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delayed supercritical systems is presented. The method is based on Monte Carlo uncertainty quantifica-
tion and makes use of the computationally efficient gamma distribution method for prediction of the
wait-time probability distribution. The range of accuracy of the gamma distribution method is examined
and parameterised based on the rate and magnitude of the reactivity insertion, the strength of the intrin-
sic neutron source and the prompt neutron lifetime. The saddlepoint method for inverting the generating
function and a Monte Carlo simulation are used as benchmarks against which the accuracy of the gamma
distribution method is determined. Finally, uncertainty quantification is applied to models of the Y-12
accident and experiments of Authier et al. (2014) on the Caliban reactor.
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1. Introduction

In a fissile system, the fluctuations in neutron population over
time are driven by the branching of neutrons chains, an inherently
random process. When the neutron population is large, the Law of
Large Numbers determines that the outcome of the many branch-
ing processes taking place in the system, will tend towards the
average (or ‘‘expected”) behaviour; the likelihood of significant
deviations from the expected behaviour is small and can often be
neglected. It is well known, however, that the behaviour of a fissile
system when the neutron population is small, such as a reactor
start-up in the presence of a weak neutron source, cannot be accu-
rately modelled without considering the stochastic nature of the
growth in these neutron chains. In these cases, significant devia-
tions from the average behaviour are to be expected.

1.1. Relative strength of an intrinsic neutron source

A useful qualitative indication of the relative strength of a given
neutron source was derived by Hansen (1960) who noted that a
source should be considered weak if,

2Ss
�mC2

� 1; ð1Þ
where S is the neutron source strength in n/s, s is the prompt neu-
tron lifetime, �m is the average number of neutrons released per fis-
sion, and C2 ¼ mðm� 1Þ=�m2. This expression is approximately
equivalent to the more simple inequality,

Ss� 1: ð2Þ
1.2. The wait-time

The implications of a low neutron population are well docu-
mented and have been demonstrated experimentally, by Hansen
(1960) and Authier et al. (2014), amongst others. In both examples,
a fast burst reactor, GODIVA (Hansen) or Caliban (Authier et al.),
was brought multiple times from a subcritical state to a delayed
supercritical state, and the time taken to reach a pre-defined fis-
sion rate threshold was measured. The time taken to reach the
threshold is known as the wait-time and it was shown to vary sig-
nificantly between each realisation of the experiment, despite
identical experimental conditions.

In a delayed supercritical system, the neutron population at any
given moment consists of prompt neutrons emitted from fission
and delayed neutrons emitted from those fission fragments which
are delayed neutron precursors. In a delayed supercritical system,
the population of delayed neutron precursors increases over time.
This leads to an increase in the number of prompt neutron chains
initiated and a corresponding increase in the fission rate and the
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prompt neutron population. The wait-time is the time taken for
this build up in the neutron population to occur. It varies because
the growth rate in the neutron population depends on the different
events which can happen to each neutron emitted in the system
(absorption, scattering, leakage, etc.) and these events are inher-
ently random. The sequence of events can never be identical for
two realisations of the same experiment and this can be observed
on the macroscopic scale as variation in the wait-time.

The wait-time is an important concept that can have significant
implications for the severity of accidental power excursions and for
the safe start-up of nuclear reactors. During reactor startup, for
example, control rods may be withdrawn to increase the reactivity
of the system. Assuming the reactor behaves in a deterministic
manner, the reactor power will begin to increase as soon as the
system reactivity increases, and once the system is critical, an
exponential increase in power should be observed. This will cause
a rise in temperature, leading to negative reactivity feedback
through material expansion and Doppler broadening, limiting the
overall reactivity of the system and preventing an excessive
increase in power. However, if the neutron source is too weak, or
the withdrawal of the control rods too fast, there is likely to be a
delay between reaching positive reactivity and any significant rise
in reactor power. Meanwhile the reactivity of the system continues
to rise in the absence of any negative temperature feedback. When
the power output does finally begin to rise, the system reactivity
may already be large enough to produce a dangerous power excur-
sion. One potential objective in seeking to characterise the wait-
time is to know at what rate the control rod can be withdrawn
so the probability of a dangerous power excursion remains below
a specified safety probability, e.g. 10�8.

1.3. Methods for predicting the wait-time probability distribution

Methods for determining the wait-time probability distribution
include Hansen’s method (Hansen, 1960), the Fourier series
method (see Abate and Whitt, 1992) and the saddlepoint method
of Hurwitz et al. (1963). Hansen’s method is approximative and
based on neutron survival probabilities. Hansen’s method consid-
ers that the wait-time consists of two parts: the time taken before
a persistent neutron chain is initiated and the time for the neutron
population due to the first persistent chain to build up to the wait-
time threshold. Persistent chains sponsored after the first are not
considered to influence the wait-time significantly, because
prompt neutron chains grow very rapidly; and unless the delay
between the initiation of the first and second persistent chains
were on the order of the generation time, the neutron population
due to the second chain would be insignificant compared to that
due to the first. Hansen notes that the initiation of a second persis-
tent chain on this timescale is unlikely in a weak source scenario.

The Fourier series and saddlepoint methods rely on inversion of
probability generating functions to obtain the probability distribu-
tion of the neutron population. This approach is more rigorous but
also far more computationally expensive. These methods do not
rely on the concept of the first persistent chain and are therefore
able to account for the possibility of overlapping chains (initiated
by different source neutrons) contributing to the neutron popula-
tion at the moment the wait-time threshold is exceeded. This is
important in delayed supercritical systems, where persistent fission
chains consist of finite prompt chains linked by delayed neutron
precursors. Since the delayed neutron precursors decay on a long
timescale, compared to the generation time, overlapping fission
chains become a significant possibility. The generating function
methods can be applied to point models or space-dependent mod-
els. They can also be used with single or multiple energy groups.

A less expensive alternative to the generating function
approach is to approximate the wait-time probability distribution
using the gamma distribution method. This method was first pro-
posed by Harris (1964) and relies on the fact that the neutron pop-
ulation in a multiplying system will tend towards a gamma
distribution. There are cases when the neutron population does
not conform to the gamma distribution so this method does not
work for all scenarios, however it can be highly accurate and fast
when applied to certain problems. This method has been applied
by Williams (2016) to the Caliban experiments, with close agree-
ment between the predicted wait-time probabilities and the exper-
imental results of Authier et al. (2014) – see Section 1.5.

1.4. Types of uncertainty

For the purposes of the discussion that follows, it will be useful
to distinguish between aleatoric uncertainty and parametric
uncertainty. Aleatoric uncertainty will hereafter refer to uncer-
tainty resulting from the random, stochastic nature of the build-
up of neutron chains in fissile systems and parametric uncertainty
will refer to that resulting from epistemic uncertainty in the input
parameters. When calculating the wait-time probability distribu-
tion using any method, there will inevitably be some epistemic
uncertainty in the input parameters, particularly when simulating
accidental excursions where the exact chain of events may be
unknown. The uncertainty in input parameters adds to the uncer-
tainty already present due to aleatoric uncertainty.

The objective of this paper is to demonstrate a method for
quantifying the impact of epistemic uncertainty in the input
parameters. Uncertainty quantification (UQ) will be carried out
using the Monte Carlo approach, which requires a fast method
for determining the wait-time probability distribution, so that
many calculations can be performed for a range of randomised sets
of input parameters. The gamma distribution method will be used
for this purpose, with verification of the predicted probability dis-
tribution using the saddlepoint method.

The ability to quantify the impact of epistemic uncertainty in
the input parameters on the resulting wait-time probability distri-
bution has important implications for criticality safety and safe
reactor start-up.

1.5. Purpose of the current work

The method of uncertainty quantification presented in this
paper makes use of the gamma distribution using the method pre-
sented in Williams (2016). In his paper, Williams shows that the
wait-time probability distributions observed during the experi-
ments of Authier et al. (2014) on the Caliban reactor, can be accu-
rately predicted using the gamma distribution method. Starting
from the forward form of the generating function equation, Wil-
liams derives equations for the mean neutron population, precur-
sor group populations, detector counts and their corresponding
covariances. These same equations will be used in this paper as
the basis for the gamma distribution method.

The purpose of the current work is to incorporate the gamma
distribution method demonstrated by Williams into a Monte Carlo
algorithm, for the purpose of uncertainty quantification. The
gamma distribution method for determining the wait-time proba-
bility distribution is particularly amenable to Monte Carlo uncer-
tainty quantification due to its excellent computational efficiency
compared to alternative, more rigorous methods.

The gamma distribution method has been shown to produce
accurate results for certain scenarios, however it will be shown
in Section 2.3 of this paper that the neutron population does not
always conform to a gamma distribution. The present work will
examine the parameters influencing the accuracy of the gamma
distribution method in order to establish the range of transients
to which this method of uncertainty quantification can be applied.
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2. Methodology

2.1. Gamma distribution method

The neutron population, n, is modelled by the following proba-
bility density function (the Gamma Distribution) in which n is
approximated as a continuous random variable, with the time, t,
as a parameter.

Pðn; tÞ ¼ gðtÞ
�nðtÞCðgðtÞÞ

gðtÞn
�nðtÞ

� �gðtÞ�1

exp �gðtÞn
�nðtÞ

� �
; ð3Þ

The function CðzÞ is the complete gamma function, defined as
follows

CðzÞ ¼
Z 1

0
xz�1e�xdx: ð4Þ

Two incomplete gamma functions also exist: the lower and upper
incomplete gamma functions, where the upper or lower limit of
integration, respectively, is replaced with a finite limit. The lower
incomplete gamma function, for example, is defined as follows

cðz; yÞ ¼
Z y

0
xz�1e�xdx: ð5Þ

The time-dependent parameter gðtÞ is the ratio of the squares of the
mean and standard deviation,

gðtÞ ¼ �nðtÞ2
rnðtÞ2

: ð6Þ

The methodology used in this paper for calculating the wait-time
probability distribution from the gamma distribution is based on
that described in Williams (2016) with some minor modifications.
The probability distribution, PwðtÞ, of the wait-time may be deter-
mined by differentiating the cumulative probability density func-
tion Qðn�; tÞ, where n� is the instantaneous neutron population
corresponding to the wait-time threshold fission rate, with respect
to time.

PwðtÞ ¼ �dQðn�; tÞ
dt

ð7Þ

The values of Qðn�; tÞ are obtained directly from the ratio of incom-
plete and complete gamma functions, as follows,

Qðn�; tÞ ¼ cðgðtÞ;gðtÞn�=�nðtÞÞ
CðgðtÞÞ ; ð8Þ

where cðx; yÞ and CðxÞ are the lower incomplete and complete
gamma functions discussed above.

The wait-time may also be calculated with respect to the cumu-
lative detector count (Z�), as in Williams (2016). In this case, the
wait-time probability is obtained by differentiating the cumulative
probability density function, QðZ�; tÞ, for the detector count, Z�, cor-
responding to the wait-time threshold fission rate.

PwðtÞ ¼ �dQðZ�; tÞ
dt

; ð9Þ

QðZ�; tÞ ¼ cðgzðtÞ;gzðtÞZ�=ZðtÞÞ
CðgzðtÞÞ

: ð10Þ

The parameter gðtÞ is replaced by gzðtÞ,

gzðtÞ ¼
ZðtÞ2
rzðtÞ2

: ð11Þ

The value of n� or Z� is determined from the pre-defined wait-time
fission rate threshold by calculating the expected fission rate, FðtÞ,
using the following equation from Williams (2016),
FðtÞ ¼ kðtÞ
�ms

NðtÞ; ð12Þ

where kðtÞ is the time-dependent neutron multiplication factor, �m is
the mean number of neutrons released per fission, s is the prompt
neutron lifetime and NðtÞ is the time-dependent neutron density.
The value taken for n� is the value of NðtÞ at the moment FðtÞ crosses
the wait-time threshold. Likewise, if the wait-time is calculated
based on cumulative detector count, then the value of Z� is the value
of ZðtÞ when FðtÞ crosses the fission rate threshold. The mean neu-
tron population, cumulative detector count and their standard devi-
ations were calculated by solving the system of ordinary differential
equations found in Williams (2016) using the ODE solver of
Shampine and Gordon (1975).

The model is zero-dimensional, one-speed and without thermal
feedback. It is derived by differentiating the one-speed, point
model forward equation (Bell, 1963), for the probability generating
function.

2.2. Saddlepoint method

2.2.1. Method overview
The wait-time probability distributions calculated by the

gamma distribution method were compared against calculations
using the saddlepoint method to confirm their accuracy. A detailed
description of the saddlepointmethod can be found inWilliams and
Eaton (2017) and only a brief summary will be presented here. The
cumulative probability density function Qðn�; tjsÞ is obtained from
Eq. (13). It represents the probability that the neutron population
has exceeded n� by time t if a source was present since time s. It
is equivalent to the Qðn�; tÞ of Eq. (8) if s is equal to the start time.

Qðn�; tjsÞ � 1
2pr0

GSðz0; tjsÞ
zn�0 ð1� z0Þ ð13Þ

where GSðz0; tjsÞ is the backward form of generating function for the
probability distribution of the neutron population at time t, given a
source present since time s, and r0 is given by,

r0 ¼ n�

z20
þ 1

ð1� z0Þ2
� G0

Sðz0; tjsÞ
GSðz0; tjsÞ

� �2

þ G00
Sðz0; tjsÞ

GSðz0; tjsÞ ð14Þ

where G0
S and G00

S are the first and second derivatives of the generat-
ing function GS with respect to z. Finally, z0 is the value of z which
satisfies the equation,

n�

z0
¼ 1

1� z0
þ G0

Sðz0; tjsÞ
GSðz0; tjsÞ ; ð15Þ

where n� is the neutron population corresponding to the wait-time
fission rate threshold. The backward generating functions for a
point model were obtained from Williams and Eaton (2017) and
solved using the ODE solver of Shampine and Gordon (1975).

The saddlepoint method is actually an approximation, albeit a
very accurate one, because it relies on the method of steepest des-
cents to approximate a line integral before arriving at the expres-
sion in Eq. (13). The error in the method does, however, become
significant for values of Qðn�; tjsÞ close to unity, and Hurwitz notes
that for values of n� � �n;Qðn�; tjsÞ tends to effiffiffiffi

2p
p ¼ 1:08444 . . .. This

results in a wait-time probability distribution whose integral is
� 1:08 and it is therefore necessary to renormalise the distribution
to have an integral of 1:0.

Notwithstanding these limitations, which result in a small,
quantifiable error in the saddlepoint method’s predictions, the
accuracy of the saddlepoint method has been evaluated by
Williams and Eaton (2017) who compared it to the exact Fourier
series method, details of which can be found in Abate and Whitt
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(1992). Willams and Eaton found that the values of Qðn�; tjsÞ calcu-
lated using the saddlepoint method were within 0.5% of the exact
values calculated using the Fourier series method, in all the cases
they tested. It is therefore assumed throughout this paper that
the results of the saddlepoint method are close to the true wait-
time probability distribution, and any significant discrepancies
between the probability distributions predicted by the two meth-
ods are attributable to error in the gamma distribution method.

The reason that the saddlepoint method is valid in all cases,
whereas the gamma distribution is not, is that the saddlepoint
method inverts the generating function to obtain the neutron pop-
ulation probability distribution directly from known quantities
(such as neutron cross-sections). The gamma distribution method,
on the other hand, assumes a probability distribution for the neu-
tron population based on its mean and standard deviation. While
this method is accurate in many cases, it is known that the proba-
bility distribution for the neutron population can deviate signifi-
cantly from the assumed distribution.

As an additional check to confirm the accuracy of the saddle-
point method, one set of data, for a situation where the gamma dis-
tribution method fails to give accurate results, was also compared
against a Monte Carlo simulation. Details of this comparison can be
found in Section 2.3.1.

2.2.2. Finding the value of z0
The value of z0 required by Eq. (14) is determined by finding the

roots of the Eq. (15). Because the generating functions GS and G0
S are

functions of z0 whose values can only be determined by solving a
system of ODEs, the roots cannot be found analytically and an iter-
ative solution is necessary. Determining the value of z0 for all time
steps can therefore be an expensive task. Hurwitz et al. (1963) pro-
vided the following approximation for z0 which can be used as a
starting guess for iterations,

z0 � n�

1þ n� : ð16Þ

The method of bisection is a reliable technique for finding the
roots of Eq. (15), and thereby determining z0. Nonetheless, this
method requires a relatively large number of iterations to achieve
the required accuracy in z0, leading to long computing times, par-
ticularly when modelling fast systems where the system of ODEs
for the generating functions tends to be particularly stiff. A more
efficient solution is proposed by Williams and Eaton (2017) who
suggest that the roots of the equation could be found using
Newton-Raphson iterations. This was found to reduce the number
of required iterations dramatically; a typical simulation requiring
approximately 20–30 iterations with bisection was found to need
only 4–8 iterations using Newton-Raphson.

The Newton-Raphson method allows the roots of an equation
f ðxÞ ¼ 0 to be determined through a series of iterations. In each
iteration, an estimate for the value of the root xn is calculated based
on the value of the previous estimate xn�1. In most cases, the esti-
mate converges rapidly on the true value of the root. Each new
estimate of the root xn is determined from the following relation,

xn ¼ xn�1 � f ðxn�1Þ
f 0ðxn�1Þ

; ð17Þ

where f 0ðxÞ is the first derivative of f ðxÞ with respect to x.
In order to implement the Newton-Raphson method to find z0 it

is necessary to express it in the form f ðz0Þ ¼ 0 and this can be done
in many ways. The form given in Eq. (18) was chosen, from which
the derivative in Eq. (19) immediately follows.

f ðz0Þ ¼ z0
1� z0

þ G0
S

GS
z0 � n�; ð18Þ
f 0ðz0Þ ¼ 1
1� 2z0 þ z20

þ ðG00
Sz0 þ G0

SÞGS � ðG0
SÞ

2
z0

ðGSÞ2
: ð19Þ

The second derivative of the generating function G00
S is already

required in Eq. (14) to determine r0 so no extension is required
to the system of ODEs.
2.3. Range of applicability of the gamma distribution method

The gamma distribution method works well for simulating fis-
sile systems in which the neutron population conforms to a gamma
distribution. If this is not the case, however, then the predicted
wait-time probability distribution will not be correct. It is therefore
necessary to determine the range of applicability of the gamma
distribution method if it is to be used with confidence. This was
achieved by verifying the results of the gamma distribution
method against the saddlepoint method for a range of different
scenarios, varying the magnitude and rate of the reactivity inser-
tion, as well as the prompt neutron lifetime and the neutron source
strength. All calculations in this section include 6 groups of delayed
neutrons.

Fig. 1 shows mean wait-times and standard deviations pre-
dicted by the gamma and saddlepoint methods for a 0.7$ step
insertion over a range of different intrinsic neutron source
strengths. The means and standard deviations predicted by the
two methods converge as the neutron source strength is increased,
showing that the accuracy of the gamma distribution method
improves with increasing neutron source strength. The relative off-
set in the mean predicted wait-time converges to a value around
1.2%, indicating that the mean value predicted by the gamma dis-
tribution method is 1.2% larger than that predicted by the saddle-
point method. This is likely due to the previously mentioned
weakness in the saddlepoint method, where the cumulative prob-
ability distribution for �n � n� tends to a value greater than unity.
This skews the distribution towards lower values of n and leads
to a slight underestimate of the overall mean of the wait-time
probability distribution.

Fig. 2 shows the wait-time probability distributions calculated
using both the saddlepoint and gamma distribution methods for
a range of reactivity step insertions in the presence of a neutron
source emitting 30 n/s. The agreement between the two methods
is very close for the 0.1$ reactivity step insertion, however the
gamma distribution method becomes progressively less accurate
as the magnitude of the reactivity insertion increases. For the lar-
ger reactivity insertions, the gamma distribution method overesti-
mates the likelihood of longer wait-times, resulting in higher
means and standard deviations than those predicted by the saddle-
point method (see Table 1).

The accuracy of the gamma distribution method improves
when the neutron source strength is increased to 90 n/s (see
Fig. 3). Significant inaccuracies are still observed, however, in the
wait-times predicted for larger reactivity insertions.

Fig. 4 shows the minimum source strengths required for the
gamma distribution method to achieve acceptable accuracy over
a range of reactivity step and ramp insertions. The system mod-
elled in this figure has a prompt neutron lifetime of 45 ls. Accept-
able accuracy was defined as a mean wait-time predicted by the
gamma distribution method that was within 2% of the mean
wait-time predicted by the saddlepoint method. No criterion was
imposed on the standard deviation because it was found that the
standard deviations converged with the predicted means (see
Fig. 1).

Fig. 4 shows that the minimum required source strength for the
gamma distribution method to be close to the saddlepoint method
increases with the magnitude of the reactivity insertion for step
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Fig. 1. Comparison of mean wait-times and standard deviations predicted by the gamma and saddlepoint methods for a 0.7$ reactivity step insertion over a range of intrinsic
neutron source strengths.

Fig. 2. Wait-time probability distributions predicted by the saddlepoint (dashed)
and gamma distribution (solid) methods for reactivity step insertions of 0.1$, 0.2$,
0.3$ and 0.5$, with a neutron source strength of 30 n/s.

Table 1
Mean wait-times and standard deviations predicted by the gamma distribution and
saddlepoint methods for a neutron source strength of 30 n/s.

Reactivity Insertion [$] Mean (& St. Dev.) [s]

Gamma Saddlepoint

0.1 1138 (117) 1122 (108)
0.2 456 (66) 445 (53)
0.3 242 (52) 230 (34)
0.5 101 (44) 82 (19)

Fig. 3. Wait-time probability distributions predicted by the saddlepoint (dashed)
and gamma distribution (solid) methods for reactivity step insertions of 0.1$ and
0.5$, with a neutron source strength of 90 n/s.

Fig. 4. Minimum source strengths required for the gamma distribution method to
predict a mean wait-time within 2% of the value predicted by the saddlepoint
method. Results shown for varying reactivity insertion rates and a constant prompt
neutron lifetime of 45 ls. The reactivity insertion rate is the total insertion size
divided by the insertion time stated.
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insertions and 1 s ramp insertions. The required minimum source
strength also increases for a 10 s ramp insertion but the effect is
smaller. For a 30 s ramp insertion, there is no correlation between
the magnitude of the reactivity insertion and the minimum source
strength required for accurate wait-time prediction by the gamma
distribution method.

The minimum required source strength was also found to be a
function of the prompt neutron lifetime. Fig. 5 shows how the
required minimum source strength varied with the magnitude of
the reactivity insertion and the prompt neutron lifetime. The
source strength corresponding to 2% accuracy initially increased
with decreasing prompt neutron lifetime, however for prompt
neutron lifetimes shorter than �10 ls, no significant further
increase in the minimum required source strength was observed.

Fig. 5 includes markers to show the source strength and reactiv-
ity insertion size corresponding to two sets of burst wait-time
experiments: the Caliban experiments of Authier et al. (2014)
and the GODIVA experiment of Hansen (1960). From the figure it
would be expected that the gamma distribution method would
prove accurate for the Caliban experiments but not for Hansen’s
experiment on GODIVA. Indeed this is the case: it has already been
shown by Williams (2016) that the Caliban experiments can be
modelled accurately using the gamma distribution method.
Hansen’s experiment, on the other hand, requires a more rigorous



Fig. 5. Minimum source strengths required for the gamma distribution method to
predict a mean wait-time within 2% of the value predicted by the saddlepoint
method. Results shown for a reactivity step insertion with a range of prompt
neutron lifetimes.
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method due to the combination of a relatively large and rapid reac-
tivity insertion and a weak neutron source.
2.3.1. Verification with Monte Carlo simulation
A 0:7$ step insertion case was simulated using a Monte Carlo

code, the results of which are shown in Fig. 6 and summarised in
Table 2. The Monte Carlo simulation was performed using the code
described in Cooling et al. (2016). The code performs a large num-
ber of realisations (5000 in this case), each with the same input
parameters, and within each realisation, randomly determines
the fate of each neutron produced at each time step according to
the physical probabilities of different events.

The results match well with those of the saddlepoint method
but not the gamma distribution method, which supports the
hypothesis that the saddlepoint method works well even for sce-
narios where the gamma distribution method is not valid. The
probability distribution generated by the Monte Carlo code has a
Fig. 6. Wait-time probability distributions predicted by the gamma distribution
method, saddlepoint method and a Monte Carlo simulation (5000 realisations), for a
reactivity step insertion of 0.7$ and neutron source strength of 90 n/s.

Table 2
Mean wait-times and standard deviations predicted by the gamma distribution,
saddlepoint and Monte Carlo methods for a neutron source strength of 90 n/s.

Reactivity Insertion [$] Mean ( & St. Dev.) [s]

Gamma Saddlepoint Monte Carlo

0.1 998 (72) 991 (55) –
0.5 70.7 (15) 66.7 (8.9) –
0.7 33.4 (16.7) 25.0 (5.8) 25.2 (5.8)
jagged appearance, whereas the distributions generated by the
gamma distribution method and saddlepoint methods are smooth.
This is because the Monte Carlo code works by calculating the
wait-times for a large number of system histories. In order to con-
struct a continuous probability distribution, it is necessary to
group similar wait-times together into ‘bins’. The probability corre-
sponding to each wait-time bin is then inferred from the propor-
tion of system histories whose wait-time falls within each bin.

It was also attempted to use the code of Cooling et al. to simu-
late the 0.1$ and 0.5$ step insertion cases, however it was found
that the value of Nthresh (see Cooling et al., 2016 for details) required
to converge the resultant probability distribution was too large to
allow the calculations to be run in a reasonable time. Essentially,
the low reactivity in these cases allowed a large number of delayed
neutron precursors to build up before the power increased to a
level where its behaviour could be considered deterministic. Sim-
ulating the decay of such a large number of delayed neutron pre-
cursors proved too expensive in terms of computing time.

2.4. Uncertainty quantification

2.4.1. Types of uncertainty
Monte Carlo uncertainty quantification was carried out in two

case studies to examine the impact of parametric uncertainty on
the predicted wait-times. Four different wait-time probability dis-
tributions are presented:

� Deterministic This probability distribution is a delta function,
representing the expected wait-time when all uncertainty (both
aleatoric and parametric) is neglected. The deterministic wait-
time is the time at which the mean (or expected) fission rate
crosses the fission rate threshold.

� Aleatoric This is the distribution of wait-time probabilities
resulting from the stochastic nature of the processes leading
to the growth and branching of neutron chains. No uncertainty
in input parameters is taken into account.

� Parametric This is the distribution of deterministic wait-time
probabilities when uncertainty is applied to one or more of
the input parameters. No aleatoric uncertainty is taken into
account.

� Aleatoric-Parametric This is the wait-time probability distri-
bution when aleatoric and parametric uncertainty are both
taken into account. It is expected that the distribution incorpo-
rating the combined aleatoric and parametric uncertainties will
be broader and less peaked than either the aleatoric or paramet-
ric distributions.

2.4.2. The Monte Carlo code
The Monte Carlo uncertainty quantification was implemented

using the Message Passing Interface (MPI) to run multiple
instances of the gamma wait-time code in parallel. In each
instance, the Monte Carlo code randomised the variable to be made
uncertain, before passing this to the gamma wait-time code, which
returned either the deterministic wait-time or the calculated wait-
time probability density function.

The parametric only probability distribution was then con-
structed by establishing wait-time bins of equal width across the
range of expected wait-times. The MPI code was used to calculate
100,000 values of the deterministic wait-time by running 100,000
realisations of the wait-time code. These values were then sorted
into the wait-time bins, and the probability distribution inferred
from the proportion of values returned in each bin.

For the aleatoric-parametric probability distribution, the MPI
code was used to calculate 10,000 aleatoric wait-time probability
density functions by running 10,000 realisations of the gamma
wait-time code. The combined probability density function was
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determined by calculating the sum of all 10,000 distributions and
renormlasing, so that for a given time t,

PwðtÞ ¼ 1
Nrn

XNrn

i¼1

Pw;iðtÞ; ð20Þ

where PwðtÞ is the probability of exceeding the wait-time threshold
at time t;Nrn is the number of Monte Carlo realisations and Pw;iðtÞ is
the probability of exceeding the wait-time threshold at time t
according to distribution i. Note that PwðtÞ is the wait-time proba-
bility across all realisations representing the full range of input
parameters, whereas Pw;iðtÞ is the wait-time probability for a single
realisation with a single set of input parameters.

A larger number of realisations is required to obtain the
parametric-only distribution than the parametric-aleatoric distri-
bution. This is due to the need to sort the calculated deterministic
wait-times into bins so that the continuous probability distribu-
tion can be approximated. The total number of realisations must
be sufficiently large that the number of wait-time values in each
bin is large compared to the standard deviation. The total number
of realisations required depends on the number of bins used. On
the other hand, each realisation of the parametric-aleatoric simu-
lation produces a continuous probability distribution, therefore
no binning is required and the number of realisations can be
smaller.

Execution times depended strongly on the scenario simulated.
The simulations presented in the next Section take approximately
60 min each, running on a 20-core desktop computer. This
corresponds to 0.4 s per realisation for the aleatoric-parametric
calculation and 0.04 s for the parametric only calculation. Indi-
vidual realisations of the parametric only calculation are faster
than the aleatoric-parametric calculation because only a single
wait-time value is returned, whereas in the aleatoric-parametric
calculation, gamma functions must be evaluated in order to con-
struct the wait-time probability distribution for each realisation.
Since the Monte Carlo method is easily parallelised, execution
time decreases in inverse proportion to the number of cores
available.

The prompt neutron lifetime has a particularly significant
impact on the required computation time, as shorter prompt neu-
tron lifetimes increase the stiffness of the ODEs that must be com-
puted in order to calculate the gamma distributions. Williams
(2016) observed that the wait-time probability distribution is
sometimes insensitive to the prompt neutron lifetime; in cases
where the relative standard deviation in the neutron population
(or detector count) reaches a constant value before the probability
of reaching the threshold value has risen above a negligible value.
In these cases, the execution time can be reduced by selecting a
longer prompt neutron lifetime, thereby reducing the stiffness of
the system of ODEs. This technique was used to accelerate the exe-
cution of the simulations presented in Section 4.2.

2.4.3. Mean and standard deviation of the distributions
The means and standard deviations were calculated for each of

the wait-time probability density functions obtained from the
Monte Carlo uncertainty quantification. The method used to calcu-
late these values depended on the type of distribution.

For the aleatoric and aleatoric-parametric distributions, which
are continuous distributions, the mean wait-times and standard
deviations were calculated by numerically integrating the follow-
ing expressions using Simpson’s rule,

l ¼
Z

t0Pðt0Þdt0; ð21Þ

r2 ¼
Z

t02Pðt0Þdt0 � l2; ð22Þ
where l is the mean wait-time, r is the standard deviation in the
wait-time and PðtÞ is the probability of exceeding the wait-time
threshold at time t.

For the parametric only distributions, which are discreet, the
mean wait-times and standard deviations were calculated from
the following expressions,

l ¼ 1
Nrn

XNrn

i¼1

ti; ð23Þ

r2 ¼ 1
Nrn

XNrn

i¼1

ðti � lÞ2; ð24Þ

where Nrn is the number of Monte Carlo realisations and ti is the
wait-time calculated in the ith realisation.

3. Case study I: The Y-12 accident

The gamma distribution method was applied to predict the tim-
ing of the first power excursion in the criticality accident that
occurred in 1958 at the Y-12 National Security Complex in Oak
Ridge, Tennessee. As with most criticality accidents, there is some
uncertainty around the exact conditions (flow rates, concentra-
tions, etc.) prior to the accident. The impact of uncertainty in the
flow rate of the uranium-rich solution will be examined by means
of Monte Carlo uncertainty quantification.

3.1. Description of the accident

A 208 litre drum was being used for the collection of water
drained from pipework during a leak test. According to Patton
et al. (1958), the water used for leak testing was to be transferred
to the drum via a system of pipes, however a leaking valve meant
that these pipes had become filled with a solution of 90% highly
enriched uranium (HEU) in the form of uranyl nitrate. The solution
of HEU in the pipework was deposited in the drum and was fol-
lowed by water from the leak testing. Initially, the HEU deposited
in the drum remained subcritical, however as water from the leak
test flowed into the drum, the degree of moderation was increased,
causing the solution to become critical. Water from the leak test
continued to flow, making the solution more dilute, and eventually
the system became subcritical once again. The total yield was esti-
mated at 1:3	 1018 fissions – a particularly large yield relative to
other criticality accidents.

According to McLaughlin et al. (2000), it is possible that the
drum had already reached a prompt critical configuration by the
time of the first power peak. This feature makes an analysis using
the method presented in this paper very relevant.

3.2. Model parameters

The aim of the model is to obtain the probability distribution of
the wait-time between the system reaching criticality and the fis-
sion rate exceeding some pre-defined threshold. It is estimated in
Zamacinski et al. (2014) that the maximum fission rate during
the first power peak was between 1016 and 1017 fissions per sec-
ond. Preliminary calculations indicate that this fission rate is likely
to have occured after prompt criticality was reached. The gamma
distribution method has not been validated in the prompt critical
region so the threshold value will be set several orders of magni-
tude lower than the peak power level so that the delayed supercrit-
ical phase of the excursion may be examined.

The equations for the mean and covariances, derived in
Williams (2016) from the forward form of the probability generat-
ing function, will be used to determine the time-dependent mean



Fig. 7. Reactivity as a function of time, showing maximum and minimum values
corresponding to alpha = 0.9 and alpha = 1.1.
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and standard deviation of the neutron population which charac-
terise the gamma function. These equations do not include
thermal-hydraulic feedback so they are only valid for the period
before the fission power output rises to a level at which feedback
becomes significant. This is another reason to set the wait-time fis-
sion rate threshold at a relatively low level so that the power out-
put is low enough that thermal-hydraulic feedback may be
neglected.

Delayed neutron precursors are represented in 6 groups using
the same parameters as those used by Zamacinski et al. (2014)
for their point kinetic model of Y-12. The reactivity profile as a
function of time is also taken from Zamacinski et al. (2014), as is
the mass and concentration of 235U in the fuel solution. Zamacinski
et al. determined that the prompt neutron lifetime varied approx-
imately linearly from 4:1	 10�5 s at the start of the transient, to
5:5	 10�5 s at the end. Eq. (54) from Zamacinski et al. (2014)
was used to model the prompt neutron lifetime in this analysis.

The probability distribution for the number of neutrons
released per fission was taken from Table 1 of Zucker and Holden
(1986).

An analysis of the various phenomena contributing to the
intrinsic neutron source in uranium-fueled reactors with non-
irradiated fuel can be found in Harris (1960). The report identifies
three main sources of neutrons,

1. spontaneous fission of 235U and 238U,
2. (a,n) interactions where a particles emitted in radioactive decay

of 238U induce neutron emission in light nuclei,
3. cosmic ray induced emission of neutrons from within the fuel

solution.

Experimental measurements of the intrinsic neutron source of
solutions of uranyl nitrate can be found in Hankins (1966) and
Seale and Anderson (1991). Hankins measured the intrinsic neu-

tron source of a flask containing 1.0 dm3 of uranyl nitrate, with a

concentration of 53 gU dm�3 and an enrichment of approximately
93%. The intrinsic neutron source measured was 5.6 n/s for the one
litre volume of solution. Seale and Anderson measured the intrinsic
neutron source of a much more concentrated solution of uranyl

nitrate containing 420 gU dm�3. The uranium enrichment was
the same at 93%. The resulting intrinsic neutron source measured
was equivalent to 21.4 n/s for a one litre volume of solution.

Of the two experiments, the concentration and enrichment of
the Hankins experiment is far closer to the conditions of the Y-
12 accident, as reported in Zamacinski et al. (2014): the concentra-
tion of uranium at the start of the accident is predicted to be

approximately 40.1 gU dm�3 and the uranium enrichment was
approximately 90%. Extrapolating the results of Hankins to the vol-

ume of solution at the start of the Y-12 accident (V = 56.2 dm�3)
gives a total intrinsic source of 315 n/s.

It should be noted that there is considerable uncertainty in this
figure as it relates to the Y-12 accident. Firstly, it is not clear
whether or not the uranyl nitrate solution present at the Y-12 acci-
dent had been previously irradiated. If it had been, there would be
a higher concentration of radioactive isotopes, whose decay would
contribute to an increased intrinsic neutron source through (a,n)
reactions. Secondly, as noted above, the actual uranium concentra-
tion was slightly lower than the value in Hankins’ experiment,
which would be expected to reduce the intrinsic source due to
reduced alpha emission from 238U as well as reduced spontaneous
fission.

Due to the uncertainty in the intrinsic neutron source, results
will be presented for two intrinsic source strengths: 30 n/s and
315 n/s, so that the degree of sensitivity to the intrinsic source
strength can be examined.

3.3. Parametric uncertainty

In order to examine the impact of uncertainty in the fuel solu-
tion flow rate on the resulting wait-time probability distribution,
uncertainty was applied to the reactivity insertion rate. The reac-
tivity insertion rate was modelled using Eq. (25), based on Eq.
(53) from Zamacinski et al. (2014), who calculated the reactivity
as a function of time from the available hydraulic and geometric
data using MCNP. The randomly varying parameter awas included
to make the reactivity insertion rate uncertain. Its value was ran-
domly varied between 0:9 and 1:1 according to a uniform probabil-
ity distribution. The time axis of the equation has also been
modified so that the system reaches criticality at t ¼ 0.

RexðtÞ¼1:8636	10�2at�5:5338	10�5ðatÞ2þ6:8570	10�8ðatÞ3
ð25Þ

Fig. 7 shows the system reactivity as a function of time, includ-
ing the non-randomised reactivity profile corresponding to a ¼ 1,
as well as minimum and maximum values corresponding to
a ¼ 0:9 and a ¼ 1:1. Considering, for example, the effect of a value
of a > 1, two effects are notable. Not only does it result in the sys-
tem reactivity rising faster, making shorter wait-times more likely;
it also means the system is more deeply subcritical during the time
before criticality is achieved. The latter effect offsets the first to
some degree, because at the moment of reaching criticality, the
population of delayed neutron precursors will be smaller in a sys-
tem with large a than in a system with small a.

3.4. Deterministic wait-time and aleatoric uncertainty

The deterministic wait-time can be obtained by solving the sys-
tem of ODEs referred to in Section 2.1 for the moment at which the
expected fission rate FðtÞ crosses the wait-time threshold of
2	 109 fissions per second. The value obtained is 45.7 s for an
intrinsic source strength of 30 n/s, and 43.0 s for an intrinsic source
strength of 315 n/s. Unsurprisingly, the stronger intrinsic source
results in a shorter wait-time.

Fig. 8 shows the aleatoric uncertainty associated with these
wait-times; that is uncertainty due to the stochastic nature of fis-
sion chain growth, assuming certain input parameters. Wait-time
probability distributions, calculated using the gamma distribution
method and saddlepoint method, are shown for comparison. The
predicted distributions are similar: for the 30 n/s case, the gamma
distribution method gives a mean (and standard deviation) of 47.0
s (2.1 s) and the saddlepoint method predicts 47.1 s (2.6 s). For the



Fig. 8. Wait-time probability distributions for the time taken between reaching
criticality and the fission rate exceeding 2	 109 fissions per second in the Y-12
accident.

ig. 9. Wait-time probability distributions for the Y-12 accident comparing the
eterministic wait-time with models including parametric uncertainty in the
eactivity insertion rate, aleatoric uncertainty, and combined parametric-aleatoric
ncertainty.
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315 n/s case, the gamma distribution method gives a mean (and
standard deviation) of 43.1 s (0.8 s) and the saddlepoint method
predicts 43.0 (0.8 s).
3.5. Parametric uncertainty quantification

Fig. 9 shows the four probability distributions (deterministic,
aleatoric, parametric and aleatoric-parametric) for the wait-time
to reach 2	 109 fissions per second in the Y-12 accident. Fig. 9a
shows the probability distributions for the case where the intrinsic
neutron source strength is 30 n/s and Fig. 9b shows the distribu-
tions for the 315 n/s case.

Despite the uniform probability distribution adopted for the
randomisation of the reactivity insertion rate, the parametric
wait-time probability distributions are slightly biased in favour
of shorter wait-times. The is because the impact of varying alpha
on the wait-time predicted by the deterministic model is not
linear.

The parametric uncertainty makes the overall combined
(aleatoric-parametric) probability distributions broader, compared
to the aleatoric probability distributions, however, in both cases,
there is no significant change in the mean. For 30 n/s case, the
mean (and standard deviation) of the aleatoric-parametric wait-
time probability distribution is 47.1 s (2.9 s) compared to 47.0 s
(2.1 s) for the aleatoric distribution. For the 315 n/s, the
aleatoric-parametric distribution has a mean (and standard devia-
tion) of 43.3 s (2.0 s) compared to 43.1 s (0.8 s) for the aleatoric
distribution.

The parametric uncertainty has a greater impact on the stan-
dard deviation of the probability distribution in the 315 n/s case.
F
d
r
u

This is because there is less aleatoric uncertainty, so the parametric
uncertainty is more significant by comparison. This effect is clearly
visible in Fig. 9b, where the combined aleatoric-parametric uncer-
tainty is dominated by parametric uncertainty, whereas in Fig. 9a,
the combined aleatoric-parametric distribution is influenced in
approximately equal parts by the aleatoric and parametric
uncertainties.

These results show that a small degree of uncertainty in the
reactivity insertion rate results in a significant increase in the over-
all uncertainty in the wait-time.
3.6. Summary of results

The mean wait-times and standard deviations discussed in this
section are summarised in Table 3.
4. Case study II: the Caliban experiments

The Caliban reactor is a fast burst reactor constructed of solid
metal disks of uranium/molybdenum with a 235U enrichment of
93.5%. Authier et al. (2014) describe a series of experiments in
which varying amounts of reactivity were inserted into the reactor
so that the wait-time could be measured. It has already been
demonstrated in Williams (2016) that the gamma distribution
method to determine the wait-time probability distribution is
accurate for these experiments and it is clear from Fig. 4 that these
experiments fall within the range of applicability of the gamma
distribution method.



Table 3
Summary of calculated wait-times to reach a fission rate of 2	 109 s�1 for the simulation of the Y-12 accident. Mean values shown with standard deviation in brackets.

Deterministic Aleatoric Parametric Aleatoric-Parametric

Y-12 (S = 30 n/s) 45.7 s 47.0 s (2.1 s) 45.8 s (2.0 s) 47.1 s (2.9 s)
Y-12 (S = 315 n/s) 43.0 s 43.1 s (0.8 s) 43.1 s (1.9 s) 43.3 s (2.0 s)
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4.1. Description of the experiments

Full details of the experimental set-up can be found in Authier
et al. (2014). Reactivity control in the Caliban reactor is achieved
in part by means of calibration rods and a safety block. The calibra-
tion rods are set so that the desired degree of supercriticality is
achieved when the safety block is lifted to its maximum position.
The reactor is also equipped with a burst rod but this was not used
for the delayed supercritical experiments modelled in this paper.

Each delayed supercritical excursion was initiated by raising the
safety block progressively closer to the reactor until it was in its
maximum position. According to Fig. 3 of Authier et al. (2014)
the safety block is moved in 17 small movements over a period
of 62 s until the block is in the desired delayed supercritical posi-
tion. In the model described here it was chosen to lump together
some of these movements and the 17 movements of the safety
block were approximated by 6 small ramp reactivity insertions
(see Eq. (26)).

Authier et al. count the wait-time from the moment the safety
block reaches its maximum position to the time at which the neu-
tron detector indicates a fission rate of 2	 109 fissions per second.
According to Table I of Authier et al. (2014) the reactor reaches a
supercritical configuration approximately 4 s before the safety
block arrives at its maximum position.
Fig. 10. Wait-time probability distribution for a cumulative detector count
corresponding to a fission rate of 2	 109 fissions per second with prompt neutron
lifetimes of 12 ns and 65 ls.
4.2. Model parameters

The experiment selected for uncertainty quantification was the
0.272$ reactivity insertion. The wait-time threshold was set to
2	 109 fissions per seconds, the same value used by Authier
et al. (2014). Delayed neutron precursors are represented in 6
groups using the parameters for fast fission of 235U from Keepin
(1965).

RexðtÞ ¼

�16:7$ for t 6 �62:1 s
�16:7$þ tþ62:1s

16:7 s 	 1:7$ for� 62:1 s < t 6 �45:4 s
�15:0$þ tþ45:4 s

16:7 s 	 3:6$ for� 45:4 s < t 6 �28:8 s
�11:5$þ tþ28:8s

16:7 s 	 6:6$ for� 28:8 s < t 6 �12:1 s
�4:93$þ tþ12:1s

8:1 s 	 4:9$ for� 12:1 s < t 6 �4:0 s
0:066$þ tþ4:0 s

4:0 s 	 0:206$ for� 4:0 s < t 6 0:0 s
0:272$ for t > 0:0 s

8>>>>>>>>>>><
>>>>>>>>>>>:

ð26Þ

The reactivity profile is shown in Eq. (26). It was constructed using
data from Table 1 of Authier et al. (2014). The final reactivity
increase in the table was omitted, as this corresponds to the inser-
tion of the burst rod (prompt critical experiments only), and the
reactivity values were adjusted by þ0:077$ so that the final reactiv-
ity corresponded to 0:272$. The beta effective used in the model
was 0:00659. For the intrinsic neutron source of the Caliban reactor,
Authier et al. (2014) used a value of 200 n/s in their model, so the
same value will be used for this analysis. No external source was
present during the experiments.

The prompt neutron lifetime in the Caliban reactor has been
evaluated as 1:2	 10�8 s�1 (see Casoli et al., 2009). Attempting to
model the reactor with such a short prompt neutron lifetime results
in a stiff set of ODEs, which increases the computational expense of
the Monte Carlo analysis and limits the maximum number of real-
isations achievable. It is noted however, inWilliams (2016), that the
relative standard deviation in the cumulative detector count
reaches a constant value, becoming insensitive to prompt neutron
lifetime within 100 s of reaching criticality. This implies that the
wait-time probability distribution is also insensitive to prompt
neutron lifetime after this point. Since the expected wait-time is
much longer than 100 s, it should be possible to increase the
prompt neutron lifetime to improve program run-time, without
impact on the predicted wait-time probability distribution.

This hypothesis was tested by comparing the wait-time proba-
bility distribution predicted with a prompt neutron lifetime of
12 ns to a simulation with a prompt neutron lifetime of 65 ls.
The results, shown in Fig. 10, confirm the insensitivity of the
wait-time probability distribution predicted for the Caliban
experiment to the prompt neutron lifetime.
4.3. Parametric uncertainty

Two areas of parametric uncertainty were examined for the Cal-
iban experiments: time taken to move the safety block and the
yields of the delayed neutron precursor (DNP) groups.

Eq. (26) shows the reactivity profile representing the movement
of the safety block in the Caliban experiments. The final ramp
insertion lasts 4:0 s and takes the reactor from a slightly supercrit-
ical state (0:066$) to the target reactivity of 0:272$, for a reactivity
insertion rate of 5:15	 10�2 $/s. The duration of this step was var-
ied between 0 and 20 s according to a uniform probability distribu-
tion so that the reactivity insertion rate varied from a step to a
ramp of 1:03	 10�2 $/s.

The yields of the delayed neutron precursor groups are subject
to some experimental uncertainty in their measurement. Table I of
Keepin et al. (1957) states the standard deviation associated with
each yield. From this value, an upper and lower bound (see Table 4)
was calculated by assuming a uniform probability distribution. The
values of each yield were then varied randomly within these
ranges.

The total delayed neutron fraction, b, was calculated for each
realisation as the sum of all precursor group yields. Its value there-
fore also varied, with a minimum of 0.00611 and a maximum of



Table 4
Upper and lower bounds of randomised delayed neutron precursor yields.

Group Half-Life Yield (bi) St. Dev. Lower Bound Upper Bound
[s] dim. [s] dim. dim.

1 54.5 2:50	 10�4 0.003 2:16	 10�4 2:85	 10�4

2 21.8 1:40	 10�3 0.005 1:35	 10�3 1:46	 10�3

3 6.00 1:24	 10�3 0.016 1:06	 10�3 1:42	 10�3

4 2.23 2:68	 10�3 0.007 2:60	 10�3 2:76	 10�3

5 0.496 8:44	 10�4 0.008 7:52	 10�4 9:35	 10�4

6 0.179 1:71	 10�4 0.003 1:37	 10�4 2:06	 10�4

Fig. 12. Wait-time probability distributions for the Caliban experiment comparing
the deterministic wait-time with models including parametric uncertainty in the
timing of the safety block movement, aleatoric uncertainty, and combined
parametric-aleatoric uncertainty.

Fig. 13. Wait-time probability distributions for the Caliban experiment comparing
the deterministic wait-time with models including parametric uncertainty in the
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0.00707. The reactivity profile was fixed before randomisation of
the delayed neutron precursor yields so that the time-dependent
keff was the same for each realisation. The reactivity of the reactor
measured in dollars therefore varied with the changing value of b.
For the safety block in its final position, the reactivity in dollars
varied between a minimum of 0:254$ and a maximum of 0:293$.

4.4. Deterministic wait-time and aleatoric uncertainty

The deterministic wait-time for the system to reach 2	 109 fis-
sions per seconds is 207 s. This value ignores both aleatoric, and
any parametric uncertainty. When aleatoric uncertainty was mod-
elled using the gamma distribution method, a probability distribu-
tion was obtained, with mean and standard deviation 211 s (12.8
s). The distribution obtained is shown in Fig. 11.

4.5. Parametric uncertainty quantification

4.5.1. Safety block manipulation time
Adding parametric uncertainty to the timing of the safety block

movement in the deterministic wait-time model produces the
parametric probability distribution shown in Fig. 12. The paramet-
ric probability distribution has mean and standard deviation 202 s
(1.8 s).

The results confirm that the uncertainty applied to the timing of
the final movement of the safety block has a significant impact on
the resulting wait-time. This is because the system reaches critical-
ity before the safety block reaches its final position. During this
time the population of delayed neutron precursors in the system
is increasing exponentially. The time taken to carry out this move-
ment therefore will determine the delayed neutron precursor pop-
ulation at the start of the experiment with a resulting impact on
the wait-time observed.

The aleatoric-parametric distribution shown in Fig. 12 shows
the impact of the parametric uncertainty when it is combined with
Fig. 11. Deterministic wait-time and aleatoric wait-time probability distributions
for a cumulative detector count corresponding to a fission rate of 2	 109 fissions
per second in the Caliban experiment.

delayed neutron precursor group yields, aleatoric uncertainty, and combined
parametric-aleatoric uncertainty.
the aleatoric uncertainty inherent in the neutron population
growth rate. The aleatoric-parametric probability distribution has
mean and standard deviation 205s (13.4s) so the effect of the para-
metric uncertainty is to make the probability distribution broader
and shift it slightly in favour of shorter wait-times.

4.5.2. Delayed neutron precursor yields
The uncertainty applied to the yields of the delayed neutron

precursor groups results in the parametric probability distribution
shown in Fig. 13. This parametric uncertainty applied to the deter-
ministic wait-time (without aleatoric uncertainty) results in a
mean and standard deviation of 207 s (5.2 s).

The aleatoric-parametric distribution shown in Fig. 13 shows
the impact of the parametric uncertainty when it is combined with
the aleatoric uncertainty inherent in the neutron population



Table 5
Summary of calculated wait-times to reach a fission rate 2	 109 s�1 for the simulation of the Caliban experiments. Mean values shown with standard deviation in brackets.

Deterministic Aleatoric Parametric Aleatoric-parametric

Caliban (safety block)
207 s 211 s (12.8 s)

202 s (1.8 s) 205 s (13.4 s)
Caliban (DNP yields) 207 s (5.2 s) 211 s (13.8 s)
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growth rate. The aleatoric-parametric probability distribution has
the same mean value of 211 s as the aleatoric-only distribution
but the standard deviation is increased slightly from 12.8 s to
13.8 s. The uncertainty in the measurement of the delayed neutron
precursor yields therefore has a small but non-negligible impact on
the overall wait-time probability distribution.

4.6. Summary of results

The mean wait-times and standard deviations discussed in this
section are summarised in Table 5.

5. Conclusions

A non-intrusive method has been demonstrated for quantifying
the impact of parametric uncertainty on the probability distribu-
tion for the wait-time in a delayed supercritical system. The
method makes use of the computational efficiency of the gamma
distribution method to determine the wait-time probability distri-
bution which makes uncertainty quantification feasible via the
Monte Carlo method.

This method of uncertainty quantification has been applied to
the criticality accident that occurred in 1958 at the Y-12 National
Security Complex in Oak Ridge, Tennessee. Uncertainty in the flow
rate of liquid into the drum was modelled by varying the reactivity
insertion rate, and the resulting uncertainty in the predicted wait-
time probability distribution was evaluated. Simulations were run
with two different values of the intrinsic neutron source strength
in order to demonstrate the sensitivity of the wait-time probability
distributions (aleatoric, parametric and combined aleatoric-
parametric) to this parameter.

The method has also been applied to a model of an experiment
on the Caliban reactor where two areas of uncertainty were exam-
ined. In the first case, the method was used to quantify the impact
of uncertainty in the timing of the movement of the reactor safety
block on the predicted wait-time probability distribution. The
results show significant sensitivity of the wait-time probability
distribution to the timing of the safety block movement. In the sec-
ond Caliban case, the model was used to quantify the impact of
epistemic uncertainty in the yields of delayed neutron precursor
groups on the predicted wait-time probability distribution. The
results show that reported uncertainty in the measurement of
the delayed neutron precursor group yields is sufficient to have a
small but significant impact on the wait-time probability
distribution.

The range of applicability within which the gamma distribution
method can be relied upon to produce an accurate prediction of the
wait-time probability distribution has been examined. A range of
applicability for a reactivity insertion in a hypothetical system is
presented in terms of the magnitude and rate of the reactivity
insertion, the strength of the neutron source and the lifetime of
prompt neutrons in the system.

Wait-time probability distributions predicted by the gamma
distribution method have been verified against predictions made
using the more rigorous saddlepoint method. A method for rapid
solution of the saddlepoint method using Newton-Raphson itera-
tions to accelerate convergence has been demonstrated.
6. Data statement

In accordance with EPSRC funding requirements all supporting
data used to create figures in this paper may be accessed at the fol-
lowing URL: http://doi.org/10.5281/zenodo.1215970.
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