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Abstract Motivated by geological carbon storage and hydrocarbon recovery, the effect of
buoyancy and viscous forces on the displacement of one fluid by a second immiscible fluid,
along parallel and dipping layers of contrasting permeability, is characterized using five
independent dimensionless numbers and a dimensionless storage or recovery efficiency.
Application of simple dimensionless models shows that increased longitudinal buoyancy
effects increase storage efficiency by reducing the distance between the leading edges of the
injected phase in each layer and decreasing the residual displaced phase saturation behind the
leading edge of the displacing phase. Increased transverse buoyancy crossflow increases stor-
age efficiency if it competes with permeability layering effects, but reduces storage efficiency
otherwise. When both longitudinal and transverse buoyancy effects are varied simultane-
ously, a purely geometrical dip angle group defines whether changes in storage efficiency
are dominated by changes in the longitudinal or transverse buoyancy effects. In the limit
of buoyancy-segregated flow, we report an equivalent, unidimensional flow model which
allows rapid prediction of storage efficiency. The model presented accounts for both dip
and layering, thereby generalizing earlier work which accounted for each of these but not
both together. We suggest that the predicted storage efficiency can be used to compare and
rank geostatistical realizations, and complements earlier heterogeneity measures which are
applicable in the viscous limit.
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List of Symbols

Latin Symbols

BT Breakthrough time, [T ]
Ed Displacement efficiency
Es Storage efficiency
Esw Sweep efficiency
fb Buoyancy-limit fractional flow
fi Viscous-limit fractional flow
H Layer thickness, [L]
k Absolute permeability (diagonal) tensor, [L2]
kx Absolute longitudinal permeability, [L2]
kz Absolute transverse permeability, [L2]
kr,i Relative permeability of the injected phase
ker,i End-point relative permeability of the injected phase
kr,d Relative permeability of the displaced phase
ker,d End-point relative permeability of the displaced phase
L Model length, [L]
Nα Dip angle group
Nbv Buoyancy number
Nbv,L Longitudinal buoyancy number
Nbv,T Transverse buoyancy number
Me End-point mobility ratio
nd Corey exponent for the displaced phase relative permeability curve
ni Corey exponent for the injected phase relative permeability curve
P Pressure, [ML−1T−2]
qin Average volumetric influx per unit area, [LT−1]
qi Injected phase volumetric flux per unit area, [LT−1]
qd Displaced phase volumetric flux per unit area, [LT−1]
qT Total volumetric fluid flux per unit area, [LT−1]
RL Effective aspect ratio
s Normalized injected phase saturation
sav Normalized average saturation behind the shock-front
s f Normalized shock-front saturation
Si,r Residual saturation for the injected phase
Sd,r Residual saturation for the displaced phase

Greek Symbols

�S Moveable saturation
λi Injected phase mobility, [LT M−1]
λd Displaced phase mobility, [LT M−1]
λT Total mobility of the fluids, [LT M−1]
μi Injected phase viscosity, [ML−1T−1]
μd Displaced phase viscosity, [ML−1T−1]
φ Porosity
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ρ j Density of phase j = i, d , [ML−3]
σx Absolute longitudinal permeability ratio

1 Introduction

Reservoir properties such as permeability and porosity vary overmany length scales, from the
kilometre scale down to the micron scale, in response to complex physical and chemical pro-
cesses, including structural deformation, deposition anddiagenesis (Koltermann andGorelick
1996). Both the geometrical distribution of reservoir properties and the length scales at which
these vary have a profound influence on multiphase flow in the subsurface (Weber 1986).
The sedimentary rocks that commonly act as subsurface reservoirs typically exhibit layering
(i.e. alternations of continuous, parallel strata with contrasting lithological and petrophysi-
cal properties) at length scales ranging from mm-scale laminations to km-scale stratigraphy
(e.g. Campbell 1967; Koltermann and Gorelick 1996; De Marsily et al. 1998; Jackson et al.
2003; Deveugle et al. 2011, 2014; Legler et al. 2013). At all scales, the layers may have a
dip imposed on them either by depositional features (e.g. Graham et al. 2015; Massart et al.
2016) or by structural deformation (e.g. Koltermann and Gorelick 1996). Understanding
multiphase flow in dipping, layered reservoirs is important in industrial and environmental
processes such as geologic CO2 storage, contaminant remediation and hydrocarbon recovery.

Here, we determine the effect of buoyancy and viscous forces on the displacement of one
fluid by a second immiscible fluid, along parallel and dipping layers of contrasting perme-
ability. Such displacements are typically influenced by a combination of viscous, capillary
and gravitational forces (e.g. Ringrose et al. 1993; Kjonsvik et al. 1994; Jones et al. 1995;
King and Mansfield 1999; White and Barton 1999). This paper is the third of a series that
investigates flow in layered porous media and focuses on flow driven by buoyancy and vis-
cous forces. The impact of viscous and capillary forces on flow along and across layers has
been previously considered in the first two papers of this series (Debbabi et al. 2017a, b).
We consider the downwards injection of a fluid which is less dense than the fluid in place,
so results are directly applicable to geologic CO2 storage and gas flooding of hydrocarbon
reservoirs. However, the symmetry of the problem allows application of the results to the
upwards injection of a fluid which is more dense than the fluid in place by inverting the layer
order, so results are also applicable to waterflooding of hydrocarbon reservoirs. The aim of
the work is not to predict exactly the behaviour of a given system, but rather to predict how
the storage or recovery efficiency, a key measure of reservoir performance, is determined
by the buoyancy–viscous force balance using a small number of key dimensionless parame-
ters. As discussed previously by Debbabi et al. (2017a, b), such results provide a framework
to support mechanistic interpretations of complex field or experimental data, and numerical
model predictions. Quantifying the system behaviour using storage efficiency (fraction of the
moveable pore volume occupied by the injected phase) makes results directly applicable to
geologic CO2 storage (e.g. Cavanagh and Ringrose 2011), but also to hydrocarbon recovery
using the numerically equivalent recovery efficiency (fraction of the moveable pore volume
initially in place recovered) (e.g. Christie and Blunt 2001).

The viscous- and buoyancy-driven displacements of one fluid phase by another have been
previously investigated both experimentally and numerically using immiscible fluids and
miscible analogs. When viscous forces dominate over buoyancy forces, the injected phase
tends to progress more rapidly through layers of higher permeability (Debbabi et al. 2017a)
(Fig. 1c). Crossflow due to transverse fluid mobility contrasts, termed viscous crossflow,
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typically occurs when layers are not separated by impermeable flow barriers. Crossflow
directions have been shown to be controlled by themobility ratio estimated across the leading
edge of the injected phase in each layer.When buoyancy forces dominate over viscous forces,
the injected phase forms a ‘tongue’ which under-rides the fluid in place if the injected phase is
more dense than the fluid in place, or over-rides the fluid in place otherwise (Dietz 1953; Craig
et al. 1957; Lake 1989; Ingsoy and Skjaeveland 1990; Gunn and Woods 2011; Pegler et al.
2014; Zheng et al. 2015) (Fig. 1a). However, buoyancy forces in dipping systems may also
stabilize the interface separating the injected and displaced phases (Fig. 1b). The stabilization
resulting from these “dip-related buoyancy effects” can prevent early breakthrough of the
injected phase, provided the flow rate is sufficiently reduced or the dip angle sufficiently
large (Dietz 1953; Fayers and Muggeridge 1990; Ekrann 1992). When both viscous and
buoyancy forces are important, buoyancy-driven counter-current flow between layers, more
commonly termed “buoyancy crossflow”, repositions the denser phase below the lighter phase
wherever viscous-driven flow leads to buoyancy-unstable fluid distributions (Richardson
et al. 1952; Gaucher and Lindley 1960; Huppert et al. 2013). Earlier work has shown that
optimum storage efficiencies may be obtained when viscous and buoyancy forces compete,
provided permeability varies monotonically in the transverse direction (Peters et al. 1998;
Permadi et al. 2004). However, the impact of buoyancy crossflow on fluid distribution and
storage efficiencies becomes more complex when transverse permeability variations are non-
monotonic (Ahmed et al. 1988; Stewart 2014). Earlier work has also shown that buoyancy
forces reduce the remaining displaced phase saturation in regions contacted by the injected
phase relative to the viscous-limit case (Lake 1989; El-Khatib 2012).

Previous studies highlighted the complex, competing relationships between buoyancy
crossflow, dip-related buoyancy effects and storage efficiency (Fig. 1). However, most pre-
vious studies of flow along dipping layers either assume significant buoyancy crossflow, or
neglect dip-related buoyancy effects. These earlier results, therefore, do not quantify the rel-
ative importance of buoyancy crossflow and dip-related buoyancy flow, so it is difficult to
predict which effect controls the storage efficiency, or identify the contribution of dip-related
buoyancy effects to fluid distribution and storage efficiency in layered systems.

Here we characterize immiscible, two-phase flow through dipping, layered porous media
using seven dimensionless parameters, five of which are independent, obtained from an
inspectional analysis of the flow equations. The outline of the paper is as follows. After first
presenting the mathematical model (Sect. 2), we then present in Sect. 3 the seven dimension-
less numbers that are used to characterize flow. We examine in Sects. 4.1 and 4.2 the impact
of longitudinal and transverse buoyancy effects on fluid distribution. We quantify in Sect. 4.3
storage efficiency as a function of the dimensionless parameters, first when flow transitions
from the viscous limit to the buoyancy limit via numerical simulations (Sect. 4.3.1), and
then present a 1D fractional flow model that allows rapid estimation of storage efficiency in
dipping, layered systems when flow is buoyancy segregated (Sect. 4.3.2). The implications of
this analysis are discussed in Sect. 5, and finally, in Sect. 6, we gather the main conclusions.

2 Mathematical Model

Following Debbabi et al. (2017a, b), we investigate two-phase, immiscible and isothermal
flow through a two-dimensional (2D), two-layered porous medium in which the layers have
contrasting petrophysical properties, and additionally account here for dip, which has an
influence on flow when buoyancy forces are not negligible (Fig. 2).
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Fig. 1 Buoyancy-to-viscous flow diagram expressed in terms of longitudinal and transverse buoyancy num-
bers defined in Table 1. Schematics represent typical distribution of regions that are contacted by the less
dense, injected phase (coloured in grey) along layers of high (H) and low (L) permeabilities in the different
flow domains. We demonstrate in this paper that longitudinal buoyancy effects reduce the separation of the
leading edges of the injected phase in each layer caused by permeability contrasts (d). Indicative boundaries
of the different flow domains are suggested as dashed lines in the flow diagram. Changing other dimensionless
parameters such as the end-point mobility ratio or the permeability ratio affects the specific location of these
domain boundaries but their general shape remains unchanged

Assuming the fluids and pore space are incompressible, that the pore space is completely
filled with both fluids, and neglecting capillary forces, flow is described by

φ�S
∂s

∂t
+ ∇ · qi = 0 (1)

∇ · qT = ∇ · [
qi + qd

] = 0 (2)

and the multiphase Darcy’s law

qi = −kr,i (s)

μi
k · [∇P − ρi g

]
(3)
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Fig. 2 Schematic of the 2D two-layered model used in this work

qd = −kr,d (s)

μd
k · [∇P − ρd g

]
(4)

where

s = Si − Si,r
1 − Si,r − Sd,r

(5)

is the normalized injected phase saturation, which varies between 0 and 1, Si is the injected
phase saturation, Si,r and Sd,r are the injected and displaced phase residual saturations,
�S = 1− Si,r − Sd,r is the moveable saturation, φ is the porosity, qi and qd are the injected
and displaced phase volumetric fluxes per unit area, qT is the total volumetric fluid flux
per unit area, kr,i (s) and kr,d (s) are the relative permeabilities of the injected and displaced

phases, μi and μd are the viscosities of the injected and displaced phase, k the diagonal
absolute permeability tensor, ρi and ρd are the densities of the injected and displaced phase,
and P the fluid pressure. The injected and displaced phase fluid mobilities are defined as

λi = kr,i
μi

(6)

and

λd = kr,d
μd

, (7)

respectively, and the total fluid mobility λT as

λT = kr,i
μi

+ kr,d
μd

. (8)

The relative permeability curves are represented as functions of the normalised saturation s
by

kr,i (s) = ker,i s
ni , (9)

kr,d(s) = ker,d(1 − s)nd , (10)

where ker,i and k
e
r,d are the end-point relative permeabilities, andni andnd theCorey exponents

of the injected and displaced phases, respectively. Each layer is internally homogeneous, with
identical thickness H/2, length L , porosity φ andmoveable saturation�S, but the layersmay
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differ in longitudinal absolute permeability kx , and end-point relative permeabilities ker,i and
ker,d . However, the Corey exponents ni and nd are chosen to be the same in both layers, and
the end-point relative permeabilities ker,i and k

e
r,d are constrained to obtain identical fractional

flow curves in both layers (see Appendix 1 in Debbabi et al. 2017a). The impact of contrasts
in fractional flow curves and moveable pore volumes between layers was examined in the
first two papers in this series (Debbabi et al. 2017a, b). The layers have identical transverse
permeability kz such that k1z = k2z ≤ min(k1x , k

2
x ), where k

1
z and k

2
z are the transverse perme-

abilities of layers 1 and 2, respectively. Layers that have different longitudinal permeabilities
may also differ in transverse permeability but contrasts in transverse permeability are not
investigated here. Previous studies have shown that viscous and capillary crossflow are not
significantly modified by such contrasts, as crossflow is limited by the lowest transverse
permeability (Debbabi et al. 2017a, b).

Initially (t = 0), the potential � = P + ρ g cos (α)z is uniform and the normalized
saturation is zero throughout the domain (s = 0). At the inlet face, the boundary conditions
are uniform, but time-varying potential (� = �in (t)) and a constant total volumetric flux
Qin of the injected phase, distributed to yield a corresponding average volumetric influx
per unit area along the inlet face qin such that the inlet potential remains uniform. The other
boundary conditions are a fixed potential�0 on the outlet (opposing) face, and no flow across
the other faces. This choice of boundary conditions extends the approach used in Debbabi
et al. (2017a) to additionally account for gravity and is likewise consistent with borehole
boundary conditions used in groundwater and oil reservoir models (Aziz and Settari 1979;
Wu 2000).

Following Debbabi et al. (2017a, b), solutions of the multiphase flow Eqs. (1)–(4)
were obtained using a commercial code that implements a finite-volume-finite-difference
approach to discretize the governing equations (Eclipse 100). Flow was simulated using two-
dimensional Cartesian grids with resolutions ranging from 200 × 200 up to 800 × 800 cells
to demonstrate that the solutions were converged. Time stepping was fully implicit.

3 Scaling Analysis

The flow eqs. (1)–(4) are scaled following the inspectional analysis reported by Debbabi
et al. (2017a), but additionally account for buoyancy forces. We obtain seven dimensionless
numbers, five ofwhich are independent, to describe immiscible, two-phase flowalong dipping
layered porousmedia (see Appendix 1). The dimensionless numbers are summarised in Table
1.

The buoyancy number Nbv can be interpreted as the ratio of the characteristic longitudinal
pressure drop due to fluid density differences to that due to viscous forces. Our definition
differs from the buoyancy number reported by Shook et al. (1992) as we account here for
contrasts in the relative permeability end-points between layers. We demonstrate in the no-
crossflow limit (see Appendix 2) that the fluid in place may flow out (“backflow”) through
the lower parts of the inlet face when Nbv > 2. We restrict this work to Nbv ≤ 2 to focus on
general results that are insensitive to the details of inflow and outflow at the inlet face. This
does not limit application of the results to systems of interest (see Figs. 3, 4).

The effective aspect ratio RL quantifies the relative flow capacities of the medium in the
longitudinal and transverse directions. The definition used in this paper again differs from
previously used numbers (e.g. Zhou et al. 1997) as we account for contrasts in the relative
permeability end-points between layers. The effective aspect ratio RL typically varies over the

123



Y. Debbabi et al.

Table 1 Governing dimensionless numbers and range of values explored

Dimensionless number Expression Range of values explored

Buoyancy number Nbv = kx kerdΔρg cos (α) H
μdqin L

0–1

Effective aspect ratio RL = L
H

√√√
√ kzkerd

kx kerd
0–100

Transverse buoyancy number Nbv,T = Nbv · R2
L =

kzkerd�ρg cos (α) L
μdqin H

0–1000

Dip angle group Nα = L
H tan(α) 0–100

Longitudinal buoyancy number Nbv,L = Nbv · Nα =
kx kerdΔρg sin (α)

μdqin

0–100

Shock-front mobility ratio Me = keriμd
kerdμi

0.5–10

Permeability ratio σx =
(
kx k

e
rd

)
1(

kx k
e
rd

)
2

1–100

range 0.01− 100 in layered sedimentary systems (L/H is typically large, of order 10− 100,
while kz/kx is typically small, of order 10−6 − 1). The product of Nbv and R2

L yields the
transverse buoyancy number Nbv,T , which can be interpreted as the characteristic time ratio
for fluid to flow in the longitudinal direction due to viscous forces to that in the transverse
direction due to buoyancy forces. The transverse buoyancy number Nbv,T is similar to the
dimensionless buoyancy-to-viscous ratio reported by Zhou et al. (1997), except that here we
again account for contrasts in the relative permeability end-points between layers. We show
later in this work that the onset of buoyancy crossflow occurs when Nbv,T > 0.1. Data taken
from bead-pack experiments (Ingsoy and Skjaeveland 1990), field-scale waterflooding (C&C
Reservoirs 2016), and CO2 injections into geologic formations (Guo et al. 2016) confirm that
possible values of the effective aspect ratio and the transverse buoyancy number span at least
four and seven orders of magnitude, respectively (Fig. 3).

The dip angle group Nα , which is a purely geometrical group, is identical to the num-
ber introduced by Shook et al. 1992, and inversely correlates with the impact of buoyancy
over- or under-ride on fluid distribution. The product of Nbv and Nα yields the longitudinal
buoyancy number Nbv,L , which can be interpreted as the characteristic time ratio for fluid to
flow in the longitudinal direction due to viscous forces to that due to buoyancy forces. The
longitudinal buoyancy number Nbv,L is similar to the buoyancy number used in the fractional
flow theory for immiscible displacements (Lake 1989); however, here we again account for
contrasts in the relative permeability end-points between layers. We show later in this work
that longitudinal buoyancy effects become significant when Nbv,L > 0.1. Data taken from
field-scale waterflood operations confirm that possible values of the longitudinal buoyancy
number and dip angle group span at least seven and three orders of magnitude, respectively
(Fig. 4).

The longitudinal permeability ratio σx quantifies permeability heterogeneity and is iden-
tical to the expression suggested by Debbabi et al. (2017a) except that here we account for
layer ordering: if σx > 1 then the upper layer 1 has the higher permeability, whereas if
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Fig. 3 Possible combinations of the effective aspect ratio RL and the transverse buoyancy number Nbv,T
calculated using data from bead-pack experiments (Ingsoy and Skjaeveland 1990), field-scale waterflood
operations (C&CReservoirs 2016) and CO2 injections into geologic formations (Guo et al. 2016). The dashed
line represents the boundary at which Nbv = 2
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Fig. 4 Possible combinations of the dip angle group Nα and the longitudinal buoyancy number Nbv,L
calculated usingdata fromfield-scalewaterfloodoperations (C&CReservoirs 2016). Thedashed line represents
the boundary at which Nbv = 2

σx < 1 then the lower layer 2 has higher permeability. A suite of core-plug measurements
taken along a single well from a North Sea field (Tjølsen et al. 1991) shows that plausible
permeability ratios span three orders of magnitude (see Fig. 3 in Debbabi et al. (2017a)).
Here, for the sake of generality, we do not restrict the combinations of permeability ratio
investigated, varying the permeability ratio over the range 0.01 ≤ σx ≤ 100.

The end-point mobility ratio Me describes the ratio of the injected and displaced phase
end-point mobilities. The end-point mobility ratio may range between 0.0001 and 10, 000,
given that the ratio of end-point relative permeabilities ranges between 1 and 10, and the
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ratio of the fluid viscosities between 1 and 1, 000. When the two phases are segregated
by buoyancy forces, the relative permeability curves only influence the displacement via
their end-points, so the end-point mobility ratio is sufficient to parameterize flow. However,
in the viscous limit, the two phases may flow simultaneously so the shape of the relative
permeability curves is important. In particular, the shape of the curves influences the viscous
crossflow behaviour. We showed in a companion paper that the relative permeability curves
can be scaled using the shock-front mobility ratio M f , which describes the ratio of the total
mobilities calculated at the upper and lower saturation values that bound the discontinuity
that defines the shock obtained in the viscous limit (Debbabi et al. 2017a). We demonstrated
that there is a consistent change in viscous crossflow behaviour at M f = 1. In this work,
we prefer to use the end-point mobility ratio to focus our analysis on buoyancy effects, and
choose Me = 0.5. Using Corey exponents ni = nd = 2, this value yields favourable viscous
crossflow, which occurs from the high to the low permeability layer (M f = 0.4 < 1).
However, numerical experiments not reported here show that varying the end-point mobility
ratio to yield unfavourable viscous crossflow (M f > 1) has no influence on the conclusions
of this paper.

We quantify the impact of the dimensionless numbers on flow characterized in terms of a
dimensionless storage efficiency (see also Debbabi et al. 2017a, b), defined as

Es =
∫∫
sφ�S dxdz

∫∫
φ�S dxdz

. (11)

The storage efficiency measures how effectively the injected phase is retained within the
model domain, and is relevant when characterizing the geologic storage of carbon in subsur-
face reservoirs and the location of NAPLs in contaminated aquifers. The storage efficiency is
also numerically equivalent to the recovery efficiency, which is a measure of how effectively
the displaced phase is removed from the model and is relevant to hydrocarbon production.
Quantifying the effect of the dimensionless numbers in terms of the storage/recovery effi-
ciency (henceforth termed the storage efficiency) therefore yields results of broad interest.
To further analyse the controls on storage efficiency, we also decompose storage efficiency
following Lake (1989) into the product of sweep efficiency, defined as

Esw =
∫∫

φ�S1s>0 dxdz∫∫
φ�S dxdz

, (12)

which measures the fraction of the moveable pore volume contacted by the injected phase,
and displacement efficiency, defined as

Ed =
∫∫

sφ�S dxdz
∫∫

φ�S1s>0 dxdz
, (13)

which quantifies the fraction of the contactedmoveable pore volumewhich has been displaced
by the injected phase. We report these various efficiencies measured at breakthrough time
(BT), i.e.when the injected phase flux through the outlet face exceeds 1%of the total flux. This
ensures the results remain broadly applicable regardless of the type of boundary represented
by the outlet face of the model (e.g. borehole, open boundary, symmetry element of a larger
domain). After breakthrough, the nature of the outlet boundary can affect the fluid potential
at the boundary and so the results become less general.
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Fig. 5 a Saturation distribution in layerswith no transverse flowor crossflowbutwith contrasting permeability
after 0.5 moveable pore volumes (MPV) injected for two different values of the longitudinal buoyancy number
Nbv,L . b Saturation as a function of distance along the centre of each layer shown in (a)

4 Results

4.1 Impact of Longitudinal Buoyancy Effects on Saturation Distribution

To understand the underlying controls on flow, we first examine the impact of longitudinal
buoyancy effects on fluid distribution in the absence of any transverse flow within or across
layers (RL = Nbv,T = 0). This scenario is unlikely to occur in real reservoirs, but could be
approached, for example, in steeply dipping layers (so there is little transverse flow within
layers) separated by extensive barriers to flow such as mudstones or cements (see, for exam-
ple, Choi et al. 2011). Snapshots of the saturation distribution in two layers of contrasting
permeabilities (σx = 10) for two different values of the longitudinal buoyancy number Nbv,L

confirm that increased longitudinal buoyancy effects reduce the remaining displaced phase
saturation in regions contacted by the injected phase (Fig. 5b), in agreement with 1D frac-
tional flow theory (Lake 1989). The results also show that increased longitudinal buoyancy
effects reduce the distance between the leading edges of the injected phase in each layer
(Fig. 5a, b). This is surprising without crossflow, and we demonstrate in Appendix 2 that it is
a consequence of the uniform potential boundary conditions. At early times, the less dense
injected phase moves faster in high permeability layers, but buoyancy effects become less
significant as the average fluid density in the layer decreases. This reduces the velocity of the
injected phase relative to the velocity achieved in low permeability layers where the average
fluid density is higher. The leading edges of the injected phase are, therefore, closer with than
they are in the equivalent case but without fluid density contrasts. Numerical experiments,
not reported here, further demonstrate that the layer ordering has little influence on fluid
distribution. This symmetry is expected when buoyancy effects in the transverse direction
are negligible.

4.2 Impact of Buoyancy Crossflow on Saturation Distribution

We now examine the impact of buoyancy crossflow on saturation distribution without lon-
gitudinal buoyancy effects (Fig. 6). Longitudinal buoyancy effects (Nbv,L ) are negligible
when, for example, the dip is small (α ∼ 0◦; see definition of Nbv,L in Table 1). We consider
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Fig. 6 Snapshots of the saturation distribution in two layers with contrasting permeability after 0.4 MPV
injected for different values of the transverse buoyancy number Nbv,T and different layer orderings. Dashed
lines denote the boundaries between the high and low permeability layers. In Sect. 4.3.2, in the limit of
buoyancy-segregated flow (Nbv,T ≥ 100), we quantify the two-phase flow problem in terms of the fractional

thickness ĥ occupied by the injected phase

layers of contrasting permeability and vary the amount of buoyancy crossflow (Nbv,T ) and
layer ordering (σx = 10 and 0.1). The effective aspect ratio is maintained fixed and greater
than zero (RL = 10), to allow viscous and buoyancy crossflow. When the high permeability
layer is on the top (σx = 10; Fig. 6a), the displacement is in a buoyancy-stable configuration.
Most of the less dense, injected fluid remains above the more dense fluid in place, except for
the remaining displaced phase saturation within the region contacted by the injected phase.
Increased buoyancy effects both reduce the remaining displaced phase saturation, despite the
absence of longitudinal buoyancy effects, and lead to the development of a buoyancy tongue
that preferentially sweeps the upper part of the system. When the high permeability layer is
on the bottom (σx = 0.1; Fig. 6b), the displacement is in a buoyancy-unstable configuration.
The less dense, injected phase is preferentially injected through the high permeability layer,
below the denser fluid initially in place. Buoyancy then causes counter-current crossflow to
reposition the lower density phase on top and vice-versa. These results (Fig. 6a, b) confirm
earlier work (e.g. Ekrann 1992; Peters et al. 1998; Huppert et al. 2013): layer ordering exerts
a major control on the impact of buoyancy crossflow on fluid distribution, and heterogeneity
may also delay buoyancy segregation when viscous and buoyancy forces compete to control
fluid distribution.We note that the numerical results obtainedwhen buoyancy and heterogene-
ity effects compete (i.e. with Nbv,T = 10 in Fig. 6a) do not show any form ofRayleigh–Taylor
instability, although this has been observed experimentally with miscible fluids by Huppert
et al. (2013). We explain this finding by the absence of intra-layer permeability heterogeneity
to trigger the instability.

4.3 Storage/Recovery Efficiency

We continue our analysis by exploring the storage/recovery efficiency as a function of the
dimensionless parameters when flow transitions from the limit of viscous-dominated to
buoyancy-dominated flow. Correlations that are applicable in the viscous limit are reported
in a companion paper (Debbabi et al. 2017a). The correlations reported here provide a useful
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Fig. 7 Storage efficiency at breakthrough time (BT) as a function of Nbv,L with zero transverse flow within
or across layers

basis for the interpretation ofmore complex numerical reservoirmodels used to quantitatively
predict storage or recovery efficiency. We also demonstrate how to rapidly predict storage
efficiency in the limit of buoyancy-segregated flow using a 1D fractional flow model analog
to the Buckley–Leverett model.

4.3.1 Transition From the Viscous Limit to the Buoyancy Limit

We begin by examining the relationships between the dimensionless parameters and storage
efficiency when flow transitions from the viscous limit to the buoyancy limit.

Longitudinal buoyancy effects We first determine the relationship between storage effi-
ciency and longitudinal buoyancy effects without transverse flow within or crossflow across
layers (RL = Nbv,T = 0; Fig. 7). We consider a moderate permeability contrast with the
high permeability layer on top (σx = 10); additional numerical experiments, not reported
here, confirmed the layer ordering has little influence on the predicted trends. We vary Nbv

between 10−4 and 1, and vary Nα between 0.1 and 100. Storage efficiency is an increas-
ing function of the longitudinal buoyancy number Nbv,L only (Fig. 7). These results show
that longitudinal buoyancy effects only become significant when Nbv,L > 0.1. Figure 8
shows that the increase in storage efficiency can be attributed to increases in both sweep
and displacement efficiency with Nbv,L . This is in agreement with results reported in Fig.
5: increasing Nbv,L reduces the distance between the leading edges of the injected phase in
each layer and reduces the remaining displaced phase saturation in regions contacted by the
injected phase. The correlation reported generally applies when Nbv,T is varied along with
Nbv,L , as long as Nbv,T < 0.1, so buoyancy crossflow remains insignificant.

Buoyancy crossflow effects We now examine the relationship between storage efficiency
and buoyancy crossflow in the absence of longitudinal buoyancy effects (Nbv,L = Nα =
0). We consider moderate permeability contrasts with the high permeability layer on top
(σx = 10) and on the bottom (σx = 0.1). We vary Nbv between 10−4 and 1, and RL

between 10 and 100. We find that storage efficiency is a function of the transverse buoyancy
number Nbv,T = NbvR2

L only, and increases when the upper layer is less permeable, or
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Fig. 8 Change in sweep and displacement efficiency atBT (relative to the buoyancy-free case Nbv,L = 0)with
the longitudinal buoyancy number Nbv,L with zero transverse flow within or across layers, using Nα = 100

mildly decreases when the upper layer is more permeable (Fig. 9). Analysis of the sweep and
displacement efficiencies reported in Fig. 10 explains the trends as follows. When the upper
layer is less permeable than the lower layer, buoyancy crossflow increases injected phase
crossflow from the high to the low permeability layer (see Fig. 6b). This increases sweep
efficiency (Fig. 10; σx = 0.1). Additionally, buoyancy crossflow, which tends to segregate
the two fluids, also reduces the remaining displaced phase saturation in regions contacted
by the injected phase. This increases displacement efficiency. Conversely, when the upper
layer is more permeable, buoyancy crossflow further increases injected phase crossflow from
the low to the high permeability layer (see Fig. 6a). This reduces sweep efficiency (Fig.
10; σx = 10). However, buoyancy crossflow also increases displacement efficiency, again
because buoyancy segregation reduces the remaining displaced phase saturation in regions
contacted by the injected phase. The results also confirm that buoyancy crossflow becomes
significant when Nbv,T > 0.1. The correlation reported generally applies when Nbv,L is
varied along with Nbv,T , as long as Nbv,L < 0.1, so longitudinal buoyancy effects remain
insignificant.

Longitudinal buoyancy effects and buoyancy crossflow We now examine the relationship
between storage efficiency and buoyancy effects when both longitudinal and transverse buoy-
ancy effects may be significant (Nbv,L , Nbv,T > 0.1). We consider moderate permeability
contrasts, with the high permeability layer on top (σx = 10) and on the bottom (σx = 0.1).
We maintain RL = 10 so buoyancy crossflow may occur as we increase Nbv . We vary Nbv

between 10−4 and 1, and Nα between 0.1 and 10 to vary the relative importance of buoyancy
crossflow and longitudinal buoyancy effects. When the upper layer is less permeable (Fig.
11a), storage efficiency increases with Nbv regardless of Nα because increased longitudinal
and transverse buoyancy effects both increase storage efficiency. When the upper layer is
more permeable (Fig. 11b), storage efficiency either decreases with Nbv when Nα is small
(≤ 1 here), which is explained by the domination of unfavourable buoyancy crossflow, or
increases with Nbv otherwise, due to the domination of favourable longitudinal buoyancy
effects. Similar results were previously obtained for homogeneous systems (Shook et al.
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Fig. 9 Storage efficiency at BT
as a function of Nbv,T without
longitudinal buoyancy effects
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Fig. 10 Change in displacement and sweep efficiency at BT (relative to the buoyancy-free case Nbv,T = 0)
with the transverse buoyancy number Nbv,T without longitudinal buoyancy effects, using RL = 100

1992). We conclude in general that longitudinal buoyancy effects dominate over buoyancy
crossflow effects when Nα is sufficiently large, but buoyancy crossflow dominates otherwise.

4.3.2 Limit of Buoyancy-Segregated Flow

In the limit of large transverse buoyancy numbers (Nbv,T � 1), buoyancy segregates the two
phases so they flow through distinct regions, separated by a sharp interface (see examples
in Fig. 6a, b with Nbv,T = 100). In this limit, the two-phase flow problem reduces to the
unidimensional problem of tracking the fractional thickness ĥ(x̂, t̂) occupied by the injected
phase. We demonstrate in Appendix 3 that, in the limit of buoyancy-segregated flow, the
fractional thickness ĥ satisfies the fractional flow equation

∂ ĥ

∂ t̂
+ ∂ fb

∂ x̂
= 0, (14)
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Fig. 11 Storage efficiency as a function of Nbv and of the layer ordering (σx = 0.1 and 10) when both the
longitudinal and transverse buoyancy effects may be significant

where fb denotes the “buoyancy-limit fractional flow”, which is the ratio of the injected
phase to the total fluid flux passing through a given transverse cross section of the system
(see also Dietz 1953; Dake 1983; Lake 1989; Yortsos 1995; Gunn and Woods 2011). This
fractional flow is given as a function of the fractional thickness and its gradient by

fb =
[Mekx ][1−ĥ,1

]

[Mekx ][1−ĥ,1
] + [kx ][0,1−ĥ

]

(
1 − [kx ][0,1−ĥ

] Nbv,L

)

−Nbv

[Mekx ][1−ĥ,1
] · [kx ][0,1−ĥ

]

[Mekx ][1−ĥ,1
] + [kx ][0,1−ĥ

]
∂ ĥ

∂ x̂
. (15)

This expression generalises results reported by Yortsos (1995) without dip but layering, and
the expression reported by Gunn and Woods (2011) with dip but no layering. Assuming
Nbv � 1, the fractional flow can be expressed as a function of the fractional thickness
only (see examples given in Fig. 12a). This allows application of fractional flow theory, in
particular to compute graphically, from a given fractional flow curve, the average fractional
thickness behind the leading edge of the injected phase. The latter is numerically equivalent
to the breakthrough storage efficiency in the limit of buoyancy-segregated flow. We next
demonstrate how to estimate this breakthrough storage efficiency using two examples.

Figure 12a shows the fractional flow curves obtained for two dipping, two-layered systems
(Nbv = 0.03; Nbv,L = 3; RL = 100) with different layer ordering (σx = 0.01 and 100).
Results from fractional flow theory show that the average fractional thickness h behind the
leading edge of the injected phase can directly be read from the fractional flow curve as
the X-coordinate of the intersection (represented as dark points on Fig. 10a) between the
horizontal line of equation fb = 1 and Welge’s tangent to the fractional flow curves passing
through the origin of the graph (represented as the dark plain lines in Fig. 10a) (Welge 1952).
For the two examples reported in Fig. 12a, we read breakthrough storage efficiency/average
fractional thickness values of 0.525 and 1 with σx = 100 and 0.01, respectively. These values
differ by less than 1% from values of breakthrough storage efficiency obtained numerically.
Qualitative comparisons of snapshots of saturation distributions with the estimated average
tongue thickness also confirm these findings (Fig. 12b, c). Note that the method remains
directly applicable with no restriction to two-layered systems as long as permeability only
varies in the transverse direction.
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Fig. 12 a Fractional flow curves obtained as functions of the fractional thickness for dipping, two-layered
systems with opposite layer ordering (σx = 0.01 and 100), and b, c resulting saturation distributions obtained
at breakthrough time

5 Discussion

The results reported here are applicable to immiscible, incompressible flow in layered porous
media irrespective of material property contrasts, fluid property contrasts and length-scale,
so long as capillary effects are negligible. Example applications for our models include
plug-scale experiments in the laboratory using bead-packs (10’s cm scale), waterflooding
of hydrocarbon reservoirs (100’s m scale) and CO2 storage in regional aquifers (km scale).
The results provide a framework to support mechanistic interpretations of complex field or
experimental data, and numerical model predictions, through the use of simple dimensionless
models. An approach to estimate and use the dimensionless scaling groups reported in this
paper in realistic reservoir models is presented in a companion paper (Debbabi et al. 2018).

Our results clarify the roles played by the various buoyancy numbers previously intro-
duced in the literature (see Shook et al. 1992 for a review). First, we demonstrate that the
longitudinal and transverse buoyancy numbers can be used to predict the onset of longitudinal
and transverse buoyancy effects, at Nbv,L = 0.1 and Nbv,T = 0.1, respectively.When the two
effects are concurrently increased, by increasing Nbv while maintaining Nα and RL fixed, the
purely geometrical dip angle group Nα defines whether longitudinal or transverse buoyancy
effects control changes in storage efficiency, when Nα is large and small, respectively. This
correlation is useful, for example, in dipping systems to rapidly predict how storage efficiency
changeswhen the flow rate is varied.We also demonstrate that buoyancy effects can be signif-
icant with low values of Nbv , as long as the longitudinal or transverse buoyancy numbers are
large (> 1), and that Nbv must be maintained < 2 to avoid back flow through the inlet face.

Our results demonstrate that dip-related buoyancy effects not only reduce the remaining
displaced phase saturation in regions contacted by the injected phase, but also oppose the
effects of permeability heterogeneity. This is not the case for buoyancy crossflow, which
may either oppose or enhance the effects of permeability heterogeneity on fluid distribution
depending on the layer ordering. This might explain why permeability heterogeneity has
been found to have relatively little impact on gravity-stable gas or water injections in steeply
dipping reservoirs (Kulkarni and Rao 2006).
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We also suggest that breakthrough storage efficiencies obtained from the 1D fractional
flow model applicable in the buoyancy-segregation limit can be used to compare and rank
performances of geostatistical realizations in formations where vertical variations of per-
meability dominate over horizontal variations. This is the case in many clastic depositional
environments (e.g. single or stacked barrier bars, shallow marine sheet sands, transgressive
sands, offshore bars, braided rivers, aeolian deposits; see Weber and Van Geuns 1990 for a
review). This performance measure complements the breakthrough storage efficiency esti-
mated from the flow-storage (F − 
) capacity curve, which is valid in the viscous limit,
and assumes the displacement is piston-like with unit mobility ratio (Lake 1989; Shook and
Mitchell 2009).

6 Conclusions

We examined the downwards injection of a fluid which is less dense than the fluid in place
along dipping layers of contrasting permeability. Two-phase flow was characterized using
seven dimensionless parameters, five of which are independent, obtained from inspectional
analysis of the flow equations (Table 1). The impact of the dimensionless numbers on flow
was quantified in terms of a dimensionless storage efficiency, so results are directly appli-
cable, regardless of scale, to geologic CO2 storage, but can also be applied to gas flooding
of hydrocarbon reservoirs using the numerically equivalent recovery efficiency. The sym-
metry of the problem also allows application of the results to waterflooding of hydrocarbon
reservoirs by inverting the layer order.

Longitudinal buoyancy effects, quantified by the longitudinal buoyancy number Nbv,L ,
increase storage efficiency by reducing the distance between the leading edges of the injected
phase in each layer, in addition to decreasing the remaining displaced phase saturation behind
the leading edge of the displacing phase. Longitudinal buoyancy effects become significant
only when Nbv,L > 0.1.

The impact of buoyancy crossflow on fluid distribution and storage efficiency, quantified
by the transverse buoyancy number Nbv,T , depends on the layer ordering. When perme-
ability increases upwards, injected phase buoyancy crossflow occurs from the low to the
high permeability layer; this reduces storage efficiency. When permeability decreases down-
wards, injected phase buoyancy crossflow occurs from the high to the low permeability
layer; this increases storage efficiency. Buoyancy crossflow becomes significant only when
Nbv,T > 0.1.

When both longitudinal and buoyancy effects are concurrently increased, i.e. Nbv is varied
but the other dimensionless groups are fixed, the purely geometrical dip angle group Nα

defines whether changes in storage efficiency are dominated by changes in the longitudinal
(Nα large) or transverse buoyancy effects (Nα small).

In the buoyancy-segregation limit, the multiphase flow problem can be reduced to a 1D
fractional flow model that allows rapid prediction of storage efficiency. The model presented
accounts for both dip and layering, thereby generalizing earlier works that considered either
of these only. The predicted storage efficiencymay be used to compare and rank performances
of geostatistical realizations, as long as transverse variations of permeability dominate over
horizontal variations, as is the case in a wide range of clastic depositional environments.
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7 Appendix 1: Derivation of Governing Dimensionless Numbers

We followhere themethodology described byDebbabi et al. (2017a) and additionally account
for buoyancy effects to obtain the set of dimensionless scaling groups presented in Table 1.
The methodology is similar to the commonly termed “inspectional analysis”, which has been
previously applied to homogeneous (Shook et al. 1992) and layered porous media (Zhou
et al. 1997).

Inspectional analysis of the flow equations. Before non-dimensionalising the flow equa-
tions, we first express the governing flow Eqs. (1)–(4) within the so-called fractional flow
formulation. This requires the injected phase volumetric flux per unit area to be expressed as
a function of the total flux, i.e.

qi = fi qT + λiλd

λT
(ρi − ρd) k · g, (16)

where fi denotes the dimensionless ratio of the injected to the total fluidmobility fi = λi/λT ,
which corresponds to the injected phase fractional flow in the viscous limit, and controls the
efficiency with which the injected phase displaces the phase initially in place (see Debbabi
et al. 2017a). Substituting the latter expression into the continuity equation (1) yields the
following (dimensional) formulation of the governing flow equations

φ�S
∂s

∂t
+ qT · ∇fi + ∇ ·

[
λiλd

λT
(ρi − ρd) k · g

]
= 0, (17)

∇ · qT = ∇ ·
[
−λT k · ∇P + (λiρi + λdρd) k · g

]
= 0. (18)

Normalizing flow equations using the dimensionless quantities x̂ = x/L , ẑ = z/H ,
t̂ = tqin/φ�SL , q̂x = qx/qin , q̂z = qz L kzker,d /qin H kxker,d , λ̂

j
T = λ

j
T /(ke, jr,d /μd),

λ̂
j
i = λ

j
i /(k

e, j
r,d /μd) and λ̂

j
d = λ

j
d/(k

e, j
r,d /μd) for j = 1, 2, P̂ = kxker,d (P − P0)/L qinμd ,

ρ̂ j = ρ j/�ρ for j = i, d , and k̂x,d = kxker,d/kxk
e
r,d , we obtain the following dimensionless

form of the governing equations

∂s

∂ t̂
+ q̂T,x

∂ fi
∂ x̂

+ R2
L q̂T,z

∂ fi
∂z

= Nbv,L
∂

∂ x̂

[
k̂x,d fi λ̂d

]
+ Nbv,T

∂

∂ ẑ

[
fi λ̂d

]
(19)

∂q̂T,x

∂ x̂
+ R2

L
∂q̂T,z

∂ ẑ
= ∂

∂ x̂

[

−k̂x,d λ̂T
∂ P̂

∂ x̂

]

+ Nbv,L
∂

∂ x̂

[
k̂x,d λ̂T [ fi ρ̂i + (1 − fi )ρ̂d ]

]

+R2
L

∂

∂ ẑ

[

−̂λT
∂ P̂

∂ ẑ

]

+ Nbv,T
∂

∂ ẑ

[
λ̂T [ fi ρ̂i + (1 − fi )ρ̂d ]

] = 0.

(20)
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From these dimensionless flow equations, we identify the governing dimensionless numbers
reported in Table 1 as constant coefficients appearing in the partial differential equations or
constant coefficients controlling functionals appearing in the differential equations. The effec-
tive aspect ratio RL , the longitudinal buoyancy number Nbv,L and the transverse buoyancy
number Nbv,T directly appear as constant coefficients within the coupled partial differential
equations. The end-point mobility ratio Me = ker,iμd/ker,dμi and the Corey exponents, ni
and nd , are identified as a consequence of our relative permeability parameterization from

fi (s) = Mesni

Mesni + (1 − s)nd
, (21)

λ̂T (s) = Mes
ni + (1 − s)nd . (22)

The spatially dependent functionals k̂x,d is parameterized by the longitudinal permeability

ratio σx =
(
kxker,d

)

1
/
(
kxker,d

)

2
. We also report in Table 1 the buoyancy number Nbv =

Nbv,T /R2
L , which we show in Appendix 2, determines whether the injection proceeds along

the entire length of the inlet face (Nbv ≤ 2), and the dip angle group Nα , which we show in
Sect. 4.3, determineswhether changes in longitudinal or transverse buoyancy effects dominate
changes in storage efficiency.

8 Appendix 2: No-Crossflow Limit

Wenow examine the no-crossflow limit (RL = 0) to (i) determinewhy increased longitudinal
buoyancy effects reduce the distance between the leading edges of the injected phase in each
layer without crossflow (Fig. 5), and (ii) identify conditions for which the injection cannot
occur along the entire length of the inlet face.

We first analyse the impact of longitudinal buoyancy effects on the distance between the
leading edges of the injected phase in the high and low permeability layers by computing the
influxes into each layer. Integrating the total volumetric flux per unit area along the model,
using the incompressibility equation

∂ q̂T,x

∂ x̂
= 0 (23)

obtained with RL = 0, yields the total volumetric flux per unit area (normalised by the total
fluid mobility) as

q̂T,x

k̂x,dλT
= �P̂ + Nbv,Lρ, (24)

where λT denotes the (harmonic) average of the dimensionless total mobility λ̂T along the
model, and ρ the (arithmetic) average of the dimensionless, fractional flow-weighted density
fi ρ̂i + (1− fi )ρ̂d along the model. This expression shows that the total volumetric influx per
unit area varies along the inlet face in response to fluid density changes, in addition to the fluid
mobility changes previously considered (Debbabi et al. 2017a). This is a consequence of the
uniform potential boundary condition. As the injection proceeds, the average fluid density ρ

decreases in both layers, but faster in the high permeability layer because this layer receives
more influx. This uneven allocation of influxes therefore reduces the contribution of gravity
effects to flow faster in high than low permeability layers. This reduces the velocity with
which the injected phase propagates relative to the velocity achieved in low permeability
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Fig. 13 Schematic of the 2D sharp interface model used in this work. The greyed area represents the region
contacted by the lighter, injected phase

layers. The leading edges of the injected phase are thereby closer with than without fluid
density contrasts (see Fig. 5).

We now identify conditions at which the injection cannot proceed along the entire length
of the inlet face. This is achieved by examining the sign of the total volumetric flux profile
along the inlet face in the simplified case of a unit mobility ratio piston-like displacement
with neither dip (Nα = Nbv,L = 0) nor permeability heterogeneity (σx = 1). Using the
uniform potential boundary conditions, Eq. (24) can be simplified in this case as

q̂T,x = �P̂
(
ẑ = 0

) + Nbv ẑ, (25)

where the longitudinal pressure drop at the base of the system �P̂
(
ẑ = 0

)
is constrained

by the unit average total influx,
∫ 1

0
q̂T,xd ẑ = �P̂

(
ẑ = 0

) + Nbv

2
= 1. (26)

This allows the total volumetric fluid flux per unit area along the inlet face to be expressed
as a function of the dimensionless elevation ẑ, i.e.

q̂T,x = 1+Nbv

(
ẑ − 1

2

)
. (27)

From Eq. (27) it can be seen that the inlet flux is negative across lower parts for Nbv > 2, in
which case injection cannot occur.

9 Appendix 3: Derivation of Equivalent 1D Transverse Equilibrium Flow
Model

Wedemonstrate in this appendix that, in the limit of large transverse buoyancynumbers Nbv,T ,
there cannot be simultaneous flow of the two phases, and that the two-phase flow problem
can be reduced to tracking the thickness h of the buoyancy tongue that preferentially sweeps
the top of the system (see Fig. 13).
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Examination of the dimensionless transverse injected phase flux, which is identified from
Eq. (19),

R2
L q̂i,z = R2

L fi q̂T,z − Nbv,T k̂z,d fi λ̂d , (28)

indicates that, in the limit of Nbv,T → ∞, the product fi λ̂d is equal to zero because both
the transverse injected phase and total flux, R2

L q̂i,z and R2
L q̂i,z , are bounded. Hence, s = 0

or 1, i.e. flow is segregated.
In the limit of large effective aspect ratio RL , the dimensionless incompressibility equation

(20) shows that the total flux in the transverse direction does not vary with the elevation ẑ,
i.e.

∂ q̂T,z

∂ ẑ
= 0, (29)

and is zero, due to the no-flux boundary conditions at ẑ = 0 and 1. This yields the transverse
pressure gradient

∂ P̂

∂ ẑ
= −Nbv [ fi ρ̂i + (1 − fi ) ρ̂d ] . (30)

From the segregation condition (s = 0 or 1), the pressure can be decomposed as a reference
pressure P̂r (x̂, ẑ = 1, t̂) taken along the top boundary that is corrected by a hydrostatic
pressure gradient as

P̂
(
x̂, ẑ, t̂

) = P̂r + Nbv ρ̂i (1 − ẑ) (31)

when ẑ ≥ 1 − ĥ, and

P̂
(
x̂, ẑ, t̂

) = P̂r + Nbv ρ̂i ĥ + Nbv ρ̂d (1 − ĥ − ẑ) (32)

when ẑ ≤ 1 − ĥ. We can now eliminate pressure from the reduced system of equations by
using conservation of mass in transverse cross sections of the system. This first requires the
dimensionless longitudinal displacing and displaced phase fluxes

q̂i,x = − k̂x,d λ̂i

[
∂ P̂

∂ x̂
− Nbv,L ρ̂i

]

(33)

q̂d,x = − k̂x,d λ̂d

[
∂ P̂

∂ x̂
− Nbv,L ρ̂d

]

(34)

to be expressed as a function of the reference pressure P̂r ,

q̂i,x = − k̂x,d λ̂i

[
∂ P̂r
∂ x̂

− Nbv,L ρ̂i

]

(35)

q̂d,x = − k̂x,d λ̂d

[
∂ P̂r
∂ x̂

− Nbv
∂ ĥ

∂ x̂
− Nbv,L ρ̂d

]

. (36)

By mass conservation through transverse cross sections, we have

∫ 1−ĥ

0
q̂d,xdẑ +

∫ 1

1−ĥ
q̂i,xdẑ = 1, (37)
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which yields the longitudinal reference pressure gradient

∂ P̂r
∂ x̂

=
Nbv

[
k̂x,d λ̂d

]
[
0,1−ĥ

] ∂ ĥ
∂ x̂ + Nbv,L

(

ρ̂d

[
k̂x,d λ̂d

]
[
0,1−ĥ

] + ρ̂i

[
k̂x,d λ̂i

]
[
1−ĥ,1

]

)

− 1

[
k̂x,d λ̂d

]
[
0,1−ĥ

] +
[
k̂x,d λ̂i

]
[
1−ĥ,1

]
,

(38)
and the total injected phase flux through a cross section

∫ 1

1−ĥ
q̂i,xdẑ =

[
Mek̂x

]
[
1−ĥ,1

]

[
Mek̂x

]
[
1−ĥ,1

] +
[
k̂x

]
[
0,1−ĥ

]

(

1 −
[
k̂x

]
[
0,1−ĥ

]Nbv,L

)

−Nbv

[
Mek̂x

]
[
1−ĥ,1

] ·
[
k̂x

]
[
0,1−ĥ

]

[
Mek̂x

]
[
1−ĥ,1

] +
[
k̂x

]
[
0,1−ĥ

]

∂ ĥ

∂ x̂
. (39)

The injected phase mass conservation equation can be written as

∂ ĥ

∂ t̂
+ ∂

∂ x̂

[∫ 1

1−ĥ
q̂i,xdẑ

]
= ∂ ĥ

∂ x̂
+ ∂ fb

∂ x̂
= 0, (40)

where fb is the fractional flow term reported in Eq. (15).
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