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Abstract

Causal Bayesian Networks are a widely recognised tool for modelling the

uncertainty of a wide range of processes, particularly when the nature of how

different factors influence each other. The practice of utilising Causal Bayesian

Network is now becoming a growing trend for business that want to fully un-

derstand the demands imposed on them, and how best to adapt their business

in order to be successful. When designing and building a Causal Bayesian

Network, it is often necessary to consult with domain experts for information

about the shape of the model but also the definition of how the causal factors

influence others. The definition of these influences can require the specification

of a large volume of probability distributions, even if a lot of evidential data

is available for analysis. Whilst the definition of the structure of the model

can be a relatively simple task for a domain expert, providing the probability

distributions is a much more difficult task. In this thesis I discuss a method

whereby, given a model structure, a domain expert can provide simple descrip-

tive meta-data so that a hypothetical probability distribution can be generated

for the discrete model variables.
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1 Introduction

A business is composed of many moving parts, and the ability to model and track data

which flows between them or is generated by them is a significant task. Many businesses

simply do not have adequate knowledge in advanced modelling techniques to fundamen-

tally understand how their business works. This is partly due to only gathering data as

outputs of the mechanics of the business. For example, frequently measuring financial

data, or manufacturing rate data in isolation. Whilst this data can be gathered to a

greater or lesser degree of difficulty; it in itself does not help a business analyst to under-

stand the “why” of the data; that is, the reason or cause of a loss in revenue or a rise

in profit, for example. Some businesses invest large amounts of resources and time into

building complex models of key business areas, most prominently using a popular spread-

sheet application to perform the calculations; some businesses employ Data Scientists to

utilise numerous third party data analysis tools to interrogate data.

The trends of “Big Data”, “Business Intelligence” and “Business Analytics” tend to be

strictly focused on performing Business Process analysis and dimensioning of current and

past data to gain an awareness of what the current state of a business is. Invariably these

techniques involve some kind of Extract Transform and Load activity (ETL) to gather large

volumes of data from numerous sources; then transforming this data into a usable state,

and finally loading the data into a centralised repository for further analysis. Whilst these

well proven and commonly used techniques can provide vital information to a business in

understanding its current situation, they do not help an analyst to understand why the

process and figures are in their current state. This understanding allows a business to

identify key elements, which help model future operative performance.

As identified by industry business analyst Gartner Group, a gap in the market exists

which they have described as “Strategy To Execution” [1]. They describe this gap as not

only the ability to model business processes, but also the ability to go beyond this into

aligning changes to the model, and to measure the changes against business outcomes.

Gathering data is the critical starting point for a business to enable it to begin to

understand its business operations. However, this type of data is observational: it is

simply a measure of a process at a particular point in time. Whilst this data can be

cross referenced, dimensioned and aggregated to give interesting insight into a business;

it fundamentally fails to provide insight into how these processes interact, the causal

relationships that exist between them and how sensitive they are to change.

Businesses are changing and adapting all the time in response to both external and

internal pressures and opportunities, this process of change and adaptation is critical to a
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business’s success. Very rarely can a business simply remain static and hope to continue

to be successful. The ability to change and adapt must begin with an understanding of

the current situation, but also equally critical is having an understanding of how processes

work and their inter-dependencies.

Causal reasoning and the application of Causal Bayesian Networks within businesses,

particularly outside of academia or gaming industries, is a relatively rare practice, limited

only to research projects within these industries. However, the application of these models

can be extremely useful to a business to help them understand the workings of their

business operations in a more holistic manner. The employment of Bayesian Networks in

academic use is far reaching given the levels of research actively being undertaken to what

is still an emerging area. The gaming industry is a natural fit for this type of technology

due to the need to understand the player-base and respond accordingly with targeted

offers. Therefore, it is easy to see the opportunities to use Causal Bayesian Networks in

these industries, however the aim of this thesis is to highlight how these techniques can

be applied to everyday business issues, which more often than not only gathers output

or response data from sources such as customer feedback or equipment. In this sense the

business data is observational in that it does not necessarily help in explaining why the

gathered data is the value it is.

Should a business decide to use Causal Bayesian Networks, they can be faced with

numerous challenges in the identification and construction of the models, and the termi-

nology that is used. As many businesses simply do not gather the types and volumes

of data necessary to facilitate the generation of Causal Bayesian Networks from these

sources, it is highly likely that the use of domain expert knowledge is required. This,

however, presents a problem when taking into account the demands and complexities in-

volved in quantifying the model with what can be large amounts of probability numbers.

Assessing the level of uncertainty for how key components of a modelled process in the

form of a probability range by a domain expert or experts, can be extremely prone to

errors and biases. This necessary activity in the modelling of a business’s processes needs

to be rationalised and disambiguated, in order to assist the domain experts to specify

pragmatic baseline uncertainty assessments.
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2 Aim of the thesis

In this thesis, I investigate the application of Causal Bayesian Networks and Constraint

Satisfaction Problems to provide insight into business decisions and the generation of

probability distributions respectively. The application of these technologies allows a deeper

understanding of a business’s key components and concepts and also what factors are

driving them. The existing business data landscape is composed of a graph structure

of inter-connected key business concepts; the relationships between these concepts are

expressed as associative, that is, one concept has an association relationship with other

business concepts. The addition of AI technologies into this data model, allows for a

business analyst to add further business concepts to the model. These can comprise of

outside factors, behavioural factors or key influencing factors for which the business has

no associated data recorded.

Once a Causal Bayesian Network has been introduced into a business’s data landscape,

key variables of the causal model can be evidenced to any observational data that is rel-

evant within the business data model. In the case study, the causal model is constructed

around the generalised behaviour of a fictitious bank with respect to mortgage application

demands and customer satisfaction. To understand the cause and effect of various influ-

encing factors for specific branches, contextual observations for specific model factors can

be applied. For example, given the area of a specific bank branch, we can contextually

observe the unemployment rate for the area, and report on the model results.

For the design of these Causal Bayesian Networks, I feel that in the current state

of data gathering and analysis practices by most businesses, the dependence on domain

experts for the definition of the causal models variables, and their influence probability

values is still at the forefront. These domain experts are typically key personnel within

the business structure but are not necessarily data analysts and almost certainly not

statisticians; therefore, it is critical that the domain experts should be able to specify

these probabilities in a more natural way, such as using keywords which are based around

a more verbal expression. These verbal expressions, along with the model structure and

a relatively small amount of meta-data can then be used to generate constraints and

ultimately generate a hypothesis about the probabilistic influences of the variables in the

model.

To establish numerical values for a set of verbal expressions, it will involve an ex-

periment via the use of a targeted survey to a select group. The survey will be centred

around calibrating the numerical value of a specific set of probabilistic words; in which a

scenario describing an example of the degree of the word is specified, and the group must
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indicate a numerical estimate of its magnitude given this situation. It is my hope that

a range of descriptive words or phrases will emerge that a subject matter expert might

use as an alternative to specifying a potentially large volume of numerical values during

the construction of a Causal Bayesian Network. Once these probability descriptive words

have been calibrated, a Domain Expert can use them to describe the degree to which a

set of model variables affects another. The aim of using these words is that the Domain

Expert has only to specify a minimal amount of meta-data so that a system of constraints

can be generated and subsequently a range of probability values can be generated from

these constraints using traditional Constraint Satisfaction Problem techniques.

To summarise, I propose the integration of key AI technologies into a single coherent

causal modelling platform, which can be applied to a business’s data landscape; this

results in a platform which can be utilised by business analysts and domain experts to

gain deeper insights into their businesses to effect change. Subsequently, I propose an

uncertainty elicitation method to quantify a Causal Bayesian Network with probability

values, via the use of natural language keywords and Constraint Satisfaction Problem

solving techniques.

2.1 Research Direction

The research is driven by the requirement to complete a conditional probability distri-

bution by a domain expert in the absence of data. Current available options are for the

domain expert to manually enter the probabilities, which can very easily result in an

intractable exercise given the size these distributions can be, due to the size growing ex-

ponentially with the number of parent variables. A basic option can simply be to restrict

the number of parents and their discrete states, however this kind of restriction would be

too inflexible.

An option could simply be to utilise qualitative Bayesian networks [2] for the task,

whereby the stochastic direction of the influences are captured. The domain experts are

required to specify qualitative signs, positive, negative, no change or ambiguous, for each

influence in the model. These influence signs are specified from statements such as “as

the costs increase, then the profits decrease”, which would indicate a negative signed

influence. For the domain experts being able encode their knowledge in this manner

requires significantly less effort than the quantitative method. However, considering these

qualitative indicators of influence direction, they do not allow for an indication of strength

and are modelled at a coarse level of detail, as such qualitative modelling can often lead

to uninformative results. For some domains this level of detail may be specific enough,

however in the domain of business decisions, more detail is required.
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Current available third party Bayesian network software, i.e., Hugin, BayesiaLab, have

options for the user to specify an expression that completes the distributions. These

expressions comprise a standard set of mathematical functions, comparison functions and

if-then-else type operators. These expressions would still need to be specified for each

value in the conditional probability distribution, and can have similar intractability as

manually specifying the values.

There is a well known method which can reduce the number of probabilities that

need to be manually specified in the Noisy-OR [3] model, which is a generalisation of the

logical OR. This method can compute the values required for the conditional probability

distribution from a set of distributions, elicited from the expert. The problem with this

model is the assumption that parents act independently on the child variable; also the

Noisy-OR method works best when the variables have binary states. In real world business

cases, the Bayesian networks being created, the parent variable will most likely not act

independently, and will mostly possess more complex states than binary.

Given these current options, and the fact that they fall short of a practical solution

in the real world, this research is focused on a method of generating the conditional

probability distribution given a simple set of configuration data by a domain expert.

Once this configuration is specified, a conditional probability distribution has a series of

constraints generated, each value will have one or more constraint generated. Then a

constraint solver will produce a candidate distribution for the domain expert to assess for

validity against their expectation.
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3 Outline of the thesis

The thesis is composed of two parts, which correspond to the two objectives mentioned

above. In the first part I describe the mechanics of the AI technologies that are used

in Causal Bayesian Networks, and conditional probability distribution value generation

using a constraint problem. Also explored are the heuristics and biases that can affect

probability assessments made by domain experts.

In the second part of the thesis, a case study is described which is centred on a ficti-

tious bank and its current problems with customer satisfaction and mortgage application

demands. The business problem is described, along with a proposed Causal Bayesian

Network and discrete model variables conditional probability values which have been gen-

erated.

In appendix A the survey analysis data and probability generation investigation anal-

ysis data is catalogued. The thesis is concluded with a summary of presented results and

some directions for further research areas.

All values detailed in this document are generated by Hugin in the case of the Bayesian

network, and Choco Solver [4] in the case of constraint solving. Source code and case

study data used in this thesis can be found on GitHub at https://github.com/mcb539/

CPTGen.
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Part I

4 Causal Bayesian Networks

4.1 Probability Theory

In a mathematical model such as a Bayesian Network , whose aim is to encode the influence

behaviour between connected variables, it is necessary to cast the results in the language

of uncertainty, in which we use probabilities.

Using a language of probabilities is a more common practice in everyday life than we

might recognise. How many times during the day do you hear or use phrases like ‘It’s

clouding over, I think it’s likely it will rain’. This is still a probabilistic statement even

though it isn’t stated more like ‘It’s clouding over, I think there is a 73% of rain’? it’s the

expression of uncertainty that is important.

When expressing a probability of events occurring, it’s based on the principle that

there is at least a basic understanding of the majority space in which the event can occur.

For example, returning to the above statement, we can assign a probabilistic description

to the event of it raining out of the total event space of available weather conditions.

Considering a smaller event such as the roll of a dice, then the space of possible outcomes

or outcome space can be expressed as being one value from the range of values 1 to 6.

This is a basic principle in Bayesian Network modelling, let Ω be the outcome space

for a standard dice roll, Ω = {1, 2, 3, 4, 5, 6}. Given this outcome space, there is a set of

measurable events S to which probabilities can be assigned. In the dice example, the event

{6} represent the event of the dice roll resulting in a 6, and event {2, 4, 6} represents the

event of an even numbered dice roll. Let x ∈ S be a subset of Ω.

Definition 4.1. Event Space

An event space must satisfy the following three principles:

• It contains the empty event ∅, and the trivial event Ω.

• It is closed under union. If x, y ∈ S, then so is x ∪ y.

• It is closed under complementation. If x ∈ S, then so is Ω− x
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Definition 4.2. Probability Distribution

A probability distribution P over (Ω, S) is a mapping from the events in S to real

values that satisfy the following three conditions [5]:

• P (x) ≥ 0 for all x ∈ S

• P (Ω) = 1

• If x, y ∈ S and x ∩ y = 0, then P (x ∪ y) = P (x) + P (y).

Definition 4.3. Conditional Probability

A conditional probability describes the amount of certainty relating to a variable x

given what we know about the certainty of another given variable y. This is expressed as

P (x|y).

P is a joint probability distribution on a set of variables U , and X,Y ⊆ U . Any

combination of x for X, and y for Y , where P (y) > 0 the conditional probability of x

given y is expressed as:

P (x|y) = P (y∩x)
P (y)

Definition 4.4. Chain Rule

With reference to the definition of Conditional Probability , it’s clear that P (x∩ y) =

P (x|y)P (y), this is the fundamental expression of the chain rule. If x1, ..., xi represents a

sequence of events, then total distribution can be expressed as:

P (x1 ∩ ... ∩ xi) = P (x1) · P (x2|x1) · ... · P (xi|x1 ∩ ... ∩ xi−1)

The chain rule describes a method to determine the joint probability of a sequence of

events by the probability of the first event, then the probability of the second event given

what we know about the first event, and so on.

Definition 4.5. Bayes’ Rule

Bayes’ Rule describes a method of computing the inverse of a conditional probability

given a conditional probability; for example, given a conditional probability P (x|y), using

Bayes’ rule it is possible to determine the estimated probability of Y given the information

available from the conditional probability about x and the prior probability information

about x and y.

P (x|y) = P (y|x)·P (x)
P (y)

for all combinations of values x with P (y) > 0
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Definition 4.6. Random Variables

When discussing events as sets of outcomes, it is better to consider the attributes of the

outcome. For example, given a Person, then the person’s attributes could be height, weight

and age, and these could be used to reason about a person’s health. These attributes can

then have probabilities assigned to them, and then events can be considered such as age

> 60, height is 6 foot and weight is 18 stone. It is these attributes and their values for

different outcomes which are defined a random variables.

A random variable is defined by a function which associates to an outcome space Ω a

value. For example, a random variable gender is defined by a function fgender which maps

each person in Ω to their gender, M or F.

The values that can be assigned to random variables can be one of two types, either

discrete or continuous. That is, the value can be categorical or integer / real values

respectively. For this thesis random variables are either discrete or real-valued continuous,

and are denoted by uppercase letter X,Y, Z.

Definition 4.7. Marginal Distribution

Given a random variable X, the distribution by which the events could occur on

X is referred to as the marginal distribution over X, and is expressed as P (X). For

example, the marginal distribution over a random variable weather given the event space

of Ω = {sunny, rain}, the marginal distribution could be P (weather = sunny) = 0.71

and P (weather = rain) = 0.29. Marginal distributions must adhere to the conditions

outlined in definition 4.1.

Definition 4.8. Joint Distribution

Often we will be required to ask a question which involves the values from several

random variables, for example given the random variables weather W and region R, we

might be interested in the event weather = sunny and region = north. The marginal

distribution of the random variable region is defined as P (region = north) = 0.70 and

P (region = south) = 0.30.

When an event contains several random variables the concept of a joint distribution

must be employed over the random variables. A joint distribution is a distribution which

assigns probabilities to a set of events with respect to the random variables.

The joint distribution must be consistent with the marginal distribution of the random

variables, given that P (x) =
∑

y P (x, y). This is shown in table 1 assuming the set of

events is {region,weather}, by summing the columns of joint probabilities for sunny we

can arrive back at the marginal probability, and likewise for all other events. In this

example there are sixteen atomic outcomes given the two random variables.

17



weather

sunny rain

region
north 0.652 0.048 0.70

south 0.058 0.242 0.30

0.71 0.29 1.00

Table 1: Joint distribution example for P (weather, region)

Definition 4.9. Conditional Probability Distribution

Given a joint distribution we can alternatively express in a more natural way with

respect to the chain rule as detailed in definition 4.1. For example, given the joint dis-

tribution in table 1, the joint distribution can be expressed as P (W,R) = P (R)P (W |R).

Therefore it is more desirable to express the joint distribution by using each random vari-

able’s conditional probability distribution (CPD) values. Given this example the CPD of

region represent a prior distribution and weather is a conditional probability distribution

region

north south

0.70 0.30

Table 2: CPD for the region variable

weather

sunny rain

region
north 0.931 0.069

south 0.193 0.807

Table 3: CPD for the weather variable

Definition 4.10. Marginalisation

When we have a joint distribution on two variables X and Y , the marginal probability

is described as a subset of the joint distribution by summing over the other variables to

which the value is observed.

P is a joint probability distribution on a set of variables U , Y ∈ U is a variable with

values yi, i = 1, ..., n; let X ⊆ U , then the marginal probability of X is

P (X) =
n∑
i=1

P (X ∧ Yi)

18



for all combinations of values x for X define a joint probability distribution on X.

Definition 4.11. Independence

Given a distribution P (X|Y ), the variable X is dependent on changes in belief of Y .

However, given two random variables X and Y , if P (X|Y ) = P (X), then the variables X

and Y are said to be independent; any changes in belief about Y has no effect upon the

belief of X. The notation for this independence is given as (X ⊥ Y ).

A distribution P satisfies (X ⊥ Y ) if and only if P (X ∩ Y ) = P (X)P (Y ) [5]

Proof. P (X|Y ) = P (X∩Y )
P (Y ) = P (X)P (Y )

P (Y ) = P (X)

Given this definition its clear that independence is symmetrical.

Definition 4.12. Conditional Independence

Conditional independence describes the notion that given information about an event,

it does not provide any other information about other events. Two events X and Y

are conditionally independent given a third event Z, if the both events X and Y are

conditionally independent given a third event Z.

(X ⊥ Y |Z), if and only if P (X ∩ Y |Z) = P (X|Z)P (Y |Z) [5]

Events can become conditionally dependent given a third event, however it is highly

dependent on the nature of the third event.

For example, if two separate dice are rolled, these two events are independent from

each other; each dice roll does not influence the other dice roll. A third event of the sun

shining is also independent of the dice rolls. However, if the third event is the probability

that the sum of the dice rolls is even, then the two dice roll events become conditionally

dependent given the third event, as knowing the first dice roll value and the probability

of the third event infers belief about the second dice roll [6].
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4.2 Graphs

Throughout this document the techniques used are primarily based upon Causal Bayesian

Networks (see section 4.5 ), which in turn use graphs as their base construct.

4.2.1 Vertices and Edges

A graph structure G consists of a set of vertices and a set of edges, which can be either

directed, undirected or in some special circumstances bi-directed.

In this thesis a vertex is represented by V and a set of vertices ν = {V1, ..., Vn}. A pair

of vertices Vi and Vj can be connected by a directed edge, represented as Vi → Vj , or as

an undirected edge, represented as Vi − Vj . Therefore the set of edges E in the graph is a

set of vertex pairs.

Furthermore, a variable is synonymous with a graph vertex. For the purposes of this

thesis, only directed graphs are considered. However, during the graph transformation

process of constructing a clique graph, it is necessary to describe the usage of undirected

edges.

When there is directed edge Vi → Vj ∈ E, we define Vi as the parent of Vj , and that Vj

is the child of Vi. In this thesis parents are represented as PaV , which denotes the parent

vertices of V . Child vertices are represented as ChV to denote the child vertices of X.

Directed graphs encode independence between the variables in the graph, therefore

building on the independence definitions in section 4.1, it will be necessary to describe the

usage of a bi-directed edge.

Definition 4.13. Directed Acyclic Graph

A directed acyclic graph is the primary graphical representation for a Bayesian Net-

work. If all edges in a graph are directed, indicated by a single arrowhead, and the graph

contains no cycles, then the graph can be considered a directed acyclic graph .

Let G be a directed graph with a pair G = (ν,E), where ν is a finite set of vertices

and E is a set of ordered pairs of vertices Vi → Vi ∈ E, as edges.

Definition 4.14. Markov Blanket

The Markov Blanket [3] of a graph vertex describes a vertex and edge set which shield

the vertex from the remainder of the graph. In this the Markov Blanket consists of the

vertex parents, its children and its children’s parents.

Let G be a DAG. Let Vi, Vj be vertices in G. Vertex Vj is a parent of vertex Vi if

Vj → Vi ∈ E; vertex Vi is a child of Vj .

The set Pa(Vi) ∪ Ch(Vi) ∪ Pa(Ch(Vi)) is the Markov Blanket of vertex Vi.

20



Definition 4.15. Path

A path is an ordered alternating sequence of vertices and edges which describes the

route from vertex Vi to Vk.

Let G(ν,E) be a DAG. Let ν = {V0, ..., Vk} , k ≥ 1, be a set of vertices in G. A path

p from vertex V0 to Vk in G is defined as the sequence V0, E1, V1, ..., Ek, Vk of vertices

and edges Ei ∈ E, i = 1, ..., k. Each edge Ei ≡ Vi−1 → Vi or Ei ≡ Vi → Vi−1 for every

ordered pair of vertices Vi−1, Vi in the sequence. k is the length of the path p. If every

edge between the vertices in a path has an arrow pointing in the same direction from the

first to the second vertex, then the path is a directed path.

Any concatenation of two paths in G, results in a path in G.

Definition 4.16. Cycle

A cycle in G is a directed path p with a length of one or more, where the head and tail

of the path are both V0. It is assumed in this thesis that any graphs depicted are directed

acyclic graphs , and therefore will not contain any cycles, unless otherwise stated.
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4.3 Bayesian Networks

The concepts of probability theory and graph theory come together as graphical models

in the use of Bayesian Networks. The variables are represented as vertices in the graph,

and are also commonly referred to as nodes; the probabilistic relationship between vari-

ables is represented by a graph edge, again more commonly referred to as an arc. Any

conditional independence in the structure is represented by the lack of an arc between

variables. By representing the probability distribution as a directed acyclic graph, the

flow on probabilistic influence can be computed exactly.

Using a directed acyclic graph as a structure to model the framework for a joint

probability distribution, the graph nodes represent a probability variable and so for the

remainder of this document there will be no explicit distinction made between the two

concept of variable and node. Conditional independence is captured by a graph edge

in the DAG, via these relationships in the graph structure the variable independence is

described.

A Bayesian network graph structure is comprised of three basic node structures: chain,

fork and collider. From these building blocks it is possible to create a fully connected

Bayesian network which adequately describes a joint probability distribution.

Definition 4.17. Chain

Let G(ν,E) be a directed acyclic graph. Let Vi, Vm and Vj be vertices in ν. If edges

exist such that Vi → Vm ∈ E and Vm → Vj ∈ E then the vertex set {Vi, Vm, Vj} is said to

be a chain.

Definition 4.18. Fork

Let G(ν,E) be a directed acyclic graph. Let Vi, Vm and Vj be vertices in G. If edges

exist such that Vi ← Vm ∈ E and Vm → Vj ∈ E then the vertex set {Vi, Vm, Vj} is said to

be a fork.

Definition 4.19. Collider

Let G(ν,E) be a directed acyclic graph. Let Vi, Vm and Vj be vertices in G. If edges

exist such that Vi → Vm ∈ E and Vm ← Vj ∈ E then the vertex set {Vi, Vm, Vj} is said to

be a collider.

Definition 4.20. Independence Map

Let G(ν,E) be a directed acyclic graph , and let P be a joint distribution on ν. G is

an independence map, or I-map for P if

〈X|Z|Y 〉G ⇒ P (X|Y Z) = P (X|Z)
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for all sets of variables X,Y, Z ⊆ ν.

An independence map is a directed acyclic graph which encodes the independence of

variables: any variables that do not have an arc between them are independent of each

other is the joint probability distribution. In order for Bayesian network to accurately

model a probability distribution, each variable is conditionally independent of its non-

descendants given the values of all its parent variables.

In order to determine the correct independence between variables within the graph

structure, the concept of d-separation can be used. D-separation is a criteria for inferring

whether two sets of variables which are connected by a path are conditionally independent

from each other, given a third set of variables.

Definition 4.21. d-Separation

A path p is said to be blocked, by a set of nodes Z if and only if

• p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is

in Z

• p contains a collider i→ m← j such that the middle node m is not in Z and such

that no descendant of m is in Z.

A set Z is said to d-Separate X from Y if and only if Z blocks every path from a node in

X to a node in Y [7]

Figure 1: d-separation given a DAG which contains no conditioning set Z

The DAG illustrated in figure 1 contains no conditioned vertices, however X and Y

are d-separated due to there being a single collider vertex C.

Figure 2: d-separation given a DAG which contains a conditioning set Z on A and E

The DAG illustrated in figure 2 contains a conditioning set Z = {A,E} (indicated by

the dark circles). The set Z does not condition on the collider vertex C, therefore X and

Y are still d-separated. However, given the set Z, X and B are now d-separated, and so

are D and Y . In this example only B and C and D and C are d-connected.

23



Figure 3: d-separation given a DAG which contains a conditioning set Z on A and G

The DAG illustrated in figure 3 contains a conditioning set Z = {A,G} (indicated by

the dark circles). The vertices B and Y are d-connected by Z, this is because the collider

vertex C has a descendant vertex G in Z which unblocks the path from B to Y . The path

from X to D is still d-separated due to the vertex A being in Z.
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4.4 Inference in Bayesian Networks

The graphical structure of a Bayesian Network provides a good mechanism for an analyst to

understand the relationships between concepts, which are represented as variables within

the network; furthermore, the graphical structure affords the evaluation of the graph’s

structural properties, such as independence, in a much more digestible way. The other

major benefit of a Bayesian Network is the ability to use the structure for inference, so

that queries on distribution structure can be answered. The process of inference is to

make observations about the concept being modelled, and then calculate the posterior

probability of some variables.

Given a directed acyclic graph structure, which for example a domain expert(s) have

created, in order to compute inference on this structure there are several graph transfor-

mations and algorithms that need to be performed; these transformations and algorithms

are covered in this section.

Firstly, in order to be able to perform the posterior probability calculations, the graph

structure must be transformed into a tree structure of cliques, called a clique graph;

this transformation process involves several algorithms and is known to be an NP-Hard

problem to produce an optimal tree structure. Secondly, once a clique graph has been

created exact inference can be calculated for all variables in the network.

This thesis explores using Bayesian Networks which have a mixture of both discrete

and continuous variables, commonly known as hybrid networks. Consequently, the trans-

formation and calculation algorithms used to perform exact inference on hybrid networks

have subtle and important differences to those used if the network were composed solely of

discrete variables. The case study for this thesis depends on being able to calculate exact

continuous values for monetary amounts, and as such using a discrete only model poses

flexibility and accuracy problems, due to the necessity to discretize the variable values; in

some circumstances this discretization may be desirable, as it represents an approximate

value, however this concept is not explored in this document.
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4.4.1 Moralization

The initial step of decomposing a Bayesian Network graph structure into a clique graph

involves the process of moralizing the graph structure. Moralization casts the directed

acyclic graph structure into an undirected graph structure, whereby the parent variables

PA(X) of variable X have an undirected edge between them if an edge does not exist.

The moral graph Gm from the original graph G is moral if for each pair of variables Vx,

Vy that share a child variable, there is an edge between Vx and Vy.

Definition 4.22. Moralization

Let G(ν,E) be a directed acyclic graph. Let U be the undirected graph of G. Let Gm

be a moral graph of G over U if either:

• an edge exists such that Vx − Vy or Vy − Vx ∈ E

• Vx and Vy are both parents on of the same vertex

Figure 4: Original DAG

Figure 5: Moralized graph, dashed lines indicate moral edges added
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Definition 4.23. Chordal Graph

Let G(ν,E) be an undirected graph, and Gm be a moral graph of G. A cycle σ exists

in Gm with the cycle being in the sequence {v0, v1, ...vn} with v0 = vn. A chord of cycle

σ is a pair of vertices in ν (vi, vj) which are non-neighbouring vertices in σ such that an

edge exists between them vi − vj .

The undirected graph G is a chordal graph if any cycle in the graph which has a cycle

length of 4 or more vertices, contains a chord which ensures that every cycle in the graph

has at most 3 vertices.

Figure 6: A chordal graph, the chord detailed by the dashed edge B −C triangulates the

cycle A−B −D − C −A

The addition of chords to eliminate large cycles is through an algorithm known as tri-

angulation; the algorithm requires an ordering of vertices to systematically eliminate from

the undirected graph. At each elimination the remaining undirected graph is inspected

for cycles of length ≥ 4 and a chord (also commonly referred to a fill-in edge) is added.

4.4.2 Junction Tree

A Junction Tree transformation of a DAG is designed to represent and enable computations

on the joint distribution of the original graph representation. The transformation process is

performed using the undirected moral graph and ensures that the factorisation of variables

within the graph structure remain intact; any loops within the moral graph are eliminated

via a process known as triangulation, which results in an undirected graph structure known

as a chordal graph.

A Junction Tree is defined by a specific structural constraint referred to as the Running

Intersection Property:

Definition 4.24. Running Intersection Property

Let T be a tree graph structure, and let C be a collection of variable subsets of the set

of vertices V . T is a junction tree if any intersection C1 ∩C2 of a pair of sets C1, C2 in C

is contained in every variable on the unique path between C1 and C2.

27



Figure 7: A junction tree with the running intersection property in C1 and C2, C1 and C4

, C2 and C3, C2 and C4.

4.4.3 Variable Elimination Ordering

Algorithm 1: Greedy search for constructing an elimination ordering

M // a moralized graph over ν

initialise all variables in ν as unmarked

for k = 1... |ν| do

select an unmarked variable V ∈ ν with the minimum edges needed to be added

if eliminated

π(V )← k

Add new undirected edges in M between all neighbours of V

mark V

end

return π;

At the point of assigning a cost value to the unmarked node, the algorithm evaluates a

cost based upon the amount of additional edges that would have to be added to the graph

in order to produce a clique, the selection will be based upon a minimum of fill-in edges.

This minimum fill-in cost based heuristic ensures that the complexity to create the clique

graph is kept to a minimum. Once the algorithm is complete the variables π will contain

an ordering of variables from ν in reverse order by which the triangulation process can

be performed. Algorithm 1 is a good all-purpose variable elimination algorithm to use

for what is an NP-Hard problem; the aim of generating an efficient variable elimination

ordering is so that during triangulation and clique building for the junction tree, the

created cliques are kept as small as possible. It is desirable to keep the junction tree

cliques to a small size so that computation within the cliques is also kept to a small size,

and as such the speed of calculation is kept low.
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Figure 8: Variable Elimination Ordering Algorithm Performance

4.4.4 Triangulation and Clique Building

If the graph is not yet chordal, then it can be made chordal via the triangulation algorithm

by the additional of fill-in edges. Given an ordering of the graph variables, triangulation

occurs by analysing each variable in turn of the reverse order of the elimination ordering;

each variable under inspection is joined to each neighbour that appears earlier in the

ordering, but are not already joined to the variable under inspection.

Once each neighbour is joined to the variable that is under inspection, this cluster

of graph variables is identified as a clique. It is possible that the set of cliques which

are generated from the chordal graph contains cliques which are proper subsets of other

cliques. These subsets can be removed from the candidate set of cliques, as they are

subsumed by the super-set cliques.

Definition 4.25. Clique

Let Ci be a subset of vertices ν from the graph G(ν,E), such that the every pair of

vertices in Ci is joined by an edge. This subset is referred to as being complete. A subset

of vertices which forms a subgraph, whereby it cannot be extended by adding adjacent

vertices, is known as a complete subgraph which is maximal. A subgraph which is maximal

is referred to as a clique.
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Figure 9: A directed graph, with the cliques {A,B,C}, {B,C,E} and {B,D,E}

As previously mentioned, the variable elimination ordering is critical to the produc-

tion of optimally sized cliques, this optimisation problem of finding triangulations for

undirected graph is an NP-Hard problem.

4.4.5 Strong Triangulation

When performing triangulation for hybrid networks, the triangulation algorithm needs to

be modified into a strong triangulation. When calculating hybrid causal models, a specific

rule exists when marginalizing over cliques which contain both discrete and continuous

variables. In these cases we must first marginalize over the continuous variables and then

marginalize over the discrete variables. When marginalizing over the discrete variables

if all the variables within the clique are discrete, then a strong marginalization can be

performed; otherwise a weak marginalization must be performed. In order to exploit

this computational behaviour, we must ensure that strong triangulation is performed, to

facilitate this the concept of a strong decomposition is introduced [8]. Strong decomposition

and strong triangulation both operate on a marked graph, a marked graph is where the

variables of the graphs are marked with their type, discrete ∆ or continuous Γ.

Definition 4.26. Strong Decomposition

Given a set of vertices V (A,B,C) in an undirected graph G, is said to form a strong

decomposition of G if V = A ∪B ∪ C and all the following three conditions hold true:

i C separates A from B

ii C is a complete subset of V

iii C ⊆ ∆ or B ⊆ Γ

Figure 10 shows various examples of the rules for strong decomposition.

Strong triangulation is the same as the standard discrete only network triangulation,

except that an additional step of adding edges prior to the triangulation. These additional

edges to be added must link non-neighbouring discrete variables, when these variables have
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(a) (b) (c)

Figure 10: Strong decomposition. Solid variables are discrete, clear variables are continu-

ous. (a) strong decomposition with C ⊆ ∆. (b) strong decomposition with B ⊆ Γ. (c) no

strong decomposition as the variables in C are not complete.

a path between them which contain any continuous variables; these additional graph edges

enforce the strong decomposition rule.

Algorithm 2: Add strong elimination edges

Result: Add Strong Triangulation Edges

foreach discrete variable d in the moral graph Gm do

n← all non-neighbouring discrete variables of d

foreach non-neighbouring variable v in n do

p← count of any shortest paths between d and v which exclusively go

through any continuous nodes

if p > 0 then

add a new undirected edge e between d and v

end

end

end

(a) base directed graph (b) moralized (c) strongly triangulated

Figure 11: Strong triangulation. Solid variables are discrete, clear variables are continuous.
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4.4.6 Clique Trees

Once the cliques of variables have been generated, it is necessary to join the cliques into

a tree structure; that is a structure whereby every pair of cliques has one and only one

direct path between them. As previously stated the resulting clique tree must exhibit the

running intersection property. The method chosen to construction the clique tree that

satisfies these properties is an implementation of the Maximum Spanning Tree which is

a modification of the Kruskal Minimum Spanning Tree algorithm, the modification is the

inversion of the weight attributed to the clique edges so that the algorithm calculated

the maximum costing path. In this case, the clique edge weights are the cardinality of

intersecting variables given a pair of cliques.

(a) base directed

graph

(b) moralised and

strongly triangu-

lated

(c) cliques with weighted intersection

joins

(d) selected joins from Maximum Span-

ning Tree algorithm

Figure 12: Strong triangulation. Solid variables are discrete, clear variables are continuous.

The final clique tree in fig 12 (d) exhibits the running intersection property for the

selected clique edges added to form the clique tree, therefore satisfying definition 4.24.
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A separator is a structure which contains the message data and the structure of the

separator is determined by the intersection of clique variables for each pairing of cliques;

Therefore, the number of separators in a clique graph is the same as the number of graph

undirected edges between cliques.

Definition 4.27. Clique Separator

Let Ci and Cj be two cliques in the clique tree which are connection by an undirected

edge, then Si,j = Ci ∩ Cj is a separator between Ci and Cj .

Figure 13 shows the separators for an example clique graph.

Figure 13: A clique graph with the separator structures highlighted

Given a tree structured graph T whose nodes are maximal cliques C1, ..., Cn, then

W<(i,j)(W<(j,i)) are all the variables that appear in any clique on the Ci(Cj) side of the

edge [5].

Definition 4.28. Clique Tree

A tree structured graph T is a clique tree for an undirected graph H if:

• each node in T corresponds to a clique in H

• each maximal clique in H corresponds to a node in T

• each separator Si,j separates W<(i,j) and W<(j,i) in H
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4.4.7 Clique Factors

The sets of random variables in a Bayesian network can be described as a factor, that is

each variable describes a function to a value, these factors can be used to define the joint

probability function, and can be defined as:

Definition 4.29. Factor Let D be a set of random variables, a factor ϕ is a function from

Val(D) to R

Definition 4.30. Joint Probability Density

P (x) =
∏
v∈V

P (xv|xPA(xv))

Each factor in the Bayesian network must be allocated to an appropriate clique in the

clique tree.

Definition 4.31. Factor Clique Assignment

Let C be a clique with a variable set V , a factor ϕ is assigned to one and only one

clique C if V is a superset of ϕ

C(V ) ⊇ ϕ

(a) (b)

Figure 14: Factor assignment to a clique tree. (a) the original DAG. (b) the clique graph,

assigned factors are shown next to the cliques.

34



4.4.8 Strong Roots

When computing exact inference for hybrid networks on a strong clique tree, it is necessary

to initiate the computations from a clique which can be labelled as a strong root.

Definition 4.32. Strong Root

In a junction tree, any clique R is a strong root, if any pair of neighbouring cliques

A,B with A closer to R than B and satisfies

(B \A) ⊆ Γ or (B ∩A) ⊆ ∆

In order to determine each strong root in the junction tree, in turn each junction tree

neighbouring clique separators are inspected against the condition detailed in definition

4.32 in both directions. An intermediate table of results can be generated as shown in

table 4, then each junction tree clique is analysed by inspecting each definition entry in

the intermediate table to determine if it passes the rule in definition 4.32. The analysis

of each clique separator is done by via an inward sequential ordering from the furthest

distance clique to the immediate neighbouring cliques from the clique being inspected; an

example implementation of this rule is shown in figure 15. If and only if each separator

passes the rule in definition 4.32 can the clique being analysed be a strong root.

Figure 15: A junction tree showing the inward direction check of each clique pairs separator

variables, when analysing clique (B,C)
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Clique Separator Strong Root Analysis

B A (B∩A) ⊆ ∆ (B \A) ⊆ Γ Passes definition 4.32

BC EWBF B C Yes

EWBD BC B EWF Yes

EWBF EWBD WBE F No

EWBD EWBF WBE D Yes

EWBD DMW WD EB No

DMW EWBD WD M Yes

DMW OMD DM W No

OMD DMW DM O Yes

OMD DL D OM Yes

DL OMD D L Yes

Table 4: Junction tree clique separators tested against definition 4.32. Underlined variable

letters are discrete nodes. Bold values for yes/no indicate the lookup values for the analysis

of clique (B,C) as shown in figure 15.

4.4.9 Message Passing Algorithm

When calculating the causal model on the clique graph, we utilise the message passing

algorithm which ensures that the calculation dependencies which are encoded into the

clique graph via the junction tree algorithm are adhered to. As the algorithm name

suggests the message passing algorithm involves each clique in the clique graph passing a

belief propagation message to its neighbouring cliques after each clique has performed its

local calculation. When calculating the algorithm begins at the strong root clique, then a

recursive traversal of the graph structure is performed; during the traversal, at each clique

a decision is made to continue onto the cliques unvisited neighbours if any exist. Figure

16a shows the graph traversal order from the strong root clique C1; in turn the cliques

C2, C3, C4, C5 are visited, at each of these cliques it is true that an unvisited neighbouring

clique exists which is further away from the strong root. Once the clique C6 is visited this

is no longer true, therefore C6 performs its local calculation and passes its belief message,

called a separator message, on to clique C5; this recursive inspection continues and hence

C5 performs its local calculation including the message from C6 and then passes its belief

message to clique C4 and so on.

This recursive local calculation and message passing continues until all the cliques have

been visited and the algorithm returns back to the strong root. Figure 16b shows a more

complex tree structure and a potential message passing ordering.
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(a) (b)

Figure 16: Example graphs highlighting the possible ordering of collect messages.

As the collect phase of the message passing proceed, belief messages are collected from

adjacent clique nodes to form a belief message to pass to the next clique node in the

recursion. For example, figure 17 highlights the order of clique processing during the

recursion (the ordering numbers are shown next to the cliques). In this example the clique

B,C is the strong root and so the recursive collect starts here and ends at the clique D,L,

whereby the factor ϕ(D,L) is calculated. As clique D,L is a leaf node, the collect step

moves to clique O,M,D which needs the belief about D as part of its local belief calculation.

Therefore, given the information about the separator between these two cliques, SD, we

marginalize to the separator to form the belief message required. This message δ1→2

is then multiplied by the factor of clique O,M,D δ1→2 =
∑

L ϕ(O,M,D). This process

continues until the recursive graph traversal settles back at the strong root clique.

Figure 17: An example graph highlighting the belief message propagation, each numbered

clique calculates and passes a message to the next clique.
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This is the initial stage of the message passing algorithm, and given the inward flow

of belief messages towards the strong root, is named the collect stage. Once the collect

stage has finished, a second stage is performed which flows belief message outward from

the strong root in a reverse manner to that of the collect stage. The distribute stage is

necessary so that the strong root clique can pass on to the rest of the clique graph the

updated beliefs received during the collect stage.

Figure 18: An example graph highlighting a possible ordering of distribute messages.
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4.4.10 CG Potential

Performing exact inference on a hybrid Bayesian network introduces additional complex-

ities over inference in a purely discrete Bayesian network. The clique local and message

passing calculations must continue to support all of the probability operations we expect:

product, division, marginalisation and factor reduction. These operations must also be

capable of being performed on both discrete and continuous variables, therefore the struc-

ture of a canonical form is introduced. Continuous variables within a hybrid Bayesian

network are represented as a conditional Gaussian distribution and discrete variables are

represented as a probability distribution across the variables discrete states.

Definition 4.33. Canonical Form

A canonical form is represented by the notation:

C(g, h,K)

Let C be a canonical form representation. The g property represents the conditional

probability of the clique’s discrete variable factors. The h property represents the vector

of means (µ) of the clique’s continuous variable factors. The K property presents the

covariance matrix of the clique’s continuous variable factors.

Lauritzen and Jensen [9] introduced as their basic computational object a CG potential,

which in a hybrid Bayesian network we use to represent both the discrete and continuous

conditional distributions within the model. For each discrete variable we specify a CG Po-

tential for the conditional probability distribution of the variable given its parents. Given

the restriction of a hybrid Bayesian network that no continuous variable can have any

discrete child variables, all parents of a discrete variable must be themselves discrete. For

each continuous variable the conditional distribution if represented by a normal Gaussian

distribution of the type specified in definition 4.34, we must initialise a CG Potential for

each configuration of the state space of the discrete parents.

Definition 4.34. Continuous variable Gaussian distribution

φ(V |PA(V )) = N (α(i) + β(i)′z, γ(i))

For continuous variables, the parent variables PA(V ) can be a mixture of both discrete

and continuous variable states, shown here as i and z respectively. The variance values in

the equation is represented as γ(i), and therefore each value at i must be γ(i) > 0. The

value β(i) is a vector of real numbers which is the same size as the continuous variables in

PA(V ) or the size of z, and these values are used to weight the distribution mean value.
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4.4.11 CG Potential Operations

When performing computations on the clique tree using CG Potentials, there are a series

of fundamental operations which can be utilised in order to perform all the necessary com-

putations on the CG Potentials. The first operation is Extend and is critical in order for

multiplication and division to occur. The extend operation is responsible for ensuring that

the two CG potentials have a compatible and aligned scope to ensure that multiplication

and division can occur.
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4.4.12 CG Potential Extend

Given two CG potentials for which multiplication and division is to be performed, these

two CG potentials must match in scope. The scope of a CG potential is defined by the

variables which have been assigned to the CG potential.

Example 1. Two canonical forms with their scope definitions and sample values

φ1(A) = C

gA, h(
A
),K[

A
]


φ1(A) = C
(
−5, (3),

[
1
])

φ2(B,A) = C

gB, hB
A

,KBB BA

AB BB




φ2(B,A) = C

−3,

 2

−2

 ,

 1 −1

−1 1



In order to perform multiplication and division operations on these CG potentials, we

first need to extend the scope of φ1(A) by the scope of φ2(A,B); the CG potential extend

is done by simply adding zeros to the h vector and the K matrix given the order of the

new extended scope:

φ1(A,B) = C

−5,

3

0

 ,

1 0

0 0



The two CG potentials φ1 and φ2 now have compatible variable scopes, and are ready

for further operations.
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4.4.13 CG Potential Initialisation

The first step in computing the clique tree, each clique must have CG potentials initialised

for each assigned factor. Once the clique factors are initialised, the CG potentials for the

factors must be extended and multiplied into a single CG potential which is associated to

the clique. Initialising a CG potential is described in the below definitions:

gA(i) = −α(i)2

2γ(i)
− log(2πγ(i))/2 (4.1)

hA(i) =
α(i)

γ(i)

 1

−β(i)′

 (4.2)

KA(i) =
1

γ(i)

 1 −β(i)′

−β(i) β(i)β(i)′

 (4.3)

By way of an example, given a clique C(A,B) which contains the two variable factors

for A and B, we must first initialise each variable factor:

Figure 19: An example graph fragment with association conditional probability distribu-

tions

Example 2. Initialising each variable in the example graph, will result in the below CG

potentials:

Factor g h K

A.true -1.46 0 0

A.false -2.32 0 0

B(A.true) 0 0.29 1.43

B(A.false) 0 0.71 1.43

Table 5: Example potential initialised values for each variable factor

Then to create the CG potential for the clique C(A,B), we need to multiply the factors

for A and B. In order to achieve this, we must extend each variable factor CG potential
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as detailed in 4.4.12. Once the multiplication has occurred the clique CG potential we be

as shown in table 6.

Factor g h K

A.true, B -1.46 0.29 1.43

A.false, B -2.31 0.71 1.43

Table 6: Example clique CG potential initialised values

Definition 4.35. Vacuous Canonical Form

During the initialisation stage of the clique tree, all the separator CG Potentials are

also initialised, however in this case the separators are initialised to zero or a vacuous

canonical form. This canonical form is defined as g = 0, h = 0,K = 0

4.4.14 CG Potential Multiplication

Given two CG potentials that have the same scope, multiplication can be performed on

them and is a simple operation of adding the two CG potentials together:

φ1φ2 = (g1, h1,K1)× (g2, h2,K2) = (g1 + g2, h1 + h2,K1 +K2)

4.4.15 CG Potential Division

Given two CG potentials that have the same scope, division can be performed on them

and is a simple operation of subtracting the two CG potentials:

φ1/φ2 = (g1, h1,K1)/(g2, h2,K2) = (g1 − g2, h1 − h2,K1 −K2)

Care must be taken when multiplying or dividing by what is terming a vacuous canon-

ical form, this canonical form is analogous to the discrete factor initialised to all 1 values,

and as such multiplication and division operations do not have any effect on the resulting

canonical form.

If the situation arises whereby division by zero would occur, then the resulting CG

potential should be a zero CG potential:

Given φ1/φ2, if φ2 = 0 then φ1/φ2 = 0

4.4.16 CG Potential Moment Form

When marginalizing on a CG potential in a hybrid network, in certain circumstances (see

section 4.4.17) it is necessary to return the CG potential factor’s values back to their
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normal or non-canonical form; this it known as the moment form. The moment form of

a CG potential’s canonical characteristics is denoted as {p, ξ,
∑
}, this being in respect to

the canonical characteristics {g, h,K}.

∑
(i) = K(i)−1 (4.4)

ξ(i) =
∑

(i)h(i) (4.5)

p(i) ∝
{

det
∑

(i)
} 1

2
exp

{
g(i) + (h(i)

′∑
(i)h(i))/2

}
(4.6)

4.4.17 CG Potential Marginalization

When marginalizing in a hybrid network with both discrete and continuous variables,

marginalization must be performed initially over the continuous variables and then the

discrete variables. When marginalizing over the discrete variables, we must first perform

a check to establish if the variable factors being marginalized to, that is B within A \ B,

are all discrete; or that the assigned factors in the CG potential that we are marginalizing

over are independent of any discrete variables, i.e. the h and K part of the canonical

characteristics are all equal. If this independence is true, then we can perform what is

called strong marginalization, if the independence is false then weak marginalization must

be performed instead.

When weak marginalization is to be performed, we must first convert the CG po-

tential factors to their moment form (as described in section 4.4.16) prior to performing

the marginalization. Once the marginalization is complete, the moment forms can be

converted back to the CG potential form.
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4.4.18 Message Passing - Absorption

As previously mentioned in section 4.4.9, within the message passing process of model

calculation, the belief messages passed between cliques are absorbed into the receiving

clique. The flow of the messages is established by the recursive message passing algorithm

in both directions from the selected strong root clique; once a clique has initialised its

CG potential and message passing begins, for each neighbouring clique the separator is

constructed and a CG potential is constructed by marginalising from the sending clique’s

CG potential format to that of the separator. Figure 20 highlights the marginalization

required to initialise the separator CG potential during both the collect and distribute

phases of the message passing.

Figure 20: Separator CG potential marginalization example, with the strong root being

clique 2.

Once the separator CG potential has been created after marginalization, the absorption

of the separator CG potential into the receiving clique’s CG potential is a matter of

extending and multiplying the separator CG potential to that of the clique as discussed

in sections 4.4.12 and 4.4.14

4.4.19 Evidencing

When specifying evidence for a variable in the Bayesian Network we are specifying either

a specific discrete state is observed (that is with a probability of 100 percent); or that

a continuous variable has been observed with a specified value. When performing dis-

crete evidence in a hybrid Bayesian Network, the discrete variable state to be evidenced

is removed from the CG potential factors in all cliques and separators which contain the

evidenced variable. This removal of factors given evidence is described as evidence reduc-

tion.

When evidencing continuous variables, the evidence must also specify the observed
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numerical value of the evidence; like the discrete evidence the factor reduction in all CG

potentials which contain the evidenced variable must be reduced. When evidence reduction

is performed on for a continuous variable, such that Yγ = y∗γ , then the cardinality of the

h vectors and K matrices will be reduced.

For example, if a CG potential has the canonical characteristics [8]:

h(i) =
(h1(i)
hγ(i)

)
,K(i) =

K11(i) K1γ(i)

Kγ1(i) Kγγ(i)


then the reduced canonical characteristics of the CG potential will be [8]:

K∗(i) = K11(i) (4.7)

h∗(i) = h1(i)− y∗γKγ1(i) (4.8)

g∗(i) = g(i) + hγ(i)y∗γ −Kγγ(i)(y∗γ)2/2 (4.9)
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4.5 Causal Bayesian Networks

A Causal Bayesian Network is a special class of Bayesian Networks, one which attempts

to model the nature of the subject under the scrutiny of the modelling task. In order to

model the nature, it is necessary to describe the variables as being either exogenous or

endogenous; that is, influencing factors that are external to your control and factors which

you are able to have some influence over. It is typically a convention to put any exogenous

variables in a Causal Bayesian Network as parents to endogenous variables, as a rule it is

the nature of exogenous variables that it is not possible to exert any influence on them by

any endogenous variables in the model; indeed, it is quite often the case that exogenous

variables are unobservable.

The influence that a set of variables have on another set of variables in the model

is described by a set of probabilistic functions (see section 4.1). It is in these functions

of the relationships between causal variables that set Causal Bayesian Networks apart

from Bayesian Networks, in that they describe the nature by which the variables impart a

causal influence from one to the other; these causal influence functions are representations

of phrases that we use regularly to describe the world around us. For example, “X will be

more likely if Y is true”, “X causes Y” or “Y happened because of X”, these utterances

can be encoded in the conditional probability tables of the relationships between vari-

ables. Additionally, Causal Bayesian Networks allow the analysis of counterfactuals, that

is answering statements such as ”would X have occurred if Y had occurred differently”.
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5 Conditional Probability Elicitation

When designing Causal Bayesian Networks, it often the case that subject matter, or do-

main experts, are called upon to assist or own the design of the model. Given the focus of

this thesis is on gaining insight into business domains and decision making, it is very likely

that the domain expert would not be well versed in the process of eliciting probabilities to

describe how parts of their business domain influence one another. Nevertheless, if exact

inference is required to gain further insights, it is a necessary process but one which is in-

creasingly susceptible to misjudgements in assessments and biases [10]. There are however,

various methods by which given sufficient data these probabilities can be extracted via

algorithms; these methods are designed to overcome human biases, however they can be

quite time consuming to implement, particularly when dealing with large causal models.

Furthermore, algorithm based extraction of probabilities do rely on having sound unbiased

data, a concept which can be difficult to consistently find within businesses. Although with

the advent of big data, more and more businesses take increasing interest in the collection

and analysis of data. However, it is often the case that in order to amalgamate these

disparate sources of data into a cohesive data warehouse takes significant effort, if it is at

all possible. Therefore, when designing Causal Bayesian Networks, these issues must to

taken into account when deciding the method by which probabilities are elicited.

During research it is apparent that the problem of generating probabilities from subject

matter and domain experts is recognised, however it seems that the task of manually

specifying these probabilities is less in focus. When the designer of a causal model is

faced with the problem of specifying these probabilities, it is important that they must

be aware of these potential biases, and also how to perform the elicitation of probabilities

from domain experts. It is this area that this section gives focus, when a domain expert

is asked by a designer or perhaps is designing the model themselves, is there a set of

words which adequately describe the probabilistic degree of influence. This investigation

is limited only to discrete probabilities, which are prone to the most variation and bias.

5.1 Heuristics and biases

When describing an assessment as being biased, it means that extra factors that are often

irrelevant are included in the assessment, or that more relevant factors are somehow ig-

nored, and these misaligned factors somehow skew the assessment in an undesirable way.

When making an assessment about an event or response which is uncertain, particularly

when using Causal Bayesian Networks, it is necessary to attribute continuous probability

assessments to a discrete range of states which fully describe the event. Given this nec-
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essary assessment, how does a domain expert make these assessments in numerical form?

It is via the subconscious use of heuristics which they use to effectively breakdown and

simplify the task of assessment into simple judgemental operations. There are three main

heuristics of bias which are commonly used: representativeness, availability and anchoring

[10].

The representativeness heuristic describes the process whereby people make assess-

ments which are evaluated by the degree to which one event is representative of another.

The following example from a study by Tversky and Kahneman [10] demonstrates this

heuristic:

”Steve is a very shy and withdrawn, invariably helpful, but with little interest in people,

or in the world of reality. A meek and tidy soul, he has a need for order and structure,

and a passion for detail.” Which of the following professions would Steve be most likely

employed in: farmer, salesman, airline pilot, librarian or physician?

As a result of this description, most people would choose the librarian option as the

most likely job that Steve has; this kind of assessment can give rise to serious biasing

as the similarity or representativeness of two concepts should not affect judgements of

probability. The representativeness category of heuristic also has further problems that

the example given, these are known as: base rate insensitivity and sample size insensitivity.

Base rate or prior probability insensitivity is when the underlying fact of a statistic is

ignored in favour of representativeness; however, the prior probability has no direct effect

on the assessor’s judgements of stereotypes, in the above example it does not alter the

stereotype that Steve is most likely to be a librarian.

Sample size insensitivity occurs when the assessor estimates the probability likelihood

by the similarity of the estimate to the sampled value, essentially the estimate is indepen-

dent of the sample size. The following example from a study by Tversky and Kahneman

[10] demonstrates this heuristic:

”Imagine an urn filled with balls, of which 2/3 are of one colour and 1/3 of another. One

individual has drawn 5 balls from the urn, and found that 4 were red and 1 was white.

Another individual has drawn 20 balls and found that 12 were red and 8 were white.

Which of the two individuals should feel more confident that the urn contains 2/3 red

balls, and 1/3 white balls, rather that the opposite?”

The study resulted in more people feeling that the first individual was the stronger in

evidence of the two, despite the odds for the first individual being 8 to 1 rather than 16

to 1 for the second individual.
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The availability heuristic describes the process whereby assessors can bias the estimate

of probabilities due to the ease by which instances or occurrences can be brought to mind,

for example the probability that a new business process would not be very successful due

to the difficulty in implementing it based on similar projects that had been implemented

previously. A second factor to availability which can introduce biases is that more re-

cent occurrences are much more likely be available as estimation evidence than earlier

occurrences, irrespective of relevance. As an adjunct of this premise, familiarity of the

subject being assessed can also be a factor. If a business project is being modelled and

specific uncertainty assessment being made, then the assessor could easily be biased in

their assessments if the project is one of their own, which they have a vested interest in.

The final heuristic of anchoring describes the process whereby assessor makes an un-

certainty estimate starting from an initial value, more often than not based on represen-

tativeness and/or availability biases, and then adjusts this starting point to yield the final

estimate. In most cases the adjustments made are insufficient and overall different initial

values yield different estimates, which are fundamentally biased towards the initial value.

The following example, which is based on an existing study by Tversky and Kahneman

[10], demonstrates this heuristic:

Two groups of individuals from a business estimated the result of a numerical expres-

sion within 5 seconds, each group had no prior knowledge of the expression and the results

were collected individually from each group. The first group were asked to evaluate the

expression 8× 7× 6× 5× 4× 3× 2× 1, and the second group were asked to evaluate the

expression 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8. In all cases the first group evaluated the result

to be a value significantly higher than the second group.

5.2 Domain Experts

When it is necessary to use domain expert knowledge to assess the probabilities of a causal

model, ideally it will be an expert who has the necessary domain knowledge and experience

in or a familiarity with assessing uncertainty. Unfortunately, due to the very nature of

these two disciplines, it is rarely the case that a single expert is available, rather the task of

assessing uncertainty falls upon a pool of experts; ideally this pool of experts is as small as

possible to mitigate the conflicts in assessing the probabilities. It is recommended that at

least one of these experts would have been involved in the identification and construction

of the model, so that any ambiguous variables can be explained sufficiently. When the

assessment of the probabilities is being undertaken by a group of domain experts, research

suggests that the optimal group size is around three members [11].

When probabilities are being assessed by domain experts the elicitation of precise prob-
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ability numbers is far less desirable than using words to describe the degree of influence.

This is attributed to the idea that single or very few descriptive words to express the de-

gree of uncertainty of influence feels more natural in its encapsulation of the uncertainty.

However, it is still very much the case that using words to describe uncertainty will have

a varying degree of scope for different domain experts. Therefore, it is desirable to have a

set of descriptive words, which aim to elevate up the scale by which a domain expert needs

to estimate the influence probabilities; also this set of words provides a set standard by

which the assessors can agree on and use to make probability estimates, which are much

more aligned to a natural language method of assessment.

5.3 Words Of Probability

When a domain expert is called upon to either fully design or provide probability estimates

for a Causal Bayesian Network, then the number of required estimates could potentially

be quite overwhelming; if the model is primarily composed of discrete variables, then the

volumes of probability distributions required can be large, continuous variables mitigate

this somewhat given they are based on a single estimate per parent variable state space.

Of course this can still pose an issue if the continuous variable in question has numerous

discrete parent variables.

Therefore, it is desirable to have in place a method of quickly providing probability

estimates to the model. Once the probabilities have been provided for the model, various

sensitivity and validation analysis methods can be performed to further refine the prob-

abilities. It is desirable that a set of verbal expressions is usable by a domain expert to

specify these initial estimates; although it is equally desirable that the numeric assessment

should still be made available for situations where accuracy is required. When people are

required to provide estimates of probability they would much prefer to use verbal expres-

sions when they have a lack of confidence in the specific area; the verbal expression feel

much more natural, and allow them to express the uncertainty of their assessment.

In a business scenario various case studies have shown that the majority of causal

models defined have consisted of primarily continuous variables; this could be attributed

to the inherent financial and volume based modelling tasks in the business sector. Also,

the constraint on continuous variables of only having continuous child variables means

that once continuous variables are added to the model, in most cases it then becomes

continuous from then on. During research the use of discrete variables has been mainly

focused on describing an ordered ranked status of a specific concept, usually with the range

Red, Amber and Green; other common usage of discrete variables is for binary statement

of True of False. When defining discrete variables, it is common that the domain expert
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rarely defines more than five discrete states. Feedback has been shown that more than

five states results in the causal model being described as “limited in movement” around

the discrete variables in question; the domain experts also expressed a positive correlation

of difficulties in expressing the probability estimates given a higher number of discrete

variable states.

Extensive research has been performed [12] on possible ranges of verbal expressions for

probability analysis; however for the purposes of this research it was decided that the range

of words should be limited to a range of seven words, this decision was arrived at partly

from experience of creating causal models for numerous test cases; also it corresponded

with research performed around the concept that the optimal number of bits of information

a human being can adequately cope with is seven plus/minus two [13]. It also was decided

that too large a set would result in negating the purpose of the words, i.e., providing words

designed to span every ten percent of the probability range would result in the domain

experts having difficulty resolving one word from another. Having seven words means

that we can have the two extremes of the range, zero and one hundred percent and the

mid-point, and then have two additional words between the mid-point and extremities.

Table 7 shows the range of the probability estimate words.

Probability words

impossible

very unlikely

fairly unlikely

fifty-fifty

fairly likely

very likely

almost certain

Table 7: The selected verbal expressions of probability

5.3.1 Words of probability survey

A survey to the students of York university was carried out in order to establish quantita-

tive values given various scenarios to describe the words of probability as listed in Table

7. The specific scenarios are listed in Appendix B, each question describes a specific sce-

nario, and the respondent must position a numeric slider for a range between 0 and 100

to where they feel the value best describes the condition of the scenario. Additional to

these scenarios questions, the respondents were asked to order the words of probability in

52



ascending order from least likely to most likely.

129 people responded to the survey request, the respondents were composed of Com-

puter Science students and a mix of students from other departments from the University

of York, out of which 19 respondents only partially completed the survey. The average

time taken to complete the survey was 1047 seconds.

Analysis of the ordering survey question shows that out of 129 respondents that took

part in the survey to some degree, a total of 115 respondents completed this question.

Grouping the results into the various orderings, there are 10 distinct groupings of different

word orderings. 86 respondents correctly ordered the words in ascending order and 19

respondents ordered the words correctly albeit in the wrong direction, this is assumed to

be a mis-reading of the ordering instruction as specified in the question. The remaining 10

respondents gave an ordering of the words to approximately 70 percent correctness with

a mix of ascending and descending orders.

The scenario question “Matt places 6 RED balls into an empty bag, he then passes the

bag to you and asks you to remove a ball from the bag. It is IMPOSSIBLE that you will

remove a BLUE ball from the bag” which is designed to elicit a response to the Impossible

scenario yielded mixed results. Analysing the response data, the results are 37 responses

with the value 100, 23 responses with the value 0, 1 response of 99, 50 and 2. This question

was designed to elicit a response close to 0, it was decided that the 37 responses with the

value of 100 are due to a different interpretation of the question, i.e., the interpretation

was centred around the chance of the scenario being 100 percent, in this case 100 percent

chance of it being impossible to retrieve a blue ball.

This pattern of interpretation was not present in any of the other questions except for

the Fifty-Fifty question, whereby out of a total of 108 responses, 19 of which responded

with a value of 100 percent. Cross referencing the Impossible and Fifty-Fifty responses,

there are 63 respondents who completed both questions of which 17 exhibited the potential

interpretation problem.

Interestingly the Almost Certain scenario was interpreted as expected with a response

close to 100 percent, therefore this behaviour could be explained by the responses being

aligned to the truth of the scenario statement, rather than the questioned expression of

chance given the scenario. It is also interesting that this pattern of interpretation is only

present in the 3 scenarios which are more aligned with a less uncertain response, i.e.,

Almost Certain, Fifty-Fifty and Impossible. Table 8 shows the average aggregated and

standard deviation results of the survey responses.
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Probability word values

Word Value Standard De-

viation

impossible 0.0003 0.0025

very unlikely 0.2879 0.3000

fairly unlikely 0.3593 0.1776

fifty-fifty 0.51 0.0552

fairly likely 0.6726 0.1430

very likely 0.7779 0.1797

almost certain 0.9451 0.0774

Table 8: The surveyed average probability values for the verbal expressions
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5.4 Architecture

The design for a system which utilises Causal Bayesian Networks within a business envi-

ronment is built on the principle that a business can describe the major entities or concepts

which constitute their business and its processes; this element of the system is called the

business data landscape, in that by itself it is a point of reference for all captured business

concepts, whether there is data for these concepts or not. Each entity in the business

data landscape is described by a set of properties, similar to the entities these properties

can have recorded data assigned to them or they can be modelled via a Causal Bayesian

Network.

A system user can interface directly with the business data landscape by connecting

multiple entities together; when entities are connected via an association relationship any

data in the entities is filtered by intersection by default. Conditional predicates can be

applied to connected entity properties in order to further filter the data being shown in

all connected entities. This adhoc capability to connect and filter the data landscape is a

very powerful method for a system user to gain an initial insight into the observed data

in the landscape.

Figure 21: Overall system architecture.
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5.4.1 Landscape Elements

Each entity contained within the business data landscape is a distinct representation of a

business concept, for example a Department or a Project; these entities encapsulate the

business concept and all properties which describe it. The properties on an entity can be

of two types: a data property and a causally driven property. A data property should

exist for every observable attribute of a business concept; in this way each business entity

becomes measurable.

Entities within the landscape can have data associated with them, as shown in figure

21. Data for disparate external data sources can be extracted and transformed into the

appropriate business data landscape entities, however, it is also valid for landscape entities

to contain no data.

5.4.2 Causally Driven Properties

A causally driven property can exist on an entity, and these properties represent the output

of a specific variable in an associated Causal Bayesian Network. These properties enable

a business analyst to elaborate on the drivers of a property of a business concept, and as

such gain a deeper understanding into potential influencing factors which can be changed.

It is the intention that the causally driven properties can also be created for existing data

properties, this gives the ability to causally model a business concept’s observed property,

again for potential change efficiencies.

The associated Causal Bayesian Network for a causally driven property can have key

model variables be data bound to a specific landscape entity data property. This enables

dynamic recalculation of the causally driven properties, when adhoc querying and filtering

is applied to the business data landscape. Figure 22 highlights the flow of observational

data from key business data landscape entity properties through to data bound causal

variables; once the causal model is calculated with these data bound observations, then

a specific causal model variable is providing the calculated value back to a business data

landscape entity property.
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Figure 22: Business data landscape data bound causal model variables, and a causally

driven property. The faded business data landscape entities are not selected.

5.5 Conditional Probability Value Generation

When a domain expert is tasked with creating a Causal Bayesian Network, they have

the task of specifying the probability distributions to describe the nature of the causal

relationships, once the network of variables has been mapped out. Also mentioned are the

problems around introducing biases when specifying probability numbers into these distri-

butions. It is more desirable if the domain experts could specify, in a qualitative manner,

the overall nature of the causal relationships between the variables and then have a system

generate the probability distributions. The idea behind a guided probability distribution

is to have a system generate an initial hypothesis about the causal relationships in the

network given the relatively little information a domain expert may have about them.

Given that Causal Bayesian Networks, which are supporting strategic decision making,

can become large and complex, outside of data analysis the question of how the proba-

bility distribution acquisition can be performed in these complex domains is the problem

which needs to be addressed.

The specifics of generating probability distributions is explored in this section, specifi-

cally limited to the generation of probability distributions for discrete variables. The focus

on discrete variables is borne out of the nature of the distributions; the decision to focus

solely on discrete variables is due to the fact that given a complex network of discrete

variables with even small event spaces, the volume of required probability numbers can be

very large. When these distribution spaces are of a large size, it can be extremely difficult

to manually specify probabilities, even for someone who knows in great detail how the

causal relationship should behave. Therefore the domain expert should only be required

to indicate how pairs of discrete variables interact and to what degree in order to generate
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the probability distribution.

The proposed method of generating these discrete distribution is with the utilisation of

constraint generation, and then solving the constraint graph to produce the probabilities.

This method differs from typical commercially available Bayesian Network systems, for

example Hugin, in that these systems either allow the user to manually enter the distri-

butions or have them computed via simple expressions, which still feel like an unnatural

method for a domain expert. The method of constraint generation is reliant on the dis-

crete variables event space being in a ranked order, and with mapping information from

parent variable event spaces to the child variables event space, simple constraints can be

generated.

In the following section I explore the concepts of Constraint Satisfaction Programming,

and introduce the concepts of constraints and a method of solving constraint problems and

how this method is utilised to generate a probability distribution for a discrete variable.

5.6 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is simply a mathematical problem whereby given

a series of defined constraints, a general purpose constraint solver can find a solution which

assigns a value to one or more variables which satisfy all the defined constraints. CSPs

are widely used in systems that deal scheduling, planning and even logic puzzles such as

Sudoku or crosswords. CSPs are comprised of a series of variables and constraints upon

them, a constraint solver aims to find an assignment of values to the variables so that the

constraints are satisfied. These constraint solvers utilise various algorithms to search the

space of possibilities that the variable assignments could be, the set of values that could

be assigned to each variable is known as the domain of the variable. For example, when

finding a solution to a game of Sudoku, the domain of each cell would be a set of integer

numbers in the range 1 to 9, and the constraint on each column and row of the game grid

is that each cell must be different in the column and row. In this example, given a Sudoku

grid which has been either partially completed or is blank, it is possible for a constraint

solver to systematically search the solution space, assign values from domains to each grid

cell and ensure that the constraints are satisfied, if a solution is possible then a solution

will be found.

In the case of a discrete variable in the Causal Bayesian Network, the challenge of

generating the probabilities is a similar constraint satisfaction problem to the Sudoku

example. Table 9 shows an example of a typical condition probability distribution for a

discrete variable which has two discrete parents, all variables have an event space of red,

amber and green.
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red amber green

red red 0.95 0.026 0.024

red amber 0.713 0.186 0.101

red green 0.534 0.302 0.164

amber red 0.05 0.713 0.237

amber amber 0.007 0.95 0.043

amber green 0.08 0.534 0.386

green red 0.143 0.323 0.534

green amber 0.089 0.199 0.712

green green 0.018 0.032 0.95

Table 9: Example discrete conditional probability distribution

A constraint on each row of a conditional probability distribution is that each row

must sum to exactly 1, the example shown in table 9 is for two parents which influence

positively on the child variable. Therefore it is also possible to assign constraints to each

cell which provide rules for how each row cell is constrained given values assigned to its

row peer cells. This idea forms the basis of generating the probability distributions for a

domain expert.

Definition 5.1. Constraint Satisfaction Problem

A CSP is a triple P = 〈X,D,C〉 where X is an n-tuple of variables X = 〈x1, x2, ..., xn〉,

D is a corresponding n-tuple of domains D = 〈D1, D2, ..., Dn〉 such that xi ∈ Di, C is a

t-tuple of constraints C = 〈C1, C2, ..., Ct〉.

A constraint Cj is a pair
〈
RSj , Sj

〉
where RSj is a relation on the variables in Sj =

scope(Ci). Ri is a subset of the Cartesian product of the domains of the variables in Si.

[14]

5.7 Constraints

For the generation of conditional probability distributions, it is assumed that the variable

domains are mapped on the finite set Z of integers which are discretized within the range

from 0.001 to 0.999.

Definition 5.2. Constraint

A constraint c is a relation defined on a sequence of variables X(c) = (xi1 , ..., xi|X(c)|),

called the scheme of c. c is the subset of Z|X(c)| that contains the combinations of values

(or tuples) τ ∈ Z|X(c)| that satisfy c. Z|X(c)| is called the arity of c. Testing whether a

tuple τ satisfies a constraint c is called a constraint check. [14]
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Definition 5.3. Constraint network

A constraint network is comprised of:

• a finite sequence of variables X = (x1, ..., xn),

• a domain for X, that is, a set D = D(x1)× ...×D(xn), where D(xi) ⊂ Z is the finite

set of values that variable xi can take, and

• a set of constraints C = c1, ..., ce, where variables in X(cj) are in X.

[14]

A constraint network can be associated with a graph, where the variables are nodes

and the schemes of constraints are edges.

5.8 Constraint Generation

In order to generate constraints, a set of configuration data must be setup for each discrete

variable for which probability generation is to be performed. Given that the designer of the

Bayesian Network could be a domain expert, the aim is to keep the configuration simple

and minimal enough to generate a conditional probability distribution that is a good

starting point or hypothesis. For each discrete variable in the model the domain expert

must assess the question “Given the parental influence, what should be the effect on the

child states?”. In order to generate a probability distribution that addresses this question,

the domain expert will initially be required to indicate a parent variable ordering for the

importance of influence over the child variable. This ordering will allow the domain expert

to specify which parent should have the largest influence on the child, which is ordering

rank 1, down to the least influential at rank n. The parent variable ordering is defined as

the influence rank.

Each discrete variable that requires probability generation must have its discrete states

numerically ranked in ascending order of best to worst. For example, given a discrete

variable with the states Green, Amber and Red the rankings for these states could be 1,

2 and 3 respectively. The state ranks enable constraint generation to effectively decide

which states should be greater or less than other states in probability value.

The next configuration data is a state mapping between parent variable state tuples

and specific child variable states, each individual state map defines an anchor within the

conditional probability distribution table, each anchor is converted to a unary constraint

during constraint generation. The anchor configuration is a representation of the an-

choring heuristic as detailed in section 5.1, when constraint generation is performed the

constraints are started from the anchor cell in the CPD.
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Figure 23: Example constraint generation ranking configuration.

Fig. 23 shows an example Bayesian Network fragment along with its constraint genera-

tion configuration. Each variableA,B,C has the same ranked state set {red, amber, green}.

The parent variables Pa(C) = A,B have the influence ranks A = 1 and B = 2 to indicate

that variable A is likely to impart more influence on C than B does. The state maps for

variable C are also shown, in this example three state maps are defined for each state on

variable C.

The final configuration is to set the degree of influence for the anchors by choosing one

of the words of probability as detailed in Part 2. The range of words available is dependent

on the number of discrete states on the child variable, given P = {AlmostCertain =

0.9451, V eryLikely = 0.7779, FairlyLikely = 0.6726, F ifty − Fifty = 0.51, Fairly −

Unlikely = 0.3593, V eryUnlikely = 0.2879, Impossible = 0.0003} then W = P > 1
|s|

where W is the set of available words of probabilities.

It is important to note that the generated conditional probabilities using this method

are all valid given that a constraint problem solution will be found. However, the case

of whether the resulting probabilities match the expectations of the domain expert is

something that requires some analysis of final model as a whole. It is also assumed

that the Causal Bayesian Network structure is correct and fixed. The complexity of both

generating the constraints and then solving the constraint problem can be computationally

demanding given the number of parent variables, and the number of discrete states on

each parent. The CPD distribution and generated constraints can exponentially increase

to hundreds of parameter values, and so this must be considered during the design of the

causal model.
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5.8.1 Conditional Probability Distribution Table - Constraint Framework

In order to aid effective constraint generation given the aforementioned configurations, the

conditional probability distribution table will be partitioned into influence blocks. Table

10 shows a typical representation of the basic structure of a discrete variable conditional

probability table. The number of rows in the table is determined by the Cartesian product

of the number of variable parents and the discrete states on these parents. The columns

for the child CPD variable in question are determined by its discrete states.

Child Variable

State 1 State 2

Parent 1 States Parent 2 States Probability Probability

... ... ... ...

Table 10: Example CPD fragment

Figure 24: Example influence blocks

An influence block within the CPD table is defined by the configuration of the most

influential parent variable, that is the parent variable with influence rank 1. Within

the CPD table the order from left to right of the parent variables is determined by the

influence rank configuration of the parent variables. Fig. 24 highlights an example of

influence blocks given a simple model fragment for the variable C with parent variables A

and B. All variables have binary states,and parent variable A has the influence rank of 1.

Fig. 25 highlights various network variable fragments and the CPD tables for each

given different influence ranking of parent variables. Fig. 25a and 25b show the same

network fragment with the influence ranks of A = 1, B = 2 for Fig. 25a and B = 1, A = 2

for Fig. 25b. The constraint notation used in Fig. 25 for each CPD table cell is in the

format of a CPD cell coordinate. For example Fig. 25a in the top-right most CPD cell has

the constraint <1,2,1 >1,2,2, which means this cell, with coordinate 1,1,1, should have a

value less than the value in CPD cell with the coordinate 1,2,1 and a have a value greater

than the value in CPD cell 1,2,2, and so on.

Each influence block must be assigned a single anchor cell reference, the cell coordinate

for the anchor is specified by the state mapping configuration.
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(a) Variable A more influential on C than B.

(b) Variable B more influential on C than A.

(c) Variable influence ordering of A,B,C for D.

(d) Variable influence ordering of C,A,B for D.

Figure 25: Example model fragments highlighting CPD blocks,anchors and constraints.
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Definition 5.4. Constraint Generation Meta-Data

Let B be a Causal Bayesian Network with a directed acyclic graph structure G(V,E)

where the discrete variables V of the graph are ∆. Let Z =⊂ ∆ be the set of discrete

variables which require probability generation. The constraint generation meta-data A =

(R,B,M,D) for each variable in Z is comprised of:

• an ascending ordered set of influence rank values R = (r1, ..., rk) where k = |Pa(Zi)|,

one for each of the parents Pa(Zi) to indicate the order of parental influence for Zi.

• Let I be an influence block and C is a set of individual probability values contained

within each I. The |C| of C is governed by the cartesian product of the number of

discrete states of Pa(Zi) \Pa(Zr1), where Pa(Zr1) is the parent of Z with influence

rank = 1.

• a set of I influence blocks B = (b1, ..., bk) where k = number of discrete states of the

parent variable with influence rank r1.

• a set of state mappings M = (m1, ...,mk) where k = |B|, each state map routes a

parent states tuple to a CPD influence block Bi to specify the anchor ai. Each CPD

influence block Bi has an associated anchor ai.

• a set of degree of influence values D = (d1, ..., dk) where k = |B|, selected from a

restricted set of probability words which are applied to each corresponding ai.

Algorithm 3 highlights the function to generate constraints for the cells in a CPD

influence block which are neighbouring to an anchor cell. Figure 26 highlights an example

of these neighbour anchor cells.

Figure 26: Anchor neighbouring cells
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Algorithm 3: CPD constraint generation algorithm for anchor neighbour cells
Input: s:variable state; z comparison variable state

function GenerateConstraintsForAnchorNeighbour(s, z)

if rank of s is min or max rank for the state then

C ← set of constraints for s

C1 ← new less than z constraint

c← parent state set of z

r ← state rank of z

n← 0

if r is the min state rank then
n← 1

end

if r is the max state rank then
n← -1

end

e← new cell coordinate from c + n

C2 ← new greater than e constraint

end

else

C ← set of constraints for s

C1 ← new less than z constraint

end
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Algorithm 4 highlights the function to generate constraints for each individual cell in

a CPD, a cell equates to each state si of each discrete variable Zi ∈ Z. Example results

of this algorithm are shown in Fig. 25. The function GenerateConstraintsForVariable is

initially called for each anchor cell in the CPD, then for each cell in the neighbouring rows

within each anchors CPD block as shown in algorithm 4.
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Algorithm 4: CPD variable constraint generation algorithm
Input: s:variable state; z comparison variable state; S: all variable states for the

variable; p: previous CPD row anchor coordinate

function GenerateConstraintsForVariable(s, z, S, p)

N ← S \ s

if rank of s is min or max rank for the state then

foreach xi ∈ N do

o← CPD cell coordinate of s

C ← set of constraints for xi

Ci ← new less than z constraint

if xi is not in the same CPD column as s and p 6= o then

Ci ← new greater than p constraint

end

z ← xi

end

end

else

H ← states in N with state rank higher then state rank of s, ordered by

state rank ascending

L← states in N with state rank lower then state rank of s, ordered by state

rank descending

foreach hi ∈ H do

C ← set of constraints for hi

Ci ← new less than z constraint

if hi is not in the same CPD column as s and hi is not in the same

CPD row as s then

Ci ← new greater than p constraint

end

z ← hi

end

C ← set of constraints for L1

Ci ← new greater than H1 constraint

z ← Li

T ← L \ L1

foreach ti ∈ T do

C ← set of constraints for t1

Ci ← new less than z constraint

z ← ti

end

end
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5.8.2 Example constraint generation algorithms

Below are examples of algorithms 3 and 4 given a simple variable structure as shown

in Figure 27, all variables have three discrete states {1, 2, 3}. The example algorithm

execution is for generating the constraints for the first two rows of the influence block as

shown in Figure 27, in order of CPD rows starting from the top at A.1, B.1 and then

A.1, B.2.

Figure 27: Example CPD fragment to illustrate an example of algorithms 3 and 4

Algorithm 4 Example

Variable Value Stage

s [{A.1, B.1}, C.1] initialisation

S [{A.1, B.1, C.1], [{A.1, B.1}.C.2], [{A.1, B.1}, C.3]} initialisation

N {[{A.1, B.1}.C.2], [{A.1, B.1}, C.3]} initialisation

z [{A.1, B.1}, C.1] initialisation

p [{A.1, B.1}, C.1] initialisation

x1 [{A.1, B.1}, C.2] iteration 1

o [{A.1, B.1}, C.1] iteration 1

C {[[{A.1, B.1}, C.2] < [{A.1, B.1}, C.1]]} iteration 1

z [{A.1, B.1}, C.2] iteration 1

x2 [{A.1, B.1}, C.3] iteration 2

o [{A.1, B.1}, C.1] iteration 2

C {[[{A.1, B.1}, C.3] < [{A.1, B.1}, C.2]]} iteration 2

z [{A.1, B.1}, C.3] iteration 2

Table 11: CPD cells for influence block cells [{A.1, B.1}, C.2] and [{A.1, B.1}, C.3].
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Algorithm 3 Example

Variable Value Stage

s [{A.1, B.2}, C.1] initialisation

z [{A.1, B.1}, C.1] initialisation

C1 {[[{A.1, B.2}, C.1] < [{A.1, B.1}, C.1]]}

c [{A.1, B.1}]

r 1

n 1

e [{A.1, B.1}, C.2]

C2 {[[{A.1, B.2}, C.1] > [{A.1, B.1}, C.2]]}

Table 12: CPD constraint for influence block anchor neighbour cell [{A.1, B.2}, C.1].

Algorithm 4 Example

Variable Value Stage

s [{A.1, B.2}, C.1] initialisation

S {[{A.1, B.2}, C.1], [{A.1, B.2}.C.2], [{A.1, B.2}, C.3]} initialisation

N {[{A.1, B.2}.C.2], [{A.1, B.2}, C.3]} initialisation

z [{A.1, B.2}, C.1] initialisation

p [{A.1, B.1}, C.1] initialisation

x1 [{A.1, B.2}, C.2] iteration 1

o [{A.1, B.2}, C.1] iteration 1

C {[[{A.1, B.2}, C.2] < [{A.1, B.2}, C.1]], [[{A.1, B.2}, C.2] >

[{A.1, B.1}, C.2]]}

iteration 1

z [{A.1, B.2}, C.2] iteration 1

x2 [{A.1, B.1}, C.3] iteration 2

o [{A.1, B.1}, C.1] iteration 2

C {[[{A.1, B.1}, C.3] < [{A.1, B.1}, C.2]]} iteration 2

z [{A.1, B.1}, C.3] iteration 2

Table 13: CPD cells for influence block cells [{A.1, B.2}, C.2] and [{A.1, B.2}, C.3].
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Part II

6 Case Study

The case study for the application of the techniques described in this thesis, was selected

based upon a common pattern of requirements by business; that is the analysis and adap-

tation of provided capacity to meet a demand upon the business. This demand / capacity

pattern is applicable to a wide range of business requirements, and can equally be applied

to people capacity or manufacturing capacity management. The chosen case study is a

representative instance of this capacity demand problem as applied to a fictitious bank,

which I have named the Bank of the States, any similarities within the specifics of the data

to any real world banking organisations is purely coincidental. The main purpose of this

case study is to demonstrate the application of the artificial intelligence techniques de-

scribed in this thesis; how they can provide a deeper understanding of the key influencing

factors to the specific use case and then to model options for change within the business.

The specific area to be used within the Bank of the States is ultimately focused on

the bank selling mortgages to the general public, and those mortgage applications being

successful through to completion, and so providing revenue for the bank. The causal

model in the case study is designed to describe the key social and economic factors which

influence the general public to approach the bank for a mortgage. I have based the Bank

of the States in the United States of America, and so the social and economic factors data

has been gathered and compiled from US Census data for each State and County.

The causal model describes a scenario which the Bank of the States is currently in,

whereby they are seeing poor satisfaction from both their customers and their staff with

regard to their internal and external systems. The level of satisfaction is further com-

plicated due to the age of customers wanting different needs from the banking systems,

the younger population is very keen to increase the availability of an online presence, and

would rather perform all activities online without the need to visit a local branch. Al-

though the older population prefers the more human face to face aspect of banking. The

Bank of the States has also been witnessing a slow reduction of new customer mortgage

applications over the past 18 months, and suspects that the overall customer satisfaction

and market presence requires some attention. Various competitors of the bank have been

increasing their market share and online banking presence, and whilst at this stage the

bank is still achieving new customers, the rate of decline means the bank must address

these satisfaction and confidence issues sooner rather than later. The bank has decided

that it should run projects to ultimately address the customer satisfaction issue, however
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it is uncertain to them, given options of an online systems upgrade and a fresh marketing

initiative, in what specific areas these projects help and what degree. Also, if the projects

are successful, what demands of staffing levels will these changes have?

The intended purpose of this case study is to help the Bank of the States to understand

the effects of performing a mortgage application and monitoring system upgrade and/or

initiating a fresh marketing campaign for the bank, and what levels of capacity the bank

should expect given these potential changes.

The design of the causal model for the Bank of the States’ case study was created by

myself acting as the domain expert for the fictitious bank, however the influencing factors

and the general degree of influence is based upon realistic economic factors and real world

census data.

6.1 Case Study Data Landscape

The business data landscape of the Bank of the States stores information on each pro-

cessing stage of a mortgage, ranging from the initial referral, to a filtered referral, to an

application and finally upon a successful application to a mortgage. As each mortgage

case data flows through these states, the volumes of mortgage cases reduce; the volume of

mortgage cases at each stage represents demand for the bank.

Figure 28: Bank of the States data model
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Branch

This data element contains specific information about each bank branch in the Bank of

the States network. Each Branch is associated with a Market in which it operates in.

Referral

The data element represents reference information for an enquiry about a mortgage appli-

cation or interest in a mortgage from either an existing or potential new bank customer.

Referrals can come from various sources such as an adhoc enquiry from marketing efforts

or existing customers requiring new or different mortgage packages.

Filtered Referral

This data element represents the progressed state of a Referral which has passed basic

checks by the bank. These checks include a suitability check or a basic affordability check

by the mortgage advisers

Applications

This data element represents the progressed state of a Filtered Referral which is in the

mortgage application process, and pending all affordability, security and property checks

by the mortgage advisers.

Approved Mortgages

This data element represents the progressed state of a mortgage application which has

passed all checks and the mortgage has been issued to the customer by the bank.

The capacity of the bank to handle the demand from customers relating to mortgage

applications is provided by a number of different sources. Currently the bank has three

different sources of capability for processing mortgages through the states of progression: in

branch permanent mortgage advisers, regional mortgage advisers and call centre telephony

mortgage advisers. In branch permanent mortgage advisers are permanently employed

staff who exclusively operate from their assigned bank branch.

Regional mortgage advisers are permanently employed staff who exclusively operate

in a specific region which can cover multiple bank branches. These advisers must schedule

their capability time to maximise the time spent providing mortgage advice to customers

in the region. Call centre telephony mortgage advisers, are permanently employed staff

who provide mortgage application services to all bank branches via a telephony call centre.
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The volumes of customer mortgage cases at each stage in the process is what generates

demand on the banks mortgage adviser resource pool in the form of a level full time equiv-

alent (FTE). Each mortgage case stage generates demand in different ways. Referrals and

Filtered Referrals generate demand on the in branch and call centre advisers; Applications

and Approved Mortgages generate demand on the all the mortgage adviser archetypes.

6.2 Case Study Causal Model

Figure 29: Bank of the States causal model

The model variables in figure 29 are designed to highlight the most significant drivers

that the bank feels contribute towards mortgage applications and how these contribute

toward profits for the bank. The variables shown with light dashed edges represent the

social and economic influencing factors by which the bank attributes as the key causes

which can affect the volumes of customers, both existing and new, with respect to customer

satisfaction and mortgage applications. The heavy dashed grey variables are continuous

and the non-dashed grey variables are discrete.

For the purposes of this case study, it is assumed that the example model structure is

fixed and is the optimal model, whereas in reality the model structure may well evolve as

the understanding of the model domain evolves and/or additional data becomes available.

The fixing of the model structure aids the example with parameter value generation,
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as detailed in section 6.2.2. This iterative nature of refinement will occur, and in this

scenario of building models with limited or no available data, the assessment of whether

the model is optimal must be done by using the analysis techniques detailed in sections

6.3 and 6.4 to establish if both the parameters and model results are close to the domain

expert’s expectation. The subject of learning a causal model structure basically involves

one of three different approaches: constraint based learning, score based learning and

Bayesian model averaging. Finding the optimal causal model again involves an iterative

approach, only in this instance the evaluation is based on maximising the value of the

scoring function used. The subject of model structure learning from data is beyond the

scope of this document, however further information can be found at [15].

The model variable Consumer Confidence is based upon the Consumer Sentiment

Index score as published by the University of Michigan [16]. This score, published on

a monthly basis, is a measure of consumers’ confidence and attitudes towards spending

and the overall business climate. Financial businesses utilise this score as a measure of

judgement towards consumer levels of optimism regarding possible future spending.

The model variables Unemployment and Population Age are US County level statistics

gathered from US census data [17] [18]. The Population Age variable is a measurement of

the mean population age by US County.

There are three decision variables within the model that describe the three decisions

that the bank faces with regards to overhauling the banking systems, running a marketing

campaign and lastly whether to increase the mortgage fee or not. Raising the fee is a

secondary decision that the bank feels it may have to introduce if it feels that the costs

for performing the system upgrades, marketing and any changes in staff capacity need to

be recuperated.

The final objective variable for the model is Profit, which of course has the overall goal

of being maximised. In this model the Profit variable is a simple formula of Revenue - Cost

per Application - Project Costs. The bank has budgeted a maximum spend of $1,000,000

on marketing and an estimated spend of $250,000 on a banking systems upgrade.

Additionally, figure 29 describes the general direction of influence in the causal model,

as shown using the + and - signs on each influence relationship. A + indicates that the

parent variable has a positive influence on its child variable, that is an increase in the

parent variable value results in an increase in the child variable; the same effect is true

when the parent if decreased, a decrease occurs in the child variable. A - influence indicates

that the parent has a negative influence on its child variable, that is an increase in the

parent variable value results in a decrease in the child variable; the inverse effect is true.
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6.2.1 Decisions for the bank

As mentioned the Bank of the States has seen a decline in customer satisfaction over the

previous 18 months, and has attributed this to the growing need to have an online presence

for new applications and management of existing mortgages. The bank is also aware from

feedback that the banking staff are frustrated with the current banking systems and find

them counter-intuitive to use, the bank feels that staff satisfaction is also an important

factor for customer satisfaction. This is expressed in the model with the decision to

Overhaul the Banking Systems directly influencing both Staff Satisfaction and Customer

Satisfaction, with an additional influence relationship from Staff Satisfaction to Customer

Satisfaction.

The decision to run a marketing campaign can have significant benefits, as it directly

influences Customer Satisfaction and Brand Image, with the latter further influencing the

market share from competitors which the bank feels is an ever increasing problem currently.

However, running the intended marketing campaign will be a very costly project.

Either or both of these key project decisions for the bank will address the customer

satisfaction issue it faces and start to increase the mortgage applications for the bank.

However, with the potential increase in applications there will be increase in the required

capacity to process these them. Therefore the model variable Advisers is an estimated

number of the Full Time Equivalent (FTE) staff headcount required to process the es-

timated changes to the volume of mortgage applications. The associated costs for the

Advisers is made visible by the variable Processing Costs.

As shown in figure 30, the variables Population Age and Unemployment are optionally

contextualised from the business data model. The contextual data for these variables are

all derived from a level of granularity as set by a specific US County, which is passed to the

business data model as a filtering variable. For example, the model variables Population

Age, Unemployment get their contextual values from the County that the a given Branch

is situated in.

The only exception to this is the causal model variable Consumer Confidence, which

simply contextualises the model variable with the data currently available from the data

model given the current month and year.
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Figure 30: Bank of the States data linked causal model

6.2.2 Generated CPD Configurations

The below figures highlight the configurations created for the model variables Customer

Satisfaction, Brand Image and Competition. These configurations are also detailed in

Appendix A.3 along with the generated probabilities.

76



(a) (b)

Figure 31: Customer Satisfaction CPD configuration.

(a) (b)

Figure 32: Brand Image CPD configuration.

(a) (b)

Figure 33: Competition CPD configuration.
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6.3 Sensitivity Analysis

When designing models for a business and subsequently completing the conditional proba-

bilities, sensitivity analysis should be performed on model to establish which of the model

nodes are more or less tolerant to error with respect to the outcome model variable.

Sensitivity analysis should be performed on the Causal Bayesian Network to identify

the most influential parameters. And finally more accurate values of those identified

probability parameters can be obtained by a more careful assessment. The process of

iteratively performing sensitivity analysis and refining those influential parameters until

a satisfactory behaviour of the Causal Bayesian Network is achieved is recommended to

be done until the cost of further elicitation outweighs the benefits of higher accuracy,

or until higher accuracy can no longer be obtained due to a lack of knowledge. In this

iterative procedure, an expert can focus his or her attention on the probabilities to which

the network’s behaviour shows highest sensitivity. Those less influential parameters can

be left with crude estimates.

Figure 34: Observation based analysis on Profit

Figure 34 shows the results of observing each discrete variable’s states individually

and then recording the delta value on the outcome variable ”Profit”. The most influential

variable in the model is the ”Customer Satisfaction” variable, which makes sense for a

retail focused business. This gives some insight into which variables in the model yield

the largest and smallest effect on the outcome variable.
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Figure 35: Case study model with the most influential variables highlighted.

Figure 35 shows the model with the variables that result in the biggest value changes for

the outcome variable ”Profit”. These variables provide a good starting point for sensitivity

analysis techniques [19] to be performed to tune the variables, as they are less tolerant

to errors. However, in this specific case, due to the Population Age and Unemployment

variables being derived from actual census data its safe to disregard these from sensitivity

analysis, leaving just Customer Satisfaction.

6.4 Parameter Validation

When a business creates a Causal Model using a domain expert as the primary source,

and uses the method described in this document for generating certain discrete variables,

there is a need to ensure that the generated variables model the influences valid enough.

It is necessary to perform some validation for these generated variables, traditionally if

the business has access to observational data then there are scoring techniques, such as

the Brier score [20], to measure how far from the observation the probability is [21],

with values closer to zero being the most optimal score. In the situation catered for

here, the business does not have any observational data, for example in the case study

the bank does not have any data related to the variable Customer Satisfaction. These

more behavioural model variables are difficult to validate against given this lack of a

comparison. A Brier score could be specified by using expected values which are elicited

from the domain expert, however careful management of this would need to be done so

that unwanted biases are not introduced into the evaluation. The validation method would

be to calculate the Causal Bayesian Network in an iterative manner for a scenario which is

aligned to past observational data for the outcome model variables, making observations

in a specific model variable and comparing the Brier score for the outcome variable with
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the expectation of the domain expert.

For example, when validating the variable Customer Satisfaction, the case study model

can be calculated for previous time periods for which the bank has operational data relating

to the Applications variable. The model is calculated using any other observational data

available in this time period, in this case any of the variables Population Age, Consumer

Confidence or Unemployment Rate. Due to the lack of any observational data for Customer

Satisfaction the time period selection should be based on a period which the domain expert

has any other available indicators for the potential state of Customer Satisfaction at that

time, this could include researching any economic factors present in this period which

may give some indication of the state of Customer Satisfaction. The model should be

calculated with the observations set and a Brier score calculated for the variable being

validated. The domain expert would then need to make an assessment of how tolerant of

the score they should be in order to inform any manual adjustments in the CPD parameter

values of the variable being validated.

Figure 36: Brier score calculated for Customer Satisfaction for existing observations of

Applications with domain expert expectations for Customer Satisfaction of Medium and

High

Figure 36 shows the Brier scores of a sample set of observed values for the Applications

variable which the bank has available for prior time periods. Using the equation BS =

1
N

∑t=1
N (ft − ot)2 to calculate the Brier score given N = 3, the domain expert expected

observation ot for Customer Satisfaction and the probability of Customer Satisfaction at

t for the observation of Applications at t, each series on the chart represent the Brier score

calculated given the domain experts expected observation for Customer Satisfaction. We

can speculate that for the observed values of Applications between 1654 and 1814, the
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domain experts expected value of Medium for Customer Satisfaction for the most part

matches the expectation. However, there is a peculiarity for the range 1684 to 1704,

whereby the value of High has a better score, this will need further analysis in the model

to establish if other factors are contributing to this anomaly. Using the observed values for

Applications above 1814 suggest a Customer Satisfaction value of High is more suited.
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7 Conclusions

Using the methods described in this thesis to generate discrete conditional probability dis-

tributions, enables a domain expert to quickly get a hypothesis model up and running and

potentially ready to perform decision making upon. The ability for a business to utilise

a Causal Bayesian Network for decision making is key as they allow a domain expert to

gain visibility and a deeper understanding of the business processes. Further, from this

better understanding, business process changes and the probable impacts can be explored

and analysed. Many businesses gather various volumes of data, from high level process

/ metric data to vast quantities of more social / diagnostic data. At the recent ICCRTS

(International Command and Control Research and Technology Symposium) 2016, the

recurring problem that companies had was that they have too much data now, whereas

previously they had the problem that they had not enough data. At the conference there

was a strong feeling that simply gathering all of this data was not enough, and the abil-

ity to use it to perform analysis on the real methodology of a business was much more

important. The prospect of making sense and modelling business processes without nec-

essarily requiring the need to perform data-mining or various data aggregation techniques

is very desirable. When dealing with observation data, it does not answer the question of

how/why the data is the value it is. It is the ability of the Causal Bayesian Network to

model these values and by modelling the values gain an understanding into what drives

the values. These causal drivers may well be influencing factors within or external to a

business, and as such perhaps are not available in data from internal systems. For ex-

ample, economic / social factors which could be influencing in a more behavioural way,

which is not explicitly captured in data. In the use case, the ability to model the social

and economic factors based upon domain expert knowledge means that the modelled out-

come can factor in these influences. If the bank simply gathered this data and performed

analysis techniques such as a Naive Bayes algorithm, whilst the degree of movement from

one data variable to the correlated data is accurate in so far as the data can provide, it

would not allow an analyst to encode domain expert knowledge.

The method of generating conditional probability distributions is therefore a key re-

quirement, and using constraint satisfaction problem approach means that it is very fast

for a domain expert to create candidate causal models. As with any Causal Bayesian

Network, whether it is generated from data or manually created by domain experts, there

is always a need to validate the model to ensure that the outcome values are close enough

to either any observational values available or to expectations. The iterative process of

model creation, parameter generation and validation should ideally be fast so that the
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creation of a functioning Causal Bayesian Network is not a prohibitive task.

8 Further Research

The method for generating conditional probabilities described here could be further ex-

tended with some research on Probability Assessment with Maximum Entropy [22]. In

this research the conditional probabilities are generated to closely match with an expected

result on model variables. Therefore if a domain expert already has an expectation of what

the result should be given conditions on influencing variables, the conditional probabilities

generated for those influencing variables could be made much closer to the expectation.

With the generation method described here, when a solution to the constraint problem is

found the conditional probabilities are valid, are selected from a finite set of possibilities

determined by your level of discretisation. As such in any case of generated probabilities

the sensitivity analysis must be performed.

Ultimately any probabilities generation technique should try to maintain an unbiased

nature. The entropy based generation could suffer from domain expert biases for the

expectation that they could specify.

Another potential application for conditional probability generation could be in the

use of Credal Networks [23], which is a move towards an imprecise method of computing

probabilities. Credal networks allow a result to be expressed in a more imprecise manner,

such as ”X is more probable than Y”, rather than in an uncertainty model like Causal

Bayesian Networks whereby a result is expressed as ”X is three times more probable than

Y”. Using the constraint defining configurations defined here, the constraint solver could

output the possible ranges available during the solution findings, rather than selecting a

specific probability value within the range.
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A Appendices

A.1 Probability Word Estimator Survey

Survey Sceanrios

Question Word of Probability Scenario

1 Impossible Matt places 6 RED balls into an empty bag,

he then passes the bag to you and asks you to

remove a ball from the bag. It is IMPOSSIBLE

that you will remove a BLUE ball from the bag.

2 Very Unlikely You are visiting London and it is Christmas Day,

it is VERY UNLIKELY that it will be snowing.

3 Fairly Unlikely It is currently Summer in the UK, and the

weather has been dry today, it is FAIRLY UN-

LIKELY that it will rain tomorrow.

4 Fifty-Fifty Geoff tosses a coin, and openly states before-

hand that he thinks it will land with he heads

side facing up, it is FIFTY-FIFTY that this out-

come will be true.

5 Fairly Likely Carol leaves her house, it is dark outside, it is

FAIRLY LIKELY late in the evening.

6 Very Likely Steve is waiting to undertake a public speech to

a large audience, it is VERY LIKELY that Steve

is nervous.

7 Almost Certain Mark is on the 5th floor of a building, he opens

the window and drops a glass cup onto a tarmac

road below, it is ALMOST CERTAIN that the

glass will break.

Table 14: Words of Probability Survey Scenarios
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Survey Results

Question Min Max Mean Std Dev Variance Count

1 0.00 100.00 61.13 48.29 2331.83 63

2 2.00 100.00 28.80 29.91 894.74 108

3 1.00 87.00 35.93 17.68 312.52 104

4 49.00 100.00 60.26 19.72 388.95 108

5 24.00 100.00 67.27 14.24 202.68 108

6 9.00 100.00 77.79 17.90 320.26 107

7 50.00 100.00 94.52 7.71 59.50 112

Table 15: Words of Probability Survey Results Summary

Figure 37: Aggregated survey response counts for each word of probability.

The survey was produced and presented using Qualtrics [24] and all survey results are

stored securely by Qualtrics.

A.2 Generated Probabilities Examples

The below figures highlight the min, max and mean values for the domain ranges during

constraint solving for a CPD. Each row of figures shows these ranges, firstly for each CPD

cell in the row of the influence block which contains the anchor cell. Secondly, the ranges
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are shown for each CPD cell of the non-anchor neighbouring rows in an influence block.

The sample Bayesian network fragment and CPD shape used for constraint generation is

structured as shown in Fig. 38

Figure 38
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A.3 Case Study Causal Model Probabilities With Generated CPD Con-

figurations

The case study model CPD parameters are a mix of generated probabilities, domain expert

assessments and values analysed from business and/or census data. Listed below are all

the CPD values and configurations for each discrete or continuous model variable, along

with a description of how the values where created in the case of data and domain expert

derived values.
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A.3.1 Domain Expert Assessments

Staff Satisfaction

Overhaul? State Probability

Yes High 0.4

Yes Medium 0.4

Yes Low 0.2

No High 0.1

No Medium 0.35

No Low 0.55

Table 16: Staff Satisfaction probabilities

Table 17: Applications probabilities

Applications

Beta

RF? CS U Age EA NA CC Variance

No High High >50 0.03 0.03 1.5 1

No High High >35 0.03 0.06 1.5 1

No High High >20 0.03 0.06 1.5 1

No High Low >50 0.06 0.03 1.5 1

No High Low >35 0.09 0.15 1.5 1

No High Low >20 0.06 0.012 1.5 1

No Medium High >50 0.03 0.03 1.5 1

No Medium High >35 0.024 0.027 1.5 1

No Medium High >20 0.018 0.015 1.5 1

No Medium Low >50 0.03 0.03 1.5 1

No Medium Low >35 0.09 0.12 1.5 1

No Medium Low >20 0.03 0.09 1.5 1

No Low High >50 0.03 0.03 1.5 1

No Low High >35 0.012 0.015 1.5 1

No Low High >20 0.009 0.006 1.5 1

No Low Low >50 0.024 0.024 1.5 1

No Low Low >35 0.018 0.018 1.5 1

No Low Low >20 0.018 0.018 1.5 1

Yes High High >50 0.027 0.027 1.5 1
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Table 17: Applications probabilities

Applications

Beta

RF? CS U Age EA NA CC Variance

Yes High High >35 0.027 0.054 1.5 1

Yes High High >20 0.027 0.027 1.5 1

Yes High Low >50 0.054 0.027 1.5 1

Yes High Low >35 0.081 0.135 1.5 1

Yes High Low >20 0.054 0.108 1.5 1

Yes Medium High >50 0.027 0.027 1.5 1

Yes Medium High >35 0.0216 0.0243 1.5 1

Yes Medium High >20 0.0162 0.0135 1.5 1

Yes Medium Low >50 0.027 0.027 1.5 1

Yes Medium Low >35 0.081 0.108 1.5 1

Yes Medium Low >20 0.027 0.081 1.5 1

Yes Low High >50 0.027 0.027 1.5 1

Yes Low High >35 0.0108 0.0135 1.5 1

Yes Low High >20 0.0081 0.0054 1.5 1

Yes Low Low >50 0.0216 0.0216 1.5 1

Yes Low Low >35 0.0162 0.0162 1.5 1

Yes Low Low >20 0.0162 0.0162 1.5 1

Project Costs

Overhaul? Marketing? Mean Variance

Yes Yes 1250000 1

Yes No 250000 1

No Yes 1000000 1

No No 0 1

Table 18: Project Costs probabilities

A.3.2 Data Driven Assessments

The Unemployment Rate variable is derived from the US census unemployment rates for

every county in each US state [18]. The data was discretised into a High and Low state

based upon an unemployment boundary threshold of 6.9 percent over data averaged over
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a one year period in 2016 for 3196 US counties.

Unemployment

State Probability

High 0.1257

Low 0.8743

Table 19: Unemployment probabilities, extracted from Census data

The Population Age variable is derived from the US census average population age

for each US state as of 2016 [17]. The data was discretised into three states that the bank

felt best represented its loan application demographics groups. Each discrete state value

boundary is based on the average population age being between 20 and 35, between 35

and 50 and over 50.

Age

State Probability

>50 0.05

>35 0.65

>20 0.3

Table 20: Age probabilities

The Consumer Confidence variable is derived from the average of the Consumer Con-

fidence Score from the University of Michigan [16] for 2016.

Consumer Confidence

Mean Variance

91.84 8.5

Table 21: Consumer Confidence probabilities

The Existing Accounts variable is derived from account data that the Bank of the

States has stored over the past 10 years. Analysis was performed by the bank’s data

analysts over the dataset guided by the domain expert as to when the bank had High or

Low competition from other banks over the 10 year period of the data.
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Existing Accounts

Competition Mean Variance

High 35000 54.77

Low 50000 31.62

Table 22: Existing Accounts probabilities

The New Accounts variable is based on data that the Bank of the States has stored

over the past 10 years on new account applications by month. The data analysts were

guided by the domain expert on the level of competition and how effective they felt the

brand image was in each monthly period.

New Accounts

Brand Image Competition Mean Variance

Effective High 5200 15.88

Effective Low 8500 12.25

Needs Work High 2700 8.66

Needs Work Low 4000 12.25

Table 23: New Accounts probabilities
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The Advisors continuous variable is derived from Human Resources time allocation

data that the Bank of the States has available. On a daily basis each bank employee must

complete a timesheet breakdown of their work hours broken down by cost codes, therefore

the data analysts were able to extract how much FTE (Full Time Equivalent) effort a

bank loan advisor takes to process loan applications. From this computed work rate the

analysts are able to calculate, for a single loan application, the percentage time taken per

FTE.

Advisers

Applications Mean Variance

0.02 1 1

Table 24: Advisers probabilities

The Processing Costs continuous variable is derived from from analysing accounts data,

and extracting how much it costs the bank to process a single application in terms of both

the cost of each Advisor as well as administration costs.

Processing Costs

Applications Advisers Variance

150 10000 1

Table 25: Processing Costs probabilities

The Revenue continuous variable is derived from accounts data at the bank, taken

over the past 10 years. The data split by the decision Raise Fee? is differentiated based

on computing how much more revenue can be made by increasing the loan application fee

by an amount suggested by the domain expert on behalf of the business.

Revenue

Raise Fee? Applications Variance

Yes 2900 1

No 1800 1

Table 26: Revenue probabilities

The Profit continuous variable is a simple linear distribution which describes the pos-

itive / negative nature of the influences of Processing Costs, Project Costs and Revenue.
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Profit

Processing Costs Revenue Project Costs Variance

-1 1 -1 1

Table 27: Profit probabilities

A.3.3 Generated Probabilities

Table 28: Customer Satisfaction probabilities

Customer Satisfaction

Marketing? Overhaul? Age Staff Satisfaction State Probability

Yes Yes >50 High High 0.133

Yes Yes >50 High Medium 0.319

Yes Yes >50 High Low 0.548

Yes Yes >50 Medium High 0.0669

Yes Yes >50 Medium Medium 0.16

Yes Yes >50 Medium Low 0.7731

Yes Yes >50 Low High 0.101

Yes Yes >50 Low Medium 0.391

Yes Yes >50 Low Low 0.508

Yes Yes >35 High High 0.67

Yes Yes >35 High Medium 0.25

Yes Yes >35 High Low 0.08

Yes Yes >35 Medium High 0.1539

Yes Yes >35 Medium Medium 0.7731

Yes Yes >35 Medium Low 0.073

Yes Yes >35 Low High 0.175

Yes Yes >35 Low Medium 0.209

Yes Yes >35 Low Low 0.616

Yes Yes >20 High High 0.7731

Yes Yes >20 High Medium 0.19

Yes Yes >20 High Low 0.0369

Yes Yes >20 Medium High 0.686

Yes Yes >20 Medium Medium 0.277

Yes Yes >20 Medium Low 0.037

Yes Yes >20 Low High 0.535
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Table 28: Customer Satisfaction probabilities

Customer Satisfaction

Marketing? Overhaul? Age Staff Satisfaction State Probability

Yes Yes >20 Low Medium 0.452

Yes Yes >20 Low Low 0.013

Yes No >50 High High 0.6757

Yes No >50 High Medium 0.289

Yes No >50 High Low 0.0353

Yes No >50 Medium High 0.634

Yes No >50 Medium Medium 0.32

Yes No >50 Medium Low 0.046

Yes No >50 Low High 0.452

Yes No >50 Low Medium 0.375

Yes No >50 Low Low 0.173

Yes No >35 High High 0.242

Yes No >35 High Medium 0.574

Yes No >35 High Low 0.184

Yes No >35 Medium High 0.2833

Yes No >35 Medium Medium 0.6757

Yes No >35 Medium Low 0.041

Yes No >35 Low High 0.588

Yes No >35 Low Medium 0.216

Yes No >35 Low Low 0.196

Yes No >20 High High 0.6757

Yes No >20 High Medium 0.188

Yes No >20 High Low 0.1363

Yes No >20 Medium High 0.558

Yes No >20 Medium Medium 0.26

Yes No >20 Medium Low 0.182

Yes No >20 Low High 0.41

Yes No >20 Low Medium 0.309

Yes No >20 Low Low 0.281

No Yes >50 High High 0.133

No Yes >50 High Medium 0.319

No Yes >50 High Low 0.548
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Table 28: Customer Satisfaction probabilities

Customer Satisfaction

Marketing? Overhaul? Age Staff Satisfaction State Probability

No Yes >50 Medium High 0.0669

No Yes >50 Medium Medium 0.16

No Yes >50 Medium Low 0.7731

No Yes >50 Low High 0.101

No Yes >50 Low Medium 0.391

No Yes >50 Low Low 0.508

No Yes >35 High High 0.67

No Yes >35 High Medium 0.25

No Yes >35 High Low 0.08

No Yes >35 Medium High 0.1539

No Yes >35 Medium Medium 0.7731

No Yes >35 Medium Low 0.073

No Yes >35 Low High 0.175

No Yes >35 Low Medium 0.209

No Yes >35 Low Low 0.616

No Yes >20 High High 0.7731

No Yes >20 High Medium 0.19

No Yes >20 High Low 0.0369

No Yes >20 Medium High 0.686

No Yes >20 Medium Medium 0.277

No Yes >20 Medium Low 0.037

No Yes >20 Low High 0.535

No Yes >20 Low Medium 0.452

No Yes >20 Low Low 0.013

No No >50 High High 0.1809

No No >50 High Medium 0.7731

No No >50 High Low 0.046

No No >50 Medium High 0.343

No No >50 Medium Medium 0.551

No No >50 Medium Low 0.106

No No >50 Low High 0.428

No No >50 Low Medium 0.304
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Table 28: Customer Satisfaction probabilities

Customer Satisfaction

Marketing? Overhaul? Age Staff Satisfaction State Probability

No No >50 Low Low 0.268

No No >35 High High 0.073

No No >35 High Medium 0.362

No No >35 High Low 0.565

No No >35 Medium High 0.0683

No No >35 Medium Medium 0.256

No No >35 Medium Low 0.6757

No No >35 Low High 0.132

No No >35 Low Medium 0.395

No No >35 Low Low 0.473

No No >20 High High 0.101

No No >20 High Medium 0.391

No No >20 High Low 0.508

No No >20 Medium High 0.133

No No >20 Medium Medium 0.319

No No >20 Medium Low 0.548

No No >20 Low High 0.0669

No No >20 Low Medium 0.16

No No >20 Low Low 0.7731
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(a) (b)

Figure 43: Customer Satisfaction CPD configuration.

Brand Image

Marketing? Customer Satisfaction State Probability

Yes High Effective 0.974

Yes High Needs Work 0.026

Yes Medium Effective 0.702

Yes Medium Needs Work 0.298

Yes Low Effective 0.522

Yes Low Needs Work 0.478

No High Effective 0.51

No High Needs Work 0.49

No Medium Effective 0.35

No Medium Needs Work 0.65

No Low Effective 0.3243

No Low Needs Work 0.6757

Table 29: Brand Image probabilities
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(a) (b)

Figure 44: Brand Image CPD configuration.

Competition

Brand Image State Probability

Effective High 0.51

Needs Work Low 0.49

Effective High 0.7731

Needs Work Low 0.2269

Table 30: Competition probabilities

(a) (b)

Figure 45: Competition CPD configuration.
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