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Overview

Article acceptance date: 10 February 2018

This R-Markdown document provides step-by-step instructions for executing the analysis and pro-
ducing figures presented in the paper Quantifying soil moisture impacts on light use efficiency across
biomes by Stocker et al. (2018). The starting point of the present collection of scripts is the data file
./data/modobs_fluxnet2015_s11_s12_s13_with_SWC_v3.Rdata which contains all the data used for the
neural network (NN) training and analysis. Further information about data processing and creating the data
file is given below (section ‘Data processing’). Using RMarkdown and open access code available through
github (https://github.com/stineb/nn_fluxnet2015) this is supposed to allow for full reproducibility of
published results - from publicly accessible data files to published figures.

IP information

All code in this repository is free software. It may be redistributed and/or modified under the terms of
the GNU General Public License as published by the Free Software Foundation, version 3. Present code is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License (file ./LICENSE) for more details.

Copyright (C) 2017 Benjamin D. Stocker

Approach

We quantify the fractional reduction in light use efficiency due to soil moisture, separated from VPD and
greenness effects as the ratio of actual versus potential LUE:

fLUE = LUEact / LUEpot

“Potential”" light use efficiency (LUEpot) is predicted using artificial neural networks (NN, see below), trained
on the empirical relationship between observed LUE (LUEobs) and its predictors temperature, VPD, and
PAR during days where soil moisture is not limiting (“moist days”). All NN training is done for each site
specifically. “Actual” LUE (LUEact) is derived from NNs using all data and, in contrast to the NN for LUEpot,
with soil moisture as an additional predictor (see Fig. S1).
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Figure 1: Illustration of the method for splitting data for NN training into moist and dry days data.

LUEobs is calculated based on daily total observed GPP (GPPobs), PAR, and fAPAR, measured at each
site. We refer to the alternative NN models used for predicting LUEact and LUEpot as NNact and NNpot,
respectively.

LUEobs = GPPFLX

fAPAREVI · PARFLX
'

{
NNpot(TFLX,VPDFLX,PARFLX), (TFLX,VPDFLX,PARFLX) ∈ moist days
NNact(TFLX,VPDFLX,PARFLX, θ), (TFLX,VPDFLX,PARFLX) ∈ all days

LUEobs is used as the target variable for NNact and NNpot. Predictor (input) variables are temperature (T ),
vapour pressure deficit (VPD), and the photon flux density (PAR). Their subscripts refer to the data source
with FLX referring to the FLUXNET 2015 dataset and EVI to MODIS EVI. Further information about data
sources and processing is given below (section Data processing).

We limit the NN training to a small number of predictors that are reflective of process understanding
regarding the controls on LUE (I. C. Prentice et al. 2014) and to avoid over-fitting. The agreement between
potential and actual LUE, using the two NN models’ prediction, should be good during “moist days” (high
soil moisture). In contrast, the potential LUE from the “moist days” NN model is expected to overestimate
LUE during days of low soil moisture (see Fig. S2 and S3). With the only difference between NN models
being soil moisture as an additional predictor, the ratio fLUE thus indicates the separated effect of soil
moisture on LUE. fLUE droughts are identified when fLUE falls below a site-specific threshold (see Process
sequence, step 4).

Neural network training

Functions used

Neural networks (1 hidden layer) are trained (R packages nnet and caret) using repeated (5 times) five-fold
cross-validation where 75% of data for training in each iteration. The learning rate decay rate is set to 0.1
and the number nodes in the hidden layer is sampled from 4 to 20 (step 2). The best-performing NN (by
RMSE) is selected, the same procedure is repeated five times, and the mean across repetitions is used for
further analyses.

The following code snippets are used by function profile_soilm_neuralnet() and functions called therein
(see below for a full description of the sequence of commands executed to produce results).

1. Data is scaled to within zero and one.
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preprocessParams <- preProcess( data, method=c("range") )

2. Do a 5-fold (argument number=5) cross-validation, repeated 5 times (argument repeats=5), for the NN
training and selecting optimal number of nodes in the NN-model (only one hidden layer in the NN). In
each iteration, 75% of the data is used for training and 25% for testing (argument p=0.75).

traincotrlParams <- trainControl( method="repeatedcv",
number=5, repeats=5, verboseIter=FALSE, p=0.75
)

3. Train the NN. The decay of the learning rate parameter is set to 0.1 (This generally yields best results
according to additional tests). The number of nodes is sampled from four to twenty in steps of two.

tune_grid <- expand.grid( .decay = c(0.1), .size = seq(4,20,2) )
nn <- train(

lue_obs_evi ~ ppdf + temp + vpd,
data = data,
method = "nnet",
linout = TRUE,
tuneGrid = tune_grid,
preProc = preprocessParams,
trControl = traincotrlParams,
trace = FALSE
)

This procedure is repeated five times and the mean across individual NN predictions is used for further
analysis.

Data splitting into moist and dry days

The threshold for splitting training data into “moist” and “dry” days, where “moist” days’ data is used to
train NNpot and all data is used to train NNact (see Fig. S1), is determined by optimal performance in the
face of the trade-off between the number of data points and including data where low soil moisture affects
fluxes. The threshold selection algorithm can be described as follows:

1. Select the five best soil moisture thresholds, for which the difference in the median of the overpre-
dictions ($ratio) of the “good days” model during bad days is highest. This is implemented in
profile_soilm_neuralnet.R as follows:

n_best <- 5
diff_good_bad <- data.frame( soilm_threshold = c(), diff = c() )
for (isoilm_trh in soilm_thrsh_avl){

## add row to statistics data frame
addrow <- data.frame(

soilm_threshold = isoilm_trh,
diff = median( filter( df_bad, soilm_threshold==isoilm_trh )$ratio,

na.rm=TRUE
)

- median( filter( df_good, soilm_threshold==isoilm_trh )$ratio,
na.rm=TRUE

)
)

diff_good_bad <- rbind( diff_good_bad, addrow )
}

list_best_soilm_trh <- diff_good_bad$soilm_threshold[
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order(-diff_good_bad$diff)][1:min(n_best,nrow(diff_good_bad))
]

2. Among the five best thresholds selected by step 1, chose the threshold for which the variance of fLUE
during “good days” is minimal.

This is done for each soil moisture dataset separately. This is implemented by function profile_soilm_neuralnet()
(see Section ‘Profiling soil moisture threshold’).

Process sequence

The following provides a documentation and instruction to reproduce results presented in the paper. The
starting point is the Rdata file modobs_fluxnet2015_s11_s12_s13_with_SWC_v3.Rdata where original data
downloaded from different sources is stored in a standardised way. Provided is the documentation of NN
training, fLUE calculation, drought event detection, NN quality checking, clustering, and plotting (Steps 1-9).

1. Requirements and environment setup

Install required R packages. The execution of the scripts provided here requires the following R packages.
Install them if missing (Sorry if some are missing - It’s hard to keep the overview):
list.of.packages <- c( "dplyr", "tidyr", "broom", "caret", "nnet",

"minpack.lm", "LSD", "zoo", "Metrics", "abind",
"caTools", "cgwtools", "hydroGOF", "cluster",
"lattice", "ggplot2", "stats", "knitr", "SPEI"
)

new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if( length(new.packages) ) install.packages(new.packages)

Create sub-directories

Define working directory. Define the path variable used throughout multiple scripts and functions. myhome is
used only by functions where argument testprofile is FALSE, i.e. when evaluating all analyses for all sites
(batch execution). Change myhome as an absolute path by hand, defining your local parent directory of the
present working directory, i.e. where the the repository has been pulled into:
workingdir <- getwd()
print( paste("working directory directory:", workingdir ) )

## [1] "working directory directory: /Users/benjaminstocker/alphadata01/bstocker/nn_fluxnet2015"
myhome <- "/alphadata01/bstocker/"

Get additional utility functions.
source("utils_fluxnet2015.R")

2. Data processing

The data file ./data/modobs_fluxnet2015_s11_s12_s13_with_SWC_v3.Rdata contains for each site all the
data used for the NN training and all subsequent analyses. The scripts used to process original, downloaded
data are not provided here but steps are described below.

Download and load the data file:
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load( "./data/modobs_fluxnet2015_s11_s12_s13_with_SWC_v3.Rdata" )

The data is organised as a nested list of dataframes. Inside fluxnet$, there is a list for daily (ddf), monthly
(mdf), and annual data (adf):
str(fluxnet$`AR-SLu`, max.level = 1)

## List of 6
## $ ddf :List of 7
## $ ddf_stat:List of 3
## $ mdf :List of 4
## $ mdf_stat:List of 3
## $ adf :List of 4
## $ adf_stat:List of 3

Daily data (ddf) is used here. This contains the following set of data frames:
str(fluxnet$`AR-SLu`$ddf, max.level = 1)

## List of 7
## $ s11 :'data.frame': 1095 obs. of 10 variables:
## $ s12 :'data.frame': 1095 obs. of 10 variables:
## $ s13 :'data.frame': 1095 obs. of 10 variables:
## $ obs :'data.frame': 1095 obs. of 11 variables:
## $ inp :'data.frame': 1095 obs. of 10 variables:
## $ swc_obs :'data.frame': 1095 obs. of 5 variables:
## $ swc_by_etobs:'data.frame': 1095 obs. of 7 variables:

• s11: contains P-model and SPLASH outputs of simulation s11 (water holding capacity is 220 mm).
• s12: contains P-model and SWBM outputs of simulation s12.
• s13: contains P-model and SWBM outputs of simulation s13 (water holding capacity is 150 mm).
• obs: contains GPP and ET data from FLUXNET 2015 dataset.
• inp: climate and greenness (input) data from the FLUXNET 2015 dataset and MODIS EVI and FPAR.
• swc_obs: observational soil moisture data from the FLUXNET 2015 dataset.
• swc_by_etobs: soil moisture data driven by observational ET.

Soil moisture data

Soil moisture data is based direct measurements, provided through the FLUXNET 2015 dataset, and five
alternative bucket-type models. Measured soil moisture is provided in units of volume water per volume soil.
We scaled data by range to within 0 and 1. Due to limited observational soil moisture data availability and
mostly unavailable soil moisture data for deep soil layers, we also used simulated soil moisture, provided by
alternative, bucket-type soil water balance models.

• SPLASH (Davis et al. 2017) is based on a Priestley-Taylor formulation for simulating evapotranspi-
ration. Two alternative water holding capacities (“bucket depth”) are used, 150 mm (as in (Davis et
al. 2017)) and 220 mm (as for the SWBM model, see (Orth, Koster, and Seneviratne 2013)). In the
datasets used here, these are referred to as soilm_splash150, and soilm_splash220.

• SWBM (Orth, Koster, and Seneviratne 2013) uses measured net radiation from local measurements
(FLUXNET 2015 data) and generates runoff already before the bucket water holding capacity (220
mm) is reached (see Eq. 3 in (Orth, Koster, and Seneviratne 2013), α=6.4 used here). Similarly, an
empirical function down-scales the fraction of evapotranspiration to net radiation as a function of soil
water content (Eq. 2 in (Orth, Koster, and Seneviratne 2013), γ=0.06 used here). In the datasets used
here, this is termed soilm_swbm.

• ET-driven bucket. The soil water balance is simulated using precipitation and latent heat flux,
measured at the FLUXNET sites. The latent heat flux is converted to mass H2O using a constant
conversion factor of 2.26476 × 106 J mm−1. Latent heat flux data from FLUXNET 2015 (variable

5



SWC_F_MDS_1

AR−SLu
AR−Vir
AT−Neu
AU−Ade
AU−ASM
AU−Cpr
AU−Cum
AU−DaP
AU−DaS
AU−Dry
AU−Emr
AU−Fog
AU−Gin
AU−GWW
AU−How
AU−Lox
AU−RDF
AU−Rig
AU−Rob
AU−Stp
AU−TTE
AU−Tum
AU−Wac
AU−Whr
AU−Wom
AU−Ync
BE−Bra
BE−Lon
BE−Vie
BR−Sa3
CA−Man
CA−NS1
CA−NS2
CA−NS3
CA−NS4
CA−NS5
CA−NS6
CA−NS7
CA−Qfo
CA−SF1
CA−SF2
CA−SF3
CH−Cha
CH−Dav
CH−Fru
CH−Lae
CH−Oe1
CH−Oe2
CN−Cha
CN−Cng
CN−Dan
CN−Din
CN−Du2
CN−Ha2
CN−HaM
CN−Qia
CN−Sw2
CZ−BK1
CZ−BK2
CZ−wet
DE−Akm
DE−Geb
DE−Gri
DE−Hai
DE−Kli
DE−Lkb
DE−Obe
DE−RuR
DE−RuS
DE−Seh
DE−SfN
DE−Spw
DE−Tha
DK−Fou
DK−NuF
DK−Sor
DK−ZaF
DK−ZaH
ES−LgS
ES−Ln2
FI−Hyy
FI−Jok
FI−Lom
FI−Sod
FR−Fon
FR−Gri
FR−LBr
FR−Pue
GF−Guy
IT−BCi
IT−CA1
IT−CA2
IT−CA3
IT−Col
IT−Cp2
IT−Cpz
IT−Isp
IT−La2
IT−Lav
IT−MBo
IT−Noe
IT−PT1
IT−Ren
IT−Ro1
IT−Ro2
IT−SR2
IT−SRo
IT−Tor
JP−MBF
JP−SMF
NL−Hor
NL−Loo
NO−Adv
NO−Blv
RU−Che
RU−Cok
RU−Fyo
RU−Ha1
SD−Dem
SN−Dhr
US−AR1
US−AR2
US−ARb
US−ARc
US−ARM
US−Blo
US−Cop
US−GBT
US−GLE
US−Ha1
US−KS2
US−Los
US−Me1
US−Me2
US−Me6
US−MMS
US−Myb
US−Ne1
US−Ne2
US−Ne3
US−NR1
US−ORv
US−PFa
US−Prr
US−SRG
US−SRM
US−Syv
US−Ton
US−Tw1
US−Tw2
US−Tw3
US−Tw4
US−Twt
US−UMB
US−UMd
US−Var
US−WCr
US−Whs
US−Wi0
US−Wi3
US−Wi4
US−Wi6
US−Wi9
US−Wkg
ZA−Kru
ZM−Mon

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

−1 0 0.1 0.3 0.5 0.7 0.9 1

Figure 2: Soil moisture data availability
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LE_F_MDS) is cleaned first if more than 80% of the underlying half-hourly data is gap-filled, then
gap-filled using neural networks (temperature, PAR, VPD, and ET simulated by the SPLASH model as
predictors, using R package nnet and caret, single hidden layer, 20 nodes, 10-fold cross-validated).
The water-holding capacity of the ET-driven buckets is set to 220 mm. Two bucket versions are used.
One where no runoff is generated before the soil water holding capacity is reached (soilm_etobs), and
one where runoff is generated before as in the SWBM model (see above, termed soilm_etobs_ob).

All models are driven by observed precipitation, measured at the FLUXNET sites.

The following creates a plot showing alternative soil moisture time series (observations and models) for one
site (‘US-Var’).
if (!file.exists("fig/soilm")) system("mkdir -p fig/soilm")
source("plot_soilm_fluxnet.R")
plot_soilm_fluxnet( "US-Var", fluxnet[[ "US-Var" ]]$ddf, makepdf=FALSE )
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To produce respective plots for all sites (PDFs stored in ./fig/soilm/), do:
system("mkdir -p ./fig/soilm/")
for (sitename in ls(fluxnet)){

plot_soilm_fluxnet( sitename, fluxnet[[ sitename ]]$ddf, makepdf=TRUE )
}

GPP

Daily data are used from the FLUXNET 2015 Tier 1 dataset, downloaded on 13. November, 2016. We use GPP
based on the Nighttime Partitioning, and the Variable U-Star Threshold method, named GPP_NT_VUT_REF.
In the FLUXNET 2015 dataset, daily values are sums over half-hourly data. We use only daily values where
less than 50% of respective half-hourly data is gap-filled. We further removed data points where the daytime
and nighttime methods (GPP_DT_VUT_REF and GPP_NT_VUT_REF, resp.) are inconsistent. I.e., the upper and
lower 2.5% quantile of the difference between each method’s GPP quantification. Finally, we removed all
negative daily GPP values.

This is implemented by the following function:
clean_fluxnet_gpp <- function( gpp_nt, gpp_dt, qflag_nt, qflag_dt, cutoff=0.80 ){

##--------------------------------------------------------------------
## Cleans daily data.
## gpp_nt: based on nighttime flux decomposition ("NT")
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## gpp_dt: based on daytime flux decomposition ("DT")
##--------------------------------------------------------------------

## Remove data points that are based on too much gap-filled data in the underlying half-hourly data
gpp_nt[ which(qflag_nt < cutoff) ] <- NA ## based on fraction of data based on gap-filled half-hourly
gpp_dt[ which(qflag_dt < cutoff) ] <- NA ## based on fraction of data based on gap-filled half-hourly

## Remove data points where the two flux decompositions are inconsistent,
## i.e. where the residual of their regression is above the 97.5% or below the 2.5% quantile.
res <- gpp_nt - gpp_dt
q025 <- quantile( res, probs = 0.025, na.rm=TRUE )
q975 <- quantile( res, probs = 0.975, na.rm=TRUE )

gpp_nt[ res > q975 | res < q025 ] <- NA
gpp_dt[ res > q975 | res < q025 ] <- NA

## remove negative GPP
gpp_nt[ which(gpp_nt<0) ] <- NA
gpp_dt[ which(gpp_dt<0) ] <- NA

return( list( gpp_nt=gpp_nt, gpp_dt=gpp_dt ) )
}

Greenness data (fAPAR)

We use MODIS EVI (MOD13Q1, 16 days, 250 m) and MODIS FPAR (MOD15A2, 8 days, 1 km) to quantify
fAPAR. Due to its higher spatial resolution, smaller scatter and smaller tendency to saturate at high values
(see Fig. S1), EVI is generally preferred and all results shown in the paper are based on analyses with
EVI data. Results based on FPAR and NDVI data is shown in the SI. Data was downloaded for 81 pixels
surrounding the flux tower location (coordinates from FLUXNET 2015) using the MODISTools R package.
The center pixel’s information was used unless quality flags indicated cloudiness or missing data. Data was
interpolated to daily values using a Savitzky-Golay smoothing filter (signal R package) of order 3 and length
31 days. This generally maintains the full seasonal amplitude but does not fully remove noise. We used the
mean seasonal cycle to extend the EVI time series back to years before MODIS EVI data is available (before
2000).

3. Profiling soil moisture threshold

Purpose and outputs

The function profile_soilm_neuralnet() samples soil moisture thresholds (0.05-0.60 in steps of 0.05) for
separating NN training data into “moist days” and “dry days” data. For each threshold and site, steps
described in Section ‘Neural network training’ are executed. The best-performing threshold is selected as
described in Section ‘Data splitting into moist and dry days’.

The function also derives various performance metrics and creates diagnostic plots that are saved into the
following files and directories (where is the 6-digit FLUXNET site code, e.g. ‘FR-Pue’):

• ./data/profile_lue_obs_nn_<sitename>.Rdata
• ./fig_nn_fluxnet2015/ratio_vs_threshold/: Illustrates by how much the “good days model” over-

estimates LUE during bad days, depending on the chosen soil moisture threshold.
• plot_rsq_vs_smtrh/plot_rsq_vs_smtrh_lue_obs_evi_<soilmoisturedata>_<sitename>.pdf":

Plots the R2 of the good days model’s prediction of LUE (during “good days”).
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All NN predictions and performance metrics are saved in .Rdata files:

• profile_lue_obs_evi_nn_<sitename>.Rdata : Contains NN predictions for each soil moisture thresh-
old and each of the 5 repetitions, as well as respective performance metrics (RMSE and R2) for each
threshold and information about which threshold performs best (see below: Selection of best-performing
soil moisture threshold).

• profile_light_lue_obs_evi_nn_<sitename>.Rdata : Contains only summary information (perfor-
mance metrics and information about best-performing threshold) and the the nnet object (trained NN
model).

Figure 3: Ratio of NN-modelled over observed GPP during “dry days”, evaluated for each soil moisture
threshold. The grey boxes represent predictions based on NNpot, the green boxes represent the predictions
based on (NNact). The red box illustrates the selected soil moisture threshold (0.4 in this case).

Additional data processing and cleaning

Light use efficiency is calculated and outliers (outside 3 times the interquartile range) are removed:
remove_outliers <- function( vec, coef=1.5 ) {

## use the command boxplot.stats()$out which use the Tukey's method
## to identify the outliers ranged above and below the <coef`>*IQR.
outlier <- boxplot.stats( vec, coef=coef )$out
vec[ which( is.element( vec, outlier ) ) ] <- NA
return( vec )

}
data <- data %>% mutate( lue_obs_evi = remove_outliers( gpp_obs / ( ppfd * evi ), coef=3.0 ) )

Soil moisture data is normalised to vary between 0 and 1, where 1 is the maximum value in the time series
(generally equal to the maximum water holding cacpacity parameter in the respective model, but for the
observational data, we don’t know the maximum water holding capacity). This is applied to make values
from different models and observations comparable on the same scale. Example for soil moisture model
output data soilm_splash150:
data <- data %>% mutate( soilm_splash150 = soilm_splash150 / max( soilm_splash150, na.rm=TRUE ) )

Tests have shown that relationships between predictors and observed LUE are noisy during winter in temperate
and boreal ecosystems. Therefore we limit data used for NN training to days where average temperature is
above 5 degrees Celsius. In profile_soilm_neuralnet.R, see
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df_nona <- filter( df_nona, temp > 5.0 )

The following just removes NA values from the dataframe used for NN training:
df_nona <- cleandata_nn( df_nona, nam_target )

Example execution

The code below executes the profiling by soil moisture using MODIS EVI data (argument nam_target="lue_obs_evi").
Alternatively, use MODIS FPAR data (nam_target="lue_obs_fpar"). If the argument makepdf=TRUE,
this creates diagnostic plots in subdirectory ./fig_nn_fluxnet2015, otherwise plots are printed to
screen. To speed up things, only one NN is trained only with soil moisture data from one dataset
(varnams_swc=c("soilm_swbm")), only one repetition for averaging (nrep=2), and reduced numbers of soil
moisture thresholds sampled (soilm_threshold=seq( 0.45, 0.55, 0.05 )). Still, this takes a while - be
patient. For the published study, we sampled the a wider range of thresholds (soilm_threshold = seq(
0.1, 0.60, 0.05 )) and all available soil moisture datasets (varnams_swc = c( "soilm_splash150",
"soilm_splash220", "soilm_swbm", "soilm_etobs", "soilm_etobs_ob" )).
source('profile_soilm_neuralnet.R')
profile_soilm_neuralnet(

"FR-Pue",
nam_target="lue_obs_evi",
outdir="./data/profile/",
soilm_threshold=seq( 0.45, 0.55, 0.05 ), ## reduced range to speed up things
varnams_swc=c("soilm_swbm"), ## only SWBM soil moisture to speed up things
packages="nnet",
nrep=2,
makepdf=FALSE,
use_weights=FALSE,
overwrite_profile=TRUE
)

The full data from the profiling is now stored in the file ./data/profile/profile_evi_nn_FR-Pue.Rdata.
For example, the best-performing soil moisture threshold (soil water contant as afraction) for dataset
soilm_swbm is:
load("./data/profile/profile_light_lue_obs_evi_nn_FR-Pue.Rdata")
print( paste( "best-performing soil moisture threshold:", profile_nn_light$`FR-Pue`$soilm_swbm$nnet$best_soilm_trh[1] ) )

## [1] "best-performing soil moisture threshold: 0.55"

Complete batch execution

The profiling function described above is executed for 135 sites out of all 166 in the FLUXNET Tier 1 dataset,
where modelled soil moisture gave consistent results across different models and was consistent with observed
soil moisture where available (observational soil moisture availability is shown above). This step of site
exclusion was done by visual judgment based on the comparison of soil moisture time series for each site
(Figures created above, see Section ‘2. Data processing, Soil moisture’ and stored in ./fig/soilm/). The
table below shows the judment results (only first 7 rows are shown. Set n=166 to see the full table).
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Table 1: Table: Data usability based on soil moisture, 1 = Obser-
vational data available for multiple depths. Use observational data
for NN. 2 = Observational data incomplete or inconsistent with
ET bucket. ET bucket consistent with SPLASH bucket. Use ET
bucket for NN. 3 = Observational data incomplete or inconsistent
with ET bucket. ET bucket inconsistent with SPLASH bucket. Use
SPLASH or SWBM bucket for NN. 0 = No consistent data.

mysitename code
AR-SLu 2
AR-Vir 2
AT-Neu 2
AU-Ade 1
AU-ASM 1
AU-Cpr 3
AU-Cum 3

Due to its high computational demand when evaluating the profiling function for all 135 sites (“batch
execution”), it can be executed in parallel for each site on a High Performance Computing cluster (We used
the Imperial College London, HPC, server CX1 ). Note, that in this case, profile files are written into (and
subsequently read from) paste( myhome, "data/nn_fluxnet/profile/") (see argument testprofile in
various functions and scripts).

To do the batch execution, first, create a text file containing the list of sites for which profiling is to be done:
do.sites <- dplyr::filter( siteinfo, code!=0 )$mysitename
fileConn <- file("sitelist_doprofile_fluxnet2015.txt")
writeLines( do.sites, fileConn )
close(fileConn)

Then, in the terminal, enter

./submit_profile_nn_ALL.sh

This creates a job submission file for each site from submit_profile_nn_XXXXX.sh and submits it to the
cluster by qsub. Note that the job submission file may have to be adjusted for execution on other clusters
than Imperial HPC CX1.

4. Derive fLUE and identify drought periods

Purpose and steps

This step is implemented by function nn_fVAR_fluxnet(). It does the following:

1. Profile file (./data/profile/profile_light_lue_obs_evi_nn_<sitename>.Rdata) is read (if
testprofile==TRUE) and data corresponding to the best performing soil moisture threshold is
extracted from its large nested list.

2. Calculate fLUE time series for each soil moisture dataset and repetition and take the mean across
repetitions. Code bit:

fvar <- apply(
profile_nn[[ sitename ]][[ isoilm_data ]]$nnet$var_nn_all /
profile_nn[[ sitename ]][[ isoilm_data ]]$nnet[[

paste( "smtrh_", as.character( isoilm_trh ), sep="" )
]]$var_nn_bad,
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1, FUN=mean
)

3. Remove outliers in fLUE (outside 3 times the interquartile range and greater than 1 or negative)
remove_outliers_fXX <- function( vec, coef=1.5 ) {

## use the command boxplot.stats()$out which use the Tukey's method
## to identify the outliers ranged above and below the <coef>*IQR.
outlier <- boxplot.stats( vec, coef=coef )$out
outlier <- outlier[ which( outlier>1.0 | outlier<0.0 ) ]
vec[ which( is.element( vec, outlier ) ) ] <- NA
return( vec )

}
df_nona$fvar <- remove_outliers_fXX( df_nona$fvar, coef=3.0 )

4. Take the mean across soil moisture datasets. Code bit:
nice$fvar <- apply( fvar_by_smdata, 1, FUN=mean, na.rm=TRUE )

5. Get fLUE cutoff to define threshold for fLUE droughts. The cutoff is calculated as the lower 5% quantile
of a hypothetical symetrical distribution, taken as “mirrored” values in fLUE above 1. This is also
illustrated by the histogram in the figure that is created below when executing nn_fVAR_fluxnet().

positive <- nice$fvar[ which(nice$fvar>=1.0) ]
even <- c( positive, 1.0-(positive-1.0) )
cutoff <- quantile( even, 0.05, na.rm=TRUE )

## consider only instances where fvar falls below 0.97 as drought
cutoff <- min( 0.97, cutoff )

6. Interpolate missing values in fLUE
nice$fvar_filled <- approx( nice$year_dec, nice$fvar, xout=nice$year_dec )$y

7. Smooth fLUE data by taking running median across five days. The function niceify() is defined in file
niceify.R and adds rows with NA values back to dataframes where these rows were removed before.

idxs <- which( !is.na(nice$fvar_filled) )
tmp <- data.frame( year_dec=nice$year_dec[idxs], fvar_smooth=runmed( nice$fvar_filled[idxs], 5 ) )
nice$fvar_smooth <- niceify( tmp, nice )$fvar_smooth

8. Interpolate missing values in smoothed time series.
nice$fvar_smooth_filled <- approx( nice$year_dec, nice$fvar_smooth, xout=nice$year_dec )$y

9. Classify days as fLUE drought days based on smoothed and interpolated time series. This adds a binary
vector is_drought_byvar to the dataframe we’re working with here (nice).

nice$is_drought_byvar <- ( nice$fvar_smooth_filled < cutoff )

10. Identify drought events as periods with consecutive drought days with a minimum length of 10 days. The
function get_consecutive() (file get_consecutive.R) creates the dataframe droughts that stores,
for each such drought event, the index (with respect to vector nice$is_drought_byvar) of its start
and its length.

droughts <- get_consecutive(
nice$is_drought_byvar,
leng_threshold = 10,
do_merge = FALSE

12



)

11. Prune and trim drought events:

• If the smoothed (and non-interpolated) fLUE vector (nice$fvar_smooth) has NA values at the end of
a drought event, reduce the length of the event so that to last non-NA value.

• If the smoothed fLUE vector has NA values at the start of a drought event, drop the event.
• Drop drought event, if its mean soil moisture during the event is above the 75% quantile of all soil

moisture values in this site’s time series.
• Prune drought events by the quality of NN-modelled versus observed LUE during the drought period.

I.e., if the RMSE of 0.9 * LUEact is greater than the RMSE of LUEpot.
• Prune drought if LUEpot multiplied by PAR and fAPAR is below 5% of its maximum value. This

removes erroneously classified droughts during winter in seasonally cold ecosystems. This is implemented
by:

out <- prune_droughts(
droughts,
nice$is_drought_byvar,
nice$fvar_smooth,
nice$fvar_smooth_filled,
mod_pot = nice$var_nn_pot,
mod_act = nice$var_nn_act,
obs = nice[[ nam_target ]],
soilm = soilm,
soilm_mod = soilm_mod,
apar = nice$ppfd * nice[[ fapar_data ]]
)

Example execution

The function nn_fVAR_fluxnet() implements all steps outlined above and produces four figures, included
below. The first shows a histogram of fLUE values (red), the hypothetical symetrical distribution (blue), and
fLUE cutoff to delineate fLUE droughts as a red vertical line. The subsequent figures are modelled versus
observed LUE of NNpot during moist days, NNact during all days and NNact versus NNpot during moist days.
source("nn_fVAR_fluxnet2015.R")
nn_fVAR_fluxnet( "FR-Pue", nam_target="lue_obs_evi", use_weights=FALSE, makepdf=FALSE, testprofile=TRUE, overwrite=TRUE )

## Loading required package: dplyr

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

## Loading required package: abind

## [1] "loading profile file ./data/profile/profile_light_lue_obs_evi_nn_FR-Pue.Rdata"
## [1] "==============================================="
## [1] "train NN at lue_obs_evi for FR-Pue ..."
## [1] "Using soil moisture data source: soilm_swbm"
## [1] "Using soil moisture threshold: 0.55"
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## [1] "reading from profile data..."
## [1] "... done."
## [1] "aggregate across soil moisture datasets ..."
## [1] "done ..."
## [1] "get cutoff ..."
## [1] "done ..."

## [1] "fill and smooth ..."
## [1] "done ..."
## [1] "get drought events ..."
## [1] "number of events before pruning: 16"
## [1] "number of events after trimming: 16"
## [1] "number of events after pruning by soil moisture: 16"

## Loading required package: hydroGOF

## Loading required package: zoo

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric

## [1] "number of events after pruning by mod vs obs: 15"
## [1] "number of events after pruning by GPP level: 15"
## [1] "number of events after pruning: 15"

##
## Attaching package: 'Metrics'

## The following objects are masked from 'package:hydroGOF':
##
## mae, mse, rmse
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## [1] "writing file with fLUE and all other data into: data/nn_fluxnet2015_FR-Pue_lue_obs_evi.Rdata"

Complete batch execution
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Parallel execution on a HPC cluster of nn_fVAR_fluxnet() for each site separately is implemented by
submit_fVAR_nn_ALL.sh, submit_fVAR_nn_XXXXXX.sh and execute_nn_fVAR_fluxnet2015.R. Submit all
site-specific jobs (site list in file sitelist_doprofile_fluxnet2015.txt, as created above) to cluster by
entering the following command in the terminal:

./submit_fVAR_nn_ALL.sh

5. Quality check

Sites are excluded from further analysis based on data length and performance statistics of the NN model
goodness:

1. if the number of days’ data used for NN training (after data cleaning, see above) is below 500.
2. if the mean of LUEact during fLUE drought days is greater than that of LUEpot
3. if the RMSE is greater than 2.8 or R2 is smaller than 0.5 for LUEact compared with LUEobs.
4. if the percentage RMSE (pRMSE) is greater than 80% or R2 is smaller than 0.3 for LUEpot compared

with LUEobs during non-fLUE drought days only. pRMSE is calculated by function analyse_modobs()
(script analyse_modobs.R) as RMSE (root mean square error) divided by the mean of observationsand
multiplied by 100.

5. if LUEact has an R2 of less than 0.17 during fLUE drought days.
6. if the R2 of LUEact versus LUEpot during non-fLUE drought days is below 0.5 or their RMSE is above

1.6.

Sites excluded upon visual inspection and for which no quantitative criteria are found, are: CN-Din, CZ-BK1,
IT-CA1, IT-CA3, IT-Ro2, and US-Me6.

This is implemented by function nn_getfail_fluxnet() which returns a dataframe (one row) with all the
performance metrics for this site.
source("function_nn_getfail_fluxnet2015.R")
out <- nn_getfail_fluxnet( "FR-Pue", nam_target="lue_obs_evi",

use_weights=FALSE, use_fapar=FALSE,
testprofile=TRUE, makepdf=FALSE, verbose=TRUE
)

## [1] "reading file ./data/fvar/nn_fluxnet2015_FR-Pue_lue_obs_evi.Rdata"
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The column successcodes provides the outcome of the quality check as a code.
print( dplyr::select( out, mysitename, successcode ) )

## mysitename successcode
## 1 FR-Pue 1

successcode meaning
1 success, droughts identified
2 success, no droughts identified (fLUE drought days make up less than 2% of all days.)
3 failed quality check

Batch quality check

Up to this point, all steps are carried out for one single example site and outputs are written into and read
from ./data. In order to enable further analyses and make the study fully reproducible, we provide all
site-specific “intermediate” files created by function nn_fVAR_fluxnet() that stores data, including fLUE.
This avoids having to do the batch execution of profile_soilm_neuralnet() and nn_fVAR_fluxnet().
Data can be downloaded and extracted as follows (uncomment these lines in file knit_nn_fluxnet2015.Rmd):

Once data is downloaded and extracted, get the success code and performance statistics for all sites in one
dataframe and write it to the file ./successcodes.csv.
source( "nn_getfail_fluxnet2015.R" )

## [1] "getting failure info for all sites ..."

## [1] "... done"
## [1] "Force exclusion of the following sites: "
## [1] "CN-Din" "CZ-BK1" "IT-CA1" "IT-CA3" "IT-Ro2" "US-Me6"
## [1] "number of sites with code 1: 36"
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## [1] "number of sites with code 2: 35"
## [1] "number of sites with code 3: 63"
## [1] "number of sites with code 0: 32"

Out of the 135 sites for which the profiling was carried out (consistent soil moisture time series), 76 sites
have a success code of 1 or 2, i.e. the NN-based method to quantify fLUE and identify fLUE droughts worked
acceptably. These 76 sites are used for all subsequent analyses and are finally assigned to the four clusters.

6. Evaluations of full time series by site

Statistics for overview table

Create a table that stores all the statistics evaluated for each site and that is finally used to create plot S5 of
the paper. It is created here and complemented by additional evaluations in subsequent steps.
source( "get_overview_L1.R" )

## [1] "Getting data for overview table for all sites ..."
## [1] "... done."
## [1] "Saving to file data/overview_data_fluxnet2015_L1.Rdata"
load( "data/overview_data_fluxnet2015_L1.Rdata" )
knitr::kable( head( select(overview, mysitename, lon, lat, elv, year_start, year_end, years_data, classid), n=7 ), caption = "**Table**: First seven rows and first nine columns of overview table.")

Table 3: Table: First seven rows and first nine columns of overview
table.

mysitename lon lat elv year_start year_end years_data classid
AR-SLu -66.4598 -33.4648 887 2009 2011 3 MF
AR-Vir -56.1886 -28.2395 74 2009 2012 4 ENF
AT-Neu 11.3175 47.1167 970 2002 2012 11 GRA
AU-Ade 131.1178 -13.0769 188 2007 2009 3 WSA
AU-ASM 133.2490 -22.2830 615 2010 2013 4 ENF
AU-Cpr 140.5891 -34.0021 51 2010 2014 5 SAV
AU-Cum 150.7225 -33.6133 107 2012 2014 3 EBF

Fit functional form: fLUE versus soil moisture

Fit a quadratic function to the relationship between fLUE and soil moisture for each site. This creates figures
in ./fig_nn_fluxnet2015/fvar_vs_soilm/, and stores data for all sites in data/fvar_vs_soilm.Rdata
(medians of fLUE by soil moisture 20%-quantiles) and data/fitparams.Rdata (fit parameters of quadratic fit
function). This also complements the overview table, stored as data/overview_data_fluxnet2015_L2.Rdata.
The figures included below are three examples of the fit figures created for all sites (see Figure S2 in SI of
paper).
system( "mkdir -p ./fig_nn_fluxnet2015/fvar_vs_soilm" )
source( "fit_fvar_vs_soilm_nn_fluxnet2015.R" )

## [1] "Fitting functional relationship for all sites ..."
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## [1] "... done."

Aggregate data across sites

This aggregates site-specific data into one big dataframe holding all sites’ data (used for additional plotting)
as ./data/nice_agg_lue_obs_evi.Rdata
source( "aggregate_nn_fluxnet2015.R" )

Create plots

This creates the time series plot, Fig. 1 in the manuscript.
source( "plot_bysite_nn_fluxnet2015.R" )
plot_bysite_nn_fluxnet2015( "FR-Pue", nam_target="lue_obs_evi",

use_fapar=FALSE, use_weights=FALSE,
makepdf=FALSE
)
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To get plots for all sites, do
system( "mkdir -p ./fig_nn_fluxnet2015/panel_potentialgpp/" )
source( "execute_plot_bysite_nn_fluxnet2015.R" )

## [1] "creating time series plots for all sites ..."

## [1] "... done."

7. Evaluations of aligned variables by site

Reshape data

First, for each site separately, time series of variables stored in nice (file nn_fluxnet2015_<sitname>_lue_obs_evi.Rdata)
are “cut” and aligned by the onset of fLUE droughts. Thereby, droughts can be characterised in terms of the
common (aggregated across drought events) co-evolution of different variables. This creates a new data
array data_alg_dry with dimensions (dday, var, inst), where ‘dday’ is the number of days after drought
onset, var are the variables (columns) in nice, and inst is the drought instance. All arrays are stored as
./data/aligned_<sitename>.Rdata.

Second, data_alg_dry is re-expanded to a dataframe (2D) df_dday and data is binned with re-
spect to dday. This step is also done for dataframes with MODIS GPP and FLUXCOM MTE
data (df_dday_modis , df_dday_mte) and all are saved in files (./data/aligned_<sitename>.Rdata,
./data/aligned_mte_<sitename>.Rdata, and ./data/aligned_modis_<sitename>.Rdata)

Third, df_dday is aggregated (median and upper and lower quartiles) with respect to dday, leading to
dataframe df_dday_aggbydday and saved in data/df_dday_aggbydday_<sitename>.Rdata.

The function reshape_align_nn_fluxnet2015() executes above steps and returns a list containing the
dataframes df_dday and df_dday_aggbydday:
source( "reshape_align_nn_fluxnet2015.R" )
out <- reshape_align_nn_fluxnet2015( "FR-Pue" )

## Loading required package: cgwtools
print( "content of returned list:" ); ls( out )

## [1] "content of returned list:"

## [1] "df_dday" "df_dday_aggbydday"
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The script execute_reshape_align_nn_fluxnet2015() executes this function for all sites where fLUE
droughts are identified (successcode==1) and combines dataframes into combined large dataframes containing
all sites’ data, saved in data/data_aligned_agg.Rdata:

• df_dday_agg
• df_dday_aggbydday_agg

source( "execute_reshape_align_nn_fluxnet2015.R" )

## [1] "aligning data for all sites ..."
## [1] "... done."
## [1] "saving to file: data/data_aligned_agg.Rdata"

Create plots

Panel plots for soil moisture, VPD, fLUE and EVI, all aligned by the fLUE drought onset and aggregated across
drought events (Fig. 2 in paper main text), are created by the function plot_aligned_nn_fluxnet2015():
source( "plot_aligned_nn_fluxnet2015.R" )
plot_aligned_nn_fluxnet2015( "FR-Pue", nam_target="lue_obs_evi",

use_fapar=FALSE, use_weights=FALSE, makepdf=FALSE
)
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Create panel plots for all sites and save to PDFs by doing:
source( "execute_plot_aligned_nn_fluxnet2015.R" )

## [1] "create aligned plots for all sites ..."

## [1] "... done."
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8. Clustering sites

Step 1

In step 1, sites are grouped into clusters cLS and cNA:

• cluster cNA: Sites not affected by very low soil moisture, i.e. where no data is available for soil
moisture below 0.5 (relative soil water content).

• cluster cLS: Sites where the fLUE is not sensitive to soil moisture. This is determined based on the
fitted functional form between soil moisture and fLUE (quadratic function) and the y-axis cutoff thereof
(referred to as fLUE0, see Section ‘Fit functional form: fLUE versus soil moisture’). The distribution
of fLUE0 values (by site) is shown in the figure below. Cluster 3 are sites with high fLUE0, generally
above 0.8 (green bars in histogram plotted below).

This uses data from files data/fvar_vs_soilm.Rdata and data/fitparams.Rdata, created by script
fit_fvar_vs_soilm_nn_fluxnet2015.R and complements overview table, creating data/overview_data_fluxnet2015_L4.Rdata.
source("cluster_step1_nn_fluxnet2015.R")

## Warning: package 'ggplot2' was built under R version 3.3.2

## [1] "Total number of sites in group 4 (no low soil moisture): 21"

## Warning in left_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factor and character vector, coercing into character vector
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## [1] "Total number of sites in group 3 (low fLUE sensitivity): 23"

Step 2

Remaining sites are grouped by their parallel greenness and fLUE response during droughts.

• cluster cGR: No (or very small) greenness change and modest fLUE change
• cluster cDD: Pronounced greenness change and strong fLUE decline

This is based on aligned and binned data, as illustrated in the figure below, where the lines represent medians
of data aligned by drought events, boxes represent values binned into 20 day periods (1 before and 2 after
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drought onset), green dots are medians of binned EVI data, normalised with respect to the level in bin 1
(EVI/EVI0) and red dots are medians of binned fLUE data.
if (!file.exists("fig_nn_fluxnet2015/aligned_binned"))

system("mkdir fig_nn_fluxnet2015/aligned_binned")
source("get_aggresponse_binned.R")
out <- get_aggresponse_binned( "FR-Pue", makepdf = FALSE )
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The clustering into clusters cDD and cGR is based on the medians of binned data (‘fapar_agg’ and ‘fvar_agg’
in code, dots in above figure for one site) and is implemented using the kmeans() function from the ‘stats’ R
package:
## Combine variables based on which clustering is done into a single array 'mega'
mega <- cbind( fapar_agg, fvar_agg )
set.seed(1)
outkmeans <- stats::kmeans( mega, 2 )

The script cluster_step2_nn_fluxnet2015.R executes both the collecting of binned and aligned data for all
sites and the clustering. It complements the overview table and creates data/overview_data_fluxnet2015_L5.Rdata.
source("cluster_step2_nn_fluxnet2015.R")

## [1] "total number of sites left for remaining clusters: 26"

## [1] "The following figure shows the dependence of the total within-cluster sum of squared differences from the cluster mean:"
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## [1] "The following figure shows a histogram of the greenness changes (median of third bin, representing days 21-40 into fLUE droughts) by cluster 1 and 2:"
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9. Create figures

At this point, all analyses are completed. Remaining steps create (remaining) figures used in the paper.
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Evaluate pooled data

The script plot_agg_nn_fluxnet2015.R produces the following figures:

• fig_nn_fluxnet2015/boxplot_fluedrought_vs_alpha_spi_spei_1mo.pdf: Fig. 8 in paper. Box-
plots for SPI, SPEI, and AET/PET distributions during fLUE droughts and non-droughts.

• fig_nn_fluxnet2015/modobs/modobs_gpp_rct_ALL_FROMNICE.pdf: Fig. 2 in paper. Modelled versus
observed scatterplots, evaluating NN performance based on GPP.

• fig_nn_fluxnet2015/modobs/modobs_lue_rct_ALL_FROMNICE.pdf: Fig. S3 in Supplementary Infor-
mation. Modelled versus observed scatterplots, evaluating NN performance based on LUE

• fig_nn_fluxnet2015/fpar_vs_evi.pdf: Fig. S1 in Supplementary Information. Scatterplot of
MODIS FPAR versus EVI.

source("plot_agg_nn_fluxnet2015.R")

## [1] "plotting fig_nn_fluxnet2015/boxplot_fluedrought_vs_alpha_spi_spei_1mo.pdf"

## [1] "plotting mod vs obs for GPP in nice_agg: fig_nn_fluxnet2015/modobs/modobs_gpp_rct_ALL_FROMNICE.pdf"

## [1] "plotting mod vs obs for LUE in nice_agg: fig_nn_fluxnet2015/modobs/modobs_lue_rct_ALL_FROMNICE.pdf"

## [1] "plotting fig_nn_fluxnet2015/fpar_vs_evi.pdf"

Evaluate pooled data by clusters

The script plot_bycluster_nn_fluxnet2015.R produces the following figures:

• ./fig_nn_fluxnet2015/vpd_vs_soilm/vpd_vs_soilm_lue_obs_evi_ALL.pdf: Fig. S6 in Supple-
mentary Information. Scatterplot of VPD versus soil moisture and boxplot of VPD distribution during
dry and moist days.

• fig_nn_fluxnet2015/fvar_vs_soilm/fvar_vs_soilm_agg_ALL.pdf: Fig. 7 in the main text of the
paper. Functional form of fLUE versus soil moisture, by cluster.

• fig_nn_fluxnet2015/aligned_cluster/aligned_cluster_3rows.pdf: Fig. 3 in the main text of
the paper. fLUE and EVI/EVI0 during fLUE droughts for clusters 1 and 2.

source("plot_bycluster_nn_fluxnet2015.R")

## [1] "plotting ./fig_nn_fluxnet2015/vpd_vs_soilm/vpd_vs_soilm_lue_obs_evi_ALL.pdf"

## [1] "plotting fig_nn_fluxnet2015/fvar_vs_soilm/fvar_vs_soilm_agg_ALL.pdf"

## [1] "printing fig_nn_fluxnet2015/aligned_cluster/aligned_cluster_3rows.pdf"

Evaluate clusters (climate, vegetation type, etc.)

Overview “heat table” (Fig. S5)

The script plot_overview_nn_fluxnet2015.R combines the overview table (data/overview_data_fluxnet2015_L5.Rdata)
with complementary site data extracted from global datasets:

• Water table depth from Fan &Miguez-Macho (2013). Dataframe df_wtd from ./data/wtd_fluxnet2015.Rdata.
Data prepared by get_watertable_fluxnet2015.R. Original files downloaded on May 16, 2017 from
glowasis.deltares.nl, selecting /thredds/fileServer/opendap/opendap/Equilibrium_Water_Table/Eurasia_model_wtd_v2.nc

• Water table depth from (Graaf et al. 2015). Dataframe df_wtd_degraaf from data/wtd_degraaf_fluxnet2015.Rdata.
Data prepared by get_watertable_degraaf_fluxnet2015.R. Original file provided by I. De Graaf
(29 May 2017).

• Budyko regime (energy limited, water limited, transitional) from (Greve et al. 2014–10AD). Dataframe
df_greve from ./data/greve_fluxnet2015.Rdata. Data prepared by get_greve.R. Original file
provided by P. Greve.
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• Aridity index. Dataframe df_ai from ./data/ai_fluxnet2015.Rdata. Data prepared by
get_aridityindex.R based on SPLASH model outputs from simulation s13 (see above).

• Average actual over potential evapotranspiration (AET/PET). Dataframe df_alpha from
./data/alpha_fluxnet2015.Rdata. Data prepared by get_alpha.R based on SPLASH model
outputs from simulation s11 (see above).

• Soil parameters from HWSD, data by (Shangguan et al. 2014). Dataframe df_soil from
./data/soilparams_fluxnet2015.Rdata prepared by get_soilparams.R. Original files downloaded
from http://globalchange.bnu.edu.cn/research/soilwd.jsp (26 May 2017). Complemented overview
table is saved as data/overview_data_fluxnet2015_L6.Rdata.

The script produces the following figures:

• fig_nn_fluxnet2015/overview_clusterX.pdf where X is 1, 2, 3 and 4. This is the colored overview
table of all sites, grouped by cluster. Fig. S5 in Supplementary Information

This script also evaluates the correlation of water table depth site data from (Fan, Li, and Miguez-Macho
2013) compared with (Graaf et al. 2015).
source("plot_overview_nn_fluxnet2015.R")

## [1] "Correlation of water table depth site data from Fan & Miguez-Macho (2013) compared with De Graaf et al. (2015):"
## [1] "adjusted R2: 0.224755326360854"
## [1] "Correlation of fLUE_0 with water table depth, site data from Fan & Miguez-Macho (2013)"
## [1] "adjusted R2: -0.0196119167708804"
## [1] "Correlation of fLUE_0 with water table depth, site data from De Graaf et al. (2015)"
## [1] "adjusted R2: 0.0109571701227021"

Sites across climate space (Fig. 9)

The script plot_sites_climatespace.R creates a panel plot, illustrating the locations of sites in Budyko
space and the relationship of annual percent GPP loss and maximum LUE reduction with AET/PET and
the change in greenness. The figure sites_climatespace.pdf is used in the paper as Fig. 9
source("plot_sites_climatespace.R")

## [1] "plotting fig_nn_fluxnet2015/sites_climatespace.pdf"

Map of PET/P and sites locations (Fig. 10)

The script plot_map_greve.R creates a global map of PET/P (=aridity index) with symbols illustrating site
locations, including distributions of the aridity index and AET/PET by clusters. This is Fig. 10 in paper.
Plotting the map requires loading the NetCDF file that contains global data on PET/P from (Greve et al.
2014–10AD). However, this is not made publicly available. Therefore, the script just plots a constant field
with value 1 as a map. The figure map_greve.pdf is used in the paper as Fig. 10.
source("plot_map_greve.R")

## [1] "plotting ./fig_nn_fluxnet2015/map_greve.pdf"

## [1] "MYCOLORBAR: assuming explicit margins provided"

Evaluate NN sensitivity to VPD

The script evaluate_sensitivity_soilm_vpd.R evaluates the sensitivity of NNs to VPD and the bias of
their predictions of LUE under moist and dry conditions. Figure vpd_soilmoisture_test.pdf is created
and used in the paper as Fig. 3. Execution of this script requires the full profile files. Due to their large size,
they are not distributed here and the script thus cannot be executed.
source("evaluate_sensitivity_soilm_vpd.R")
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