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Abstract—An algorithm is presented that enables devices
equipped with microphones, such as robots, to move within their
environment in order to explore, adapt to and interact with sound
sources of interest. Acoustic scene mapping creates a 3D repre-
sentation of the positional information of sound sources across
time and space. In practice, positional source information is only
provided by Direction-of-Arrival (DoA) estimates of the source
directions; the source-sensor range is typically difficult to obtain.
DoA estimates are also adversely affected by reverberation, noise,
and interference, leading to errors in source location estimation
and consequent false DoA estimates. Moroever, many acoustic
sources, such as human talkers, are not continuously active, such
that periods of inactivity lead to missing DoA estimates. Withal,
the DoA estimates are specified relative to the observer’s sensor
location and orientation. Accurate positional information about
the observer therefore is crucial. This paper proposes Acoustic
Simultaneous Localization and Mapping (aSLAM), which uses
acoustic signals to simultaneously map the 3D positions of
multiple sound sources whilst passively localizing the observer
within the scene map. The performance of aSLAM is analyzed
and evaluated using a series of realistic simulations. Results are
presented to show the impact of the observer motion and sound
source localization accuracy.

Index Terms—Robot Audition; Simultaneous Localization and
Mapping; Bayes methods; Reverberation.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) lo-
calizes an unknown, moving observer and jointly maps

the 3D positions of objects of interest in the vicinity. SLAM
is classically applied in applications such as robotics using
visual and optical sensors [1]–[3]. In contrast to the classical
context of SLAM, this paper presents an algorithm to perform
SLAM using only acoustic signals. Acoustic SLAM has the
potential for wide application in areas including autonomous
robots, hearing aids, smart cars, and virtual reality devices.

Acoustic scene mapping typically applies source Direction-
of-Arrival (DoA) estimators [4]–[6] as a pre-processing step
to the acoustic measurements. In realistic acoustic environ-
ments, the resulting instantaneous DoA estimates are adversely
affected by several factors. Due to the compact aperture
of typical microphone arrays, for example when installed
in the head of a robot [7], it is not normally feasible to
determine the source-observer range [8]. Therefore, inference
of Cartesian source positions from the DoA estimates is an
underdetermined problem. Furthermore, reverberation [9] and
noise cause estimation errors as well as false estimates of the
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source positions. Periods of inactivity, e.g., for human talkers,
lead to missing source estimates.

For moving observers, spatio-temporal diversity of the sen-
sors can be exploited for kinematic ranging of the 3D source
positions from the DoA estimates [10], [11]. However, the
DoA estimates are specified relative to the observer. Therefore,
accurate knowledge of the observer’s positional information
is crucial in order to update the absolute source position
estimates with the DoA estimates relative to the instantaneous
observer location. In many cases, the observer has access to
information on its own location obtained from, e.g., motor
control data or inertial sensors. Nevertheless, in practice, such
information is reported subject to errors due to physical and
mechanical limitations [12]. Hence, dead reckoning [13], i.e.,
the propagation of the initial observer position using the
reported motion information, leads to position estimates that
diverge from the ground truth over time.

The observer location can also be anchored by identifying
the position that best aligns the DoA estimates with the
mapped sources. Therefore, observer localization and source
mapping represent the joint estimation problem of SLAM
[14], [15]. SLAM has received extensive attention in the
robotics community [16], [17], predominantly for machine
vision. Very few contributions address the application of
SLAM to audio signals, and can be broadly classified into two
categories. The first category [18]–[20] applies visual SLAM
techniques, e.g., FastSLAM [21], to acoustic Times-of-Arrival
(TOAs). By virtue of the universal presence of immovable
fixtures in visual scenes, FastSLAM aligns the observer using
permanently visible landmarks. However, this prerequisite is
fundamentally conflicting with acoustic signals, affected by
speech inactivity and reverberation. The second category [22],
[23] localizes an active acoustic observer, equipped with a
loudspeaker for actively probing the room and microphones for
Room Impulse Response (RIR) measurements, and estimates
the room dimensions from the TOAs of early reflections.
However, TOA estimation from RIRs is ambiguous [24], and
emission of controlled sound stimuli for RIR measurements is
highly intrusive to people nearby, and therefore unacceptable
in many important use-cases. Moreover, to avoid interference
with the RIR measurements, the environment cannot contain
sound sources other than the measurement stimuli.

In this paper, we propose a novel approach, named Acoustic
SLAM (aSLAM), to map the positions of sound sources
passively, and simultaneously localize a moving observer in
realistic acoustic environments. To avoid the need of perma-
nent sound sources to act as landmarks, aSLAM is based
on the theoretical foundations of Random Finite Sets (RFSs)
[25] for mapping multiple, intermittent sources subject to
erroneous, false and missing DoA estimates. Moreover, to
avoid the active emission of intrusive sound stimuli, aSLAM
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passively infers the 3D Cartesian source positions from the
2D DoA estimates, by exploiting constructively the spatio-
temporal diversity of the observer for probabilistic source
triangulation. The observer is localized by probabilistic an-
choring that best aligns the DoA estimates with the mapped
source positions. Therefore, the novel features of the proposed
aSLAM approach are 1) the joint estimation of the unknown
observer path and the positions of multiple interfering sound
sources, that is 2) robust against reverberation, noise, and
periods of source inactivity, and uses 3) passive acoustic sensor
arrays. Performance results for controlled as well as realistic
room acoustics are presented to analyze the theoretical and
practical behaviour of aSLAM. Specifically, it is shown that
aSLAM is robust to the adverse effects of reverberation on
DoA estimation, as well as uncertainties in the motion reports
of the observer.

The paper is structured as follows: Section II formulates the
problem and Section III summarizes the required background
on SLAM using RFSs. Section IV and V derive the proposed
aSLAM algorithm. Section VI and VII present the experimen-
tal setup and results. Conclusions are drawn in Section VIII.

II. PROBLEM FORMULATION

A. Observer dynamics

Consider an observer with positional state, rt, at time
step t. As a property specific to moving microphone arrays,
the observer state is characterized by its Cartesian position,
(xt,r, yt,r, zt,r), orientation, γt, and speed, vt. For readability,
it is assumed in this paper that the observer moves in the
direction of its orientation. As the observer position is a non-
linear function of the orientation, the observer state is modelled
as rt ,

[
pTt , γt

]T
, where pt ,

[
xt,r, yt,r, zt,r, vt

]T
and the

orientation are given by

pt = F t pt−1 + vt,p, vt,p ∼ N (04×1,Σt,v) (1a)

γt = ϑ(γt−1 + vt,γ), vt,γ ∼ N
(
0, σ2

v,γt

)
(1b)

where 0I×J denotes the I × J zero matrix and ϑ(α) =
mod (α, 2π) is the wrapping operator that ensures that γt ∈
[0, 2π), and vt,p and vt,γ are the process noise terms with
covariance Σt,v and σ2

v,γt respectively. The matrix F t is the
dynamical model [26], given by

F t =

[
I3 ∆t

[
sin γt, cos γt, 0

]T
01×3 1

]
, (2)

where ∆t is the delay between t − 1 and t, and IL denotes
the L× L identity matrix.

The motion reports of the observer speed and orientation
are defined as yt ,

[
yt,v, yt,γ

]T
, and are modelled by

yt,v = h pt + wt,v, wt,v ∼ N
(
0, σ2

w,vt

)
(3a)

yt,γ = ϑ(γt + wt,γ), wt,γ ∼ N
(
0, σ2

w,γt

)
(3b)

where h ,
[
0, 0, 0, 1

]
and wt,v and wt,γ are noise terms with

variance σ2
w,vt and σ2

w,γt respectively.

B. Source dynamics

The absolute positional state, sat,n ,
[
xat,n, y

a
t,n, z

a
t,n

]T
,

of source n = 1, . . . , Nt at time step t and position
(xat,n, y

a
t,n, z

a
t,n) in the global reference frame is described by

sat,n = sat−1,n + nt,n, nt,n ∼ N (03×3, Q) , (4)

where nt,n is the process noise with covariance Q. The source
state relative to the observer is given by st,n, defined as:

st,n = Γ(γt) sat,n +
[
xt,r, yt,r, zt,r

]T
, (5a)

Γ(γt) ,

 + cos γt − sin γt
+ sin γt + cos γt

02×1

01×2 0

 . (5b)

The reference frames used in this paper are illustrated in Fig. 1.
As acoustic sources, such as human talkers, are not con-

tinuously active, the number of sources, Nt, is time-varying
and unknown. The number of sources and their corresponding
states are hence modelled by a RFS [25] with realizations, St:

St =

Nt−1⋃
n=1

P (st−1,n)

 ∪Bt, (6)

where Bt models any newborn sources, active for the first
time at t, and P (st−1,n) describes the process of sources that
“survive” between t− 1 and t as

P (st−1,n) =

{
{st,n} if source n was previously active
∅ otherwise,

(7)

where ∅ denotes the empty set.
DoA estimation algorithms are used to infer the instanta-

neous directions of sound waves impinging on the observer’s
microphone array at time step t. However, reverberation and
noise lead to estimation errors as well as missing and false
estimates. The DoA estimates are hence modelled by a RFS
with realizations, Ωt, such that

Ωt =

[
Nt⋃
n=1

D(st,n)

]
∪Kt, (8)

Fig. 1. Absolute (black) and observer-relative (green) source coordinates.
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Fig. 2. Block diagram of the proposed processing chain.

where Kt denotes the Poisson point process of Nt,c Inde-
pendent and Identically Distributed (IID) false DoA estimates
distributed uniformly over the unit sphere [27]. The process,
D(st,n), models the missing DoAs and estimation errors, i.e.,

D(st,n) =

{
{ωt,m} if source n is detected
∅ if source n is undetected, (9)

where ωt,m =
[
φt,m, θt,m

]T
for m = 1, . . . ,Mt. The

azimuth, φt,m ∈ [0, 2π) rad rotates counter-clockwise, where
φt,m = 0 rad points along the positive x-axis (see Fig. 1).
The inclination, θt,m ∈ [0, π] rad rotates from θt,m = 0 rad
defined along the positive z-axis, to θt,m = π rad along the
negative z-axis.

Each of the Mt DoA estimates is modelled as

ωt,m = ϑ̂ (g(st,n) + et,m) , et,m ∼ N (02×1, Rt,m) (10)

where g(·) is the Cartesian-to-spherical transformation, et,m
is the DoA estimation error with covariance Rt,m, and the
wrapping operator, ϑ̂(ω̂) for any ω̂ ,

[
φ̂, θ̂
]T

, is defined as

ϑ̂(ω̂) ,


[
mod(φ̂, 2π), θ̂

]T
, if θ̂ ∈ [0, π],[

mod(φ̂+ π, 2π), π − (θ̂ − π)
]T
, if θ̂ > π,[

mod(φ̂+ π, 2π), |θ̂|
]T
, if θ̂ < 0.

To derive an estimator of rt and St given Ωt and yt, the
following challenges need to be addressed.
1) The number of sources and their states relative to the

observer as in (5) and (6) are unknown and time-varying.
2) The model in (4) and (10), mapping from the 2D DoAs to

the 3D states, presents an underdetermined system.
3) The non-linear wrapping in (10) results in a non-Gaussian

Probability Density Function (pdf) of the DoA estimates.
4) The observer model in (1) and (3) is non-linear, non-

Gaussian.
The background theory necessary to address Challenge 1) is
summarized in Section III. Challenge 2) and 3) are addressed
in Section IV. Section V addresses Challenge 4). A block di-
agram overview of the proposed processing chain for aSLAM
is provided in Fig. 2.

III. BACKGROUND ON SLAM USING RFSS

This section summarizes the background theory on SLAM
using RFSs required for the derivation of aSLAM.

A. Posterior pdf for SLAM

The SLAM problem is fully described by the posterior pdf,
p (rt,St | y1:t,Ω1:t), which can be factorized into the ob-
server posterior pdf, p (rt | y1:t,Ω1:t), and conditional multi-
source posterior pdf, p (St | rt,Ω1:t):

p (rt,St | y1:t,Ω1:t) = p (rt | y1:t,Ω1:t) p (St | rt,Ω1:t) .
(11)

The multi-source posterior pdf conditional on the observer
state, rt, is propagated sequentially via Bayes’s theorem:

p (St | rt,Ω1:t) =
p (Ωt | rt,St) p (St | rt,Ω1:t−1)∫
p (Ωt | rt,St) p (St | rt,Ω1:t−1) δSt

,

(12)

where p (Ωt | rt,St) is the likelihood of the set of DoA
estimates. The predicted pdf, p (St | rt,Ω1:t−1), is given by

p (St | rt,Ω1:t−1) =∫
p (St | rt,St−1) p (St−1 | rt,Ω1:t−1) δSt−1,

(13)

where p (St | rt,St−1) models the transition of the set of
sources between t− 1 and t, and p (St−1 | rt,Ω1:t−1) is the
posterior pdf at t − 1 and relative to rt. The set integral,∫
· δW , in (12) and (13) is defined for any W as [25]∫

p(W ) δW = (14)

p(∅) +

∞∑
n=1

1

n!

∫
. . .

∫
p({w1, . . . ,wn})dw1 . . . dwn.

The summation in (14) enumerates the hypotheses that any
number of objects can be contained in W . The set inte-
gral is hence equivalent to marginalizing over all subsets
{w1, . . . ,wn} ⊂ W , ∀n = 0, . . . ,∞ [27]. However, as a
consequence, (12) is combinatorially intractable.

B. Probability Hypothesis Density

The multi-source pdf, p (St | rt,Ω1:t), can be approximated
by its first-order moment, referred to as the Probability Hy-
pothesis Density (PHD), λ (st | rt,Ω1:t). The PHD expresses
the probability that one of the multiple objects in St has the
state st. Assuming the random finite set, St, is a Poisson
point process [28], i.e., the number of sources, Nt, is Poisson
distributed and the source states are IID, the posterior pdf and
its corresponding PHD are related via [25], [29]

p (St | rt,Ω1:t) = e−Nt

∏
st∈St

λ (st | rt,Ω1:t) , (15)

λ (st | rt,Ω1:t) =

∫
δSt

(st) p (St | rt,Ω1:t) δSt, (16)

where δSt(st) =
∑

s′∈St
δs′(st) is the sum of Dirac-Delta

functions concentrated at s′ ∈ St. It is important to note that
the PHD is by definition not a pdf, but rather an intensity,
since it integrates to [25]:∫

λ (st | rt,Ω1:t) dst = E [Nt] , (17)
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where E [·] denotes the expected value. Nevertheless, (17) is
an important property of the PHD: By estimating the posterior
PHD, λ (st | rt,Ω1:t), an estimate of the number of sources
is simultaneously obtained.

The general, sensor-agnostic posterior PHD, independent of
models such as in Section II, accounts for the hypotheses that
a source may 1) be “born” at time step t with a probability
of pb, 2) persist between t − 1 and t and be detected with
probability pd by a DoA estimate, or 3) be missed by DoA
estimation with probability (1− pd), i.e., [25]

λ (st | rt,Ω1:t) = pb λb (st | rt,Ωt)

+ pd λd (st | rt) + (1− pd)λ (st | rt,Ω1:t−1) ,
(18)

where λb (st | rt,Ωt) is the birth PHD. The predicted
PHD, λ (st | rt,Ω1:t−1), propagates the previous PHD,
λ (st−1 | rt,Ω1:t−1), from t−1 to t by applying the transition
density, p (st | rt, st−1), of the source dynamical model, i.e.,

λ (st | rt,Ω1:t−1) = (19)

ps

∫
p (st | rt, st−1) λ (st−1 | rt,Ω1:t−1) dst−1,

where ps is the survival probability and λ (st−1 | rt,Ω1:t−1)
is obtained by transformation from rt−1 to rt using (5).

The detection PHD, λd (st | rt), in (18) updates the pre-
dicted PHD with new information inferred from each DoA
estimate, ωt,m, for all m = 1, . . . ,Mt, i.e.,

λd (st | rt) ,
Mt∑
m=1

p (ωt,m | rt, st) λ (st | rt,Ω1:t−1)

` (ωt,m | rt)
, (20)

where p (ωt,m | rt, st), is the likelihood function of ωt,m. The
denominator in (20) is a crucial term specific to the RFS for-
mulation of Bayes’s paradigm. The denominator incorporates
an explicit model of false DoA estimates, i.e.,

` (ωt,m | rt) , κ (ωt,m | rt) + pd p (ωt,m | rt) , (21)

where the evidence, p (ωt,m | rt), and likelihood of a false
DoA estimate, κ (ωt,m | rt), are given by

p (ωt,m | rt) =

∫
λ (st | rt,Ω1:t−1) p (ωt,m | rt, st) dst,

(22a)

κ(ωt,m|rt) = λc U
[
02×1,

[
2π, π

]T ]
, (22b)

and U [·] denotes the uniform distribution and λc is the ex-
pected rate of false DoA estimates. For high rates of false
DoA estimates, e.g., in reverberant environments, (20) is
scaled by large values of κ(ωt,m|rt) and hence ` (ωt,m | rt).
Depletion of the detection PHD, λd (st | rt), by large values
of ` (ωt,m | rt) can only be avoided if the predicted PHD
corresponds to large likelihood values in the numerator of (20).
Section IV elaborates on the conditions required for acoustic
sources to outweigh the contribution of false DoA estimates.

C. Posterior SLAM PHD

The general, model-independent SLAM PHD,
λ (rt,St | y1:t,Ω1:t), corresponding to the pdf in (11),

was derived in [27] as:

λ (rt,St | y1:t,Ω1:t) = (23)
L (Ωt | rt) p (rt | y1:t,Ω1:t)∫
L (Ωt | rt) p (rt | y1:t,Ω1:t) drt

λ (st | rt,Ω1:t) ,

where λ (st | rt,Ω1:t) is the posterior source PHD and
L (Ωt | rt) is the evidence of the set of DoA estimates:

L (Ωt | rt) , e−Nt,c−pdNt|t−1

Mt∏
m=1

` (ωt,m | rt) , (24)

where the predicted number of sources, Nt|t−1, is obtained
through (17).

Therefore, the SLAM PHD, λ (rt,St | y1:t,Ω1:t), ex-
presses the probability that one of the many sources in the
acoustic scene map takes the state, st, and the observer
takes the state, rt. The expression in (23) facilitates for full
exploitation of the joint dependency between the sources and
the observer. The sources are dependent on the observer
through λ (st | rt,Ω1:t). Simultaneously, the observer pdf is
dependent on the sources through L (Ωt | rt).

Furthermore, it is important to note that the evidence of the
set of DoA estimates in (24) corresponds to the intersection
of the evidence terms over all DoA estimates. This intersec-
tion facilitates that the observer position is probabilistically
anchored by identifying the positional state that best aligns
the DoA estimates with the map of surviving sources.

In the following, Section IV and Section V present the novel
realization of (23), specific to the source and observer models
in Section II for acoustic SLAM.

IV. ASLAM SOURCE MAPPING

This section proposes a method to probabilistically triangu-
late the source positions from the DoA estimates by exploiting
the observer’s spatio-temporal diversity.

A. Range induction at source initialization

A birth process driven by the DoA estimates is proposed in
this subsection that induces source-observer range hypotheses
to address the challenge of the underdetermined system.

In order to estimate the unmeasured source range, source
states are initialized by drawing Jb range hypotheses, r̂(j)t,m,
along each DoA, ωt,m, for all m = 1, . . . ,Mt, i.e.,

r̂
(j)
t,m ∼ U (rmin, rmax) , (25)

where j = 1, . . . , Jb and U (rmin, rmax) denotes the uniform
distribution between the minimum and maximum source-
observer distance, rmin and rmax respectively. To account for
DoA estimation errors, Jb hypotheses, ω̂(j)

t,m, of the source
direction are drawn from a wrapped Gaussian distribution [30]:

ω̂
(j)
t,m ∼ Nw (ωt,m, Rt,m) , (26)

where Rt,m is assumed known a priori in this paper. The
initialized source states, m

(j)
b,t,m, are constructed as

m
(j)
b,t,m =

[
g−1

([
r̂
(j)
t,m,

[
ω̂

(j)
t,m

]T])]T
, (27)
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(a) (b)

Fig. 3. Illustrative example of probabilistic triangulation, showing the distribution of GM components a) at the initial and b) final observer position.

where g−1(·) is the spherical-to-Cartesian transformation.
From (4), the prior source pdf is Gaussian. To ensure that the

posterior source PHD corresponds to a stable distribution, the
birth PHD is modelled by a Gaussian Mixture Model (GMM):

λb (st | rt,Ωt) =

Mt∑
m=1

Jb∑
j=1

w
(j)
b,t,mN

(
st |m(j)

b,t,m, Σb

)
,

(28)

where w
(j)
b,t,m = (JbMt)

−1 are the Gaussian Mixture (GM)
weights and Σb is constant and assumed known a priori.

At each time-step, (28) results in Mt Jb source state hy-
potheses, randomly sampled along vectors in the direction of
the DoA estimates. The fundamental principle is that a suffi-
cient number of random hypotheses will result in candidates
close to the true source position.

B. Probabilistic source triangulation

This subsection proposes an approach for probabilistic trian-
gulation that distinguishes meaningful hypotheses by exploit-
ing spatio-temporal diversity of the observer.

As the birth PHD is a GMM, it is assumed that the source
PHD at t − 1, λ (st−1 | rt−1,Ω1:t−1), is a GM of Jt−1
components with mean m

(j)
t−1, covariance, Σ

(j)
t−1, and weight,

w
(j)
t−1, where the GM mean and covariance are relative to rt−1.

As the observer state changes at t, the components relative to
rt are obtained using (5), such that

λ (st−1 | rt,Ω1:t−1) =

Jt−1∑
j=1

w
(j)
t−1N

(
st | m̃(j)

t−1, Σ̃
(j)

t−1

)
,

m̃
(j)
t−1 = Γ(γt)Γ

−1(γt−1)(m
(j)
t−1 − rt−1) + rt, (29)

Σ̃
(j)

t−1 = Γ(γt)Γ
−1(γt−1)Σ

(j)
t−1
[
Γ−1(γt−1)

]T
Γ(γt)

T .

The state of each component in (29) can be predicted at t
using the source dynamical model in (4). The predictions are
subsequently updated by inferring information from the DoA
estimates in (10). As derived in Appendix I, the predicted and

detection PHDs in (19) and (20) thus are:

λ (st | rt,Ω1:t−1) = ps

Jt−1∑
j=1

w
(j)
t|t−1N

(
st |m(j)

t|t−1, Σ
(j)
t|t−1

)
,

λd (st | rt) ≈
Mt∑
m=1

1∑
k=−1

Jt−1∑
j=1

w
(j,k)
t,m N

(
st |m(j,k)

t,m , Σ
(j,k)
t,m

)
,

(30)

where w(j)
t|t−1 and w

(j,k)
t,m are the predicted and updated GM

weights, and the mean and covariance terms are given by the
Extended Kalman Filter (EKF) equations [31]:

m
(j)
t|t−1 = m̃

(j)
t−1 and Σ

(j)
t|t−1 = Σ̃

(j)

t−1 +Q, (31a)

m
(j,k)
t,m = m

(j)
t|t−1 +K

(j,k)
t,m

(
ωt,m − ĝk(m

(j)
t|t−1)

)
, (31b)

Σ
(j,k)
t,m =

(
I3 −K(j,k)

t,m Ĝ
(j,k)

t

)
Σ

(j)
t|t−1, (31c)

where ĝk(st) , g(st)− k
[
2π, π

]T
for k = −1, 0, 1 accounts

for the directional wrapping, and Ĝ
(j,k)

t , ∂ĝk /∂st|st=m
(j)

t|t−1

.

The gain, K(j,k)
t,m , and innovation covariance, S(j,k)

t,m , are:

K
(j,k)
t,m = Σ

(j)
t|t−1

[
Ĝ

(j,k)

t

]T [
S

(j,k)
t,m

]−1
, (32a)

S
(j,k)
t,m = Ĝ

(j,k)

t Σ
(j)
t|t−1

[
Ĝ

(j,k)

t

]T
+Rt,m. (32b)

The predicted and updated weights, w(j)
t|t−1 and w(j,k)

t,m , are

w
(j)
t|t−1 = ps w

(j)
t−1, (33a)

w
(j,k)
t,m = w

(j)
t−1

N
(
ωt,m | ĝk(m

(j)
t|t−1), S

(j,k)
t,m

)
` (ωt,m | rt)

, (33b)

where ` (ωt,m | rt) is obtained using (21) and (22a) as:

` (ωt,m | rt) = (34)

κ (ωt,m | rt) +

Jt−1∑
j=1

N
(
ωt,m | ĝ(m

(j)
t|t−1), S

(j,k)
t,m

)
.
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Algorithm 1 aSLAM
1: for i = 1, . . . , I do
2: Sample r̂

(i)
t using (38),(39);

3: for j = 1, . . . , Jt−1 do
4: Evaluate m

(i,j)
t−1 ,Σ

(i,j)
t−1 relative to r̂

(i)
t (29)

5: Predict m
(i,j)
t|t−1,Σ

(i,j)
t|t−1, w

(i,j)
t|t−1 (31a);

6: end for
7: for m = 1, . . . ,Mt do
8: for j = 1, . . . , Jb do
9: Sample r̂(i,j)t,m , ω̂(i,j)

t,m (25);
10: Evaluate m

(i,j)
b,t,m,Σ

(i,j)
b,t,m, w

(i,j)
b,t,m (27);

11: end for
12: for j = 1, . . . , Jt−1 do
13: for k = −1, 0, 1 do
14: Update m

(i,j,k)
t,m ,Σ

(i,j,k)
t,m , w

(i,j,k)
t,m (31), (33b);

15: end for
16: end for
17: Evaluate `(ωt,m|r̂(i)t ) (34);
18: end for
19: Evaluate L(Ωt|r̂(i)t ) (24);
20: GM reduction [32]
21: Evaluate β(i)

t (42);
22: end for
23: Resampling [33];

Using (28) and (30), the posterior source PHD in (18) hence
reduces to a GMM of Jt = Jb+Jt−1+3 Jt−1Mt components,
i.e.,

λ (st | rt,Ω1:t) =

Jt∑
j=1

w
(j)
t N

(
st |m(j)

t , Σ
(j)
t

)
. (35)

The expected number of sources, N̂t, is obtained via (17) as:

N̂t =

Jt−1∑
j=1

(
w

(j)
t−1

)
+

Mt∑
m=1

Jb,t∑
j=1

(
w

(j)
b,t,m

)
+

Jt−1∑
j=1

1∑
k=−1

(
w

(j,k)
t,m

) .
From (33b), the GM weight, w(j,k)

t,m , is scaled by ` (ωt,m | rt)
in (34), and hence by the likelihood of false DoA estimates,
κ (ωt,m | rt). Therefore, the GM weight decreases as the
number of false DoA estimates increases. To ensure stochas-
tically relevant GM components, the numerator of (33b) must
increase to counteract the scaling by the false DoA estimates.
This is achieved if N

(
ωt,m | ĝk(m

(j)
t|t−1), S

(j,k)
t,m

)
is narrow

and its mean is centred about the true source position. For
S

(j,k)
t,m to be narrow, the GM component must be in the vicinity

of DoA estimates over multiple, consecutive waypoints. In
contrast, false DoA estimates due to reverberation are typically
incoherent across time for moving observers. Therefore, (33b)
enforces that components close to true sources become in-
creasingly probable over time, whereas components initialized
from false DoA estimates deplete.

It is crucial to note explicit modelling of κ (ωt,m | rt)
facilitates robustness against false DoA estimates, e.g., due
to strong reflections directed away from the sound sources.

C. Illustrative example

To illustrate probabilistic triangulation, the proposed PHD
filter for source mapping was evaluated for an observer path of
three waypoints at (1, 1, 1.8) m, (1, 2, 1.8) m and (1, 3, 1.8) m,
within a 6 × 6 × 2.5 m3 room. A static source is placed at
(2, 2, 1.8) m. DoA estimates are simulated from (10) with an
error of 10 deg in azimuth and inclination. For each time-step,
the continuous single-source pdf is approximated by the kernel
density estimate [34] of the samples.

Fig. 3a shows that the initial GM components are distributed
as a cone along the DoA estimates. At the final waypoint,
the GMM is concentrated about a small area surrounding the
source position (Fig. 3b). Therefore, spatio-temporal diversity
of the observer leads to convergence of the source components
to a reduced area of stochastically likely positions.

V. ASLAM OBSERVER LOCALIZATION

This section proposes a method to probabilistically anchor
the observer by fusing the motion reports and source map.

A. Particle filter for non-linear, non-Gaussian observer states

As outlined in the Challenges in Section II, the observer is
modelled by a non-linear, non-Gaussian state space. Therefore,
the posterior pdf, p (rt | y1:t,Ω1:t) in (23) is analytically
intractable. Particle filters [35] can be used to approximate the
posterior pdf by sampling I particles, {r̂(i)t }Ii=1, from a pre-
specified Importance Sampling (IS) function [35], such that

p (rt | y1:t,Ω1:t) ≈
I∑
i=1

α
(i)
t δ

r̂
(i)
t

(rt), (36)

where α
(i)
t are the importance weights, and δ

r̂
(i)
t

(rt) is the

Dirac-Delta function centered around rt and evaluated at r̂
(i)
t .

The prior pdf is often used as the IS function [35], but
requires large numbers of particles for models affected by
uncertainty. Optimal IS minimizes the estimation variance
[36], and hence the computational overhead, but is itself
intractable for estimation of rt. Nevertheless, as shown in (1),
the observer state can be separated into the orientation, γt, and
pt. Thus, the posterior pdf can be factorized as

p (rt | y1:t,Ω1:t) = p (γt | y1:t,γ ,Ω1:t) p (pt | γt,y1:t,v,Ω1:t) .
(37)

Although pt is non-linearly dependent on the orientation
through the dynamical model in (2), the state-space model
of pt in (1a) and (3a) is linear-Gaussian given a realization
of γt. We therefore propose a marginalized IS scheme [37]
that exploits the linear-Gaussian substructure for optimal im-
portance sampling of pt, conditional on orientation particles
drawn from an approximate IS function of γt.

The dynamical model and motion reports of the orientation
presented in (1) and (3) correspond to wrapped Gaussian
distributions. Therefore, the orientation particles, γ̂(i)t , are
sampled from the wrapped Kalman Filter (KF) [38]:

γ̂
(i)
t ∼ Nw

(
γt |µ(i)

t,γ , ς
(i)
t,γ

)
, i = 1, . . . , I (38)
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(a) Evidence of a single DoA estimate (b) Evidence of the set of DoA estimates

(c) Observer evidence (d) aSLAM importance weights

Fig. 4. Probabilistic observer anchoring: Areas of probable observer positions using the evidence of (a) a single DoA estimate, (b) the set of DoA estimates,
and (c) the motion report of the observer, as well as (d) the aSLAM importance weights, equivalent to the intersection of (b) and (c). Contour colors indicate
corresponding normalized values of the pdf.

where the mean, µ(i)
t,γ , and variance, ς(i)t,γ , in (38) are given by

µ
(i)
t,γ = ϑ

(
µ
(i)
t−1,γ +

ς
(i)
t−1,γ + σ2

v,γt

ς
(i)
t−1,γ + σ2

v,γt + σ2
w,γt

µ̂
(i)
t−1,γ

)
,

ς
(i)
t,γ =

(
ς
(i)
t−1,γ + σ2

v,γt

)
σ2
w,γt

ς
(i)
t−1,γ + σ2

v,γt + σ2
w,γt

,

and µ̂(i)
t−1,γ is the weighted average of wrapped hypotheses:

µ̂
(i)
t−1,γ =

1∑
k=−1

ν
(i,k)
t

(
yt,γ − µ(i)

t−1,γ + 2π k
)
,

ν
(i,k)
t = N

(
yt,γ |µ(i)

t−1,γ − 2π k, ς
(i)
t−1,γ + σ2

v,γt + σ2
w,γt

)
.

Conditional on each γ̂(i)t , one particle, p̂
(i)
t of pt, is sampled

from the KF:

p̂
(i)
t ∼ N

(
pt |µ(i)

t,p, Σ
(i)
t,p

)
, i = 1, . . . , I (39)

where µ(i)
t,p and Σ

(i)
t,p, are the KF mean and covariance [31]

corresponding to the model in (1a) and (3a).
Using (38) and (39), α(i)

t in (36) is given by

α
(i)
t = α

(i)
t−1N

(
yt,v |hµ(i)

t,p, h Σ
(i)
t,p hT

) 1∑
k=−1

ν
(i,k)
t . (40)

where r̂
(i)
t ,

[
[p̂

(i)
t ]T , γ̂

(i)
t

]T
.

B. Importance weights for probabilistic anchoring

The joint aSLAM posterior PHD is obtained by solving (23)
using the observer posterior pdf in (36) and the multi-source
PHD in (35). For this derivation, a closed-form expression of
the integral in the denominator of (23) is required. Inserting
(36) into (23), the integral in the denominator reduces to∫∫ I∑

i=1

α
(i)
t δ

γ̂
(i)
t

(γt) δp̂(i)
t

(pt)L (Ωt | γt,pt) dγt dpt

=
I∑
i=1

α
(i)
t L

(
Ωt | γ̂(i)t , p̂

(i)
t

)
.

(41)

Therefore, although the evidence of the set of DoA estimates
in (24) is non-linearly dependent on the observer states through
(34) and (29), the point mass approximation in (36) facilitates
a closed-form solution of the integrals in (41).

Using (41), (36), (35) in (23), the posterior SLAM PHD is

λ (rt,St | y1:t,Ω1:t) =
I∑
i=1

β
(i)
t δ

r̂
(i)
t

(rt)λ
(

st | r̂(i)t ,Ω1:t

)
,
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where the weights, β(i)
t , are given by

β
(i)
t ,

α
(i)
t L

(
Ωt | γ̂(i)t , p̂

(i)
t

)
I∑
j=1

α
(j)
t L

(
Ωt | γ̂(j)t , p̂

(j)
t

) . (42)

Each observer particle is therefore weighted by 1) the report
evidence terms in (40), accounting for the uncertainty in the
observer motion and reports, and 2) the evidence of the set of
DoA estimates, aligning the observer-relative DoAs with the
source tracks. aSLAM is summarized in Algorithm 1.

C. Illustrative Example

The following illustrative example provides insight into the
physical significance of the terms in (42). Two static sources
are positioned at s1 = (4, 3, 1.8) m and s2 = (2, 2, 1.8) m in a
6×6×2.5 m3 room. The observer is positioned at (5, 2, 1.8) m
at t − 1 and moves to (5, 3.5, 1.8) m at t. The report errors
and DoA errors are arbitrarily chosen as σw,γt = 30 deg,
σw,vt = 1 m/s, and 25 deg measurement noise in the detected
azimuth and inclination respectively. Furthermore, pd = 1 and
λc = 0. Candidate observer positions are sampled in x- and y-
coordinates on a deterministic grid of 0.05 m resolution within
the room boundaries. Assuming that the source positions at
t−1 are known with Σ

(j)
t−1 = diag [0.2, 0.2, 0.05] for j = 1, 2,

the source EKF, and the evidence terms of the single DoA
estimates as well as the set of DoA estimates are evaluated
from (31)-(34). Using the results, (34), (24), (40) and (42) are
evaluated for each observer candidate in the grid.

A contour plot of the evidence of ωt,1 in (34) across all ob-
server candidates is plotted in Fig. 4a. The “confidence area”,
i.e., the area within the contour corresponding to evidence
values ≥ 0.1, is 8.98 m2.1 The results are compared to the
evidence of the set of DoA estimates in (24), and corresponds
to a confidence area of 3.14 m2. The area of probable observer
positions is therefore reduced by 5.84 m2 by combining the
observer information inferred from all sources in the scene
map. Fig. 4c shows the contour plot corresponding to the
observer evidence in (40), which corresponds to a confidence
area of 2.56 m2. The confidence area corresponding to the
aSLAM weights in (42), i.e., the intersection of the evidence
terms of the source DoAs and the observer motion report, is
shown in Fig. 4d. The results highlight an area of probable
observer positions of 1.17 m2. Therefore, by combining the
observer information gleaned from multiple sources with mod-
els accounting for the observer motion and expected report
error, probabilistic anchoring results in a reduction of 7.81m2

compared to Fig. 4a.

VI. EXPERIMENTAL SETUP

A. Application Scenario

aSLAM presents a general framework, suitable for any ap-
plication involving mobile acoustic sensors for scene mapping.
The following considers the application of robotic systems,

1The confidence area is evaluated based on the distances between vertices
along the contour line.

typically equipped with a microphone array and Inertial Mea-
surement Unit (IMU). Drift in gyroscopes results in cumulative
errors in the orientation and velocity reports. In addition,
errors between the instructed and executed observer motion
are caused by, e.g., wear of mechanical parts with robot age
[39, Chapter 15]. Navigation errors of 33% over a travelled
distance of 0.75 m are reported for a commercial robot in [12].

The first set of experiments is designed to decouple the
aSLAM performance from any specific DoA estimator. An
‘oracle localizer’ is used to control and investigate the impact
of the observer motion as well as the motion report and DoA
estimation errors. The second set of experiments evaluates
aSLAM performance in realistic acoustic environments using
room simulations of a moving spherical microphone array
integrated in the robot head [7].

The observer path is simulated from (1) for 100 time steps
with ∆t = 0.25 s and σv,γt = 45 deg in a 6×6×2.5 m3 room.
The initial x- and y-coordinates of the observer are at the room
center. The height of the robot’s sensor is 1.20 m, is assumed
known, and corresponds to the height of a Pepper robot by
Softbank Robotics. The initial sensor state is assumed known
with an arbitrarily chosen accuracy of 0.10 m in position and
3 deg in orientation. To ensure that the sensor is positioned
within the room volume, a maximum turn is enforced by
letting vt,γ = σ2

v,γt at any t for which pt−1 is within 1 m
of the room boundaries. Three sources are simulated from (4)
for randomly sampled source heights between [1.60, 1.95] m,
representative of human height. Each source is placed at the
centre of a randomly selected quadrant in the room.

B. Oracle Localizer

The observer reports are generated from (3). DoA estimates
are generated from (10) with λc = 0 and pd = 1. The
covariance terms, σ2

w,γt , σ2
w,vt , and Rt,m are assumed known.

Experiment 1: Experiment 1 evaluates the robustness of
aSLAM against errors in the reported observer velocity. The
experiment is evaluated for σw,vt = 0.25, 0.75, 1.5 m/s. The
sensor speed is set to a typical walking speed of vt = 1.5 m/s,
and σw,γt = 0 deg. The DoA estimation error is 5 deg in
azimuth and inclination, reflecting state-of-the-art performance
[6]. Since σw,γt is negligible, (1)-(3) reduce to a linear system.
Experiment 1 thus is evaluated using I = 1 particles.

Experiment 2: Experiment 1 is repeated for σw,γt =
2.5, 5, 10 deg and σw,vt = 0.75 m/s, chosen to reflect the
findings in [12]. As σw,γt 6= 0, the observer model is non-
linear. Although particle filters are guaranteed to converge as
I → ∞ [40], computational constraints enforce finite I . The
experiment also investigates the number of required particles.

Experiment 3: The observer path dictates the spatio-
temporal diversity between consecutive waypoints. As detailed
in Section IV, the disparity between waypoints is fundamental
for range inference. However, in many practical applications,
the observer speed is limited by hardware constraints as well
as the available space for manœuvers within the environment.
Experiment 3 thus investigates the effect of increasing vt =
0.5, 1.5, 2 m/s with σw,vt = 0.75 m/s and σw,γt = 5 deg.
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(a) 0.75 s (b) 3.25 s (c) 25 s

Fig. 5. Experiment 1: Evolution of aSLAM map estimate for σw,vt = 1.5 m/s at 0.75 s, 3.25 s and 25 s.

Experiment 4: DoA estimation accuracy depends on the
choice of the DoA estimator, reverberation / noise levels, and
the sensor geometry. Experiment 4 thus investigates the impact
of increasing DoA errors for σDoA = 5, 10, 15 deg.

C. Room Simulations

The response of a rigid spherical array [41], [42] based
on the mh-acoustics Eigenmike is simulated using the image
source method [43], [44] with T60 = 0.5 s at sampling
frequency fs = 4 kHz and spherical harmonic order of
Nharm = 3. The sensor is moved in a “stop-perceive-act”
motion [45]: the observer moves for 0.5 s to a new waypoint,
from which the reverberant signals are simulated over a mea-
surement period of 0.5 s. The simulated RIRs are convolved
with TIMIT sentences [46]. For DoA estimation, Direct-Path
Dominance Multiple Signal Classification (DPD-MUSIC) [5]
is used, which maximizes the spatial spectra of the signal
subspace in the spherical harmonic domain. The angular
resolution is 2 deg, with a DPD threshold of 2, and smoothing
across 2 frames in time and 15 bins in frequency [47]. The
reverberant signals are bandlimited between 0.5− 1.5 kHz to
avoid noise amplification due to mode strength compensation
at low frequencies and spatial aliasing at high frequencies. The
MUSIC spectrum is evaluated and its highest peak extracted
for each time-frequency bin in the measurement period that
passes the DPD-test. All peaks within the measurement period
are clustered by fitting a von Mises-Fisher (vMF) mixture
model [48] using the algorithm in [49]. As the number
of sources is unknown but required for model fitting, the
following model selection scheme [50] is used: a vMF mixture
model is evaluated for each hypothesis in N = 1, . . . , Nmax,
where Nmax = 15 is chosen to avoid undermodelling. The
DoA estimates are given by the mixture model that results in
the minimum message length [51].

D. aSLAM Implementation Aspects

Systematic resampling is applied to the sensor particles to
avoid particle depletion [33]. Mixture reduction [52, Table II]
is used to avoid an exponential explosion of the GMM. The

observer point estimate is extracted as the weighted average
of all particles. Point estimates of the source positions are
obtained by clustering the GM components into N̂t+1 clusters
using [49]. The additional cluster is a diffuse cluster that
absorbs outliers. The centroid of the diffuse cluster is the room
center and its covariance corresponds to the room volume.

E. Performance Metrics
Accuracy of the observer estimates compared to the ground

truth is evaluated using the Euclidean distance, defined as
d(xt,yt) = ‖xt − yt‖ between two positions, xt and yt.
The Optimal Subpattern Assignment (OSPA) distance [53],
[54], ∆(Xt,Y t), is used as a measure of source mapping
accuracy, continuity, and false track initialization. Given Xt ,
{xt,1, . . . ,xt,N} and Y t , {yt,1, . . . ,yt,M}, the OSPA is
defined as

∆(Xt,Y t) ,

[
1

N
min
π∈ΠN

M∑
i=1

dc(xt,i,yt,π(i))
p + (N −M)cp

] 1
p

where 1 ≤ p < ∞ is the OSPA metric order parameter, ΠN

is the set of permutations of length M with elements from
{1, . . . , N}, and dc(xt,i,yt,π(i)) , min (c, d(xt,i,yt,π(i))) is
the distance between two tracks with cutoff value, c. A first-
order metric of p = 1 is used to facilitate that the total metric
corresponds to the sum of the mapping and cardinality errors
[55]. A cutoff value of c = 1 m was used. The cutoff was
selected so that the aSLAM metrics are not affected, but the
maximum error of the benchmark algorithm can be limited for
improved readability of the graphs in Section VII.

VII. RESULTS

A. Oracle Localizer

1) Experiment 1 - Observer velocity error: Fig. 5 shows
the estimated scene map for σw,vt = 1.5 m/s after 0.75 s,
3.25 s, and 25 s. The results after 0.75 s in Fig. 5a show that
the source GM components are distributed in a conical volume
along each DoA. Averaged across all Monte Carlo (MC) runs,
the source estimates correspond to an OSPA metric of 0.56 m
at 0.75 s. After 3.25 s (Fig. 5b), the source estimates lead to
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(a) I = 5 (b) I = 50 (c) I = 100

Fig. 6. Experiment 2: Observer localization accuracy, averaged over time and Monte Carlo runs, of aSLAM (purple) and dead reckoning (orange).

an improved OSPA of 0.26 m, and converge to within 0.15 m
of the ground truth after 25 s.

The results in Fig. 5 also compare the estimated observer
trajectory to the ground truth and dead reckoning [13] es-
timates. The results after 25 s in Fig. 5c highlight that the
estimated observer trajectory is identical to the ground truth,
whereas the dead reckoning trajectory diverges. Across all
settings of σw,vt , the Euclidean distance, averaged across time
and MC runs, between the observer estimates and ground
truth is found as 0 m. The dead reckoning estimates corre-
spond to average errors of 0.37 m, 0.71 m, and 1.32 m for
σw,vt = 0.25, 0.75, 1.5 m/s respectively. Therefore, optimal
estimation of the velocity allows for perfect localization of
the observer if reports are affected by velocity errors only.

2) Experiment 2 - Observer orientation error: The results
in Fig. 6 compare the aSLAM observer localization accuracy
against the dead reckoning performance, both averaged across
time and MC runs. In Fig. 6a, the Euclidean distance between
the observer estimates and ground truth, is provided for I = 5

particles. The average Euclidean distance values correspond
to 0.12 m, 0.17 m and 0.49 m for σw,γt = 2.5, 5, 10 deg
respectively. Compared to dead reckoning, aSLAM provides
an improvement of 0.84 m, 0.94 m, and 0.43 m for σw,γt =
2.5, 5.0, 10.0 deg respectively.

The experiment is repeated for 50 and 100 particles to
investigate if a further improvement can be achieved. The
results for I = 50 particles are given in Fig. 6b, showing
that the localization accuracy remains approximately constant
for σw,γt = 2.5, 5 deg, whereas the Euclidean distance for
σw,γt = 10 deg is decreased by 55% to 0.27 m. These results
remain unchanged for I = 100 (see Fig. 6c), i.e., steady-state
for the simulated scenario is reached for I ≤ 50.

Therefore, an adequate number of particles is required
to sample the area of likely observer states with sufficient
resolution. The reason for an increasing number of required
particles is that the range of stochastically likely hypotheses
of γt widens as σw,γt increases (see Fig. 4c).

3) Experiment 3 - Observer speed: The results in Fig. 7a-
Fig. 7c compare the estimated source range relative to the

(a) vt = 0.5 m/s (b) vt = 1.5 m/s (c) vt = 2.0 m/s

(d) vt = 0.5 m/s (e) vt = 2.0 m/s (f) vt = 2.0 m/s

Fig. 7. Experiment 3: Ground truth (line), aSLAM (circles) and DoA estimates (crosses) for one Monte Carlo run, compared in (a)-(c) range for vt =
0.5, 1.5, 2.0 m/s, (d)-(e) azimuth for vt = 0.5, 2.0 m/s and (f) inclination for vt = 2.0 m/s. Source 1: purple; source 2: yellow; source 3: orange.
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observer estimates to the ground truth range for vt =
0.5, 1.5, 2 m/s. Fig. 7a shows that for vt = 0.5 m/s all three
sources achieve temporary periods of convergence, e.g., be-
tween 23.75 s for source 1 (purple) and between 12.5−16.25 s
for source 2 (yellow). The most distant source 3 (orange)
temporarily converges between 9 − 10.75 s, but is affected
by an estimation bias of 0.15− 0.26 m. All three sources are
affected by outliers and periods of missing DoA estimates,
leading to mean range estimation errors of 0.43 m for source
1, up to 0.55 m for source 2, and up to 0.48 m for source 3.

As shown in Fig. 7b, increasing the observer speed to
vt = 1.5 m/s leads to improved range estimates for close-range
sources. Source 3, the nearest source towards the beginning of
the simulation, converges after 7.75 s, with a mean range error
of 0.14 m. Source 2 converges to within 0.25 m on average of
the ground truth. The most distant source leads to an average
error of 0.47 m. By further increasing the observer speed to
2.0 m/s, all three sources converge to within 0.30 m of the
ground truth, with an average error of 0.20 m for source 1,
0.30 m for source 3, and 0.22 m for source 2 (Fig. 7c).

Fig. 7d and Fig. 7e compare the source azimuth aSLAM
estimates with the ground truth in the global reference frame.
For vt = 0.5 m/s, source 1 corresponds to an average estima-
tion error of 8.22 deg, source 2 results in 7.47 deg and source 3
corresponds to 2.42 deg mean errors. By increasing the speed
to vt = 2 m/s, the azimuth estimation error for source 1 and
2 are reduced by 5.64 deg and 4.35 deg respectively.

As also shown in Fig. 7d and Fig. 7e, the azimuth cor-
responding to the mapped source positions is significantly
improved over the DoA estimates, whose values are spread
over the entire unit circle.2 A similar trend is observed in
Fig. 7f, showing DoA estimation errors in inclination of up to
45 deg.

Therefore, the results show that by exploiting the observer’s
spatio-temporal diversity, aSLAM successfully solves the un-
derdetermined problem of 3D source position estimation from
the 2D DoA estimates. Moreover, informative planning of the
observer motion can be used to optimize source mapping.

4) Experiment 4 - Source DoA error: We now discuss
the results for Experiment 4, investigating the impact of
increasing DoA errors for σDoA = 5, 10, 15 deg. The results
in Fig. 9 depict the estimated azimuth accuracy for sources
1 and 2. The discussion of the results requires additional
explanation for the underlying effects to be clear. Therefore, a
birdseye view of the ground truth observer path and source
positions is shown in Fig. 8. The observer initially moves
away from source 1 between the period between [0, 2.5] s,
resulting in increasing azimuth errors for source 1 for all
three settings of σDoA. Between the period of [2.5, 10] s, the
observer approaches and moves around source 1, leading to
an improvement in azimuth accuracy, e.g., from 13.88 deg to
3.17 deg for σDoA = 10 deg. After 10 s, the observer moves
away from source 1 and towards source 2, leading to gradually
increasing azimuth errors for all three settings of σDoA. For
example, the source estimates for σDoA = 5 deg deteriorate

2The DoA estimates were transformed to the global reference frame using
the corresponding dead reckoning observer state.

Fig. 8. Experiment 4: Birdseye view of scenario. Color gradient of observer
path indicates progression time.

(a) Source 1

(b) Source 2

Fig. 9. Experiment 4: Azimuth error for (a) source 1 and (b) source 2.

from 2.35 deg to 3.67 deg. Therefore, for DoA estimates that
are only affected by estimation errors, the azimuth accuracy
of the aSLAM estimates improves with decreasing source-
sensor range. The impact of false and missing DoA estimates
combined with estimation errors, as encountered in realistic
acoustic scenarios, are discussed in Section VII-B.

The azimuth accuracy is also correlated with the spatial
diversity between waypoints of the observer path relative to
the source. Contrary to source 1, source 2 in Fig. 9b results in
improving azimuth accuracies in the period between [0, 2] s,
e.g., for σDoA = 10 deg from 5.76 deg to 3.12 deg. Although
the observer path starts at equal range to all three sources, the
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observer path corresponds to a tangential motion with respect
to source 2 for the first 2 s of the experiment. In contrast,
between [1, 2] s, the observer moves in an approximately
straight line away from source 1. Therefore, the azimuth
accuracy of the aSLAM estimates is also sensitive to the angle
of approach towards, or away from, a source.

Due to the time-varying source-sensor geometry in sce-
narios involving moving observers, the observer trajectory
also affects convergence of the source position estimates. For
example, in the period between [13.5, 18.5] s, the observer
path corresponds to a tangential motion relative to source
2, followed by moving away from the source. Hence, the
azimuth error of the source 2 estimates for σDoA = 15 deg
increases by 1.13 deg from 4.15 deg to 5.28 deg. As the
observer re-enters a tangential motion at 18.5 s, the improved
spatial diversity between waypoints facilitates correction of
the diverging source estimates, resulting in an abrupt change
in azimuth accuracy from 5.28 deg to 3.12 deg. In contrast,
due to the improved DoA estimation accuracy for σDoA =
10 deg compared to σDoA = 15 deg, the source estimates
are less affected by the motion of the observer, leading to a
degradation by 0.47 deg in azimuth errors from 3.81 deg to
4.28 deg between [13.5, 18.5] s. However, the divergence is
not sufficiently severe to result in an abrupt correction. As
a consequence, the source 2 estimates for σDoA = 15 deg
outperform the estimates for σDoA = 10 deg after 18.5 s. A
similar trend is observed for source 1 after 10.75 s.

B. Room Simulations

This subsection analyzes the aSLAM performance for the
room simulations of a moving spherical microphone array
using DPD-MUSIC for DoA estimation. The histogram of the
false DoA estimates are shown in Fig. 10, highlighting that
DPD-MUSIC results in 1 − 5 false DoA estimates in 88%
of the measurement periods. To validate the model of false
DoA estimates in (22b), a Poisson distribution was fit to the
false DoA estimates, resulting in the distribution in Fig. 10,
corresponding to λc = 2.15. To evaluate the goodness-of-fit,
the χ2-test [56], using the standard choice of the signficance
level at 0.05, does not reject the null-hypothesis that the false
DoA estimates are Poisson distributed.

To emphasize the challenging conditions of the scenario,
Fig. 11a shows the cardinality error between the single-source
ground truth and the number of DPD-MUSIC DoA estimates
for each measurement period. The figure also highlights the
measurement periods in which at least one of the DPD-
MUSIC estimates is within 10 deg of the true source direction.
The threshold of 10 deg was chosen according to the worst-
case localization performance for recordings from a spherical
microphone array as reported in [6]. The probability of source
detection hence corresponds to pd = 65.66%.

aSLAM is evaluated using pd and λc as per the findings
above. The results in Fig. 12 show the error of the source
azimuth aSLAM estimate for N = 1, which is also compared
to the error of the DPD-MUSIC DoA estimates. Despite the
large number of false and missing DoA estimates, the results
highlight that the source azimuth is estimated with an average

Fig. 10. Room Simulation: Histogram of the distribution of false DoA
estimates (bar plot) compared to fit by Poisson distribution (line).

(a) DPD-MUSIC DoA estimates

(b) aSLAM estimates

Fig. 11. Room simulation: Cardinality error between the single ground truth
source and (a) the number of DoA estimates, (b) the aSLAM source estimates.

Fig. 12. Room Simulation: Azimuth error of the DoA and aSLAM estimates
compared to the ground truth. Fill color: Ground truth source-sensor range.
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(a) Source map (b) Observer

Fig. 13. Room simulation: Accuracy averaged across time for N = 1, . . . , 4 sources of (a) aSLAM observer estimates (purple) compared to dead reckoning
(orange), and (b) the aSLAM source map estimate.

error of 5.99 deg. The mean OSPA distance of the source
position estimates corresponds to 0.6 m (see Fig. 13a).

The results in Fig. 12 also provide the ground truth source-
sensor range for each measurement period using the marker
fill color. The results in Section VII-A4 showed that - among
other factors - an increase in source-sensor range is correlated
to some extent with an improvement in azimuth accuracy
of the aSLAM estimates. This finding is supported by the
results in Fig. 12 during the measurement periods between,
e.g., t = [13, 20] and t = [50, 57]. As shown in Section VII-A
for the oracle localizer, the mapping accuracy for an observer
moving towards a source also depends on the observer speed
and angle of approach towards the source. In addition, in
realistic acoustic conditions, proximity to walls or other re-
flecting surfaces may affect the number of missing and false
DoA estimates. Therefore, due to the spatio-temporal variation
of the observer position within the acoustic enclosure, the
azimuth error may temporarily increase for decreasing source-
sensor range, as observed in, e.g., t = [21, 24] of Fig. 12.

Furthermore, the source mapping accuracy can be decreased
by increasing the number of sources, indicated by the increase
in OSPA in Fig. 13a. This finding is intuitively expected
since the inter-source distance decreases, rendering the sources
less resolvable. Furthermore, increasingly many sources may
be located in the far-field, affected by signal diffuseness.
Nevertheless, the observer localization accuracy increases with
larger choices of N , highlighted by the decreasing Euclidean
distance in Fig. 13b. Since an increasingly large number of
sources bears additional spatial information about the observer,
additional sources can be used to anchor the observer using
the DoA estimates as captured in (42) and (24). Therefore,
the tradeoff between source mapping and observer localization
accuracy is affected by the number of sources in the scene.

VIII. CONCLUSIONS

This paper proposed a novel aSLAM approach that pas-
sively localizes a moving observer and simultaneously maps
the positions of surrounding sound sources. Using DoA esti-
mates at its input, aSLAM maps the source positions across
time and space by probabilistic triangulation that exploits

the robustness of the PHD filter against false DoA estimates
in reverberation. The observer position is probabilistically
anchored using a marginalized particle filter by fusing the
motion reports with observer information inferred from the
acoustic source map.

aSLAM performance was evaluated using simulations based
on an oracle localizer in order to decouple aSLAM from any
specific DoA estimator or acoustic sensor / array. Furthermore,
realistic room simulations for the example application of
a moving robot were used to evaluate and verify aSLAM
performance in realistic acoustic conditions using a spherical
microphone array and DPD-MUSIC for DoA estimation.

It was shown that aSLAM accurately reconstructs the ob-
server path and jointly infers the 3D source positions from
the 2D DoA estimates by exploiting the observer’s spatio-
temporal diversity. The results demonstrated that the source-
sensor range for sources at 1− 4 m distance can be estimated
with 0.14 m accuracy for an observer moving at human
walking speed. Furthermore, the results demonstrated that
aSLAM is robust to DoA estimation errors as well as false and
missing DoA estimates, caused by reverberation, interference
and inactivity of non-continuous sources. Observer localization
is further improved as the number of sources increases.

Interference from multiple, simultaneously active sources
leads to significant performance degradation for classical sys-
tems that involve static arrays and rely only on DoA estima-
tion. This degradation has severe consequences on algorithms,
such as blind source separation, that require accurate estimates
of the source directions. In contrast, the results in this paper
highlighted that systems using moving microphone arrays
and aSLAM exploit the spatio-temporal diversity of acoustic
arrays in order to resolve multiple interfering sources. The
performance of such a system is closely coupled with the
observer motion, i.e., acoustic scene mapping can be optimized
by approaching sources affected by uncertainty. Therefore,
aSLAM in combination with informative motion planning
allows autonomous machines to embrace, rather than tackle,
the multi-source nature of everyday acoustic environments.
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APPENDIX I
SOURCE MAPPING DERIVATION

The updated PHD in (30) is derived by inserting the predicted
PHD in (13) and likelihood, p (ωt,m | rt, st), in (26) into (20). By
probability transformation of (10), the likelihood of a single DoA
estimate is a wrapped Gaussian pdf [30, Chapter 3], i.e.,

p (ωt,m | rt, st) = Nw (ωt,m | g(st), Rt,m)

=

∞∑
k=−∞

N (ωt,m | ĝk(st), Rt,m) ,
(A.1)

Using (13) and (A.1), the numerator in (20) is:

p (ωt,m | rt, st) λ (st | rt,Ω1:t−1) =
Jt−1∑
j=1

w
(j)
t−1

∞∑
k=−∞

N
(
st |m(j)

t|t−1, Σ
(j)

t|t−1

)
N (ωt,m | ĝk(st), Rt,m) .

By rearranging Bayes’s theorem:

N
(
st |m(j)

t|t−1, Σ
(j)

t|t−1

)
N (ωt,m | ĝk(st), Rt,m) =

N
(
ωt,m | ĝ(m

(j)

t|t−1), S
(j,k)
t,m

)
N
(
st |m(j,k)

t,m , Σ
(j,k)
t,m

)
,

(A.2)

with terms as defined in (31)-(32). Inserting (A.2) into (20), the
detected PHD is equivalent to:

λd (st | rt) ≈ pd
Mt∑
m=1

∞∑
k=−∞

Jt−1∑
j=1

w
(j,k)
t,m N

(
st |m(j,k)

t,m , Σ
(j,k)
t,m

)
,

where w
(j,k)
t,m is defined in (33b). To capture only the relevant

wrapping effects in [φt,m− 2π, φt,m + 2π] and [θt,m−π, θt,m +π]
[38], the infinite series over k can be approximated by a finite sum
over k = −1, 0, 1, thus leading to (30).
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[22] M. Kreković, I. Dokmanić, and M. Vetterli, “EchoSLAM: Simultaneous
localization and mapping with acoustic echoes,” in Proc. IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016.

[23] T. Wang, F. Peng, and B. Chen, “First order echo based room shape
recovery using a single mobile device,” in Proc. IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016.

[24] I. Kelly and F. Boland, “Detecting arrivals in room impulse responses
with dynamic time warping,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 22, no. 7, pp. 1139–1147, Jul. 2014.

[25] R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget
moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, Oct. 2003.

[26] X.-R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part
I: Dynamic models,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4,
Oct. 2003.

[27] C. Evers and P. A. Naylor, “Optimized self-localization for SLAM in
dynamic scenes using probability hypothesis density filters,” IEEE Trans.
Signal Process., no. 1, pp. 863–878, Feb. 2018.

[28] D. J. Daley and D. Vere-Jones, An introduction to the theory of point
processes. Springer, 2003, vol. I: Elementary Theory and Methods.

[29] R. P. S. Mahler, “Statistics 101 for multisensor, multitarget data fusion,”
Aerospace and Electronic Systems Magazine, IEEE, vol. 19, no. 1, Jan.
2004.

[30] K. V. Mardia and P. E. Jupp, Directional Statistics. Wiley-Blackwell,
1999.

[31] S. Gannot and A. Yeredor, “The Kalman filter,” in Springer Handbook
of Speech Processing, J. Benesty, M. M. Sondhi, and Y. Huang, Eds.
Springer-Verlag, 2008, ch. 8, part B.

[32] D. J. Salmond, “Mixture reduction algorithms for point and extended
object tracking in clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 45,
no. 2, Apr. 2009.

[33] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, Feb. 2002.

[34] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density estimation
via diffusion,” The Annals of Statistics, vol. 38, no. 5, 2010.

[35] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, 2000.

[36] G. Casella and C. P. Robert, “Rao-Blackwellisation of sampling
schemes,” Biometrika, vol. 83, no. 1, 1996.

[37] T. Schon, F. Gustafsson, and P. J. Nordlund, “Marginalized particle filters
for mixed linear/nonlinear state-space models,” IEEE Trans. Signal
Process., vol. 53, no. 7, Jul. 2005.

[38] J. Traa and P. Smaragdis, “A wrapped Kalman filter for azimuthal
speaker tracking,” IEEE Signal Process. Lett., vol. 20, no. 12, Dec.
2013.

[39] R. N. Jazar, Theory of Applied Robotics: Kinematics, Dynamics, and
Control, 2nd ed. Springer US, 2010.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2018.2828321, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

EVERS AND NAYLOR: ACOUSTIC SLAM 15

[40] J. Geweke, “Bayesian inference in econometric models using Monte
Carlo integration,” Econometrica, vol. 57, no. 6, 1989.

[41] D. P. Jarrett, E. A. Habets, and P. A. Naylor, Theory and Applications of
Spherical Microphone Array Processing. Berlin, Germany: Springer-
Verlag, 2016.

[42] D. P. Jarrett, E. A. P. Habets, M. R. P. Thomas, and P. A. Naylor, “Rigid
sphere room impulse response simulation: algorithm and applications,”
J. Acoust. Soc. Am., vol. 132, no. 3, Sep. 2012.

[43] E. A. P. Habets, “Room impulse response generator,” Technische Uni-
versiteit Eindhoven (TU/e), Tech. Rep., 2006.

[44] E. Lehmann and A. Johansson, “Diffuse reverberation model for efficient
image-source simulation of room impulse responses,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 18, no. 6, pp. 1429–1439, Aug.
2010.

[45] K. Nakadai, T. Lourens, H. G. Okuno, and H. Kitano, “Active audition
for humanoid,” in Proc. Nat. Conf. Artif. Intell. (AAAI), 2000.

[46] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
N. L. Dahlgren, and V. Zue, “TIMIT acoustic-phonetic continuous
speech corpus,” Linguistic Data Consortium (LDC), Philadelphia, Cor-
pus LDC93S1, 1993.

[47] B. Rafaely and D. Kolossa, “Speaker localization in reverberant rooms
based on direct path dominance test statistics,” in Proc. IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), 2017.

[48] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra, “Clustering on the unit
hypersphere using von Mises-Fisher distributions,” Journal of Machine
Learning Research, vol. 6, Sep. 2005.

[49] I. D. Gebru, X. Alameda-Pineda, F. Forbes, and R. Horaud, “EM
Algorithms for weighted-data clustering with application to audio-visual
scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 12,
Dec. 2016.

[50] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer-
Verlag New York, 2002.

[51] C. S. Wallace, Statistical and Inductive Inference by Minimum Message
Length, ser. Information Science and Statistics. New York: Springer,
2005.

[52] B.-N. Vo and W.-K. Ma, “The Gaussian Mixture probability hypothesis
density filter,” IEEE Trans. Signal Process., vol. 54, no. 11, Nov. 2006.

[53] B. Ristic, Particle Filters for Random Set Models, 1st ed. Springer-
Verlag New York, 2013.

[54] B. Ristic, B.-N. Vo, and B.-T. Vo, “A metric for performance evalua-
tion of multi-target tracking algorithms,” IEEE Trans. Signal Process.,
vol. 59, no. 7, pp. 3452–3457, Jul. 2011.

[55] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Trans. Signal
Process., vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

[56] P. E. Greenwood and M. S. Nikulin, A Guide to Chi-Squared Testing,
ser. Wiley Series in Probability and Statistics. Wiley, 1996.

Christine Evers (M’14-SM’16) is an EPSRC re-
search fellow in the Department of Electrical and
Electronic Engineering at Imperial College London.
She received her PhD from the University of Edin-
burgh, UK, in 2010, after having completed her MSc
degree in Signal Processing and Communications at
the University of Edinburgh in 2006, and BSc degree
in Electrical Engineering and Computer Science at
Jacobs University Bremen, Germany in 2005. After
a position as a research fellow at the University of
Edinburgh between 2009 and 2010, she worked as a

senior systems engineer at Selex ES, Edinburgh, UK, between 2010 and 2014.
She joined Imperial College as a research associate in 2014. In 2017, she was
awarded a fellowship by the UK Engineering and Physical Research Council
(EPSRC) to advance her research on acoustic signal processing and scene
mapping for socially assistive robots. Her research focuses on statistical signal
processing for audio applications, including sound source localization and
tracking, acoustic simultaneous localization and mapping for robot audition,
and sensor fusion. She is member of the IEEE Signal Processing Society
Technical Committee on Audio and Acoustic Signal Processing.

Patrick A. Naylor is a member of academic staff
in the Department of Electrical and Electronic Engi-
neering at Imperial College London. He received the
BEng degree in Electronic and Electrical Engineer-
ing from the University of Sheffield, UK, and the
PhD. degree from Imperial College London, UK. His
research interests are in the areas of speech, audio
and acoustic signal processing. He has worked in
particular on adaptive signal processing for speech
dereverberation, blind multichannel system iden-
tification and equalization, acoustic echo control,

speech quality estimation and classification, single and multi-channel speech
enhancement and speech production modelling with particular focus on the
analysis of the voice source signal. In addition to his academic research, he
enjoys several fruitful links with industry in the UK, USA and in Europe. He
is the past-Chair of the IEEE Signal Processing Society Technical Committee
on Audio and Acoustic Signal Processing and a director of the European
Association for Signal Processing (EURASIP). He has served as an associate
editor of IEEE Signal Processing Letters and is currently a senior area editor
of IEEE Transactions on Audio Speech and Language Processing.


