ggF production. The global significance is 2.20- and is calculated, for each excess individually,
using the NWA, in the range of 200 GeV< mgy < 1200 GeV using pseudo-experiments.

The excess at 240 GeV is observed mostly in the 4e channel, while the one at 700 GeV is observed
in all channels and categories. No significant deviation from the expected background is observed in
the £*¢"vv final state. The excess observed in the £*£~¢*{~ search at a mass around 700 GeV is
excluded at 95% confidence level (CL) by the ¢*¢~vv search, which is more sensitive in this mass
range. The excess at 240 GeV is not covered by the £*¢~vv search, the sensitivity of which starts from
300 GeV. When combining the results from the two final states, the largest deviation with respect to the
background expectation is observed around 700 GeV with a global significance of less than 1o~ and a
local significance of about 20-. The combined yield of the two final states is 1870 events observed in data
compared to 1643 + 164 (combined statistical and systematic uncertainty) for the expected background.
This corresponds to a 1.30- global excess in data. Since no significant excess is found, the results are
interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance.

8.3 Spin-0 resonance interpretation

Limits from the combination of the two searches in the context of a spin-0 resonance are described
below.

22



=
o
=
o

L B B R B L B B BRI
ATLAS ATLAS

=y oy
[=% £ 3 [=% £ 3
Q F Vs=13Tev,36.1 1" " Observed CLg fimit ] < F Vs=13TeV,36.1 10" " Observed CLg imit ]
N L oHozz ot T Expected CLfimit i N LoH oz orrretw T Expected CLfimit i
! NWA, ggF production [ Expected £ 10 ! NWA, VBF production [ Expected £ 1o
i’ 1 2 l:l Expected + 20 E % ? E l:l Expected + 20 E
X - = = Expected CL_limit (| 1) 3 X C = = = Expected CL_ limit @y
f e Expected CL limit (I"1vv) : f B we Expected CL_ limit "1v) :
1 1
-1 — -1

g 107E E g 10

(o] - 3 ©

= L . 9 c

(<] - s s o s}
E i 2 E
3 2 3 2 |- -
g 107 3 o 107k E
) P E T R RS H T < P E TR R R

;"Q 200 400 600 800 1000 1200 ;’mn 200 400 600 800 1000 1200

my, [GeV] m,, [GeV]
(@) (b)

Figure 6: The upper limits at 95% CL on the cross section times branching ratio as a function of the heavy
resonance mass mg for (a) the ggF production mode(oger X B(H — ZZ)) and (b) for the VBF production mode
(ovBrXB(H — ZZ))inthe case of the NWA. The green and yellow bands represent the +10- and +2¢- uncertainties
in the expected limits. The dashed coloured lines indicate the expected limits obtained from the individual searches.

8.3.1 NWA interpretation

Upper limits on the cross section times branching ratio (oo X B(H — ZZ)) for a heavy resonance are
obtained as a function of mpy with the CLg procedure [85] in the asymptotic approximation from the
combination of the two final states. It is assumed that an additional heavy scalar would be produced
predominantly via the ggF and VBF processes but that the ratio of the two production mechanisms is
unknown in the absence of a specific model. For this reason, fits for the ggF and VBF production processes
are done separately, and in each case the other process is allowed to float in the fit as an additional nuisance
parameter. Figure 6 presents the observed and expected limits at 95% CL on o X B(H — ZZ ) of anarrow
scalar resonance for the ggF (left) and VBF (right) production modes, as well as the expected limits from
the £*¢~¢*¢~ and ¢* ¢~ vv searches. This result is valid for models in which the width is less than 0.5% of
mp. When combining the two final states, the 95% CL upper limits range from 0.68 pb at my = 242 GeV
to 11 fb at myg = 1200 GeV for the ggF production mode and from 0.41 pb at mgy = 236 GeV to 13 fb at
mpyg = 1200 GeV for the vector-boson fusion production mode. Compared with the results from Run 1 [19],
where all four final states of ZZ decays were combined, the exclusion region presented here is significantly
extended considering that the ratios of parton luminosities [86] increase by factors of about two to seven
for heavy scalar masses from 200 GeV to 1200 GeV.

8.3.2 LWA interpretation

In the case of the LWA, limits on the cross section for the ggF production mode times branching ratio
(0ger X B(H — ZZ)) are set for different widths of the heavy scalar. The interference between the heavy
scalar and the SM Higgs boson, H-h, as well as the heavy scalar and the gg — ZZ continuum, H-B, are
modelled by either analytical functions or reweighting the signal-only events as explained in Sections 5.3
and 6.3. Figures 7(a), 7(b), and 7(c) show the limits for a width of 1%, 5% and 10% of mpg respectively.
The limits are set for masses of my higher than 400 GeV.
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Figure 7: The upper limits at 95% CL on the cross section for the ggF production mode times branching ratio
(0egr X B(H — ZZ)) as function of mp for an additional heavy scalar assuming a width of (a) 1%, (b) 5%, and (c)
10% of my. The green and yellow bands represent the 10~ and +2¢" uncertainties in the expected limits. The
dashed coloured lines indicate the expected limits obtained from the individual searches.

8.3.3 2HDM interpretation

A search in the context of a CP-conserving 2HDM is also presented. This model has five physical Higgs
bosons after electroweak symmetry breaking: two CP-even, one CP-odd, and two charged. The model
considered here has seven free parameters: the Higgs boson masses, the ratio of the vacuum expectation
values of the two doublets (tan 8), the mixing angle between the CP-even Higgs bosons (@), and the
potential parameter m%z that mixes the two Higgs doublets. The two Higgs doublets @, and ®, can couple
to leptons and up- and down-type quarks in several ways. In the Type-I model, @, couples to all quarks
and leptons, whereas for Type-II, ®@; couples to down-type quarks and leptons and @, couples to up-type
quarks. The “lepton-specific’” model is similar to Type-I except for the fact that the leptons couple to @y,
instead of @,; the “flipped” model is similar to Type-II except that the leptons couple to @,, instead of @;.
In all these models, the coupling of the heaviest CP-even Higgs boson to vector bosons is proportional to
cos(B — ). In the limit cos(B8 — @) — 0, the light CP-even Higgs boson is indistinguishable from a SM
Higgs boson with the same mass. In the context of H — ZZ decays there is no direct coupling of the
Higgs boson to leptons, and so only the Type-I and -1l interpretations are presented.
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Figure 8 shows exclusion limits in the tan 8 versus cos(8 — @) plane for Type-I and Type-1I 2HDMs, for a
heavy Higgs boson with mass my =200 GeV. This my value is chosen so that the assumption of a narrow
Higgs boson is valid over most of the parameter space, and the experimental sensitivity is maximal. At
this low mass, only the £*¢~¢*{~ final state contributes to this result. The range of cos(8 — @) and tan 3
explored is limited to the region where the assumption of a heavy narrow Higgs boson with negligible
interference is valid. When calculating the limits at a given choice of cos(8 — @) and tan 3, the relative
rates of ggF and VBF production in the fit are set to the prediction of the 2HDM for that parameter choice.
Figure 9 shows exclusion limits as a function of the heavy Higgs boson mass my and the parameter tan 8
for cos(8 — @) = —0.1. The white regions in the exclusion plots indicate regions of parameter space which
are not excluded by the present analysis. In these regions the cross section predicted by the 2HDM is below
the observed cross section limit. Compared with the results from Run 1 [19], the exclusion presented here
is almost twice as stringent.

8.4 Spin-2 resonance interpretation

The results are also interpreted as a search for a Kaluza—Klein graviton excitation, Gk, in the context of the
bulk RS model using the £*¢~vv final state because the £*£~¢* ¢~ final state was found to have negligible
sensitivity for this type of model. The limits on o= X B(Ggxg — ZZ) at 95% CL as a function of the KK
graviton mass, m(Gkx), are shown in Figure 10 together with the predicted Ggg cross section. A spin-2
graviton is excluded up to a mass of 1300 GeV. These limits have been extracted using the asymptotic
approximation, and they were verified to be correct within about 4% using pseudo-experiments.
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9 Summary

A search is conducted for heavy resonances decaying into a pair of Z bosons which subsequently decay
into £*¢~¢*¢~ or £*¢"vv final states. The search uses proton—proton collision data collected with the
ATLAS detector during 2015 and 2016 at the Large Hadron Collider at a centre-of-mass energy of 13 TeV
corresponding to an integrated luminosity of 36.1 fb~!. The results of the search are interpreted as upper
limits on the production cross section of a spin-0 or spin-2 resonance. The mass range of the hypothetical
resonances considered is between 200 GeV and 2000 GeV depending on the final state and the model
considered. The spin-0 resonance is assumed to be a heavy scalar, whose dominant production modes
are gluon—gluon fusion and vector-boson fusion and it is studied in the narrow-width approximation and
with the large-width assumption. In the case of the narrow-width approximation, limits on the production
rate of a heavy scalar decaying into two Z bosons are set separately for ggF and VBF production modes.
Combining the two final states, 95% CL upper limits range from 0.68 pb at my = 242 GeV to 11 fb at
my = 1200 GeV for the gluon—gluon fusion production mode and from 0.41 pb at my = 236 GeV to
13 fb at my = 1200 GeV for the vector-boson fusion production mode. The results are also interpreted in
the context of Type-I and Type-II two-Higgs-doublet models, with exclusion contours given in the tan 8
versus cos(8 — @) (for mg = 200 GeV) and tan g versus mpg planes. This my value is chosen so that
the assumption of a narrow Higgs boson is valid over most of the parameter space and the experimental
sensitivity is maximal. The limits on the production rate of a large-width scalar are obtained for widths
of 1%, 5% and 10% of the mass of the resonance, with the interference between the heavy scalar and
the SM Higgs boson as well as the heavy scalar and the gg — ZZ continuum taken into account. In the
framework of the Randall-Sundrum model with one warped extra dimension a graviton excitation spin-2
resonance with m(Ggg) < 1300 GeV is excluded at 95% CL.
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