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Abstract—Merchant transmission planning is considered as
a further step towards the full liberalization of the electric-
ity industry. However, previous modeling approaches do not
comprehensively explore its social efficiency as they cannot
effectively deal with a large number of merchant companies.
This paper addresses this fundamental challenge by adopting a
novel non-cooperative game-theoretic approach. Specifically, the
number of merchant companies is assumed sufficiently large to
be approximated as a continuum. This allows the derivation of
mathematical conditions for the existence of a Nash Equilibrium
solution of the merchant planning game. By analytically and
numerically comparing this solution against the one obtained
through the traditional centralized planning approach, the pa-
per demonstrates that merchant planning can maximize social
welfare only when the following conditions are satisfied: a) fixed
investment costs are neglected and b) the network is radial
and does not include any loops. Given that these conditions do
not generally hold in reality, these findings suggest that even
a fully competitive merchant transmission planning framework,
involving the participation of a very large number of competing
merchant companies, is not generally capable of maximizing
social welfare.

Index Terms—Game theory, merchant transmission investors,
Nash equilibrium, transmission planning.

NOMENCLATURE

A. Indices
t ∈ T Index and set of time periods
m ∈M Index and set of network branches
n ∈ N Index and set of network nodes
l ∈ L Index and set of network loops
i ∈ I Index and set of merchant transmission companies

B. Parameters
wt Weighting factor of period t
TFm Fixed investment cost of branch m (£/h)
TVm Variable investment cost of branch m (£/MWh)
aGn Quadratic cost coefficient of generation at node n

(£/MW2h)
bGn Linear cost coefficient of generation at node n (£/MWh)
Gmaxn Maximum generation limit at node n (MW)
aDn Quadratic benefit coefficient of demand at node n

(£/MW2h)
bDn Linear benefit coefficient of demand at node n (£/MWh)
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F 0
m Existing capacity of branch m (MW)

ΦΦΦ Matrix of sensitivities φn,m for outflow from node n
with respect to power flow on branch m

ΨΨΨ Matrix of sensitivities ψl,m for voltage drop of loop l
with respect to power flow on branch m

nsm Reference sending node of branch m
nrm Reference receiving node of branch m

C. Variables
uuu Vector of binary variables um expressing whether new

capacity is added on branch m (um = 1 if it is, um = 0
otherwise)

FFF Vector of total capacity additions Fm on branch m
(MW)

F (i)F (i)F (i) Vector of individual capacity additions Fm(i) by com-
pany i on branch m (MW)

Gn,t Power generation at node n and period t (MW)
Dn,t Power demand at node n and period t (MW)
fm,t Power flow on branch m at period t (MW)
Pn,t Net power outflow from node n at period t (MW)
λn,t Locational marginal price at node n and period t

(£/MWh)

D. Functions
Tm(·) Transmission investment cost for branch m (£/h)
Cn,t(·) Cost of generation at node n and period t (£/h)
Bn,t(·) Benefit of demand at node n and period t (£/h)
J(i, ·) Profit of company i (£/h)

I. INTRODUCTION

A. Motivation

During the last two decades, deregulation of the elec-
tricity industry has been observed worldwide, involving the
unbundling of vertically integrated monopoly utilities, the
introduction of competition in the generation and supply
sectors, and the open access to the electricity networks. In this
deregulated environment, two general approaches are adopted
for transmission network planning [1]–[4]. Under the first
approach, planning is centrally carried out by a regulated trans-
mission company, which realizes under regulatory supervision
the optimal transmission expansion plan that maximizes the
social welfare while ensuring security of supply. The required
capital cost plus a suitable rate of return for the transmission
company is recovered from the network users. In this context,
research efforts have focused on the solution of the centralized
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optimal transmission planning problem [5]–[10], as well as the
allocation of transmission costs among the users [11]–[16].

Under the second approach, known as merchant transmis-
sion investment [2], transmission planning relies on competi-
tive market forces and profit-driven decisions of self-interested
investors, known as merchant transmission companies. These
merchant companies are rewarded on the basis of the collected
congestion revenues created by their network investments. This
paradigm is gaining continuously ground as the participation
of multiple merchant companies and the resulting competition
arising in transmission planning are advocated as a further step
towards the deregulation and liberalization of the electricity
industry [2]–[4], [17]. The first instances of merchant transmis-
sion planning can be found in the USA, Australia, Argentina
and Brazil, although the adopted frameworks constitute a mix
of centralized and merchant planning [2], [3], [18]–[22].

However, a critical question towards the widespread ap-
plication of this merchant transmission planning paradigm is
whether this approach can achieve the same (maximum) social
welfare as the centralized planning approach.

B. Relevant Work

A few recent papers have developed quantitative models
of this merchant investment framework in order to answer
this question. Through Lagrangian Relaxation (LR) principles,
authors in [17] demonstrate that the merchant paradigm leads
to the same planning solution as the one obtained by the cen-
tralized paradigm, leading to the conclusion that introduction
of competition in network planning is plausible. However, this
outcome is subject to two simplifying assumptions. First of
all, the fixed costs of network assets are neglected despite the
undeniable economies of scale associated with transmission
investment [1], [2]; this assumption is made as LR is generally
unable to produce the centralized solution in the presence
of non-convexities [23]. More importantly, merchant investors
are assumed competitive, price-taking entities, considering the
locational marginal prices (LMP) as exogenous signals that
cannot be influenced by their individual actions. In reality
however, in a similar fashion with strategic behavior observed
in energy markets, merchant investors will attempt to exercise
market power and manipulate the LMP to increase their prof-
its beyond the centralized planning levels, through strategic
network investments [2], [3], [24]–[27].

In [25], [26] and [2], [3], this competitive behavior as-
sumption is removed. Authors in [25], [26] show that under
certain conditions (neglect of fixed costs of network assets,
congestion rights satisfying certain feasibility constraints, no
imperfections in the energy market), merchant investments are
socially efficient. In the seminal work [2], the authors demon-
strate through theoretical discussion and illustrative examples
that this conclusion does not hold when the above simplifying
conditions are relaxed. However, these papers investigate the
social efficiency of investments by a single merchant company,
neglecting that the very essence of the merchant planning
paradigm lies in the introduction of competition in transmis-
sion planning, through the participation of multiple merchant
companies. More specifically, authors in [2] recognize through

a simple 3-node example that gaming interactions between
multiple merchant companies are likely in reality (Section
9.3, pages 54-55), but they do not provide a comprehensive
modeling framework capturing these interactions.

Authors in [3] make the first attempt to consider a setting
with multiple merchant companies and analytically derive the
relation between the procured transmission capacity under
the centralized and the merchant transmission paradigm. The
results indicate that the merchant paradigm leads to under-
investment with respect to the centralized approach but such
under-investment is reduced as the number of merchant com-
panies is increased. Specifically, in a simple 2-node system
example, the results demonstrate that the deviation between
the merchant and the centralized planning solution is less
than 10% when 4 merchant companies are considered, less
than 1% when 7 merchant companies are considered, and
less than 0.1% when 10 merchant companies are considered.
Extending the analysis to the theoretical case where the num-
ber of merchant companies approaches infinity, the authors
in [3] demonstrate that the differences between the planning
solutions of the two paradigms in this case tend to zero.
Although this theoretical scenario with an infinite number
of merchant companies does not correspond to a realistic
setting, this result is of great significance as it implies that
under a “sufficiently large” number of competing merchant
companies, the socially optimal transmission planning solu-
tion can be approached. However, this paper [3] carries out
simplifying assumptions that limit the generality of this result;
transmission branches are presumed congested at the optimal
solution and fixed costs of network assets are neglected. More
importantly, the multiple merchant companies are assumed to
make investment decisions sequentially, accounting for past
but not possible future investments by competitors. In other
words, the adopted approach does not comprehensively model
the decision-making interactions between multiple merchant
companies.

As discussed in [27], a non-cooperative game-theoretic
modeling framework is required to capture the strategic be-
havior and interactions of multiple merchant investors. Such a
framework has been investigated in [28], where an equilibrium
programming approach has been employed to search for Nash
Equilibria (NE) of the merchant planning game. Case studies
in a simple 2-node system indicate that as the number of
competing merchant companies increases, the merchant plan-
ning solution approaches the centralized one. Specifically, the
deviation between the two solutions in terms of the procured
capacity is shown to be less than 20% when 4 merchant
companies are considered, and less than 10% when 9 merchant
companies are considered. However, the adopted approach
cannot guarantee convergence to existing NE, especially as
the number of players and the size of the network increase; as
a result, the case studies are limited to a 2-node system with
up to 10 merchant companies. In other words, although this
approach captures the decision making interactions between
competing merchant companies and accounts for fixed costs
of transmission assets (aspects which are not captured by the
modeling framework of [3]), it cannot establish whether the
important finding of [3] (i.e. that merchant planning yields the



3

same solution as centralised planning under the participation of
a “sufficiently large” number of competing investors) is valid
or not, as it cannot deal with a large number of merchant
companies, especially in large networks.

C. Contributions

This paper fills the knowledge gap that exists between
the previous papers [3] and [28]. As in [28], the strategic
interactions between multiple merchant companies are cap-
tured by adopting a non-cooperative game-theoretic modeling
framework. However, this framework is adapted to deal with a
large number of merchant companies, in order to validate the
important finding of [3]. To achieve this, the set of merchant
companies is approximated as a continuum [29]. Similar
approaches have been previously considered in other economic
[30], [31] and smart grid [32], [33] applications. The proposed
approximation makes the impact of each infinitesimal player’s
decisions on system quantities negligible, allowing us to derive
mathematical conditions for the existence of the merchant
planning solution, characterized as a Nash equilibrium.

Based on this approach, this paper investigates the validity
of the finding of [3], through an analytical and numerical
comparison of this merchant transmission planning solution
against the one obtained through a traditional centralized
approach. This comparison demonstrates that merchant plan-
ning can achieve the same (maximum) social welfare as
the centralized planning approach only when the following
conditions are satisfied: a) fixed investment costs are neglected
and b) the network is radial and does not include any loops.
As the mentioned conditions do not generally hold in reality,
our findings suggest that even a fully competitive merchant
transmission planning framework, involving the participation
of a very large number of competing merchant companies, is
not generally capable of maximizing social welfare, as implied
by the previous work [3]. Numerical simulations supporting
these findings are carried out on a 2-node, a 3-node, a 6-
node and a 24-node system, while the largest case study
examined in the previous relevant papers discussed in Section
I-B corresponds to a 6-node system.

It should be mentioned that the transmission planning model
investigated in this paper - as well as the models in the
relevant merchant transmission planning literature [3] and
[28] - assumes a fixed generation mix and therefore ignores
the strategic interactions between transmission and generation
expansion decisions, which have been explored in papers [34]–
[39]. As discussed in Section VI though, these interactions
constitute the subject of future research which aims at de-
veloping an integrated transmission and generation planning
framework in order to compare the impacts of centralized
and merchant transmission planning on generation expansion
decisions.

D. Paper Structure

The rest of this paper is organized as follows. Section
II outlines a basic model of centralized planning. Section
III details the proposed game-theoretic model of merchant
planning. Section IV theoretically proves the equivalence of

the centralized and merchant planning solutions under a set
of assumed conditions. Section V presents numerical results
of case studies in four different systems. Finally, Section VI
discusses conclusions and further extensions of this work.

II. CENTRALIZED TRANSMISSION PLANNING MODEL

Under the centralized transmission planning paradigm, the
regulated transmission company determines the capacity to be
added in the existing network, so as to maximize the long-
term social welfare or, equivalently, minimize the long-term
system cost. The latter is given by the sum of two terms: the
difference between generation cost and demand benefit, plus
the investment cost required for delivering the new capacity.

Definition 1: The centralized solution (CS) of the transmis-
sion planning problem is determined through the following
optimization problem:

min
um,Fm,fm,t,
Gn,t,Dn,t,λn,t

∀m, ∀n, ∀t

∑
t

∑
n

wt [Cn,t(Gn,t)−Bn,t(Dn,t)]

+
∑
m

Tm(um, Fm)

(1)
Where:

Tm(um, Fm) = um
(
TFm + TVmFm

)
(2)

subject to:

0 ≤ Fm ∀m (3)
Dn,t + Pn,t −Gn,t = 0 : λn,t ∀n, ∀t (4)

−
(
F 0
m + umFm

)
≤ fm,t ≤ F 0

m + umFm ∀m, ∀t (5)
Pn,t =

∑
m φn,mfm,t ∀n, ∀t (6)∑

m ψl,mfm,t = 0 ∀l, ∀t (7)
0 ≤ Gn,t ≤ Gmaxn ∀n, ∀t. (8)

Following the realistic economic properties of network
investments, the investment cost Tm for branch m in (2)
includes i) a fixed component, which does not depend on
the procured capacity but only on the binary decision (um)
of whether new capacity will be added on branch m or not
and ii) a variable component, which is incurred when this
binary decision is positive (um = 1), and is proportional to the
procured capacity Fm. DC load flow constraints are expressed
by (4)-(7); the Lagrangian multipliers λn,t associated with the
nodal demand-supply balance constraints (4) express the LMP
at the respective node n and period t. Generation limits are
enforced by (8).

III. MODELING MERCHANT TRANSMISSION PLANNING AS
A GAME WITH VERY LARGE NUMBER OF PLAYERS

A. Game Setting

In the merchant planning paradigm, each rational merchant
transmission company i determines its network expansion
proposals Fm(i) on each branch m so as to maximize its profit
function J(i, ·) in (9). This is defined as the difference between
the congestion revenue (second term) and the investment cost
(first term) associated with the network capacity procured by
company i on each network branch. The share of total fixed



4

investment cost paid by company i is equal to the share of the
total capacity addition it procures, as expressed by the ratio
in the first term of (9). Likewise, out of the total congestion
revenue associated with branch m, the share belonging to
company i is equal to the share of the total capacity of branch
m it owns, as expressed by the ratio in the second term of (9).

J(i,F (i)F (i)F (i),uuu,FFF ) = −
∑
m

um

(
TFm

Fm(i)
Fm

+ TVmFm(i)
)

+
∑
m

um

[∑
t

wt
(
λnr

m,t
− λns

m,t

)
fm,t

Fm(i)
Fm+F 0

m

]
.

(9)

If planning involves multiple companies, their expansion
proposals are inter-dependent: the profit J(i, ·) of company i
depends not only on the vector F (i)F (i)F (i) of its strategic decisions
but also on the aggregate decisions FFF of all companies, which
impact the final capacity Fm + F 0

m of each branch m and
consequently the power flows and the LMP affecting the
companies’ profits. It follows that each merchant company
needs to account for the decisions of its competitors. These
interactions can be described through a non-cooperative game,
modeling the merchant companies as competing players.

As discussed in Section II, previous game-theoretic ap-
proaches for modeling merchant planning cannot effectively
deal with a large number of merchant companies. Therefore,
they cannot accurately determine whether merchant planning
leads to the same solution as centralized planning under the
participation of many competing investors. In order to address
this fundamental challenge, this paper adopts a novel approach,
in which the number of merchant companies is assumed
sufficiently large to be approximated as a continuum [29]. In
other words, the set of merchant companies is not described
as a finite collection I = {1, 2, . . . , |I|} but as a closed
interval I ⊂ R. With this approximation, system quantities
such as investment decisions um and Fm are not impacted by
each infinitesimal player’s strategies but only depend on the
aggregation of all players’ strategies. In this context, the total
capacity addition on branch m is expressed as:

Fm =

∫
I

Fm(i) di (10)

and the binary investment decision um corresponds to:

um =

{
0 if Fm = 0
1 if Fm > 0

(11)

B. Determining Nash Equilibria of the Game

In the proposed non-cooperative game setting, the interest
of regulators and policy makers lies in determining the likely
outcome of the strategic interaction between multiple merchant
companies, i.e. the Nash equilibrium (NE) of the game. NE
expresses a condition where none of the players can increase
its profits by unilaterally modifying its decisions [40], as
formalized by the following definition:

Definition 2: Consider a feasible vector of individual net-
work capacity additions F ∗(i)F ∗(i)F ∗(i) and the corresponding total
capacity additions F ∗F ∗F ∗ and binary investment decisions u∗u∗u∗.
These quantities constitute a NE for the game of Section

III-A if, for any feasible vector of individual network capacity
additions F (i)F (i)F (i), the following holds:

J(i,F ∗(i)F ∗(i)F ∗(i),u∗u∗u∗,F ∗F ∗F ∗) ≥ J(i,F (i)F (i)F (i),u∗u∗u∗,F ∗F ∗F ∗). (12)

As mentioned in Section III-A, a single player i cannot
impact the total capacity additions FFF and the binary investment
decisions uuu but it can only modify the individual capacity
additions F (i)F (i)F (i). It is thus critical to analyze which values of the
vector F (i)F (i)F (i) maximize the profit function (9) for fixed values of
the vectors FFF and uuu. Note that J(i, ·) is linear with respect to
each individual capacity addition Fm(i) and can alternatively
be written as:

J(i,F (i)F (i)F (i),uuu,FFF ) =
∑
m

Λ(um, Fm) · Fm(i) (13)

where the term Λ(um, Fm) is expressed as:

Λ(um, Fm) = um

∑
t wt(λnr

m,t−λns
m,t) fm,t

Fm+F 0
m

−um
(
TF
m

Fm
+ TVm

)
.

(14)
Three different conditions need to be examined for each

term of the sum in (13):
• Λ(um, Fm) > 0: the function J is monotonically increas-

ing with respect to Fm(i). It follows that the profit of
player i can always be improved by selecting a higher
value of Fm(i) and therefore a NE can never be reached.

• Λ(um, Fm) < 0: the function J is monotonically de-
creasing with respect to Fm(i). Therefore, the profit of
player i can always be increased by choosing a lower
value of Fm(i). As a result, a NE could potentially be
reached if and only if Fm(i) = 0, ∀i. This is never the
case, as the mentioned conditions would lead to um = 0
and Λ(um, Fm) = 0, contradicting the initial hypothesis.

• Λ(um, Fm) = 0: the function J does not depend on
Fm(i). If this is true for all m ∈M , (12) holds as equality
and a NE is reached. In this case, the marginal value
and the marginal cost of an additional unit of network
capacity investment by player i are equal.

Based on the three conditions examined above, the follow-
ing result can be deduced:

Theorem 1: The individual network capacity additionsF ∗(i)F ∗(i)F ∗(i)
and the corresponding vector of total capacity additions F ∗F ∗F ∗

and binary investment decisions u∗u∗u∗ constitute a NE for the
game of Section III-A if and only if:

u∗mF
∗
m

∑
t

wt
(
λnr

m,t
− λns

m,t

)
fm,t

= u∗m(F ∗m + F 0
m)(TFm + TVmF

∗
m).

∀m (15)

Proof: The three above conditions for Λ(um, Fm) are
considered. When Λ(um, Fm) > 0, we have established that
a NE does not exist. This is consistent with the theorem
statement, as (15) does not hold in this case. In fact, since
Λ(um, Fm) > 0, the term in the left-hand side of (15) is
strictly larger than the term in the right-hand side of (15). A
similar procedure can be followed for the case Λ(um, Fm) <
0: having established that a NE is never reached, it is sufficient
to note that the left-hand side of (15) is strictly smaller than
its right-hand side. When Λ(um, Fm) = 0, it has been shown



5

that a NE is reached and (15) always holds, thus concluding
the proof.

Theorem 1 provides the necessary and sufficient conditions
(15) for existence of a NE in the proposed non-cooperative
game. According to game-theory literature, uniqueness of NE
solutions is generally not guaranteed [40]. Therefore, it is pos-
sible that multiple different investment solutions fulfill (15).
Since the focus of this paper is not on identifying all possible
NE of the merchant planning game but rather on investigating
whether merchant planning can yield the same social welfare
maximizing solution as centralized planning, we will seek for
the NE solution yielding the largest social welfare.

Definition 3: The merchant solution (MS) of the transmis-
sion planning problem is determined through the following
optimization problem:

min
um,Fm,fm,t,
Gn,t,Dn,t,λn,t

∀m, ∀n, ∀t

∑
t

∑
n

wt [Cn,t(Gn,t)−Bn,t(Dn,t)]

+
∑
m

Tm(um, Fm)

(16)
Subject to (3)-(8),

umFm
∑
t

wt
(
λnr

m,t
− λns

m,t

)
fm,t

= um(Fm + F 0
m)(TFm + TVmFm).

∀m (17)

This problem is similar to the one solved under centralized
planning, but it also considers the NE condition (17) of
Theorem 1, to be verified on each network branch.

IV. SOCIAL EFFICIENCY OF MERCHANT TRANSMISSION
PLANNING

This paper investigates under which conditions the merchant
planning paradigm yields the social welfare maximizing solu-
tion or, in other words, under which conditions the centralized
planning approach of Section II and the merchant planning
approach of Section III yield the same solution. We claim that
this equivalence holds if the following conditions hold:
A1) Fixed investment costs are neglected, i.e. TFm = 0, ∀m.
A2) The network is radial and does not include any loops.

A. Theoretical Analysis

The sufficiency of the aforementioned conditions A1 and
A2 is theoretically proved through Theorem 2 below. This
theorem claims that if A1 and A2 hold, then the centralized and
merchant planning solutions coincide. In order to simplify the
theoretical analysis, two additional conditions are introduced:
B1) The operational timescale of the planning problem in-

cludes a single period, i.e. |T | = 1.
B2) The existing capacity of every branch is zero, i.e. F 0

m =
0, ∀m.

Theorem 2: The centralized solution CS of Definition 1
and the merchant solution MS of Definition 3 coincide if
conditions A1-A2 and B1-B2 hold.

Proof: Without loss of generality, it is assumed that the
total capacity addition of the CS is positive for all branches,
i.e. Fm > 0, um = 1, ∀m. If this is not the case for some

branches, the analysis provided next can be performed on the
subset of branches M̃ ⊂M for which this assumption holds,
with M̃ = {m ∈M : Fm > 0, um = 1}. If this is not the case
for any branch (the CS does not involve any capacity addition,
i.e. Fm = 0, um = 0, ∀m), it can be shown that the CS and
MS coincide as both sides of the NE conditions (17) are zero.
Given condition B1, the subscript t is omitted in the remainder
of this proof. Under the current assumptions, a simplified
expression can be derived for the optimization problem (1)-(8)
returning CS. From condition A1, the investment cost term (2)
in the objective function (1) can be rewritten as:

Tm = TVmFm ∀m. (18)

Regarding the constraints, equations (7) are omitted as a
result of A2. Assuming without loss of generality a “positive”
power flow on each branch (i.e. power flows from the reference
sending node to the reference receiving node), we implicitly
account for constraints (5) by imposing:

fm = Fm ∀m. (19)

These equations hold since i) fm > Fm violates (5) given
that F 0

m = 0 from B2 and ii) fm < Fm is suboptimal as
the unused capacity Fm− fm increases the objective function
(1). As a result of the above, by combining (4) and (6) and
by rewriting (8) as two separate constraints, the optimization
problem returning the CS can be formulated as:

min
Fm,∀m

Gn,Dn, ∀n

∑
m

TVmFm +
∑
n

[Cn(Gn)−Bn(Dn)] (20)

subject to:

Dn +
∑
m

φn,mFm −Gn = 0 : λn ∀n. (21)

−Gn ≤ 0 : µ−n ∀n. (22a)

Gn −Gmaxn ≤ 0 : µ+
n ∀n. (22b)

The Lagrangian function associated with this optimization
problem is expressed as:

L =
∑
m

TVmFm +
∑
n

[Cn(Gn)−Bn(Dn)]

+
∑
n

λn(Dn +
∑
m

φn,mFm −Gn)

−
∑
n

µ−nGn +
∑
n

µ+
n (Gn −Gmaxn ).

(23)

Derivation of the Lagrangian with respect to Fm yields the
following set of necessary conditions for optimality:

∂L

∂Fm
= TVm +

∑
n

φn,mλn = 0 ∀m. (24)

The term φn,m in (24) denotes the element in the n-th row
and m-th column of the sensitivity matrix ΦΦΦ, describing the
network topology. For each column m of ΦΦΦ we have φns

m,m
=

1 and φnr
m,m

= −1, while φn,m = 0 for all nodes n not
connected to branch m. Therefore, (24) can be rewritten as:

TVm + λns
m
− λnr

m
= 0 ∀m. (25)
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Regarding the MS, as a result of conditions A1, B1, B2 and
equation (19), the necessary and sufficient conditions (17) for
achieving NE can be rewritten as:

λnr
m
− λns

m
= TVm ∀m. (26)

Note that the optimality conditions (25) of the CS are
equivalent to the NE conditions (26) of the MS. This implies
that the CS and the MS coincide, concluding the proof.

Although the above theoretical analysis considers the sim-
plifying hypotheses B1-B2, the case studies presented in
Section V will numerically demonstrate that B1-B2 are not
necessary. In other words, it will be shown that CS and MS
coincide even when B1-B2 do not hold. On the other hand,
these case studies indicate that A1-A2 are not only sufficient
but also necessary: the CS and MS are in principle different
when one of the conditions A1 or A2 does not hold.

B. Discussion
This section aims at discussing the physical significance

behind these two sufficient and necessary conditions:
Condition A1: Under the CS, the total congestion surplus in

the network covers exactly the variable component of the total
investment cost, but it does not cover fixed costs [1]. On the
other hand, the NE condition (15) of the MS requires that the
total congestion surplus covers exactly the total investment
cost (both variable and fixed components), as the rational
merchant investors do not accept economic losses. Therefore,
as demonstrated by the case studies of Section V, when fixed
costs are accounted for, the total network capacity procured
under the MS is lower than the respective capacity procured
under the CS, in order to increase the collected congestion
surplus and thus cover the fixed costs.

Condition A2: Under the CS, although the total congestion
surplus in the network is equal to the variable component of
the total investment cost, this equality does not necessarily
hold for each individual network branch when the network is
meshed; in such cases, some branches may generate higher
congestion surplus than their variable investment cost, while
other branches may generate lower congestion surplus [1].
On the other hand, the NE existence condition (15) of the
MS requires that this equality holds on an individual branch
basis, as demonstrated in the case studies of Section V. This
requirement makes sense since the impact of each infinitesimal
investor’s decisions on system conditions is negligible. As a
result, each of these investors assesses its decision for each
branch individually, ignoring the impact of this decision on
the congestion surplus associated with other branches; it will
strive to increase its procured capacity on a branch m if the ob-
tainable congestion surplus from m is higher than the required
investment cost and decrease it if the obtainable congestion
surplus from m is lower than the required investment cost.
Therefore, as demonstrated in the case studies of Section V,
the CS and MS do not coincide when the network is meshed.

V. CASE STUDIES

A. Scope and Implementation
The objective of the examined case studies is to determine,

in a simulative context, under which conditions the CS of

Section II and the MS of Section III yield the same solution.
In order to achieve this, four systems of different sizes and
topologies are examined under different sets of assumptions.
Both planning models have been implemented in MATLAB on
a computer with a 4-core 2.40 GHz Intel(R) Xeon(R) E5620
processor and 12 GB of RAM.

The optimization problems corresponding to the centralized
and merchant planning approaches include the binary decision
variables um, ∀m. For simplicity and accuracy, these variables
are accounted in the resolution process through a complete
enumeration approach. In other words, the optimization prob-
lems have been solved for each different combination of 2
alternative values of um for each of the |M | branches of the
network, i.e. 2|M | alternative solutions are determined and the
(feasible) solution yielding the lowest objective function is
selected. Given this simplification (and the assumption that
generation costs and demand benefits are quadratic func-
tions), the optimization problem (1)-(8) determining the CS
is a quadratic programming problem with linear constraints.
Therefore, it has been solved using the quadprog MATLAB
optimization routine. On the other hand, the optimization prob-
lem determining the MS has been solved using the fmincon
optimization routine, given that constraints (17) are non-linear.
Despite the employment of a complete enumeration approach
for dealing with the binary variables um, ∀m, the proposed
algorithm requires low computational times. For the largest
examined system (24-node system of Section V-E), the CS
and MS have been calculated in 51s and 896s, respectively.

B. 2-Node System

The relevant generation and demand data [1] of the 2-node
system considered in the first case study are illustrated in Fig.
1. It is assumed that the existing capacity of the single branch
is zero and that the operational timescale of the planning
problem includes a single time period. Generation costs are
assumed to be quadratic functions of the respective power pro-
ductions. The demands in the two nodes are assumed inelastic
and equal to constant values, i.e. their benefit functions are
constant and can thus be omitted from the two optimization
problems. Two different cases have been examined, with the
respective CS and MS presented in Table I.

Fig. 1. Topology and parameters of the 2-node system.

Case 1.1): The investment cost includes only a variable
component TV1 = 4£/MWh, while fixed costs are neglected
(TF1 = 0). In this case, the centralized and the merchant
planning model yield the same solution, involving investment
on a line of 800MW (Table I). This result is expected from
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Theorem 2, as conditions A1-A2 and B1-B2 hold and therefore
the CS and MS must coincide.

Case 1.2): The investment cost includes both a variable
component TV1 = 4£/MWh and a fixed component TF1 =
2283£/h. The capacity procured under the CS does not
change with respect to Case 1.1 and, as discussed in Section
IV-B, the congestion surplus does not cover the full investment
cost, due to the existence of fixed costs. On the other hand, the
capacity procured under the MS is now reduced to 690MW, to
ensure that the congestion surplus covers the full investment
cost (Section IV-B). This result suggests that condition A1

(zero fixed investment costs) is a necessary condition for the
CS and MS to coincide.

TABLE I
CENTRALIZED (CS) AND MERCHANT PLANNING (MS) SOLUTIONS IN

2-NODE SYSTEM

Case 1.1 Case 1.2
CS MS CS MS

F1 (MW) 800 800 800 690

Congestion surplus (£/h) 3, 200 3, 200 3, 200 5, 042

Investment cost (£/h) 3, 200 3, 200 5, 483 5, 042

C. 3-Node System

The employed 3-node system along with its relevant gener-
ation and demand data [1] is shown in Fig. 2. It is assumed
that the existing capacity of the three branches is zero, their
investment costs are equal and their reactances after any
capacity addition are equal. The operational timescale of the
planning problem includes two time periods with weighting
factors w1 = 0.25 and w2 = 0.75. Generation costs are
assumed to be quadratic functions of the respective power
productions and demands are assumed inelastic. Four different
cases have been examined, presenting in Table II the respective
CS and MS.

Fig. 2. Topology and parameters of the 3-node system.

Case 2.1: The investment cost includes only a variable
component TVm = 3.42£/MWh, ∀m, while fixed costs are
neglected. In contrast to Case 1.1, the centralized and the
merchant planning model do not yield the same solution
(Table II). As discussed in Section IV-B, while the equality
between congestion surplus and investment cost holds for each

individual network branch under the MS, the same does not
hold under the CS. This result suggests that condition A2

(no network loops) and/or condition B1 (single period in the
operational timescale) is/are necessary condition(s) for the CS
and MS to coincide.

Case 2.2: In order to investigate which of the conditions
A2 and B1 is critical, we consider a case where capacity can
be added only on branches 1 and 2, imposing F3 = 0 in the
two optimization problems. All the other parameters remain
the same as in Case 2.1. In this scenario, the centralized and
the merchant planning model yield the same solution (Table
II). This suggests that A2 is a necessary condition for the CS
and the MS to coincide, since in this scenario the network is
radial and does not include loops. On the other hand, it also
demonstrates that condition B1 is not necessary for the CS
and MS to coincide.

Case 2.3: In order to further explore this interesting result,
we consider a theoretical scenario where capacity can be added
on all three branches but the Kirchhoff’s voltage law (KVL),
expressed through (7), is neglected in both optimization prob-
lems. All the other parameters remain the same as in Case 2.1.
In this theoretical scenario, the centralized and the merchant
planning model again yield the same solution (Table II). This
result suggests that the physical reason behind the necessity
of condition A2 lies in the unavoidable consideration of the
KVL in meshed networks. As already noted for Case 2.2, it
seems that condition B1 is not necessary for the equivalence
between the CS and the MS.

Case 2.4: The KVL is neglected as in Case 2.3 but
the investment cost also includes a fixed component TFm =
2283£/h, ∀m. In contrast to Case 2.3, the CS and the MS
do not coincide. As discussed in Section IV-B, while the total
congestion surplus covers the total investment cost under the
MS, the same does not hold under the CS due to the existence
of fixed costs. Like in Case 1.2, this result suggests that A1

is necessary for the CS and MS to coincide.

D. Garver’s 6-Node System

Garver’s 6-node system, along with its relevant network,
generation and demand data [3], is illustrated in Fig. 3.
The solid lines 1-6 represent existing branches (with positive
existing capacity) that can be expanded while the dashed lines
7-8 represent new branches (with zero existing capacity) that
can be built. The operational timescale of the planning problem
includes a single time period. Generation costs and demand
benefits are assumed to be quadratic functions of the power
productions and consumptions, respectively. In contrast with
the previous case studies, the generation limits (8) are taken
into account, with the considered values of Gmaxn reported in
Fig. 3.

Three different cases have been examined, presenting in
Table III the corresponding CS and MS. Note that the capacity
additions for branches 1, 2, 4 and 5 are zero in all three cases
(under both CS and MS), and are therefore omitted from Table
III.

Case 3.1: The investment cost includes only a variable
component (presented in Fig. 3 for each branch), while fixed
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TABLE II
CENTRALIZED (CS) AND MERCHANT PLANNING (MS) SOLUTIONS IN 3-NODE SYSTEM.

Case 2.1 Case 2.2 Case 2.3 Case 2.4
CS MS CS MS CS MS CS MS

F1 (MW) 1, 963 2, 193 2, 678 2, 678 2, 044 2, 044 2, 044 1, 686

F2 (MW) 2, 887 2, 808 3, 991 3, 991 2, 089 2, 089 2, 089 2, 211

F3 (MW) 1, 387 1, 609 0 0 2, 156 2, 156 2, 156 1, 811

Congestion surplus - Branch 1 (£/h) 6, 690 7, 511 9, 172 9, 172 7, 002 7, 002 7, 002 8, 057

Congestion surplus - Branch 2 (£/h) 8, 337 9, 615 13, 667 13, 667 7, 154 7, 154 7, 154 9, 855

Congestion surplus - Branch 3 (£/h) 6, 333 5, 510 0 0 7, 382 7, 382 7, 382 8, 485

Congestion surplus - Total (£/h) 21, 360 22, 636 22, 839 22, 839 21, 538 21, 538 21, 538 26, 397

Investment cost - Branch 1 (£/h) 6, 723 7, 511 9, 172 9, 172 7, 002 7, 002 9, 285 8, 057

Investment cost - Branch 2 (£/h) 9, 887 9, 615 13, 667 13, 667 7, 154 7, 154 9, 437 9, 855

Investment cost - Branch 3 (£/h) 4, 750 5, 510 0 0 7, 382 7, 382 9, 665 8, 485

Investment cost - Total (£/h) 21, 360 22, 636 22, 839 22, 839 21, 538 21, 538 28, 387 26, 397

Fig. 3. Diagram of the 6-node Garver’s system.

costs are neglected. As in Case 2.1, the centralized and the
merchant planning model do not yield the same solution
(Table III). This suggests that A2 (no network loops) and/or
B2 (zero existing capacity on every branch) is/are necessary
condition(s) for the CS and MS to coincide.

Case 3.2: In order to investigate which of the conditions
A2 and B2 is critical, following the rationale of Case 2.3, we
consider a theoretical scenario where the KVL is neglected. As
in Case 2.3, the centralized and the merchant planning model
yield the same solution (Table III). This result again supports
the idea that condition A2 is necessary for the CS and MS
to coincide. On the other hand, this result demonstrates that
condition B2 is not required to obtain correspondence between
the two planning paradigms.

TABLE III
CENTRALIZED (CS) AND MERCHANT PLANNING (MS) SOLUTIONS IN

GARVER’S SYSTEM.

Case 3.1 Case 3.2 Case 3.3
CS MS CS MS CS MS

F3 (MW) 0 0 17.41 17.41 0 0

F6 (MW) 77.93 75.61 24.77 24.77 0 0

F7 (MW) 319.13 317.44 229.12 229.12 208.48 184.18

F8 (MW) 276.52 275.89 362.16 362.16 366.30 366.80

Cong. surplus (£/h) 1, 903 1, 931 1, 858 1, 858 1, 724 2, 053

Inv. cost (£/h) 1, 943 1, 931 1, 858 1, 858 2, 124 2, 053

Case 3.3: The KVL is neglected as in Case 3.2 but
the investment cost also includes a fixed component TFm =
200£/h, ∀m. In contrast to Case 3.2, the CS and the MS are
different. As in Cases 1.2 and 2.4, this suggests that condition
A1 is necessary for the CS and MS to coincide.

It should be noted that the maximum generation limits at
nodes 1 and 3 are active in all examined cases. However,
the same trends regarding the correspondence between the
centralized and the merchant planning solution are observed,
suggesting that physical generation limits do not impact the
conditions ensuring social efficiency of the MS.

E. IEEE 24-Node System

The IEEE 24-node system [41], along with its relevant
network, generation and demand data, is illustrated in Fig.
4. All lines represent existing branches that can be expanded.
The operational timescale of the planning problem includes a
single time period. Generation costs and demand benefits are
assumed to be quadratic functions of the power productions
and consumptions, respectively. Three different cases have
been examined, analogous to the ones examined in Section
V-D, presenting in Table IV the corresponding CS and MS.
For compactness, branches with zero capacity additions in all
three cases have been omitted from Table IV.

Case 4.1: The investment cost includes only a variable
component (presented in Fig. 4 for each branch), while fixed
costs are neglected. As in Case 3.1, the centralized and the
merchant planning model do not yield the same solution
(Table IV), suggesting that A2 (no network loops) and/or
B2 (zero existing capacity on every branch) is/are necessary
condition(s) for the CS and MS to coincide.
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Fig. 4. Diagram of the IEEE 24-node system.

TABLE IV
CENTRALIZED (CS) AND MERCHANT PLANNING (MS) SOLUTIONS IN

IEEE 24-BUS SYSTEM.

Case 4.1 Case 4.2 Case 4.3
CS MS CS MS CS MS

F1 (MW) 322.02 323.03 241.53 241.53 241.53 246.39

F3 (MW) 185.06 179.81 93.91 93.91 93.91 88.39

F11 (MW) 140.21 144.91 146.45 146.45 146.45 142.36

F23 (MW) 311.42 310.99 117.54 117.54 117.54 82.12

F26 (MW) 209.62 202.36 0 0 0 0

F28 (MW) 234.70 240.27 548.91 548.91 548.91 567.43

F34 (MW) 4.33 0 0 0 0 0

Cong. surplus (£/h) 3, 928 4, 108 2, 521 2, 521 2, 521 2, 682

Inv. cost (£/h) 4, 135 4, 108 2, 521 2, 521 2, 771 2, 682

Case 4.2: In order to investigate which of the conditions
A2 and B2 is critical, following the rationale of Cases 2.3
and 3.2, we consider a theoretical scenario where the KVL is
neglected. As in these cases, the centralized and the merchant
planning model yield the same solution (Table IV). This result
again supports the idea that condition A2 is necessary for the
CS and MS to coincide, while condition B2 is not required to
obtain correspondence between the two planning paradigms.

Case 4.3: The KVL is neglected as in Case 4.2 but
the investment cost also includes a fixed component TFm =
50£/h, ∀m. In contrast to Case 4.2, the CS and the MS are
different. As in Case 3.3, this suggests that condition A1 is
necessary for the CS and MS to coincide.

VI. CONCLUSIONS AND FUTURE WORK

The investigation of the merchant transmission planning
paradigm requires a non-cooperative game-theoretic frame-
work that is able to capture the strategic behavior and in-

teractions of multiple merchant investors. However, previous
relevant modeling approaches cannot deal with a large number
of merchant companies, due to the difficulties in determining
NE solutions emerging from their interaction. As a result,
they cannot accurately determine whether merchant planning
can yield the same solution as centralized planning under
the participation of a large number of merchant companies.
In order to address this challenge, this paper has proposed
a novel non-cooperative game-theoretic approach, in which
the number of merchant companies is assumed sufficiently
large so that they can be approximated as a continuum.
This approximation allows the derivation of mathematical
conditions for the existence of a NE solution.

By analytically and numerically comparing this solution
against the one obtained through traditional centralized plan-
ning, the paper demonstrates that the merchant planning
paradigm can maximize social welfare only when the fol-
lowing conditions are satisfied: a) fixed investment costs are
neglected and b) the network is radial and does not include
any loops. When these two conditions do not hold, the results
of the case studies show that the centralized and the merchant
planning solutions do not coincide, although their differences
in certain cases (especially in the 6-node and the 24-node
system) are relatively small. As the above conditions do not
generally hold in reality, our findings suggest that even a fully
competitive merchant transmission planning framework, in-
volving the participation of a very large number of competing
merchant companies, is not generally capable of maximizing
social welfare, as implied by the previous work [3].

It should be noted that the merchant investors examined in
this paper are assumed not to be involved in the electricity
generation of supply business. However, the presented mod-
eling framework can be extended in a straightforward fashion
to cases where generation or demand players are allowed to
carry out merchant network investments. Analysis of such
cases carried out by the authors demonstrated that the above
conclusions regarding the conditions for social optimality of
merchant transmission planning are not altered.

In order to simplify the presented analysis, the developed
model - as well as the models in the relevant literature -
does not consider a) the “lumpiness” of actual transmission
investment practices which often include a certain discrete set
of standardized capacity options and b) the complex opera-
tional constraints of the generation side (e.g. ramp rates and
minimum up and down times) and of the demand side (e.g. en-
ergy conservation constraints of flexible demand technologies).
Future work aims at incorporating an accurate representation
of these elements in the centralized and merchant planning
models and exploring their impact on the equivalence between
the two solutions. Furthermore, the developed model - as well
as the models in the relevant literature - assumes a fixed
generation mix and does not consider generation expansion
decisions. In reality however, transmission and generation
expansion decisions are interdependent. In this context, fu-
ture work aims at developing an integrated transmission and
generation planning framework and comparing the impacts of
centralized and merchant transmission planning on generation
expansion decisions.
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Finally, on the policy front, our results suggest that some
sort of regulatory interventions will be required to align
the outcome of merchant planning with the socially optimal
solution. However, these interventions need to remain at a
minimum level, in line with the deregulation vision. The
design of such regulatory measures constitutes a significant
challenge for future research.
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