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TWO-DIMENSIONAL PSEUDO-GRAVITY MODEL: PARTICLES MOTION IN A

NON-POTENTIAL SINGULAR FORCE FIELD

JULIEN BARRÉ, DAN CRISAN, AND THIERRY GOUDON

Abstract. We analyze a simple macroscopic model describing the evolution of a cloud of particles confined in
a magneto-optical trap. The behavior of the particles is mainly driven by self–consistent attractive forces. In

contrast to the standard model of gravitational forces, the force field does not result from a potential; moreover,

the non linear coupling is more singular than the coupling based on the Poisson equation. We establish the
existence of solutions, under a suitable smallness condition on the total mass, or, equivalently, for a sufficiently

large diffusion coefficient. When a symmetry assumption is fulfilled, the solutions satisfy strengthened estimates
(exponential moments). We also investigate the convergence of the N -particles description towards the PDE

system in the mean field regime.

1. Introduction

This work is concerned with a simple mathematical model describing anisotropic magneto-optical traps
(MOT). In these devices, clouds of atoms are held together at very low temperatures through the action of
well tuned lasers. These lasers induce on each atom an external space dependent confining force, as well as
a friction: these effects are responsible for the trapping and cooling of the atoms. The lasers also create ef-
fective interaction forces between the atoms. The precise description of these forces involves a full description
of the laser field and its coupling with the atoms. The following simplification, while probably not always
quantitatively accurate, is customary since the pioneering article [27]: the interaction forces are divided into

i) a repulsive force due to multiple diffusion of photons, which is usually approximated by a Coulomb force
(predicted in [27]) and

ii) an attractive long-range force, the so–called ”shadow effect” (predicted in [10]), that bears some simi-
larity with gravity, and is the main subject of this article.

In a standard, roughly spherical, cloud, the repulsive force dominates. Nevertheless, if an external potential
forces the cloud into a very elongated cigar shape, or a very thin pancake shape, the attractive force is expected
to dominate, and the repulsive force may be neglected in a first approximation [2, 8]. This is the regime we are
interested in.

A typical MOT involves 106 to 1010 interacting particles. Although in experiment trapping the atoms in a
pancake-shaped cloud would probably contain less atoms, it is then relevant to make use of a partial differential
equations describing the particles’ density, instead of considering the dynamics of the individual particles. A
reasonable model may be a 3D non–linear Fokker-Planck, or a McKean-Vlasov, equation. However, in order to
describe the cigar- or pancake-shaped clouds observed in the experiments it makes sense to use a large scale
approach, and to integrate over the small dimension(s). After some approximations, one is left with an effective
1D or 2D nonlinear partial differential equations (PDE). The 1D equation obtained this way coincides with
the mean-field description a 1D damped self-gravitating system [8] and is well-known. We thus concentrate
on the 2D case. The 2D nonlinear PDE studied here has its own interest, independently of the relation with
the MOT experiments: it bears some similarities with a 2D damped self-gravitating system (also known as the
Smoluchowski model in astrophysics [9] or the Keller-Segel chemotactic model [21, 22]). Therefore, a natural
question is to determine whether or not singularities appear in finite time, depending on certain thresholds, as
this is the case for the Keller–Segel model, see the review [18, 19].
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We are interested in the particle density (x, y, t) 7→ ρ(x, y, t), which is a scalar non–negative quantity that
depends on the time t ≥ 0 and space variables (x, y) ∈ R2. Its evolution is governed by the following non linear
PDE

(1.1) ∂tρ = ∇ ·
(
D∇ρ− ~F [ρ]ρ

)
,

where the constant D > 0 is given and the self consistent force field

~F [ρ] =

(
Fx[ρ]
Fy[ρ]

)
,

is defined by

(1.2)
Fx[ρ](x, y, t) = −

∫
sgn(x− x′)ρ(x′, y, t) dx′,

Fy[ρ](x, y, t) = −
∫

sgn(y − y′)ρ(x, y′, t) dy′.

The problem is complemented with an initial data

(1.3) ρ
∣∣∣
t=0

= ρ0.

Similar to the Keller–Segel model, the force is thus defined through a convolution formula. As a consequence
of the fact that the (distributional) derivative of the function x 7→ sgn(x) is 2δ0, where δ0 is the Dirac delta
distribution at 0, we observe that (mind the sign)

(1.4) ∇ · ~F [ρ] = −4ρ ≤ 0.

The divergence of the force field of the Keller-Segel system satisfies the same relation. However, there are crucial
differences with the Keller–Segel system that make the analysis here different:

• the force does not have the potential structure (~F cannot be expressed as the gradient of a potential),
and, accordingly, we cannot derive estimates related to the evolution of a potential energy,

• the convolution acts only on a single direction variable; hence we cannot expect any regularisation effect
similar to the one given by the coupling of the force through the Poisson equation,

• we cannot use symmetry properties for expressing the force term
∫∫

~F [ρ]ρ · ∇ϕdy dx, for ϕ ∈ C∞c (R2),
in a convenient weak sense, which is a crucial ingredient when dealing with the Keller–Segel equation,
see e. g. [24, 25, 26].

We wish to investigate the existence, uniqueness of a solution of (1.1)–(1.3) and to devise and analyze a particle
method which can be used to perform simulation of the PDE. To be more specific, our strategy is as follows:

(1) Introduce a regularized PDE

(1.5) ∂tρ
(ε) = ∇ ·

(
∇ρ(ε) − ~F (ε)[ρ(ε)]ρ(ε)

)
where the kernel (sgn(x)δ(y), δ(x)sgn(y)) in (1.2) is smoothed out. We take

(1.6)
F

(ε)
x [ρ](x, y, t) = −

∫∫
sgn(ε)(x− x′)δ(ε)(y − y′)ρ(x′, y′, t) dx′ dy′,

F
(ε)
y [ρ](x, y, t) = −

∫∫
sgn(ε)(y − y′)δ(ε)(x− x′)ρ(x′, y′, t) dx′ dy′

with

sgn(ε)(u) = 2
1

ε
√

2π

∫ u

0

e−
v2

2ε2 dv,

δ(ε)(u) =
1

2

d

du
sgn(ε)(u) =

1

ε
√

2π
e−

u2

2ε2 .
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Denoting by ?x (resp. ?y) the convolution with respect to the variable x (resp. the variable y), we
observe that

F (ε)
x [ρ] = T (ε)(sgn ?x ρ) = sgn ?x (T (ε)ρ),

F (ε)
y [ρ] = T (ε)(sgn ?y ρ) = sgn ?y (T (ε)ρ),

where T (ε) stands for the convolution with the normalized 2-d Gaussian kernel.

(2) Establish a priori estimates that are uniform with respect to ε. We obtain several such estimates,
typically Lp and moment estimates, based on dissipative properties of the equation, at the price of
assuming the diffusion coefficient D large enough. Section 2 includes these estimates.

(3) Show the existence and uniqueness of solutions ρ(ε) of the regularized PDE (1.5). To this end, we
employ a suitable fixed point approach, described in Section 3

(4) Use the a priori estimates to prove global existence of the solution of the original equation, at least when
D is large enough. We present two proofs. The first relies on quite standard compactness arguments.

As mentioned above the difficulty is related to the non–linear term ~F [ρ]ρ and the adopted functional
framework should be constructed so that the product makes sense and is stable. The second approach
is more precise and establishes directly that the sequence of approximated solutions

(
ρ(ε)
)
ε>0

satisfies
the Cauchy criterion in a certain norm. However this approach requires certain symmetry assumptions
and fast enough decay of the initial state. These additional assumptions allow us to derive exponential
moments, and weighted estimates on the gradient of the unknown. This analysis is detailed in Section 4.

(5) Introduce a stochastic system of N � 1 particles, with a regularized interaction, and prove that the
empirical measure converges towards a solution of the PDE when N →∞. Assuming that the number

of particles N is proportional to eC/ε
2

with ε being the regularizing parameter, one can obtain particle
approximations that are arbitrarily close to ρ, on any fixed time interval. In particular we show that
one can get an upper bound for the Wasserstein distance between the particle approximation and ρ
of order εν , where ν > 0 is a certain constant independent of ε. Put it differently, we show that if ε
is of order (log(N))−

1
2 , then the rate of convergence of the Wasserstein distance between the particle

approximation and ρ is also of logarithmic order, see Theorem 5.2. The analysis is presented in Section 5.
(6) Run numerical simulations using the particle representation obtained in Section 5 and compare it with

the PDE method introduced in [6]. In this way we illustrate the existence results covered by Theorems
4.1 and 4.5. As we will see, the constraint on the diffusion coefficient (condition (2.6)) required for the
two theorems to be valid is not optimal: the solution can apparently be global in time for other values
too. We also illustrate the convergence for the particles approximation. The rate of convergence of the
particle approximation as a function of N seems to be much better than that suggested by Theorem
5.2. These are covered in Section 6.

2. A priori estimates

2.1. Moments. Let k ∈ N, k ≥ 2. We set

mk(t) =

∫∫
(|x|k + |y|k)ρ(x, y, t) dxdy

Using integration by parts yields

dmk

dt
(t) = Dk(k − 1)mk−2(t)

+k

∫∫ (
sgn(x)|x|k−1Fx[ρ] + sgn(y)|y|k−1Fy[ρ]

)
ρ(x, y, t) dxdy

= Dk(k − 1)mk−2(t)

−k
∫∫∫

sgn(x)|x|k−1sgn(x− x′)ρ(x′, y, t)ρ(x, y, t) dxdx′ dy

−k
∫∫∫

sgn(y)|y|k−1sgn(y − y′)ρ(x′, y, t)ρ(x, y, t) dxdx′ dy.
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By exchanging the rôle of x and x′, we find∫∫∫
sgn(x)|x|k−1sgn(x− x′)ρ(x′, y, t)ρ(x, y, t) dx dx′ dy

=
1

2

∫∫
[sgn(x)|x|k−1 − sgn(x′)|x′|k−1]sgn(x− x′)ρ(x′, y, t)ρ(x, y, t) dxdx′ dy ≥ 0

since x 7→ sgn(x)|x|k−1 is non–decreasing. A similar remark applies for the integral coming from Fy. Therefore,
the moments satisfy the following relation

(2.1)
dmk

dt
≤ Dk(k − 1)mk−2.

In particular, since the total mass is conserved

d

dt

∫∫
ρ(x, y, t) dy dx = 0,

we obtain
m2(t) ≤ m2(0) + 2DM0t,

with

M0 =

∫∫
ρ0(x, y) dy dx.

2.2. Entropies. Let h : [0,∞)→ R be a convex function and write

H[ρ] =

∫∫
h(ρ) dy dx.

We have
dH[ρ]

dt
=

∫∫
h′(ρ)∇ ·

(
D∇ρ− ~F [ρ]ρ

)
dy dx

= −D
∫∫
|∇ρ|2h′′(ρ) dy dx+

∫∫
∇ρ · ~F [ρ] ρh′′(ρ) dy dx.

Let q be an anti-derivative of
q′(ρ) = ρh′′(ρ).

We thus arrive at

(2.2)

dH[ρ]

dt
= −D

∫∫
|∇ρ|2h′′(ρ) dy dx−

∫∫
q(ρ)∇ · ~F [ρ] dy dx

= −D
∫∫
|∇ρ|2h′′(ρ) dy dx+ 4

∫∫
ρq(ρ) dy dx

by virtue of (1.4). In order to compensate the non–linearity in the last integral by the dissipated term, we can
make use of the following Gagliardo–Nirenberg–Sobolev inequality (see e. g. [23, p. 125] or [5, Th. IX.9 with
eq. (17) & eq. (85) p. 195]), which holds in R2 for any p ≥ 1:

(2.3)

∫∫
ξp+1 dy dx ≤ Cp

∫∫
ξ dy dx×

∫∫
|∇(ξp/2)|2 dy dx.

Let us detail how the estimates work in different cases:

• Entropy h(z) = z ln(z).

We get zq(z) = z2 and we use (2.3) with p = 1. Remarking that |∇ρ|
2

ρ = 4|∇√ρ|2 and taking into

account the mass conservation, we are led to

(2.4)
d

dt

∫∫
ρ ln(ρ) dy dx+ 4(D − C1M0)

∫∫
|∇√ρ|2 dy dx ≤ 0.

It indicates a dissipation property when the diffusion coefficient is large enough

D ≥ C1M0.

Based on this, we can conjecture that solutions exist globally for large diffusion constants D.
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• Lp estimates: h(z) = zp.
We get zq(z) = (p−1)zp+1, and we use (2.3) with p > 1. Remarking that h′′(ρ)|∇ρ|2 = 4

p (p−1)|∇ρp/2|2,

we are led to

(2.5)
d

dt

∫∫
ρp dy dx+ 4(p− 1)

(
D

p
− CpM0

)∫∫
|∇ρp/2|2 dy dx ≤ 0.

Eq. (2.5) shows that the Lp norm of the solution is a non-increasing function of time when D is large
enough, but how large depends on p with this approach. We are going to obtain finer estimates for
large values of the constant p.

In order to eliminate the too restrictive condition on D, we use a different approach for the Lp estimate. To
this end, we use the Cauchy–Schwarz inequality and (2.3) and we obtain∫∫

ρp+1 dy dx ≤
(∫∫

ρ2 dy dx

)1/2(∫∫
ρ2p dy dx

)1/2

≤
(∫∫

ρ2 dy dx

)1/2(
C1

∫∫
ρp dy dx

∫∫
|∇
√
ρp|dy dx

)1/2

.

Going back to (2.2), still with h(z) = zp, the elementary inequality AB ≤ αA
2

2 + B2

2α with an appropriate choice
of α > 0 leads us to

d

dt

∫∫
ρp dy dx+ 2D

p− 1

p

∫∫
|∇ρp/2|2 dy dx ≤ C2

1p

8D(p− 1)
× 16(p− 1)2

∫∫
ρ2 dy dx

∫∫
ρp dy dx.

Inspired by Eq (2.5), from now on, we assume that

(2.6) D > 2C2M0.

Accordingly, the L2 norm is dissipated and∫∫
ρ2(t) dy dx ≤

∫∫
ρ2

0 dy dx

holds. Therefore, we arrive at

(2.7)
d

dt

∫∫
ρp dy dx+ 2D

p− 1

p

∫∫
|∇ρp/2|2 dy dx ≤ K1 p

2

∫∫
ρp dy dx

with K1 =
2C2

1‖ρ0‖
2
L2

D .
We use this relation to derive a L∞ estimate, through an iterative argument on the exponent p which dates

back to [1]. Let us set

pk = 2k, vk = ρpk .

Let ω > 0. Eq. (2.7) tells us that

e−ωt
d

dt

(
eωt
∫∫

vk dy dx

)
+ 2D

pk − 1

pk

∫∫
|∇vk−1|2 dy dx ≤ (K1p

2
k + ω)

∫∫
vk dy dx.

We are going to estimate the right hand side by using the following Gagliardo–Nirenberg–Sobolev inequality
(see e. g. [23, p. 125] or [5, eq. (85) p. 195])

(2.8)

∫∫
ξ2 dy dx ≤ C̄2

∫∫
ξ dy dx

(∫∫
|∇ξ|2 dy dx

)1/2

.

We combine this information with the Young inequality as follows∫∫
ξ2 dy dx ≤ C̄2ω

2

∫∫
|∇ξ|2 dy dx+

C̄2

2ω

(∫∫
ξ dy dx

)2

.

We choose ω = ωk > 0 small enough to ensure

C̄2(K1p
2
k + ωk)

ωk
2
≤ Dpk − 1

pk
.
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Since vk = v2
k−1, we are thus led to

e−ωkt
d

dt

(
eωkt

∫∫
vk dy dx

)
+D

pk − 1

pk

∫∫
|∇vk−1|2 dy dx ≤ C̄2(K1p

2
k + ωk)

2ωk

(∫∫
vk−1 dy dx

)2

.

Integrating from this relation, we obtain∫∫
vk(t) dy dx ≤ e−ωkt

(∫∫
vk(0) dy dx

+

∫ t

0

e−ωks
C̄2(K1p

2
k + ωk)

2ωk

(∫∫
vk−1(s) dy dx

)2

ds

)
≤ e−ωkt

∫∫
vk(0) dy dx

+e−ωkt
eωkt − 1

ωk

C̄2(K1p
2
k + ωk)

2ωk
sup

0≤s≤t

(∫∫
vk−1(s) dy dx

)2

.

In the right hand side, we make a convex combination appear, and we infer that∫∫
vk(t) dy dx ≤ max

{∫∫
vk(0) dy dx,

C̄2(K1p
2
k + ωk)

2ω2
k

(
sup

0≤s≤t

∫∫
vk−1(s) dy dx

)2
}
.

Let us set

L = max
(
‖ρ0‖L1 , ‖ρ0‖L∞

)
, δk =

C̄2(K1p
2
k + ωk)

2ω2
k

.

Note that ωk behaves like 1
p2k

, and thus we can dominate δk ≤ Mp6
k for some M > 0, so that, finally, we can

find A > 0 such that δk ≤ Ak. A direct recursion shows that∫∫
vk(t) dy dx ≤ δkδp1k−1 . . . δ

pk−1

1 Lpk

which implies

‖ρ(t)‖Lpk ≤ L (Ark)
1/pk , rk =

k∑
`=0

(k − `)p`.

Since

rk
pk

=
1

2

k∑
j=1

j

(
1

2

)j−1

=
1

2

d

ds

(
1− sk+1

1− s

) ∣∣∣
s=1/2

= 2
(

1 + (k + 2)e−(k+1) ln(2)
)

admits a finite limit as k → ∞, we deduce that the sequence
(
‖ρ(t)‖Lpk

)
k∈N is bounded . The L∞ bound

follows by letting k go to ∞, and the bound depends on the initial L1 and L∞ norms. The minimal D needed
for this bound to be valid is unknown. We can recap our findings as follows.

Proposition 2.1. Let ρ be a sufficiently smooth solution of (1.1)–(1.3). Then, ρ satisfies the following prop-
erties:

i) mass is conserved
∫∫

ρ(t) dy dx =
∫∫

ρ0 dy dx = M0,
ii) if ρ0 ∈ Lp(R2) and D > pCpM0,1 then, ‖ρ(t)‖Lp ≤ ‖ρ0‖Lp ,
iii) if ρ0 ∈ L1 ∩ L∞(R2) and D > 2C2M0, then there exists a constant M > 0 such that 0 ≤ ρ(y, x, t) ≤M

holds for a.e. t ≥ 0, (x, y) ∈ R2.
iv) if (x, y) 7→ (x2 + y2)ρ0(x, y) ∈ L1(R2), then, for any t ≥ 0, (x, y) 7→ (x2 + y2)ρ(x, y, t) ∈ L1(R2), and

m2(t) ≤ m2(0) + 2DM0t.

1The constant Cp is the constant appearing in the Gagliardo–Nirenberg–Sobolev inequality (2.3).
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2.3. Estimates for the regularized problem. To analyze the solutions of the regularized PDE (1.5)-(1.6)
and justify their convergence as ε tends to 0, we will need estimates uniform with respect to ε. The following
proposition is the equivalent of Proposition 2.1 for the regularized solution.

Proposition 2.2. Let
(
ρ(ε)
)
ε>0

be the sequence of solutions of the regularized PDE (1.5)–(1.6), associated to

the initial data
(
ρ

(ε)
0

)
ε>0

. We assume that(
ρ

(ε)
0

)
ε>0

is bounded in L1(R2) ∩ L∞(R2).

Then, the following properties are satisfied:

i) mass is conserved
∫∫

ρ(ε)(t) dy dx =
∫∫

ρ
(ε)
0 dy dx,

ii) if D > pCpM0, then ρ(ε) is bounded in L∞(0,∞;Lp(R2)) and ‖ρ(ε)(t)‖Lp ≤ ‖ρ(ε)
0 ‖Lp ,

iii) if D > 2C2M0, then ρ(ε) is bounded in L∞(0,∞;L2(R2)) ∩ L∞((0,∞)× R2),

iv) if (x, y) 7→ (x2+y2)ρ
(ε)
0 (x, y) is bounded in L1(R2), then (x2+y2)ρ(ε)(x, y, t) is bounded in L∞(0, T ;L1(R2))

for any 0 < T <∞.

Proof. Item i) is clear. The proof of iv) repeats the same arguments as above, with a direct comparison to a
pure diffusion. For ii) and iii), we will need the following consequence of the definition (1.6)

∂xF
(ε)
x [ρ(ε)](x, y, t) = −2

∫∫
δ(ε)(x− x′)δ(ε)(y − y′)ρ(ε)(x− x′, y − y′, t) dx′ dy′

so that (1.4) becomes

∇ · F (ε)[ρ(ε)] = −4T (ε)(ρ(ε))

where, as said above, T (ε) is the convolution operator with the normalized 2d Gaussian kernel. Furthermore,
the Hölder inequality yields∫∫

(ρ(ε))pT (ε)(ρ(ε)) dy dx ≤
(∫∫

(ρ(ε))p+1 dy dx

)p/(p+1)(∫∫
|T (ε)(ρ(ε))|p+1 dy dx

)1/(p+1)

≤
(∫∫

(ρ(ε))p+1 dy dx

)p/(p+1)(∫∫
(ρ(ε))p+1 dy dx

)1/(p+1)

≤
∫∫

(ρ(ε))p+1 dy dx.

With this observation, we can go back to (2.2) adapted to the regularized problem and we derive the estimates
as we did for the singular equation. We refer the reader to [3] for similar reasonings. �

3. Regularized problem

Let ε > 0. The initial data ρ
(ε)
0 is a given non–negative function in L1(R2) ∩ L∞(R2). We introduce the

operator

T : g 7→ T (g) = ρ

where ρ is the solution of the linear parabolic PDE

(3.1) ∂tρ = D∆ρ−∇ · (~F (ε)[g]ρ), ρ
∣∣∣
t=0

= ρ
(ε)
0 .

We will show that T fulfils the hypotheses of the Schauder theorem in a suitable functional framework. This
will lead to the existence of a fixed point, which defines a solution of the non–linear problem. Then, we will
investigate the uniqueness independently. Gathering together these arguments, we will prove the following
statement.

Theorem 3.1. Let ρ
(ε)
0 ∈ L1(R2) ∩ L∞(R2) be a non-negative function. Then, the problem (1.5)–(1.6) with

ρ
∣∣
t=0

= ρ
(ε)
0 admits a unique (non-negative) solution ρ(ε) ∈ C([0, T ];L2(R2)) ∩ L2(0, T ;H1(R2)).
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3.1. Preparing for the Schauder theorem: a priori estimates. We observe that

sgn(ε) ∈ C∞(R) ∩ L∞(R),

x 7→ sgn(ε)(x)√
1 + x2

∈ L2(R),

δ(ε) =
1

2

d

dx
sgn(ε) ∈ C∞(R) ∩ L1(R) ∩ L∞(R).

Owing to these properties, we obtain estimates (that depend on ε) on the regularized force.

Lemma 3.2. The following estimates hold

i) |F (ε)
x [g]| ≤ ‖sgn(ε)‖∞‖δ(ε)‖∞‖g‖L1 = 1

ε
√

2π
‖g‖L1 ,

ii) |F (ε)
x [g]| ≤

√
π ‖δ(ε)‖L2

(∫
(1 + x′2)g2(x′, y′) dx′ dy′

)1/2
,

iii) |∂xF (ε)
x [g]| ≤ 2‖δ(ε)‖2L1‖g‖L∞ = 2‖g‖L∞ ,

iv) |∂xF (ε)
x [g]| ≤ 2‖δ(ε)‖2L∞‖g‖L1 = 2

πε2 ‖g‖L1 .

Of course, the same estimates apply to F
(ε)
y as well.

Proof. It is worth bearing in mind that

0 ≤ δ(ε)(x) ≤ 1

ε
√

2π
, |sgn(ε)(x)| ≤ 1.

Items i), iii) and iv) are direct consequences of estimates on convolution products. For ii) we use the Cauchy-
Schwarz inequality twice to obtain

|F (ε)
x [g](x, y)| ≤

∫
δ(ε)(y − y′)

(∫
|sgn(ε)(x− x′)|2

1 + x′2
dx′
)1/2(∫

(1 + x′2)g2(x′, y′) dx′
)1/2

dy′

≤
(∫
|δ(ε)|2(y − y′) dy′

)1/2(∫ |sgn(ε)(x− x′)|2

1 + x′2
dx′
)1/2(∫

(1 + x′2)g2(x′, y′) dx′ dy′
)1/2

≤ ‖δ(ε)‖L2 ×
√
π ×

(∫
(1 + x′2)g2(x′, y′) dx′ dy′

)1/2

.

�
For any g ∈ L∞(0,∞;L1(R2)), owing to the observations in Lemma 3.2, the linear problem (3.1) admits a
unique solution, say in C([0,∞];L2(R2)) ∩ L2(0,∞;H1(R2)), see [5, Th. X.9], which is non-negative when the
initial data is non-negative. We can now derive estimates on the solution of (3.1).

Lemma 3.3. Let ρ = T (g) be the solution of (3.1). It satisfies

i) For any fixed time t > 0 and any p ∈ [1,∞], ρ(t) ∈ Lp(R2). More precisely, we have∫∫
ρ(x, y, t)p dy dx ≤ e4(p−1)t‖g‖L∞(0,∞;L1(R2))‖δ

(ε)‖2L∞
∫∫

ρ
(ε)
0 (x, y)p dy dx,

and ‖ρ(t)‖L∞ ≤ e4t‖g‖L∞(0,∞;L1(R2))‖δ
(ε)‖2L∞ ‖ρ(ε)

0 ‖L∞ .
ii) For any fixed time t,

∫∫
(x2 + y2)ρ(x, y, t) dy dx is finite. More precisely, we have∫∫

(x2 + y2)ρ(x, y, t) dy dx

≤ et
(∫∫

(x2 + y2)ρ
(ε)
0 (x, y) dy dx+ t‖ρ(ε)

0 ‖L1

(
4D + ‖sgn(ε)‖2L∞‖δ(ε)‖2∞‖g‖2L∞(0,∞;L1(R2))

))
.

iii) For any 0 ≤ t ≤ T <∞, we have

‖∇ρ‖2L2((0,t)×R2) ≤
1

2D
e4T‖g‖L∞(0,∞;L1(R2))‖δ

(ε)‖2L∞ ‖ρ(ε)
0 ‖L2 .
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Proof. i) We compute

d

dt

∫∫
ρp dy dx+Dp(p− 1)

∫∫
ρp−2|∇ρ|2 dy dx =

∫∫
F (ε)[g]ρp(p− 1) · ∇ρρp−2 dy dx

= −(p− 1)

∫∫
∇ · F (ε)[g]ρp dy dx

≤ (p− 1)‖∇ · F (ε)[g]‖L∞
∫∫

ρp dy dx

≤ 4‖δ(ε)‖2L∞‖g‖L1 × (p− 1)

∫∫
ρp dy dx.

The last line uses Lemma 3.2-iv). Grönwall’s lemma then yields i). The L∞ estimate follows by taking the limit
p→∞. Estimate iii) is obtained by specifying to the case p = 2 and considering the dissipation term.

ii) Let us use the shorthand notation z = (x, y). We get

d

dt

∫∫
|z|2ρdz = 4D

∫∫
ρdz + 2

∫∫
ρF (ε)[g] · z dz

≤ 4D

∫∫
ρdz + 2‖F (ε)[g]‖L∞

(∫∫
|z|2ρ dz

)1/2(∫∫
ρdz

)1/2

≤ 4D

∫∫
ρdz + ‖F (ε)[g]‖2L∞

∫∫
ρdz +

∫∫
|z|2ρdz

≤ (4D + ‖sgn(ε)‖2∞‖δ(ε)‖2∞‖g‖2L1)

∫∫
ρdz +

∫∫
|z|2ρdz

by using Lemma 3.2-i). The Grönwall lemma allows us to conclude.
iii) We have

d

dt

∫∫
ρ2 dy dx+ 2D

∫∫
|∇ρ|2 dy dx ≤ 4‖δ(ε)‖2L∞‖g‖L1 ×

∫∫
ρ2 dy dx.(3.2)

Inserting the estimate of item i) leads to

d

dt

∫∫
ρ2 dy dx+ 2D

∫∫
|∇ρ|2 dy dx ≤ CeCt

∫∫
ρ

(ε)
0 (x, y)2 dy dx,(3.3)

with C = 4‖δ(ε)‖2L∞‖g‖L∞(0,∞;L1(R2)). Integrating over time then yields(∫∫
ρ2 dy dx

)
(t)−

(∫∫
ρ2 dy dx

)
(t = 0) + 2D‖∇ρ‖2L2((0,t)×R2) ≤ (eCt − 1)‖ρ(ε)

0 ‖2L2 .(3.4)

Hence

‖∇ρ‖2L2((0,t)×R2) ≤ eCt

2D
‖ρ(ε)

0 ‖2L2(3.5)

≤ 1

2D
e4T‖g‖L∞(0,∞;L1(R2))‖δ

(ε)‖2L∞‖ρ(ε)
0 ‖2L2 .(3.6)

�

3.2. Preparing for the Schauder theorem: definition of the functional framework. Let 0 < T < ∞
be fixed once for all. We introduce the set C consisting of the functions g : [0, T ]× R2 → [0,∞), such that

i)
∫∫

g dz =
∫∫

ρ
(ε)
0 dz ≤M0,

ii)
∫∫
|z|2g dz ≤ eC1T (

∫∫
|z|2ρ(ε)

0 dz + C2T ),

iii) ‖g‖∞ ≤ eC3T ‖ρ(ε)
0 ‖∞,

By using the mass conservation property, the estimates in Lemma 3.3 allow us to choose the constants C1, C2

and C3 (which depend on ε) such that C is convex, and stable upon application of T .
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3.3. Preparing for the Schauder theorem: T is continuous. We wish to establish the continuity of
T : C → C for the norm of L2((0, T ) × R2). For i ∈ {1, 2}, let ρi = T (gi), with gi ∈ C. By Lemma 3.3-i), we

already know that ρi belongs to L∞(0, T ;L2(R2)). We denote ~F
(ε)
i = ~F (ε)[gi]. We get

d

dt

∫∫
(ρ2 − ρ1)2 dz = −2D

∫∫
|∇(ρ2 − ρ1)|2 dz + 2

∫∫
∇(ρ2 − ρ1) · ~F (ε)

2 (ρ2 − ρ1) dz

+2

∫∫
ρ1∇(ρ2 − ρ1) · (~F (ε)

2 − ~F
(ε)
1 ) dz

≤ −2D

∫∫
|∇(ρ2 − ρ1)|2 dz +

∫
|∇ · ~F (ε)

2 | (ρ2 − ρ1)2 dz

+D

∫∫
|∇(ρ2 − ρ1)|2 dz +

1

D

∫
ρ2

1(~F
(ε)
2 − ~F

(ε)
1 )2 dz

≤ −D
∫∫
|∇(ρ2 − ρ1)|2 dz + 4‖δ(ε)‖2L∞‖g2‖L1

∫∫
(ρ2 − ρ1)2 dz

+
1

D
‖~F (ε)

2 − ~F
(ε)
1 ‖2L∞

∫∫
ρ2

1 dz.(3.7)

We aim at controlling ‖~F (ε)
2 − ~F

(ε)
1 ‖2L∞ by the difference g2 − g1 in L2 norm. This cannot be done directly, and

we should use further moment estimates. To be more specific, we will use a splitting that makes ‖g2 − g1‖L2

appear plus an arbitrarily small contribution. To this end, we use Lemma 3.2-ii). For any 1 < s < 2 and any
R > 0, we write

(F
(ε)
2,x − F

(ε)
1,x)2(x, y, t) ≤ ‖δ(ε)‖2L2

(∫
|sgn(ε)(x− x′)|2

1 + |x′|s
dx′
)∫∫

(1 + |x′|s)(g2 − g1)2(x′, y′, t) dx′ dy′

≤ C(ε)

∫∫
(1 + |z|s)(g2 − g1)2(z, t) dz

≤ C(ε)

(∫∫
(g2 − g1)2(z, t) dz +

∫∫
|z|≤R

|z|s(g2 − g1)2(z, t) dz

+

∫∫
|z|>R

|z|s(g2 − g1)2(z, t) dz

)
≤ C(ε)(1 +Rs)

∫∫
(g2 − g1)2(z, t) dz + C(ε)

∫∫
|z|>R

|z|2

|z|2−s
(g2 − g1)2(z, t) dz

≤ C(ε)(1 +Rs)‖(g2 − g1)(t)‖2L2 + C(ε) ‖g2‖L∞ + ‖g1‖L∞
R2−s

∫∫
|z|2|g2 − g1|(z, t) dz

≤ C(ε)(1 +Rs)‖(g2 − g1)(t)‖2L2 + C(ε) ‖g2‖L∞ + ‖g1‖L∞
R2−s

(∫
|z|2g2 dz +

∫
|z|2g1 dz

)
.

The same inequalities obviously hold for F
(ε)
2,y − F

(ε)
1,y . Coming back to (3.7) yields

d

dt

∫∫
(ρ2 − ρ1)2 dz +D

∫∫
|∇(ρ2 − ρ1)|2 dz

≤ 4‖δ(ε)‖2L∞‖g2‖L1

∫∫
(ρ2 − ρ1)2 dz

+
2C(ε)‖ρ1(t)‖2L2

D

(
(1 +Rs)‖(g2 − g1)(t)‖2L2 +

‖g2‖L∞ + ‖g1‖L∞
R2−s

(∫
|z|2g2 +

∫
|z|2g1

))
.
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Bearing in mind that C3 = 4‖δ(ε)‖2∞M0, we are ready to use the Grönwall lemma which leads to

(3.8)

∫∫
(ρ1 − ρ2)2(z, t) dz

≤ eC3T

{∫
(ρ2 − ρ1)2(z, 0) dz

+
2C(ε)‖ρ1‖2L∞(0,T ;L2(R2))(1 +Rs)

D

∫ t

0

∫∫
(g2 − g1)2(z, τ) dz dτ

+
2C(ε)‖ρ1‖2L∞(0,T ;L2(R2))(‖g2‖L∞ + ‖g1‖L∞)

DR2−s

∫ t

0

∫∫
|z|2(g2 + g1)(z, τ) dz dτ

}
.

When ρ1 and ρ2 have the same initial condition the first term of the right hand side vanishes.
Take g ∈ C and consider a sequence

(
gn
)
n∈N ∈ C, such that gn → g in L2([0, T ]× R2). We apply (3.8) with

ρn = T (gn) and ρ = T (g); it reads∫∫
(ρn − ρ)2(z, t) dz

≤ eC3T
2C(ε)‖ρ‖2L∞(0,T ;L2(R2))(1 +Rs)

D

∫ T

0

∫∫
(gn − g)2(z, τ) dz dτ

+eC3T
2C(ε)‖ρ‖2L∞(0,T ;L2(R2))(‖gn‖L∞ + ‖g‖L∞)

DR2−s

∫ T

0

∫∫
|z|2(gn + g)(z, τ) dz dτ

Pick η > 0. Using the bounds that define the set C, it is possible to select R(η) > 0 such that the last term can
be made smaller than η/2, uniformly with respect to n. Then, with this R at hand, there exists N(η) ∈ N such
that for all n ≥ N(η) the first term in the right hand side is smaller than η/2 too. Hence,∫

(ρn − ρ)2(z, t) dz ≤ η

holds for any n ≥ N(η) and 0 ≤ t ≤ T < ∞. It shows that ρn → ρ in L2((0, T ) × R2). Thus T : C → C is
continuous for the strong topology of L2((0, T )× R2). �

3.4. Preparing for the Schauder theorem: T is compact. Let
(
gn
)
n∈N be a sequence in C, and set

ρn = T (gn). Then, from Lemma 3.3, ρn is bounded in L∞
(
0, T ;L2(R2)

)
, and, furthermore, ∇ρn is bounded in

L2
(
(0, T )× R2

)
. We also have

∂tρn = D∇ · ∇ρn −∇ ·
(
~F (ε)[gn]ρn

)
where, by Lemma 3.2-i), ~F (ε)[gn] is bounded in L∞ uniformly with respect to n. Therefore, ∂tρn is bounded in
L2
(
0, T ;H−1(R2)

)
. Since the embedding H1(B(0, R)) ⊂ L2(B(0, R)) is compact for any 0 < R < ∞, we can

appeal to the Aubin-Simon lemma, see [28, Cor. 4, Sect. 8], to deduce that
(
ρn
)
n∈N is relatively compact in

L2((0, T )×B(0, R)) for any 0 < R <∞. We need to strengthen this local property to a global statement. The
moment estimate and the L∞ estimate in Lemma 3.3-i) and ii) respectively, allow us to justify that∫ T

0

∫∫
|z|≥R

|ρn|2 dz dt ≤ ‖ρn‖∞
R2

∫ T

0

∫∫
|z|2ρn dz dt ≤ C(ε, T )

R2

can be made arbitrarily small by choosing R large enough, uniformly with respect to n ∈ N. The sequence(
ρn
)
n∈N thus fulfils the criterion of the Fréchet-Weil-Kolmogorov theorem, see e. g [16, Th. 7.56] and it is thus

relatively compact in L2((0, T )× R2). �

3.5. Schauder theorem: existence. Gathering the results of the previous subsections, we can use Schauder’s
theorem: C is a closed convex subset of L2((0, T ) × R2), T is a continuous mapping such that T (C) ⊂ C and
T (C) is relatively compact in L2((0, T ) × R2). Then T has a fixed point, which is a solution of the nonlinear

regularized PDE (1.5)–(1.6) with initial condition ρ
(ε)
0 , on any arbitrary time interval [0, T ]. The obtained

solution lies in C([0, T ];L2(R2)) ∩ L2(0, T ;H1(R2)). �
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3.6. Uniqueness. The argument to justify uniqueness relies on the following claim, for which we refer the
reader to [17, Lemma 7.1.1] or [11, Th. 3.1].

Lemma 3.4 (Singular Grönwall Lemma). Let A,B ≥ 0, 0 ≤ α < 1. Let u(t) a locally bounded function such
that

u(t) ≤ A+B

∫ t

0

u(s)

(t− s)α
ds

then we have

u(t) ≤ AE1−α

(
BΓ(1− α)t1−α

)
with s 7→ Γ(s) the usual Γ−function and E1−α stands for the Mittag–Leffler function with parameter β = 1−α

Eβ(s) =

∞∑
n=0

sn

Γ(nβ + 1)
.

Let ρ1 and ρ2 be two solutions of the regularized nonlinear PDE. Let

(3.9) Ht(z) =
1

4πDt
e−|z|

2/(4Dt)

stand for the two-dimensional heat kernel with coefficient D. We write

(ρ1 − ρ2)(t) = Ht ? (ρ1 − ρ2)(0)−
∫ t

0

Ht−s ?∇ · (~F (ε)[ρ2]ρ2 − ~F (ε)[ρ1]ρ1)(s) ds,

where, by integrating by parts, the last integral recasts as

+

∫ t

0

∫
∇Ht−s(z − z′) · (~F (ε)[ρ2]ρ2 − ~F (ε)[ρ1]ρ1)(z′, s) dz′ ds.

Initially we have ρ2(0) = ρ1(0) and (with C0 = 1
π

∫∫
|z|e−|z|2 dz) we arrive at∫∫

|ρ1 − ρ2|(z, t) dz ≤
∫ t

0

∫∫
|∇Ht−s(z − z′)| |~F (ε)[ρ2]ρ2 − ~F (ε)[ρ1]ρ1|(z′, s) dz′ dz ds

≤
∫ t

0

C0√
t− s

∫∫
|~F (ε)[ρ2]| |(ρ2 − ρ1))|(z′, s) dz′ ds

+

∫ t

0

C0√
t− s

∫
|~F (ε)[ρ2]− ~F (ε)[ρ1]| ρ1(z′, s)|dz′ ds.(3.10)

Lemma 3.2-i) together with the mass conservation tell us that

‖~F (ε)[ρ2]‖L∞ ≤ 2M0‖δ(ε)‖L∞‖sgn(ε)‖L∞ .
We also have∫∫

ρ1(z, t)|~F (ε)[ρ2]− ~F (ε)[ρ1]|(z, t) dz ≤ 2‖δ(ε)‖L∞‖sgn(ε)‖L∞
∫∫

ρ1(z, t) dz

∫∫
|ρ1 − ρ2|(z′, t) dz′

≤ 2M0‖δ(ε)‖L∞‖sgn(ε)‖L∞
∫∫
|ρ1 − ρ2|(z′, t) dz′.

Introducing this into (3.10) yields, for a certain constant B > 0:

‖ρ1 − ρ2‖L1(t) ≤ B

∫ t

0

1√
t− s

‖ρ1 − ρ2‖L1(s)ds(3.11)

The singular Grönwall lemma allows us to conclude that ρ1 = ρ2. �

Remark 3.5. We remind the reader that the uniqueness analysis for the simpler Keller-Segel system is already
quite involved, and we point out the tricky approach developped in [7] for bounded solutions. However, the
method of [7] does not adapt directly to the present problem for at least two reasons. First of all, since each
component of the force field is defined by a convolution with δ-Dirac in one direction, we cannot expect any
log-Lipschitz-regularizing effect. Second of all, the force field does not derive from a potential, so that there is
no natural energy functional that could lead to make use of variational inequalities.
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4. Convergence of ρ(ε)

We can now state our main result about the existence of solutions for (1.1)–(1.3), which is expressed as a
stability result.

Theorem 4.1. Let ρ
(ε)
0 be a sequence of non negative functions bounded in L1(R2) and in L∞(R2). We

suppose that
∫∫

ρ
(ε)
0 dy dx ≤ M0 and D > 2C2M0 (see (2.6)). Then, up to a subsequence, the associated

sequence
(
ρ(ε)
)
ε>0

converges strongly in Lp((0, T ) × R2) for any 1 ≤ p < ∞, and in C([0, T ];Lp(R2) − weak),

to ρ, which is a solution of (1.1)–(1.2) with initial data ρ0, the weak limit of ρ
(ε)
0 .

4.1. Compactness approach. We remind the reader that we are assuming D > 2C2M0. Accordingly, from
Proposition 2.2, we already know that

(
ρ(ε)
)
ε>0

is bounded in L∞((0, T );Lp(R2)), for any 1 ≤ p ≤ ∞, and

∇ρ(ε) is bounded in L2((0, T )× R2). Moreover, the equation

∂tρ
(ε) = ∇ ·

(
D∇ρ(ε) − ~F (ε)[ρ(ε)]ρ(ε)

)
tells us that ∂tρ

(ε) is the space derivative of the sum of a term bounded in L2((0, T )×R2)) and the divergence
of a term bounded in L∞(0, T ;L1(B(0, R))) for any 0 < R <∞. Indeed, we readily check that∫∫

B(0,R)

|F (ε)
x [ρ(ε)](x, y, t)|dy dx ≤

∫∫
√
x2+y2≤R

∫∫
δ(ε)(y − y′)ρ(ε)(x′, y′, t) dx′ dy′ dy dx

≤
∫ +R

−R
dx

∫∫ (∫
δ(ε)(y − y′) dy

)
ρ(ε)(x′, y′, t) dx′ dy′(4.1)

≤ 2RM0.(4.2)

In fact it turns out that F
(ε)
x [ρ(ε)], like Fx[ρ], is bounded in L∞((0, T ) × R;L1(R)). Hence, ∂tρ

(ε) is bounded
in, say, L2(0, T ;H−1−δ(B(0, R))) for any 0 < R < ∞ and δ > 0. We can apply the Aubin–Simon lemma [28]
and we conclude that

(
ρ(ε)
)
ε>0

is relatively compact in L2((0, T ) × B(0, R)) for any 0 < T,R < ∞. By using

the moments estimate, and reasoning as we did in Section 3.4, we show that ρ(ε) is actually relatively compact
in L2((0, T )× R2).

Therefore, possibly at the price of extracting a subsequence (still labelled by ε, though) we can assume that

ρ(ε) → ρ strongly in L2((0, T )× R2).

The convergence can be strengthened in two directions. First of all, if 1 < p = θ2 + (1 − θ) < 2, the Hölder
inequality leads to ‖ρ(ε) − ρ‖Lp((0,T )×R2) ≤ (2M0)1−θ‖ρ(ε) − ρ‖θL2((0,T )×R2) and if 2 < p < ∞, we have ‖ρ(ε) −
ρ‖Lp((0,T )×R2) ≤ (‖ρ(ε)‖L∞ + ‖ρ‖L∞)(p−2)/p‖ρ(ε) − ρ‖2/pL2((0,T )×R2). We can also treat the case p = 1 since the

L2 estimate and the moment estimate imply that
(
ρ(ε)
)
ε>0

is weakly compact in L1((0, T ) × R2) and we can

assume that it converges a.e., see [16, Th. 7.60]. Finally we get

(4.3) ρ(ε) → ρ strongly in Lp((0, T )× R2) for any 1 ≤ p <∞.
Second of all, the bound on ∂tρ

(ε) can be used to justify, by using the Arzela–Ascoli theorem and a diagonal
extraction, that

lim
ε→0

∫∫
ρ(ε)(x, y, t)φ(x, y) dy dx =

∫∫
ρ(x, y, t)φ(x, y) dy dx

holds for any φ ∈ C(R2), or in Lp
′
(R2), uniformly on [0, T ]. In particular, the initial data passes to the limit

and (1.3) makes sense (with ρ0 the weak limit in Lp(R2) of the extracted sequence
(
ρ

(ε)
0

)
ε>0

).

We are left with the task of passing to the limit in the non–linear term ~F (ε)[ρ(ε)]ρ(ε). To this end, we split as
follows

~F (ε)[ρ(ε)]− ~F [ρ] = ~F (ε)[ρ(ε) − ρ] + (~F (ε)[ρ]− ~F [ρ]).

The first term tends to 0 as a consequence of (4.3) combined with the following claim.

Lemma 4.2. The operator F
(ε)
x (resp. F

(ε)
y ) is, uniformly with respect to ε, continuous from L1(R2) to

L∞(Rx;L1(Ry)) (resp. L∞(Ry;L1(Rx))).
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Proof. For any φ ∈ L1(R2), since |sgn(ε)(x− x′)| ≤ 1, we have∫
|F (ε)
x [φ](x, y)|dy ≤

∫ (∫∫
δ(ε)(y − y′)|φ(x′, y′)|dx′ dy′

)
dy

≤
∫∫ (∫

δ(ε)(y − y′) dy

)
|φ(x′, y′)|dx′ dy′ = ‖φ‖L1 .

�
It remains to investigate, for φ ∈ L1(R2), the behavior of∣∣F (ε)

x [φ]− Fx[φ]
∣∣(x, y) =

∣∣ ∫∫ δ(ε)(y − y′)sgn(ε)(x− x′)φ(x′, y′) dy′ dx′

−
∫ (∫

δ(ε)(y − y′) dy′
)

sgn(x− x′)φ(x′, y) dx′
∣∣

≤
∫∫

δ(ε)(y − y′)
∣∣sgn(ε)(x− x′)φ(x′, y′)− sgn(x− x′)φ(x′, y)

∣∣dy′ dx′.
We integrate with respect to y and, bearing in mind that δ(ε)(y) = 1

εδ(y/ε) with δ the normalized Gaussian,
we use the change of variable y − y′ = εξ; it yields∫ ∣∣F (ε)

x [φ]− Fx[φ]
∣∣(x, y) dy ≤

∫∫∫
δ(ξ)

∣∣sgn(ε)(x− x′)φ(x′, y − εξ)− sgn(x− x′)φ(x′, y)
∣∣dξ dx′ dy

≤
∫∫∫

δ(ξ)
∣∣φ(x′, y − εξ)− φ(x′, y)

∣∣dξ dx′ dy

+

∫∫∫
δ(ξ)φ(x′, y)

∣∣sgn(ε)(x− x′)− sgn(x− x′)
∣∣dξ dx′ dy.

On the right hand side, the first integral recasts as∫
δ(ξ)

(∫∫ ∣∣φ(x′, y − εξ)− φ(x′, y)
∣∣dx′ dy,) dξ

which tends to 0 as ε → 0 by combining the Lebesgue dominated convergence theorem with the continuity of
translation in L1, [16, Cor. 4.14]. The second integral reads∫

δ(ξ) dξ ×
∫∫

φ(x′, y)
∣∣sgn(ε)(x− x′)− sgn(x− x′)

∣∣dx′ dy
The function (x, x′) 7→ |sgn(ε)(x − x′) − sgn(x − x′)| tends to 0 pointwise and it is dominated by 2. Since
ρ ∈ L1(R2), a direct application of the Lebesgue dominated convergence theorem tells us that this quantity

tends to 0 as ε → 0, for any given x ∈ R. Similar reasoning obviously apply to the second component of ~F .
Finally, for any test function ϕ ∈ C∞c (R2), we obtain

lim
ε→0

∫∫
ϕ
(
F (ε)[ρ(ε)]ρ(ε) − F [ρ]ρ

)
dy dx = 0.

Therefore ρ satisfies, in a weak sense, the limit equation (1.1)–(1.2). This completes the proof of Theorem 4.1.
�

4.2. Symmetric solutions. Throughout this Section, we work with data that satisfy the following symmetry
condition

(4.4) ρ0(−x, y) = ρ0(x, y) = ρ0(x,−y).

It will be used to derive further estimates and a stronger convergence result of the regularized solution ρ(ε)

towards the solutions of (1.1)–(1.3). Using the uniqueness property of the solution of the regularized equation
(1.5)–(1.6), we deduce that the symmetry property is preserved by the solutions of (1.1). Accordingly, we get

Fx[ρ](0, y, t) = −
∫

sgn(x′)ρ(x′, y, t) dx′ = 0, Fy[ρ](x, 0, t) = 0.
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However, we know that ∂xFx[ρ] < 0 and ∂yFy[ρ] < 0. Thus, x 7→ Fx[ρ](x, y, t) is non increasing and it vanishes
for x = 0, so that it has the sign of (−x). We deduce that

(x, y) · ~F [ρ](x, y, t) = xFx[ρ](x, y, t) + yFy[ρ](x, y, t) ≤ 0.

A similar property hold with the solutions ρ(ε) of the regularized problem and the force operator ~F (ε)[ρ(ε)].
This will be used to obtain a strengthened control on the behavior of the solutions for large x, y’s: exponential
moments and weighted estimates on the gradients. These estimates will be combined with the interpretation of
(1.1) as a perturbation of the heat equation. Namely, still with Ht the heat kernel (3.9), we shall make use of
the Duhamel formula

(4.5) ρ(x, y, t) = Ht ? ρ0(x, y)−
∫ t

0

Ht−s ?∇ ·
(
~F [ρ]ρ(s, ·)

)
(x, y) ds,

and the analogous formula with ρ(ε).

4.2.1. Strengthened estimates for symmetric solutions. At first, the symmetry property allows us to control
exponential moments.

Lemma 4.3 (Exponential moments). Assume that ρ0 satisfies (4.4) and∫∫
eλ
√

1+x2+y2ρ0(x, y) dy dx = E0(λ) < +∞

for some λ > 0. Then, the solutions of (1.1)–(1.3) satisfy∫∫
eλ
√

1+x2+y2ρ(x, y, t) dy dx ≤ E0(λ)eD(λ2+2λ)t.

The same estimate holds replacing ρ by ρ(ε).

Proof. By using integration by parts, we get

d

dt

∫∫
eλ
√

1+x2+y2ρ(x, y, t) dy dx ≤ D(λ2 + 2λ)

∫∫
eλ
√

1+x2+y2ρ(x, y, t) dy dx

+

∫∫
λeλ
√

1+x2+y2 (x, y) · ~F [ρ]√
1 + x2 + y2

ρ(x, y, t) dy dx.

As consequence of the symmetry assumption, the last term contributes negatively. We end the proof by
integrating with respect to time. �

Using Lq and moments estimates, we can readily obtain a weighted L2 bound; for instance, we have∫∫
eλ
√

1+x2+y2ρ2(x, y, t) dy dx ≤
(∫∫

e2λ
√

1+x2+y2ρ(x, y, t) dy dx

)1/2(∫∫
ρ3 dy dx

)1/2

and a similar estimate holds for ρ(ε). According to Proposition 2.1-i) & iii) and 2.2-i) & iii), it becomes a
relevant estimate for D large enough: when (2.6) holds we have bounds in L1(R2) ∩ L∞(R2), thus on L3(R2).
We finally arrive at

(4.6)

∫∫
eλ
√

1+x2+y2ρ2(x, y, t) dy dx ≤ Ce2Dλ(1+λ)t

where the constant C depends on D, E0(2λ), ‖ρ0‖L1 and ‖ρ0‖L∞ . Again, the same (uniform) estimate is fulfilled
by ρ(ε). �

We need now to specify the class of initial data to which the analysis applies. Addtionally to the symmetry

assumption, we suppose that ρ
(ε)
0 , which is a regularization of ρ0 in (1.3), is such that

(4.7)
there exists p0, p2 ≥ 0 such that for any λ ≥ 0, we have

E0(λ) = sup
ε>0

(∫∫
eλ
√

1+x2+y2ρ
(ε)
0 (x, y) dy dx

)
≤ ep0+p2λ

2

.

Such an assumption clearly holds for uniformly compactly supported data, as well as for Gaussian–like data.
Finally, for our purpose, we will need another estimate for the weighted L2 norm of the gradient, which applies
for the data verifying (4.7).
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Lemma 4.4 (Weighted L2 estimates). Let
(
ρ

(ε)
0

)
ε>0

be a sequence of non negative functions bounded in L1 ∩
L∞(R2). Assume that ρ

(ε)
0 satisfies (4.4) and

sup
ε>0

{∫
|z|4ρ(ε)

0 dz +

∫∫
(1 + |z|2)|ρ(ε)

0 |2 dz

}
<∞.

If D satisfies (2.6), there exists constants B0, B1, B2 > 0, which do not depend on ε nor on t, such that∫∫
(1 + |z|2)(ρ(ε))2 dz ≤ B0 +B1t+B2t

2,∫ t

0

(∫∫
(1 + |z|2)|∇ρ(ε)(z, s)|2

)
ds ≤ B0 +B1t+B2t

2.

Proof. Let us compute (still with the shorthand notation z = (x, y)), by using several integrations by parts,

1

2

d

dt

∫∫
(1 + |z|2)|ρ(ε)|2(z, t) dz = −D

∫∫
(1 + |z|2)|∇ρ(ε)|2 dz + 2D

∫∫
|ρ(ε)|2 dz

+

∫∫
|ρ(ε)|2z · F (ε)[ρ(ε)] dz

−1

2

∫∫
(1 + |z|2)|ρ(ε)|2 ∇ · (~F (ε)ρ(ε)) dz.

The symmetry assumption implies z · F (ε)[ρ(ε)] ≤ 0, which allows us to get rid of the third term in the right

side. We remind the reader that ∇ · (~F (ε)ρ(ε)) = −4T (ε)(ρ(ε)) is proportional to the convolution with an
approximation of the 2D Dirac measure. Hence, we get

1

2

d

dt

∫∫
(1 + |z|2)|ρ(ε)|2(z, t) dz +D

∫∫
(1 + |z|2)|∇ρ(ε)|2 dz

≤ 2D

∫∫
|ρ(ε)|2 dz + 2

∫∫
(1 + |z|2)|ρ(ε)|2 T (ε)(ρ(ε)) dz

≤ 2D

∫∫
|ρ(ε)|2 dz + 2

(∫∫
(1 + |z|2)2ρ(ε) dz

)1/2(∫∫ ∣∣T (ε)(ρ(ε))
∣∣2 ∣∣ρ(ε)

∣∣3 dz

)1/2

≤ 2D

∫∫
|ρ(ε)|2 dz + 2

(
2

∫∫
(1 + |z|4)ρ(ε) dz

)1/2(∫∫
|ρ(ε)|5 dz

)1/2

.

For the last term, we have used Hölder’s inequality as in the proof of Proposition 2.2. We already know that
the L2 and L5 norms of ρ(ε) are uniformly bounded, by virtue of Proposition 2.2. It remains to discuss the
forth order moment. To this end we go back to (2.1): t 7→ m2(t) has a linear growth, hence t 7→ m4(t) have a
quadratic growth with respect to the time variable. We conclude that both∫∫

(1 + |z|2)|ρ(ε)|2(z, t) dz and

∫ t

0

∫∫
(1 + |z|2)|∇ρ(ε)(z, s)|2 dz ds

has at most a quadratic growth, with coefficients independent of ε. �

4.2.2. Cauchy property for ρ(ε). This Section is concerned with the following statement, which strengthens
Theorem 4.1 for symmetric solutions.

Theorem 4.5. We suppose D > 2C2M0 (see (2.6)). Let
(
ρ

(ε)
0

)
ε>0

be a sequence of non negative functions

bounded in L1 ∩ L∞(R2), which satisfies (4.4) and (4.7) and which converges in L1(R2) to some ρ0. Then the
associated sequence

(
ρ(ε)
)
ε>0

of solutions of (1.5)–(1.6) is a Cauchy sequence in C([0, T ];L1(R2)).

Corollary 4.6. Assume D > 2C2M0. Let ρ0 ∈ L1∩L∞(R2) verify (4.4) and (4.7). Then the sequence
(
ρ(ε)
)
ε>0

of solutions of (1.5)–(1.6) with initia data ρ0 converges in C([0, T ];L1(R2)) to ρ, the unique symmetric solution
of (1.1)–(1.3) with the same initial data.
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We make use of (4.5), which leads to

(4.8)

∫∫
|ρ(ε) − ρ(ε′)|(z, t) dz ≤

∫
Ht ? |ρ(ε)

0 − ρ
(ε′)
0 |(z) dz

+

∫ t

0

∫∫ ∣∣∣∇Ht−s ?
[(
~F (ε)[ρ(ε)]ρ(ε) − ~F (ε′)[ρ(ε′)]ρ(ε′)

)
(s, ·)

]∣∣∣ (z) dz ds.

We dominate the right hand side by the sum of the following four terms

Aε,ε′(t) =

∫∫
R2

Ht ? |ρ(ε)
0 − ρ

(ε′)
0 |(z) dz,

Bε,ε′(t) =

∫ t

0

∫∫∫∫
|∇Ht−s(z − z′)| |~F (ε)[ρ(ε)](z′, s)| |ρ(ε) − ρ(ε′)|(z′, s) dz′ dz ds,

Cε,ε′(t) =

∫ t

0

∫∫∫∫
|∇Ht−s(z − z′)| ρ(ε′)(z′, s) |~F (ε)[ρ(ε) − ρ(ε′)](z′, s)|dz′ dz ds,

Dε,ε′(t) =

∫ t

0

∫∫ ∣∣∣∣∫∫ ρ(ε′)(z′, s) ∇Ht−s(z − z′) ·
(
~F (ε)[ρ(ε′)]− ~F (ε′)[ρ(ε′)](z′, s)

)
dz′
∣∣∣∣ dz ds.

Since ρ
(ε)
0 → ρ0 in L1(R2), it is clear that

(4.9) lim
ε,ε′→0

(
sup
t≥0

Aε,ε′(t)

)
= 0

uniformly on any time interval [0, T ]. Next, we are going to justify the following claim.

Lemma 4.7. Let α = 1√
2

. Set

ϕ(λ) = 2Dλ(1 + α)
(
1 + λ(1 + α)

)
.

Then there exists constant β1, β2 > 0 such that, for any R > 0 we have

(4.10) Bε,ε′(t) ≤ β1R‖ρ(ε)‖L∞
∫ t

0

1√
t− s

‖(ρ(ε) − ρ(ε′))(s, ·)‖L1 ds+ β2

√
t

λ
e−αλReϕ(λ)t.

The constant β1 does not depend on the data, while β2 depends on E0(2λ(1 + α)).

Proof. In Section 3.6, we already used the basic estimate

(4.11)

∫∫
|∇Ht−s(z − z′)|dz′ ≤

C0√
t− s

for a certain constant C0. We have∫∫
|F (ε)[ρ(ε)](z′)||ρ(ε) − ρ(ε′)|(z′) dz′

≤
∫∫∫∫

ρ(ε)(x1, y1)δ(ε)(y′ − y1)|ρ(ε) − ρ(ε′)|(x′, y′) dx′ dy′ dx1 dy1

≤
∫∫∫∫

x2
1+y21≤R2

...dx′ dy′ dx1 dy1 +

∫∫∫∫
x2
1+y21≥R2

...dx′ dy′ dx1 dy1.

We dominate the first integral as follows∫∫∫∫
x2
1+y21≤R2

...dx′ dy′ dx1 dy1

≤ ‖ρ(ε)‖L∞
∫
x1≤R

(∫
δ(ε)(y′ − y1) dy1

)
|ρ(ε) − ρ(ε′)|(x′, y′) dy′ dx′

≤ 2R‖ρ(ε)‖L∞‖ρ(ε) − ρ(ε′)‖L1 .
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Next, we have ∫∫∫∫
x2
1+y21≥R2

...dx′ dy′ dx1 dy1

≤
∫∫∫∫

x2
1+y21≥R2

ρ(ε)(x1, y1)ρ(ε)(x′, y′)δ(ε)(y′ − y1) dx′ dy′ dx1 dy1

+

∫∫∫∫
x2
1+y21≥R2

ρ(ε)(x1, y1)ρ(ε′)(x′, y′)δ(ε)(y′ − y1) dx′ dy′ dx1 dy1

where the two terms can be treated with the same approach. We make the exponential moment appear and we
use the Cauchy-Schwarz inequality to obtain, for instance,

(4.12)

∫∫∫∫
x2
1+y21>R

2

ρ(ε)(x1, y1)δ(ε)(y − y1)ρ(ε)(x, y) dx1 dy1 dxdy

≤ 1

2

∫∫∫∫
x2
1+y21>R

2

eλ
√

1+x2
1+y21e−λ

√
1+x2+y2 |ρ(ε)|2(x1, y1)δ(ε)(y − y1) dx1 dy1 dx dy

+
1

2

∫∫∫∫
x2
1+y21>R

2

e−λ
√

1+x2
1+y21eλ

√
1+x2+y2 |ρ(ε)|2(x, y)δ(ε)(y − y1) dx1 dy1 dxdy.

The elementary inequality

α(|x|+ |y|) ≤
√

1 + x2 + y2

allows us to estimate ∫
e−λ
√

1+x2+y2 dx ≤ e−αλ|y| 2

αλ
.

Hence the first integral in the right hand side of (4.12) is dominated by∫∫
x2
1+y21>R

2

(∫
δ(ε)(y − y1)

(∫
e−λ
√

1+x2+y2 dx

)
dy

)
eλ
√

1+x2
1+y21 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ

∫∫
x2
1+y21>R

2

(∫
δ(ε)(y − y1)e−αλ|y| dy

)
eλ
√

1+x2
1+y21 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ

∫∫
x2
1+y21>R

2

eλ
√

1+x2
1+y21 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ

∫∫
x2
1+y21>R

2

e−λα
√

1+x2
1+y21eλ(1+α)

√
1+x2

1+y21 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ
e−λαR

∫∫
eλ(1+α)

√
1+x2

1+y21 |ρ(ε)|2(x1, y1) dx1 dy1

≤ C 2

αλ
e−λαR e2Dλ(1+α)(1+(1+α)λ)t

where we have used (4.6) and the constant C > 0 depends on E0(2λ(1 + α)). Next, we observe that∫∫
1x2

1+y21>R
2e−λ

√
1+x2

1+y21 dx1 ≤ e−αλ|y1|
∫

1x2
1+y21>R

2e−αλ|x1| dx1 ≤
2

αλ
e−αλ(|y1|+g(y1))

where
g(y) = 1|y|≤R

√
R2 − y2.

As a matter of fact, for any y ∈ R, we have |y|+ g(y) ≥ R, so that∫
1x2

1+y21>R
2e−λ

√
1+x2

1+y21 dx1 ≤
2

αλ
e−αλR.

The second integral of the right hand side in (4.12), is thus dominated by∫∫ (∫ (∫
1x2

1+y21>R
2e−λ

√
1+x2

1+y21 dx1

)
δ(ε)(y − y1) dy1

)
eλ
√

1+x2+y2 |ρ(ε)|2(x, y) dxdy

≤ 2

αλ
e−αλR

∫∫ (∫
δ(ε)(y − y1) dy1

)
eλ
√

1+x2+y2 |ρ(ε)|2(x, y) dxdy

≤ C ′ 2

αλ
e−αλR e2Dλ(1+λ)t
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where we have used (4.6) again and C ′ here depends on E0(2λ). We finally conclude (note that λ(1 + α) > λ)
that ∫∫

|F (ε)[ρ(ε)](z′, s)||ρ(ε) − ρ(ε′)|(z′, s) dz′

≤ 2R‖ρ(ε)‖L∞‖(ρ(ε) − ρ(ε′))(s)‖L1 +
C

αλ
e−αλReϕ(λ)t

with C depending on E0(2λ(1 +α)) ≥ E0(2λ). We combine this inequality to (4.11) to obtain the final estimate
on Bε,ε′ . �

Lemma 4.8. There exists constant γ1, γ2 > 0 such that, for any R > 0 we have

(4.13) Cε,ε′(t) ≤ γ1R‖ρ(ε)‖L∞
∫ t

0

1√
t− s

‖(ρ(ε) − ρ(ε′))(s, ·)‖L1 ds+ γ2

√
t

λ
e−αλReϕ(λ)t.

The constant γ1 does not depend on the data, while γ2 depends on E0(2λ(1 + α)).

Proof. The same reasoning applies for Cε,ε′ . Indeed, we can first integrate ∇Ht−s(z − z′) over z, which leads

to the analog of (4.11). Estimating ~F (ε), we are left with

Cε,ε′(t) ≤
∫ t

0

C0√
t− s

∫∫
ρ(ε′)(x′, y′, s)|ρ(ε) − ρ(ε′)|(x1, y1, s))δ

(ε)(y′ − y1) dx1 dy1 dx′ dy′ ds

which is exactly the same expression that appeared in the analysis of Bε,ε′ . �
We turn to the analysis of Dε,ε′ .

Lemma 4.9. Let 0 < T <∞. Then Dε,ε′(t) converges to 0, uniformly over [0, T ] as ε, ε′ tend to 0

Proof. We evaluate Dε,ε′ through the following splitting

Dε,ε′(t) ≤ Dx,1(t) +Dx,2(t) +Dy,1(t) +Dy,2(t)

with

Dx,1(t) =

∫ t

0

∫∫ ∣∣∣∣∫∫∫∫ ∂xHt−s(x− x′, y − y′)ρ(ε′)(x′, y′, s)ρ(ε′)(x”, y”, s)

× sgn(ε)(x′ − x”)
(
δ(ε)(y′ − y”)− δ(ε′)(y′ − y”)

)
dx′ dy′ dx” dy”

∣∣∣ dxdy ds

Dx,2(t) =

∫ t

0

∫∫ ∣∣∣∣∫∫∫∫ ∂xHt−s(x− x′, y − y)ρ(ε′)(x′, y′, s)ρ(ε′)(x”, y”, s)

× δ(ε′)(y′ − y”)
(
sgn(ε)(x′ − x”)− sgn(ε′)(x′ − x”)

)
dx′ dy′ dx” dy”

∣∣∣ dxdy ds

Dy,1(t) =

∫ t

0

∫∫ ∣∣∣∣∫∫∫∫ ∂xHt−s(x− x′, y − y′)ρ(ε′)(x′, y′, s)ρ(ε′)(x”, y”, s)

× sgn(ε)(y′ − y”)
(
δ(ε)(x′ − x”)− δ(ε′)(x′ − x”)

)
dx′ dy′ dx” dy”

∣∣∣ dxdy ds

Dy,2(t) =

∫ t

0

∫∫ ∣∣∣∣∫∫∫∫ ∂yHt−s(x− x′, y − y)ρ(ε′)(x′, y′, s)ρ(ε′)(x”, y”, s)

× δ(ε′)(x′ − x”)
(
sgn(ε)(y′ − y”)− sgn(ε′)(y′ − y”)

)
dx′ dy′ dx” dy”

∣∣∣ dxdy ds.

In order to study Dx,1, we make use of the following quantity∫∫
∂xHt−s(x− x′, y − y′)ρ(ε′)(x′, y′, s)Iε,ε′(x′, y′, s) dx′ dy′

with

Iε,ε′(x′, y′, s) =

∫∫
ρ(ε′)(x”, y”, s)sgn(ε)(x′ − x”)

(
δ(ε)(y′ − y”)− δ(ε′)(y′ − y”)

)
dx” dy”.
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Since δ(ε)(u) = 1
2

d
du sgn(ε)(u), the latter can be rewritten by integrating by parts

Iε,ε′(x′, y′, s) =
1

2

∫∫
∂yρ

(ε′)(x”, y”, s)sgn(ε)(x′ − x”)
(
sgn(ε)(y′ − y”)− sgn(ε′)(y′ − y”)

)
dx” dy”.

The Cauchy-Schwarz inequality yields

|Iε,ε′(x′, y′, s)| ≤
1

2

(∫∫
(1 + |x”|2)

∣∣∂yρ(ε′)(x”, y”, s)
∣∣2 dx” dy”

)1/2

×
(∫

dx”

1 + |x”|2

∫ ∣∣sgn(ε)(y′ − y”)− sgn(ε′)(y′ − y”)
∣∣2 dy”

)1/2

≤
√
π

2

(∫∫
(1 + |z”|2)|∇ρ(ε′)(z”, s)|2 dz”

)1/2√
∆ε,ε′(y′),

where

∆ε,ε′(y
′) =

∫ ∣∣sgn(ε)(y′ − y”)− sgn(ε′)(y′ − y”)
∣∣2 dy”

=
2

π

∫ ∣∣∣ ∫ y′−y”

0

e−
v2

2ε2
dv

ε
−
∫ y′−y”

0

e
− v2

2|ε′|2
dv

ε′

∣∣∣2 dy”

=
2

π

∫ ∣∣∣ ∫ u/ε

u/ε′
e−v

2/2 dv
∣∣∣2 du.

In particular this quantity does not depend on y′. Clearly, for any fixed u ∈ R, we have

lim
ε,ε′→0

(∫ u/ε

u/ε′
e−v

2/2 dv

)
= 0.

Furthermore, for 0 < ε, ε′ � 1, it can be dominated as follows∣∣∣∣∣
∫ u/ε

u/ε′
e−v

2/2 dv

∣∣∣∣∣ =

∣∣∣∣∣
∫ u/ε

u/ε′
e−v

2/4 e−v
2/4 dv

∣∣∣∣∣ ≤ e−u2/2

∫
e−v

2/4 dv

which lies in L2(R). Therefore the Lebesgue theorem tells us that

lim
ε,ε′→0

∆ε,ε′ = 0.

We go back to Dx,1 that we split into

Dx,1(t) =

∫ t−η

0

...ds+

∫ t

t−η
...ds

with 0 < η � t ≤ T <∞ to be determined. The integral on (0, t− η) can be estimated owing to the previous
manipulations and the Cauchy–Schwarz inequality; we get∣∣∣∣∫ t−η

0

...ds

∣∣∣∣ ≤ ‖ρ(ε)‖L∞
∫ t−η

0

C0√
t− s

sup
x′,y′
|Iε,ε′(x′, y′, s)|ds

≤ C0
√
π

2
‖ρ(ε)‖L∞

√
∆ε,ε′

(∫ t−η

0

ds

t− s

)1/2(∫ t−η

0

∫∫
(1 + |z|2)|∇ρ(ε)(z, s)|2 dsdz

)1/2

≤ CT
√

∆ε,ε′
√

ln(t/η)

for a certain CT > 0, that comes from the estimates in Lemma 4.4. For the integral over (t − η, t), we claim
that we can find a constant, still denoted CT > 0, such that∣∣∣∣∫ t

t−η
...ds

∣∣∣∣ ≤ ∫ t

t−η

C0√
t− s

∫∫∫∫ [
δ(ε)(y′ − y”) + δ(ε′)(y′ − y”)

]
(4.14)

×ρ(ε)(x′, y′, s)ρ(ε′)(x”, y”, s) dx′ dy dx” dy” ds

≤ CT
√
η.
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This conclusion follows from uniform bounds (with respect to ε, ε′ and s) of expressions like

Jε,ε′(s) =

∫
δ(ε)(y′ − y”)ρ(ε)(x′, y′)ρ(ε′)(x”, y”) dz′ dz”.

Let us set

ρ̃(ε)(x”, y′, s) =

∫
δ(ε)(y′ − y”)ρ(ε)(x”, y”, s) dy”.

We control Jε,ε′(s) by using moments. Indeed, we get

Jε,ε′(s) =

∫∫∫
ρ(ε)(x′, y′, s)ρ̃(ε′)(x”, y′, s) dx′ dy′ dx”

≤ 1

2

∫∫∫
1 + x′2

1 + x”2
|ρ(ε)|2(x′, y′, s) dx′ dy′ dx”

+
1

2

∫∫∫∫
1 + x”2

1 + x′2
|ρ̃(ε′)|2(x”, y′, s) dx′ dy′ dx”

≤ π

2

∫∫
(1 + x2)|ρ(ε)|2(x, y, s) dxdy +

π

2

∫∫
(1 + x2)|ρ̃(ε′)|2(x, y, s) dx dy.

Owing to Lemma 4.4 (this is where we need the assumption D > 2C2M0), we already know that the first
integral in the right hand side is bounded (the constant depends on the final time). For the second term, we
simply write ∫∫

(1 + x2)|ρ̃(ε′)|2(x, y, s) dxdy

≤
∫∫

(1 + x2)

∣∣∣∣∫ √δ(ε)(y − y′)
√
δ(ε)(y − y′)ρ(ε)(x, y′, s) dy′

∣∣∣∣2 (x, y, s) dxdy

≤
∫∫

(1 + x2)

{∫
δ(ε)(y − y′) dy′ ×

∫
δ(ε)(y − y′)|ρ(ε)(x, y′, s)|2 dy′

}
dxdy

≤
∫∫

(1 + x2)|ρ(ε)(x, y′, s)|2
(∫

δ(ε)(y − y′) dy

)
dxdy′

≤
∫∫

(1 + x2)|ρ(ε)(x, y′, s)|2 dxdy′

which is thus also bounded uniformly with respect to ε, ε′ > 0 and 0 ≤ s ≤ T <∞. Finally, we arrive at

|Dx,1(t)| ≤ CT
(√

ln(t/η)
√

∆ε,ε′ +
√
η
)

which holds for any 0 < η � t ≤ T <∞. It shows that lim(ε,ε′)→0Dx,1(t) = 0 uniformly on [0, T ].

The analysis of Dx,2 is simpler; it relies on the following observation∣∣∣∣∫∫ δ(ε′)(y′ − y”)
(
sgn(ε)(x′ − x”)− sgn(ε′)(x′ − x”)

)
ρ(ε′)(x”, y”, s) dx” dy”

∣∣∣∣
≤ ‖ρ(ε′)‖∞

∫
|sgn(ε)(x′ − x”)− sgn(ε′)(x′ − x”)|dx”

≤
√

2

π

∫ ∣∣∣ ∫ u/ε

u/ε′
e−v

2/2 dv
∣∣∣du = ∆̃ε,ε′ .

A straightforward adaptation of the argument used for studying ∆ε,ε′ shows that limε,ε′→0 ∆̃ε,ε′ = 0 and we
have

|Dx,2(t)| ≤
∫ t

0

C0√
t− s

‖ρ(ε)(s, ·)‖L1 ∆̃ε,ε′ ds ≤ CT ∆̃ε,ε′

for any 0 ≤ t ≤ T <∞. Of course, Dy,1 and Dy,2 can be dealt with in a similar manner. �
Coming back to (4.8), we arrive at

(4.15) ‖(ρ(ε) − ρ(ε′))(t, ·)‖L1 ≤
(
Aε,ε′ + Ã(R, λ)

)
+ B(R)

∫ t

0

‖(ρ(ε) − ρ(ε′))(s, ·)‖L1√
t− s

ds,
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which holds for any 0 ≤ t ≤ T <∞ and 0 < R <∞ with

(4.16)

Aε,ε′ = sup
0≤t≤T

Aε,ε′(t) + sup
0≤t≤T

Dε,ε′(t),

Ã(R, λ) = (β2 + γ2)
1 + λ

λ2

√
Teϕ(λ)T e−αλR,

B(R) = (β1 + γ1)RM,

with M = supε>0 ‖ρ(ε)‖L∞ , which is known to be finite. We should bear in mind the fact that β2 and γ2 depend
on λ too, through the exponential moments E0(2λ(1 +α)). Applying the singular Grönwall Lemma 3.4 leads to

‖(ρ(ε) − ρ(ε′))(t, ·)‖L1 ≤
(
Aε,ε′ + Ã(R, λ)

)
E1/2

(B(R)

2

√
t
)
.

We remind the reader that the Mittag–Leffler function is explicitely known

E1/2(z) =

∞∑
k=0

zk

Γ(1 + k/2)
= ez

2

erfc(−z) =
2√
π
ez

2

∫ z

−∞
e−u

2

du.

We are paying attention to the term Ã(R, λ)E1/2

(B(R)

2

√
t
)

. This is where we make use of (4.7) to control

E0(2λ(1 + α)) in the coefficients β2, γ2. As far as λ ≥ 1, we have ϕ(λ) ≤ 4D(1 + α)2λ2. Therefore, up to some
irrelevant constant hereafter denoted by K > 0, the quantity of interest can be dominated by

√
T

λ
exp

(
(DT + p2)4(1 + α)2λ2 − αRλ+ p0 +

(β1 + γ1)2M2

4
TR2

)
.

The exponent recasts as

4(DT + p2)(1 + α)2
(
λ− αR

8(DT + p2)(1 + α)2

)2

−R2
( α2

16(DT + p2)(1 + α)2
− (β1 + γ1)2M2

4
T
)

+ p0.

We start by picking 0 < T < T? small enough, so that

α2

16(DT + p2)(1 + α)2
− (β1 + γ1)2M2

4
T ≥ α2

8p2(1 + α)2
= q2 > 0

holds for any 0 ≤ t ≤ T?. Next, let ω > 0. We can find R = R(ω) large enough so that

K
√
T ep0e−R

2q2 ≤ ω

2

holds. Possibly enlarging R(ω), we also suppose that

αR

8(DT + p2)(1 + α)2
≥ 1.

We then make use of the estimates with

λ =
αR

8(DT + p2)(1 + α)2

which leads to

Ã(R, λ)E1/2

(B(R)

2

√
t
)
≤ ω

2
.

Finally, there exists ε(ω) > 0 small enough such that for any 0 < ε, ε′ ≤ ε(ω) we get

Aε,ε′E1/2

(B(R)

2

√
t
)
≤ ω

2
.

It follows that

‖(ρ(ε) − ρ(ε′))(t, ·)‖L1 ≤ ω
holds for any 0 ≤ t ≤ T ≤ T?, provided 0 < ε, ε′ ≤ ε(ω). We extend this result on any time interval by repeating
the reasoning on subintervals of length smaller than T?. Therefore

(
ρ(ε)
)
ε>0

is a Cauchy sequence in the Banach

space C([0, T ], L1(R2)) and it converges strongly to a solution of (1.1)–(1.3). The proof can be readily adapted
to establish the uniqueness of the solution of (1.1)–(1.3) for a symmetric initial data verifying (4.7). �
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4.2.3. A convergence rate for ρ(ε). Following the same strategy as in the proof of Theorem 4.5, it is possible to
give a rate of convergence for ρ(ε).

Theorem 4.10. Let T be a fixed time and assume D > 2C2M0. Let ρ(ε) be the symmetric solutions of (1.5)–
(1.6) with initial data ρ0 (ρ0 is assumed to be symmetric), and let ρ be the symmetric solution of (1.1)–(1.2)
with same initial data ρ0. Then there exist constants C(ρ0, T ) and 0 < ν(ρ0, T ) < 1 depending on both ρ0 and
T , such that

(4.17) sup
t∈[0,T ]

||(ρ(ε) − ρ)(t)||L1 ≤ C(ρ0, T )ε
1
2ν(ρ0,T )

Remark 4.11. Observe that ν(ρ0, T ) is always smaller than 1, and it has the following asymptotic behavior

lim
T→0

ν(ρ0, T ) = 1, lim
T→+∞

ν(ρ0, T ) = 0,

for any ρ0. Note the 1/2 factor: with the present proof the convergence rate cannot be better than ε1/2.

Proof. The idea is to revisit the computations in Section 4.2.2, in order to estimate more accurately the distance
between ρ(ε) and ρ, solution of the singular PDE. Since we have used estimates that are uniform with respect
to ε, we may simply take ε′ = 0 in the computations performed above. It leads to the following observations:

• A term: We take the same initial condition for ρ(ε) and ρ, hence the error related to the initial condition
simply vanishes: Aε(t) = 0.

• B and C terms: We use Lemmas 4.7 and 4.8, with ε′ = 0.

• D term: We need to estimate

∆ε =
4

π

∫ ∞
0

∣∣∣∣∣
∫ ∞
u/ε

e−v
2/2 dv

∣∣∣∣∣
2

du.

Since v2/2 ≥ x2/2 + x(v − x), we get∫ ∞
x

e−v
2/2 dv ≤ e−x

2/2

∫ ∞
0

e−xs ds ≤ e−x
2/2

x
.

Thus, for any α > 0 we obtain

∆ε ≤ 4

π

(∫ α

0

√
π

2
du+

∫ ∞
α

ε2

u2
e−u

2/ε2 du

)
≤ 4

π

(
α

√
π

2
+ ε

∫ ∞
α/ε

1

s2
e−s

2

ds

)
.

Choosing α = ε, this relation yields
∆ε ≤ Cε

where C is an absolute constant. A very similar reasoning applied to

∆̃ε = 2

√
2

π

∫ ∞
0

∣∣∣∣∣
∫ ∞
u/ε

e−v
2/2 dv

∣∣∣∣∣ du

yields

∆̃ε ≤ Cε
where again C is an absolute constant.

The estimate for Dx,1(t) reads, for any 0 < η < t,

|Dx,1(t)| ≤ CT
(√

∆ε

√
ln(t/η) +

√
η
)
.

Choosing η = ∆ε (it is possible to do marginally better), we obtain, at the price of modifying CT ,

|Dx,1(t)| ≤ CT
√

∆ε

√
ln(t/∆ε) ,
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which, according to the above estimate for ∆ε, yields

|Dx,1(t)| ≤ CT
√
ε
√

ln(t/ε).

Since Dx,2 ≤ CT ε, we see that Dx,1 is the largest contribution to Dε.

We use now (4.15)–(4.16) of the previous section with ε′ = 0:

||(ρ(ε) − ρ)(t)||L1 ≤ (Aε + Ã(R, λ))E1/2

(
(β1 + γ1)2M2R2T

4

)
.(4.18)

The contribution to Aε coming from the initial condition vanishes, since we choose the same initial condition for
ρ(ε) and ρ. The second contribution to Aε comes from the ”D terms”, which are smaller than CT

√
ε
√

ln(T/ε).

We can play the same game as in the proof of the Cauchy property: write E1/2(z) ≤ cez
2

for some c, and
observe that the exponent in (4.18) can be rewritten as

(4.19) 4(DT + p2)(1 + α)2

(
λ− αR

8(DT + p2(1 + α)2

)2

−R2

(
α2

4(DT + p2)(1 + α)2
− (β1 + γ1)2M2T

4

)
+ p0.

We choose T = T ∗ small enough so that the second term, proportional to R2 is negative, which means

α2

4(DT ∗ + p2)(1 + α)2
− (β1 + γ1)2M2T ∗

4
= q2(T ∗) > 0

Then we choose λ such that the first term in (4.19) vanishes. We finally obtain

(4.20) sup
t∈[0,T∗]

||(ρ(ε) − ρ)(t)||L1 ≤ CAε exp (KT∗R
2) + C ′ exp (−q2R

2)

where C and C ′ depend on T ∗, and

KT =
(β1 + γ1)2M2T

4
.

We now choose R to minimize the right hand side of (4.20). For instance, taking R such that

exp [−(KT∗ + q2(T ∗))R2] = Aε
yields, for a modified C,

(4.21) sup
t∈[0,T∗]

||(ρ(ε) − ρ)(t)||L1 ≤ C
[√

ε
√

ln(T ∗/ε)
]ν̄
.

with

ν̄ =
q2(T ∗)

KT∗ + q2(T ∗)

Slightly decreasing ν̄ to absorb the logarithmic term, this proves the claim for any T < T ∗. For T > T ∗, we
divide [0, T ] into subintervals of size T ∗, and apply the previous strategy for each subinterval. We have to take
into account the error related to initial condition at the beginning of each subinterval. This error is given by
the total error at the end of the previous subinterval. Thus we have to reintroduce an error related to initial

data. Calling Ek the bound on the error at the end of the interval [(k − 1)T ∗, kT ∗], and A(k)
ε the Aε term to

be considered on the interval [kT ∗, (k + 1)T ∗], we have

A(k)
ε ≤ CT∗

√
ε
√

ln(T ∗/ε) + CT∗Ek ≤ CT∗Ek,

where CT∗ can take different values, but remains a constant depending on ρ0, T
∗, and not on ε. With the same

reasoning as above, we conclude with

Ek+1 ≤ CT∗Eν̄k .
Since T ∗ is of order 1, we have to repeat the argument on a finite number of subintervals to reach the prescribed
time T . Each iteration of course decreases the convergence rate, and increases the prefactor, but for any T , we
can guarantee a finite ν, as claimed. �
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5. Particle approximation

We consider now an N -particle description of the dynamics. Namely, let Z
(ε)
i = (X

(ε)
i , Y

(ε)
i ) be the solution

of the stochastic differential system

dX
(ε)
i,t =

1

N

∑
j 6=i

K(ε)
x (Z

(ε)
i,t − Z

(ε)
j,t ) dt+

√
2D dBi,x,t,(5.1)

dY
(ε)
i,t =

1

N

∑
j 6=i

K(ε)
y (Z

(ε)
i,t − Z

(ε)
j,t ) dt+

√
2D dBi,y,t,(5.2)

where Bi,x and Bi,y are independent Brownian motions. Here and below, the interaction kernel is given by

K(ε)
x (z) = −sgn(ε)(x)δ(ε)(y)

K(ε)
y (z) = −sgn(ε)(y)δ(ε)(x),

with z = (x, y). It is then clear that ‖K(ε)
x ‖Lip = C/ε2, and the same holds true for K

(ε)
y . We assume that the

initial conditions for the particles’ trajectories

Z
(ε)
i,t

∣∣∣
t=0

= Z
(ε)
i,0

are independent random variables, with common law ρ0. In the discussion, we naturally assume that ρ0 is a
probability density. Accordingly, for both ρ and ρ(ε) solutions of (1.1) and (1.5) respectively, associated to the
initial data ρ0, we have ∫∫

ρdz =

∫∫
ρ(ε) dz =

∫∫
ρ0 dz = 1.

Moreover, we assume throughout this section that ρ0 is such that the symmetric existence theorem works as
we shall use the rate of convergence established in this framework. We associate to the solutions of this system
(5.1)–(5.2), the empirical measure

ρ̂(ε),N =
1

N

N∑
i=1

δ(z − Z(ε)
i ).

Note that the interaction force in (5.1)–(5.2) has been rescaled by the 1/N factor (roughly speaking we have
replaced the kernel K(ε) by 1

NK
(ε)), so that the total force exerted on a given particle remains of order 1; this is

the so–called mean field regime. We refer the reader to the surveys [4, 15] for an introduction to such regimes.
The goal of this section is to investigate the convergence of this particle approximation to ρ, the solution of the
singular PDE (1.1) in the regime N →∞, ε→ 0.

The analysis uses the Wasserstein distance, see [12, 30] for a thorough discussion on this notion. The Wasser-
stein distance W1(µ, ν) between two probability measures µ, ν on R2 is defined as

W1(µ, ν) = sup

{∣∣∣∣∫ ϕ(z)µ(dz)−
∫
ϕ(z)ν(dz)

∣∣∣∣ , ‖ϕ‖Lip ≤ 1

}
,

where

‖ϕ‖Lip = sup
x 6=y, x,y∈R2

|ϕ(x)− ϕ(y)|
|x− y|

.

Note that W1 determines the topology of tight convergence on the space of probability measures on R2, see [30,
Chap. 6].

Wasserstein metric is well defined on the set of probability measures with finite first moment. This is the case
for ρ, the solution of the original PDE (1.1), see Proposition 2.1 as well as ρ(ε), the solution of the regularized
PDE (1.5), see Proposition 2.2. It also holds true for the particle approximations ρ̂(ε),N (they are finite sums
of Dirac delta distributions).

It turns out that W1 is a well adapted tool to investigate the limit N →∞, see [4, 12, 15, 29]. The strategy
is to write

W1(ρ̂(ε),N , ρ) ≤W1(ρ̂(ε),N , ρ(ε)) +W1(ρ(ε), ρ),
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where ρ(ε) is the solution of the regularized PDE (1.5). The second term is controlled by the rate of convergence
established in the previous section, and the first one by adapting “standard” MacKean–Vlasov estimates, as we
are going to detail now. According to [29], we start by introducing an auxiliary system of interacting particles.
The solution ρ(ε) of the regularized PDE is also the law of the solution of the system of SDE

dX̃
(ε)
i = (K(ε)

x ? ρ(ε))(Z̃
(ε)
i ) dt+

√
2D dBi,x,(5.3)

dỸ
(ε)
i = (K(ε)

y ? ρ(ε))(Z̃
(ε)
i ) dt+

√
2D dBi,y.(5.4)

Note that both Z
(ε)
i = (X

(ε)
i , Y

(ε)
i ) and Z̃

(ε)
i = (X̃

(ε)
i , Ỹ

(ε)
i ) are driven by the same Brownian motions and

we choose them to have the same initial condition. The system of stochastic differential equations (5.3)–(5.4)

(respectively (5.1)–(5.2)) has a unique solution, as the coefficients (t, z) 7→ K
(ε)
x ?ρ(ε)(z) and (t, z) 7→ K

(ε)
y ?ρ(ε)(z)

are Lipschitz with respect to z and continuous with respect to t. Moreover, the law µ(ε) of Z̃
(ε)
i = (X̃

(ε)
i , Ỹ

(ε)
i )

is a (weak) solution of

∂tµ
(ε) = ∇ ·

(
(−K(ε) ? ρ(ε))µ(ε)

)
+D∆µ(ε)

µ(ε)
∣∣∣
t=0

= ρ0.

Since this equation has a unique solution, and ρ(ε) is a solution, it follows that µ(ε) = ρ(ε). We define ρ̃(ε),N to

be the empirical measure associated with the Z̃
(ε)
i :

ρ̃(ε),N =
1

N

N∑
i=1

δ(z − Z̃(ε)
i ).

The following statement is an immediate corollary of Theorem 1 in [14]:

Proposition 5.1. Let 0 < T < ∞. Assume that there exist q > 2 and a constant C = C(T ), that depends on
T but is independent of ε, such that

(5.5) sup
t∈[0,T ]

∫
|z|qρ(ε)(dz) ≤ C.

Then there exists a constant C̃ = C̃(T ) independent of ε such that

(5.6) sup
t∈[0,T ]

E[W1(ρ̃(ε),N , ρ(ε))] ≤ C̃√
N

log (1 +N).

The uniform bound (5.5) holds true if, for example, the initial measure ρ0 has a finite third moment. To
prove this, one uses an argument similar to that in Proposition 2.2–iv (in effect one uses the same proof as that
used for the a priori bound deduced for the original measure ρ in Proposition 2.1–iv). We state and prove now
the main result of the section.

Theorem 5.2. Let 0 < T <∞ be a fixed time. Under the same conditions as in Theorem 4.10, we have

(5.7) sup
t∈[0,T ]

E[W1(ρ̂(ε),N , ρ)] ≤ C̃e
2CT
ε2

√
N

log (1 +N) + Cρε
1
2νρ ,

where C̃ = C̃(T ) is the constant defined in Proposition 5.1, C is the Lipschitz constant of ε2K(ε) and Cρ =
C(ρ0, T ), respectively, νρ = ν(ρ0, T ) are the constants arising from Theorem 4.10.

In particular, for any δ ∈ (0, 1
2 ), there exists εN = ε(δ,N), a sequence ρ̂(εN ),N and a constant C̃ρ = C̃ρ(δ)

independent of N such that

(5.8) sup
t∈[0,T ]

E[W1(ρ̂(εN ),N , ρ)] ≤ C̃ρ (log(N))
− 1

4νρ

for any N ≥ 1.
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Proof. Following Theorem 4.10, to establish (5.7) it suffices to prove that

(5.9) sup
t∈[0,T ]

E[W1(ρ̂(ε),N , ρ(ε))] ≤ C̃e
2CT
ε2

√
N

log (1 +N).

Since both Z
(ε)
i = (X

(ε)
i , Y

(ε)
i ) and Z̃

(ε)
i = (X̃

(ε)
i , Ỹ

(ε)
i ) are driven by the same Brownian motions and have the

same initial condition, we have

d

dt
(Z

(ε)
i,t − Z̃

(ε)
i,t ) =

1

N

∑
j

K(ε)(Z
(ε)
i,t − Z

(ε)
j,t )− (K(ε) ? ρ(ε))(Z̃

(ε)
i,t )

= (K(ε) ? ρ̂(ε),N )(Z
(ε)
i,t )− (K(ε) ? ρε)(Z̃

(ε)
i,t )

= [K(ε) ? (ρ̂(ε),N − ρ(ε))(Z
(ε)
i,t )] + [(K(ε) ? ρ(ε))(Z

(ε)
i,t )− (K(ε) ? ρ(ε))(Z̃

(ε)
i,t )].

We note that K(ε)(· − Z(ε)
i,t ) is a function with Lipschitz constant less than C

ε2 . Hence∣∣K(ε) ? (ρ̂(ε),N − ρ(ε))(Z
(ε)
i,t )
∣∣ ≤ C

ε2
W1(ρ̂(ε),N , ρ(ε)).

Furthermore, using that K(ε)(z − ·) is C/ε2-Lipschitz, and
∫
ρε dz = 1, we get∣∣K(ε) ? ρ(ε)(Z

(ε)
i,t )−K(ε) ? ρ(ε)(Z̃

(ε)
i,t )
∣∣ ≤ C

ε2
|Z(ε)
i,t − Z̃

(ε)
i,t |.(5.10)

Then
d

dt
|Z(ε)
i,t − Z̃

(ε)
i,t | ≤

C

ε2
|Z(ε)
i,t − Z̃

(ε)
i,t |+

C

ε2
W1(ρ̂(ε),N , ρ(ε)).

Hence, since Z(ε) and Z̃(ε) share the same initial data, we arrive at

(5.11) e−
Ct
ε2 |Z(ε)

i,t − Z̃
(ε)
i,t | ≤

∫ t

0

Ce−
Cs
ε2

ε2
W1(ρ̂(ε),N , ρ(ε))(s) ds.

Now we write

e−
Ct
ε2 W1(ρ̂(ε),N , ρ(ε)) ≤ e−

Ct
ε2 W1(ρ̂(ε),N , ρ̃(ε),N ) + e−

Ct
ε2 W1(ρ̃(ε),N , ρ(ε))

≤ 1

N

N∑
i=1

e−
Ct
ε2 |Z(ε)

i,t − Z̃
(ε)
i,t |+ e−

Ct
ε2 W1(ρ̃(ε),N , ρ(ε))

≤
∫ t

0

Ce−
Cs
ε2

ε2
W1(ρ̂(ε),N , ρ(ε))(s) ds+ e−

Ct
ε2 W1(ρ̃(ε),N , ρ(ε)),

where we have used first the triangle inequality, then a direct inequality for the W1 distance between the two
empirical measures, and finally (5.11). By taking the expectation and using (5.6), we obtain

e−
Ct
ε2 EW1(ρ̂(ε),N , ρ(ε))(t) ≤ (1− e−

Ct
ε2 )

C̃√
N

log (1 +N) +
C

ε2

∫ t

0

e−
Cs
ε2 EW1(ρ̂(ε),N , ρ(ε))(s) ds.

≤ C̃√
N

log (1 +N) +
C

ε2

∫ t

0

e−
Cs
ε2 EW1(ρ̂(ε),N , ρ(ε))(s) ds.

By the standard Grönwall’s lemma we deduce that

e−
Ct
ε2 EW1(ρ̂(ε),N , ρ(ε))(t) ≤ C̃e

Ct
ε2

√
N

log (1 +N)

which gives (5.9). Using the triangle inequality and Theorem 4.10, (5.9) leads to (5.7). Moreover observe that

for δ ∈ [0, 1
2 ) and ε = ( 1−2δ

4CT log(N))−
1
2 we have

C̃e
2CT
ε2

√
N

log (1 +N) + Cρε
1
2νρ =

C̃

Nδ
log (1 +N) + Cρ

(
1− 2δ

4CT
log(N)

)− 1
4νρ

which gives (5.8). �
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6. Numerical illustrations

The goal of this section is two–fold:

(1) Illustrate the existence Theorems 4.1 and 4.5, and show that the minimal value for the diffusion we have
identified in the statement is not optimal: the solution can apparently be global in time for D < 2C2M0;

(2) Illustrate the convergence for the particles approximation, and show that the actual rate of convergence
as a function of N seems to be much better than suggested by Theorem 5.2.

For this purpose, we use a finite volume method introduced in [6] to study drift-diffusion equations with gradient
structure. Of course, there is no gradient structure in the present case, but the method can be adapted and it
is proved to be robust. Let us briefly explain the principles of the approach. We work on a Cartesian grid, with
space steps ∆x,∆y > 0. Given the time step ∆t > 0, we wish to update the numerical unknown with a finite
volume formula which looks like

ρn+1
i,j = ρn+1

i,j −
∆t

∆x
(Fi+1/2,j − Fi−1/2,j)−

∆t

∆y
(Gi,j+1/2 −Gi,j−1/2)

where we need to find a relevant definition for the numerical fluxes F,G. To this end, we rewrite the right hand
side of (1.1) as

∇ ·
(
ρ(∇ ln(ρ)− ~F [ρ])

)
= ∂x

(
ρ(∂x ln(ρ) + ∂xU)

)
+ ∂y

(
ρ(∂y ln(ρ) + ∂yV )

)
where U, V are the scalar functions defined by

U(x, y, t) =

∫
|x− x′|ρ(x′, y, t) dx′, V (x, y, t) =

∫
|y − y′|ρ(x, y′, t) dx′.

We shall therefore apply the ideas in [6] directionwise. The flux Fi+1/2,j is given by applying the upwinding
principle with the “velocity” ξ = ∂x ln(ρ) + ∂xU which leads to

Fi+1/2,j =
[
ξi+1/2,j

]
+
ρi,j +

[
ξi+1/2,j

]
+
ρi+1,j .

The interface value is obtained by the mere centered difference

ξi+1/2,j =
1

∆x

(
ln(ρi+1,j)− ln(ρi,j) + Ui+1,j − Ui,j

)
,

where the integral that defines U can be evaluated by a quadrature rule (the rectangle rule, say). A similar
construction applies to construct the flux G. The accuracy of the method can be improved by using a polynomial
reconstruction of the density, with a suitable slope limiter, instead of the mere upwind scheme, in the spirit of
the design of MUSCL schemes. We refer the reader to [6] for further details and the analysis of this scheme for
gradient–flow equations. We can equally use a second-order Runge-Kutta method for the time integration. We
do not explicitly introduce a regularization for the singular forces (1.2) in the code; we simply compute (1.2) by
summing over rows or columns of the square grid. This corresponds to an effective regularization of the order of
the grid spacing (typically ∆x = ∆y = 0.05 in the simulations presented below). For the particles simulations,
we integrate directly the regularized equations (5.1)–(5.2) by using the Euler method. We typically use ε = 0.1.

Fig. 1 shows a contour plot of ρ at late times for D = 0.15 obtained by using the finite volume method
introduced in [6] (left plot) and the (mollified) particles approximation (right plot). Fig. 2 shows the evolution
of the L2 and L∞ norms for various values of D. D = 0.15 is smaller than 2C2, the threshold of Theorem 4.1
(here M0 = 1): the L2 norm is not monotonically decreasing, but there is apparently no finite time singularity.

Remark 6.1. Note also that the L∞ norm exceeds its initial value but, on numerical grounds, remains bounded.
Hence our existence results are likely not optimal. This is not a surprise: indeed our compactness approach is
limited by the Gagliardo-Nirenberg-Sobolev estimate, which induces the constraint involving C2. In the Keller-
Segel context, such a strategy, used in [20], leads to sub-optimal results, as discussed in [13]. However, the sharp
log-Sobolev estimates used in [13] do not apply to our problem, which lacks a gradient flow structure. To our
knowledge, the precise value of C2 is not known (inequality (2.3) with p = 2 is not covered by the optimality
analyses we are aware of). The optimal C1 = 0.171 . . . is computed in [31], which implies that entropy dissipation
is guaranteed down to D = C1. We do not expect this value to be a sharp threshold either, and are not able to
propose a conjecture.
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Figure 1. Contour plot of the density ρ for D = 0.15, at time t = 5. The left plot is done using
the finite volume method introduced in [6]. The right plot is done using the (mollified) particles
approximation with 10 samples of 104 particles. Note that the noise due to the finite number of
particles is still visible.
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Figure 2. L2 norm (left) and L∞ norm (right) as a function of time for D = 0.15 (black), D = 0.25
(red) and D = 0.35 (blue).

Fig. 3 shows that particles simulations are reasonably close to the PDE simulations already for a number of
particles much smaller than that suggested by Theorem 5.2.
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Figure 3. Plots of the quantity < |xy| > − < |x| >< |y| >, where < · > stands for the integral
with weight ρ. Comparison between the PDE solution (black line) and particles simulations with
N = 2000 (purple), N = 4000 (blue) and N = 8000 (red). There is always a single run for the particles
simulations. The parameters are D = 0.15, and for the particles simulation ε = 0.1.
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