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Images play a significant and important role in diverse areas of everyday modern life.

Examples of the areas where the use of images is routine include medicine, forensic

investigations, engineering applications and astronomical science. The procedures and

methods that depend on image processing would benefit considerably from images that

are free of blur. Most images are unfortunately affected by noise and blur that result

from the practical limitations of image sourcing systems. The blurring and noise effects

render the image less useful. An efficient method for image restoration is hence important

for many applications.

Restoration of true images from blurred images is the inverse of the naturally occurring

problem of true image convolution through a blurring function. The deconvolution of

images from blurred images is a non-trivial task. One challenge is that the computation

of the mathematical function that represents the blurring process, which is known as the

point spread function (PSF), is an ill-posed problem, i.e. an infinite number of solutions

are possible for given inexact data. The blind image deconvolution (BID) problem is

the central subject of this thesis. There are a number of approaches for solving the BID

problem, including statistical methods and linear algebraic methods. The approach

adopted in this research study for solving this problem falls within the class of linear

algebraic methods. Polynomial linear algebra offers a way of computing the PSF size

and its components without requiring any prior knowledge about the true image and

the blurring PSF.
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This research study has developed a BID method for image restoration based on the

approximate greatest common divisor (AGCD) algorithms, specifically, the approximate

polynomial factorization (APF) algorithm of two polynomials. The developed method

uses the Sylvester resultant matrix algorithm in the computation of the AGCD and

the QR decomposition for computing the degree of the AGCD. It is shown that the

AGCD is equal to the PSF and the deblurred image can be computed from the coprime

polynomials.

In practice, the PSF can be spatially variant or invariant. PSF spatial invariance means

that the blurred image pixels are the convolution of the true image pixels and the same

PSF. Some of the PSF bivariate functions, in particular, separable functions, can be

further simplified as the multiplication of two univariate polynomials. This research

study is focused on the invariant separable and non-separable PSF cases.

The performance of state-of-the-art image restoration methods varies in terms of compu-

tational speed and accuracy. In addition, most of these methods require prior knowledge

about the true image and the blurring function, which in a significant number of appli-

cations is an impractical requirement. The development of image restoration methods

that require no prior knowledge about the true image and the blurring functions is hence

desirable. Previous attempts at developing BID methods resulted in methods that have

a robust performance against noise perturbations; however, their good performance is

limited to blurring functions of small size. In addition, even for blurring functions of

small size, these methods require the size of the blurring functions to be known and an

estimate of the noise level to be present in the blurred image.

The developed method has better performance than all the other state-of-the-art meth-

ods, in particular, it determines the correct size and coefficients of the PSF and then

uses it to recover the original image. It does not require any prior knowledge about the

PSF, which is a prerequisite for all the other methods.
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Chapter 1

Introduction

1.1 Background

Images, in modern science and in everyday life, are ubiquitous and indispensable. It

is natural to utilize the abilities of our visual system to display our knowledge of the

world in graphical form. Images occur in photography, medical imaging, remote sensing,

astronomy and microscopy. In each case, there is an essential scene or object that we

wish to portray; the image is a visual representation of this knowledge.

Unfortunately, imaging processing, as with any other information extraction process-

ing, is never perfect. Image degeneration occurs in the form of blur, noise, and other

degradations in the recorded image due to imperfections in the capturing and imaging

processes. Thus, the image emerges as a degraded version of the original image. This

degeneration results from various sources such as optical imperfections in the case of a

digital camera (e.g. lens defocus) or atmospheric blurring in the case of aerial/satellite

photography, etc. [10, 11]. Failure to focus the camera properly or camera shake can

both lead to blurred images being generated. Sometimes the lost data may contain in-

formation we are interested in. It may be valuable to try to restore these hidden details

in order to interpret the underlying scene that generated this information. Figure 1.1

shows an example of a blurred image. Blurred images are a frustrating sight to anyone

1
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Figure 1.1: Blurred and original images: example demonstrating motion blur due to
camera shake.

who has tried taking photographs for a scientific purpose, for example, image interroga-

tion for feature extraction. Users usually are frustrated that an important proportion of

these photographs may end up being unclear, although there have been recent advances

in technology. Of course, sometimes these photos may be retaken in the hope that the

next photo will be clear, but frequently they are of a unique scene that can only be

taken once. It would be beneficial if these scenes could be recovered and their details

restored.

Nowadays, cameras have been developed that can handle the imperfections of improper

focusing and camera shake by fitting them with image stabilization, auto-focusing, sen-

sitive image sensors and anti-camera shake mechanisms. The goal behind these tech-

nologies is to remove blur [11]. However, such cameras are heavier, have high energy

consumption and cost more. Despite the camera industry providing these solutions,

camera shake blur has only been addressed in a limited manner [11].
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Recently, some of the problems of image processing have been overcome by signal pro-

cessing techniques [11, 12], via post-processing these blurred and noisy images. They

estimate the blurred images to an acceptable level. By representing the image restora-

tion process mathematically, and applying prior information about the blurred images,

restoration methods such as blind image deconvolution (BID) can be performed to re-

cover detail and reduce image noise.

The rest of this chapter will consider the background to the image restoration problem,

including how and why it is a significant problem. A more detailed study will be pro-

posed in this chapter, including a presentation of the problem formulation and solution

methodologies. The chapter concludes with an outline of the rest of the thesis.

1.2 Image Restoration and Blind Deconvolution

The image restoration problem pertains to the linear filtering of convolved signals and

it can be dated back to the early 1960s [13]. Image restoration refers to a process that

recovers the accurate and true image from its distorted version using limited or prior

information about the degradation phenomenon. It seeks to estimate and reconstruct a

sharp image from the blurry image to improve accuracy. Given a blurred image and the

blurring function, the original image is detected by solving an inverse problem called

deconvolution. The image restoration problem is a non-trivial task because it is ill-

posed, which means that the number of possible solutions is infinite for given data.

Image restoration may be classified, depending on blur, into two classes [14, 15]: non-

blind image deconvolution, in which the blurring function, or as it is called, point spread

function (PSF) is known during the extraction of the true image from the degraded

one, and blind image deconvolution, in which the blurring function and true image are

unknown. In the first situation, there are various well-known deconvolution method

techniques, for instance, least-squares (LS) filtering, recursive Kalman filtering, Wiener

filtering, inverse filtering, and constrained iterative deconvolution methods [14, 16–19].
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Unfortunately, non-blind image deconvolution methods that assume a known blurring

function are not suitable for many real imaging application processes [16]. This is because

in practical situations little knowledge about the true image is available and information

about the blur is also unknown. There has been significant work on the restoration of

astronomical images and current discussion by researchers is still ongoing [11]. There

have been applications in computer vision [20], remote sensing, medical imaging [21], [22],

but the interest of law enforcement agencies in this area has increased [11]. All these

applications require accurate images and any small change in the image content can lead

to incorrect information during the analysis process.

Consequently, image restoration solutions can be provided by BID, which can be used

to recover handheld camera photographs and videos [23, 24], remote sensing data [25],

aerial and satellite photography [26], biomedical images [21, 27], industrial tomography

images [28], astronomical photos [29], audio and seismic signals [30], and other sources

of images and signals as well.

Over the years, many BID methods and restoration filters have been developed to esti-

mate an acceptable image. These methods use the spatial domain or the frequency do-

main. In addition, they range from separate or simultaneous of blurring function estima-

tion techniques, and parametric to non-parametric techniques. Examples of these meth-

ods are the Richardson-Lucy method [6], total variation blind deconvolution [31], the

maximum likelihood (ML) method [16, 32], minimum entropy deconvolution (MED) [33],

non-negativity and support-constraint recursive inverse filter (NASRIF) [34], simulated

annealing [35], and multi-channel blind deconvolution [35].

Although these methods achieved satisfying solutions to some BID problems, they are

lacking in terms of restoration quality, computational efficiency and robustness. Actu-

ally, when real-life distorted images are to be restored, the robustness of these methods

becomes questionable. The reason behind this is that the actual deconvolution process

suffers significantly from deblurring noise and ringing effects. The noise and ringing

disturbs the restoration process by changing the statistical properties of the image data;

consequently, the removal of blur from an image will be inefficient. These effects can be
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caused by sensitivity of the recording device to different environmental factors resulting

in an instant poor lighting condition [11]. Moreover, it has been proved that ringing

effects occur due to errors in the estimation of the blurring function [36]. Therefore,

the blurred image cannot be efficiently modelled by the usual parametric blur meth-

ods [23, 37]. Most of the BID techniques focus on calculating and removing the blur

from a distorted image. The rest of this chapter summarizes the computational chal-

lenges of BID, clarifying why this computation is a non-trivial task and hence underlies

the motivation for the work presented in this thesis.

1.3 Computational Challenges of Blind Image Deconvolu-

tion

Computing the true image of a degraded image poses the most difficult problem for

image processing owing to the degraded image being expressed as the convolution of

two components: the true image with PSF. Thus, the estimation of the original image

process must be unique for deconvolution: this means that it can determine which

component belongs to the original image and which to the PSF. Moreover, in the BID

process there are practical constraints that must be considered when restoring an image:

• Generally, BID is an ill-posed problem. The ill-posed problem means that there

may not be a unique solution for image restoration. Regarding the partial infor-

mation about the image that is used to formulate an optimality criterion, there

will be various different estimates of the PSF with the true image that may lead

to an optimal solution. The challenge here is to find the appropriate procedure

and construct additional assumptions on the imaging system or BID methods that

will contribute towards choosing the optimal solution.

• BID is a difficult problem because the blurring function converts the high spatial

frequency component of the original image into the lower spatial frequency com-

ponent of the blurred image, as is clearly shown in Figure 1.2. This means that
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the PSF is a low-pass filter that must be known in order to restore the original

image. The essential problem in BID is the computation of the correct PSF when

Figure 1.2: The component of the original image and blurred version of the image.

only the blurred image is provided.

• Artificial blurred images are produced by convolving a PSF with a real image see

Figure 1.3. This process results in a blurred image that has a bigger size than the

real image. The added pixels on all the edges are called the boundary of the blurred

image. Normally, natural blurred images are provided without these boundaries.

This situation, of missing boundaries, presents a challenge in the deconvolution

process of natural images. The size of these boundaries depends on the type of the

convolution (linear/circular) and the size of the PSF. In the circular convolution

case the resulted blurred images have no boundaries. The linear convolution results

in blurred images that have boundaries of size that depends on the size of the

PSF, however these boundaries are missing from the naturally blurred images, see

Figure 1.4.

It is crucial to consider these constraints when developing the BID algorithm. Al-

though there have been many recent research studies and many existing BID methods,

no method in the literature has been suggested that can absolutely claim to be the
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Figure 1.3: Artificial image convolution and deconvolution processes

Figure 1.4: Boundary size of blurred image depends on size of the PSF

solution for the BID problem [12]. So far, the literature has shown that there is no sat-

isfactory method that can suppress the noise significantly while preserving true image

details effectively [16]. Furthermore, determining the size of the PSF is the hardest part

in PSF estimation and image deblurring. The literature survey shows that most of the

deblurring methods assume that the PSF is known and hence the size of the boundaries

is also known. The boundary missing information of pixels located outside the degraded

image is needed to solve the deconvolution problem. Not all the deblurring frameworks

require the missing boundary information. Some of these methods assume known PSFs

while others require priors to be set and others put some assumptions on the source

images, for more details see Chapter 2. Within the framework of this research a prepro-

cessing stage of naturally blurred images is required. In this stage the blurred image is

processed in order to estimate the boundaries of the blurred image before processing with

the developed method, see Figure 1.5. To estimate the boundaries of the blurred image,

different extrapolation methods could be used. These methods need to be investigated

in order to select the one with the best performance. If the extrapolation is good then

the algebraic geometry method will work well once the problem of the algebraic method

is solved. Hence, the focus of this research is on solving the algebraic deconvolution
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method. The research scope and objectives of this research study are illustrated clearly

in the following sections.

Figure 1.5: Proposed natural image deconvolution process

1.4 Research Scope

This research seeks to develop a method for the solution of the problem of BID in which

a blurred image is formed by spatially invariant and parametric blur. The spatially

invariant blur includes both separable and non-separable PSFs. The original image

is processed by a full 2D convolution of spatially invariant blur. The parametric PSFs

means that the blurring function can be easily described using a functional or parametric

form.

The blurred image is formed by the convolution of the exact image and PSF, therefore,

in some cases the blurred image is larger than the exact image. However, in circular

convolution the exact image and blurred image are of the same size. In this research

study, it is assumed that the blurred image is larger than the exact image. This assump-

tion is made because this study is an investigation of polynomials based method, and

in particular, approximate polynomial factorisation, to solve the problem of BID. Any

errors in the results are therefore due to the developed method, and not the effects of

approximation due to the boundary conditions.

This research will not focus on natural image deconvolution, this problem needs to be

addressed in future work. Also, in this research spatially variant blur and non-parametric

(arbitrarily shaped) blurs are not considered.
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1.5 Research Purpose

This research seeks to remedy the BID problem by developing an efficient algorithm

for deblurring degraded images, with focus on the following factors: robustness in the

estimation of separable and non-separable PSFs, estimation performance; and compu-

tational efficiency.

1.6 Research Objectives

The central objective of this research, under perfect boundary conditions, is to devise

an efficient algorithm for BID problem, such that prior knowledge of the blurring func-

tion (PSF) and exact image are not required. The proposed algorithm is designed to

incorporate the identification of PSF and the restoration of the image in two separate

computational algorithms. The first algorithm computes the blur function from a blurred

image, and is then used in the second algorithm to remove the blur from the blurred

image. This will be done by representing the blurred and deblurred images, and the

PSF as bivariate polynomials in which the coefficients are the pixel values. The PSF

can be formulated as the approximate greatest common divisor (AGCD) of two degraded

images that are represented by two bivariate polynomials. This research is carried out

using approximate polynomial factorisation (APF) computational algorithms using a

structure-preserving Sylvester resultant matrix method of two polynomials to compute

a robust AGCD. The proposed work differs from other work in that it does not require

any prior knowledge to recover an image from its blurred version.

1.7 Research Contributions

The aim of this research is to develop a new BID algorithm based on AGCD. Although

the AGCD computation has been previously employed for solving the BID problem, the
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developed method differs in many aspects from the existing AGCD based method (Pillai

and Liang [18, 19], Li et al. in 2010 [1, 2] and Danelakis et al. [38]).

Pillai and Liang [18, 19] put forward the initial ideas of using algebraic method for

solving BID problem. Their application of algebraic method used Greatest Common

Divisor (GCD). They used the stander Sylvester resultant matrix to compute the GCD

which does not work in the presence of noise. Li et al. in 2010 [1, 2] developed an

Approximate GCD (AGCD) using Bezout matrix and the Fast Fourier Transform (FFT).

Although this method performs better than Pillai and Liang [18, 19] GCD method in

terms of noise sensitivity, however, it is still sensitive to noise caused by the structure of

the Bezout matrix. Danelakis et al. [38] developed an AGCD based method using the

updated form of Sylvester resultant matrix for solving BID problem caused by separable

three-by-three PSF blurring functions.

This research developed algorithms for BID problem based on AGCD. The developed

algorithms used a structure-preserving Sylvester resultant matrix method to compute

the AGCD. In particular, QR decomposition is used to compute the degree of the

AGCD. This method of the degree computation is more efficient and accurate than the

above existing methods. The coefficients of AGCD which represent the PSF pixels values

are computed using an Approximate Polynomial Factorisation (APF) method. The use

of structure-preserving Sylvester matrix in computation of APF and QR resulted in a

more robust and efficient method for computation of the AGCD. The developed method

is more robust against noise than the above existing method with noise levels that are

relatively high in algebraic methods. However, these noise levels are relatively small in

comparison to noise levels that are normally assumed in BID image processing method.

In addition to the above contributions, the following contributions have been made in

this research study:

• This research has developed a new BID method using Approximate Polynomial

Factorisation (APF) algorithm based on structure-preserving Sylvester matrix.
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• The developed method computes the PSFs from blurred images without prior

knowledge about the PSF which means the developed method is totally blind.

The PSF is computed in two separable stages. In the first stage, the size of the

PSF is computed using QR decomposition, and then followed by the second stage

in which the PSF component values are calculated. The computed PSFs are then

used in a polynomial division to compute the deblurred images.

• The developed method is applicable for computing the PSF of various sizes.

• The developed method is applicable for computing the PSF regardless of whether

the PSF is separable or non-separable.

The following Figures 1.6, 1.7 and 1.8 are examples of the results obtained using the

developed method. All experiments in this thesis are preformed under perfect boundary

conditions. In Figure 1.6, the original image of 180 × 180 pixels has been blurred by a

separable PSF with size of 25 × 25 pixels and a small error of 10−7 was added to the

original PSF. In addition, a relatively small additive noise of 10−8 was added to the

result of the convolution of the blurred image. The result of the convolution process is a

perfect blurred image (perfect boundary). Figure 1.6 shows that the developed method

is able to restore the exact image without having any knowledge about the size of the

PSF. In Figure 1.7, the original image of 180 × 180 pixels has been blurred by a non-

separable PSF with a size of 15 × 15 pixels and an error of 10−8 is added to the PSF.

A small additive noise of 10−6 has then been added to the blurred image. In Figure 1.8

the original image of 180×180 pixels is blurred by non-separable Gaussian blurring PSF

and non-separable Motion blurring PSF of size 27 × 17 pixels in order to generate the

two distorted versions of the images. The figures show the results that are obtained

from the developed method. It is clear that the developed method is able to restore the

exact image, with large size of PSF, without having any knowledge about the PSF.

More information about the developed method is discussed in Chapters 4, 5 and 6. The

claim about additive noise has been exempted in the experiment of Chapters 4 and 5

because the additive noise is relatively small compared with image processing field.
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Figure 1.6: Example of BID problem with a separable PSF is solved by developed
method.

Figure 1.7: Example of BID problem with a non-separable PSF is solved by developed
method.

Figure 1.8: Example of BID problem with a non-separable PSF is solved by (d)
developed method based on APF and DFT, and (e) the method developed by Li et

al. [1, 2].
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However, The claim about additive noise is considered in the experiment of Chapters 6

to examine the behavior of two different BID methods based on linear algebra in the

presence of noise.

1.8 Research Structure

The rest of this thesis is divided into seven chapters.

Chapter 2 introduces the BID problem formulation and provides fundamental informa-

tion about the problem. This is followed by a description of the procedure of blurring an

image, including a definition and some properties of the blurring function, and the most

commonly occurring types of blur. Then, some image restoration filters are detailed,

beginning with basic image restoration filters followed by the most recent approaches.

Functionalities, advantages, limitations, and examples of all the discussed image restora-

tion filters and the BID method are provided in this chapter. The measurements of image

quality are detailed at the end of this chapter.

Chapter 3 provides a brief introduction of greatest common divisor (GCD) and its

approximation AGCD. Then, the use of the 1D AGCD algorithm is presented in detail,

including an introduction to the Sylvester resultant matrix, three pre-processing opera-

tions, the computation of the degree of AGCD, and the computation of the coefficients

of AGCD.

Chapter 4 illustrates the developed algorithm of the BID for a separable PSF. The

chapter starts by discussing the convolution operation of a blurred image and the fun-

damental mathematical theory of polynomial algebra for solving the BID problem. The

implementation of the developed algorithm and some examples are provided at the end

of this chapter.

Chapter 5 discusses in detail the developed algorithm of BID for a non-separable PSF.

Some examples are provided at the end of this chapter. The problem that is faced
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during solving a non-separable PSF is demonstrated in the summary of this chapter and

its solution is considered in the next chapter.

Chapter 6 discusses the modification of the developed algorithm of BID for a non-

separable PSF. This algorithm is discussed in detail to examine the feasibility of using

the DFT and non-linear structure matrix method APF in a totally BID for a non-

separable PSF. Then, the implementation of this case of the developed algorithm and

some examples are provided at the end of this chapter.

Chapter 7 discusses the performance of the developed method. Then, three different

experiments are conducted to examine the performance of the developed method and

other BID methods. The first experiment examines the BID performance with variable

PSF width and additive noise. The second experiment examines whether the PSF size

error affects the performance of BID methods. The third experiment examines the

performance of the algebraic methods for the determination of the thus must go PSF.

The fourth experiment performs face feature detection and circle feature detection on

deblurred images resulting from various deblurring algorithms.

Chapter 8 provides a brief summary of the BID problem, as well as highlighting the

most important details and the achievement of the developed algorithm. The suggestions

for future research are presented at the end of this chapter.

1.9 Summary

Background information on the image restoration and BID problems have been intro-

duced in this chapter along with an overview of the computational challenges of BID.

Image restoration refers to a process that recovers the accurate and true image from its

distorted version using limited or prior information about the degradation phenomenon.

Given a blurred image and the blurring function, the original image is detected by solv-

ing an inverse problem. Computing the true image of a degraded image poses the most

difficult problem for image processing owing to BID is an ill-posed problem.
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The main objectives and contributions of this research have been provided in this chap-

ter which is briefly that this research aim to develop a method for the solution of the

problem of BID in which a blurred image is formed by spatially invariant and parametric

blur. Under perfect boundary conditions, it is devised that an developed algorithm for

BID problem, such that prior knowledge of the blurring function (PSF) and exact image

are not required. The proposed algorithm is designed to incorporate the identification

of PSF and the restoration of the image in two separate computational algorithms. The

first algorithm computes the blur function from a blurred image, and is then used in

the second algorithm to remove the blur from the blurred image. This will be done by

representing the blurred and deblurred images, and the PSF as bivariate polynomials in

which the coefficients are the pixel values. The PSF can be formulated as the approxi-

mate greatest common divisor (AGCD) of two degraded images that are represented by

two bivariate polynomials. This research is carried out using approximate polynomial

factorisation (APF) computational algorithms using a structure-preserving Sylvester re-

sultant matrix method of two polynomials to compute a robust AGCD. The proposed

work differs from other work in that it does not require any prior knowledge to recover

an image from its blurred version.

In the end of this chapter, the structure of the remaining chapters of this thesis was

detailed. In the next chapter, an introduction to the BID problem formulation and the

fundamental information about the problem will be presented, along with highlighting

the most used BID methods in the literature.



Chapter 2

Problem formulation

2.1 Introduction

Image restoration has been carried out through the use of blind image deconvolution

(BID) over a period of four decades. A large number of image processing and mathemat-

ical techniques have been developed to tackle the BID problem. This chapter presents

a brief introduction of some basic concepts in the field of BID, including the blurring

model and different blur types. The final section discusses an overview of previous works

in the image restoration field.

2.2 Concept of Image Deblurring

Image restoration refers to a process that recovers the accurate and true image from its

distortions using limited or prior information of the blurring function. Image deblurring

and image deconvolution are other expressions used to refer to image restoration. If it is

assumed that the PSF is spatially invariant, then the blurring process can be modelled as

a linear system, and the blurred image can be recorded as the output of the convolution

of the original image (scene) with the PSF. Let F be the original image without any

form of degradation, and H be the spatially invariant PSF. Then, the G be degraded

16
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form of the convolution of H, and F , and addition of noise N . Mathematically, it is

given by

G = F ⊗H+N , (2.1)

where ⊗ denotes the 2-D convolution operator. Figure 2.1 demonstrates the blurring

model of a camera.

Figure 2.1: Blurred image problem model of a camera.

As was mentioned in Chapter 1, the main goal of deblurring an image is to estimate the

original image F . In the absence of noise and when there is prior information of the H,

equation (2.1) can be used to resolve F̂ , as an approximation of F , by

F̂ = H−1G, (2.2)

such that, F̂ ≈ F .

This process is known as inverse filtering [16]. The original image can be estimated

accurately if the exact H and components of convolution signal are known. However, in

many cases, detailed knowledge about the original image and the blurring function are

not available (see Figure 2.2); thus, the inverse filtering method is no longer feasible.

Before trying to restore the blurred image, it is important to examine the types of

degradation that occur in practice. Danelakis et al. [38] argue that there are five cases

of blurred images depending on the artefacts’ effect on the image (see Figure 2.3). The

cases representing the degradation of the true image are listed as follows:
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Figure 2.2: Real-life blind image deconvolution model.

• First case: The true image is only convolved by the blurring function. This process

is commonly modelled as: G = F ⊗H.

• Second case: The true image is blurred with additive noise N . This process is

modelled as: G = F +N . Thus H = I, the identity.

• Third case: The true image is convolved by the noisy blurring function. This

process is modelled as: G = F ⊗ (H + E) where E is the measurement error that

has been added to the blurring function.

• Fourth case: The true image is convolved by the blurring function and noise is

then added. This process is modelled as: G = F ⊗H+N .

• Fifth case: The true image is convolved by the noisy blurring function, and the

additive noise is added. This process is modelled as: G = F ⊗ (H+ E) +N .

The image restoration in the first case can be achieved by using deblurring filters for

instance Wiener or regularisation filters, in cases where the PSF is known [38]. The

image denoising algorithm [39, 40] can be used to solve the problem in the second case.

On the other hand, the cases that are mostly found in real applications are those cases

that combine PSF, noise and measurement error such as in the third, fourth and fifth

cases. It should be taken into consideration that the terms H, E and N are unknown.

The literature shows various methods and mathematical tools that have been developed

to resolve the BID, including iterative blind deconvolution algorithms [29, 41, 42], a

constant modulus algorithm [43], a recursive filtering algorithm [34], maximum likelihood
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Figure 2.3: Five common cases of blurred images depending on the impact of artefacts
on the image.

and projection [16, 32], total variation [31, 44], and greatest common divisor [1, 18, 19,

38].

This report focuses on examining the fifth category of blurred images, which is when a

blurred image is formed by the convolution of the true image, and the noisy blurring

function, and the small additive noise is then added. All of the blurred images that have

been used in the experiment are from this category. In addition, important information

that should be known about the PSF will be illustrated briefly in the next section.

2.3 The Point Spread Function

The serious distortion of the image comes from blurring. The point spread function

(PSF) is a function that describes the procedure of blurring an image. Therefore, it is

essential to understand the structure and the most important properties and character-

istics of the PSF. This information helps to set up the precise mathematical model of

the blurring image that is required for examining the image deblurring algorithm.
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2.3.1 Definition and Properties

As has been mentioned above, the PSF is a function that describes the procedure of

blurring an image, which is expressed in terms of the extent of the impact/influences

of the pixel at position (i, j) in the exact image F by the pixel at position (s, t) in the

blurred image G. There are two types of blurring function, depending on its influences

on the blurred image: spatially invariant blur and spatially variant blur.

With spatially invariant blur, the influence of the blur is the same for every pixel in the

blurred image; see Figure 2.4. As can be seen from the figure, the images on the right

hand side are blurred everywhere with the same intensity of blurring. The backgrounds

and foregrounds of the images are affected equally by the blurring function and this

is because the blurring function is invariant across the whole image. With a spatially

variant blur, the blur varies over the image. Figure 2.5 is an example of a spatially

variant blur. From the figure it can be seen that the objects in the background are much

more blurred than the objects in the foreground. This is illustrated by contrasting the

quality of the whiteboard, affected by blurring, in the background and the less blurrerd

book in the foreground. The majority of existing BID methods in the literature were

developed for tackling the spatially invariant PSF, and will also be examined in this

research. Mathematically, the spatially invariant PSF is expressed as:

g(s, t) =
M∑
i=1

N∑
j=1

f(i, j)h(s− i, t− j), (2.3)

in which g(s, t) and f(i, j) are the pixel values at position (s, t) and (i, j) in G and F ,

respectively, whereas M and N denote the size of the images M ×N . A shift invariant

PSF is obtained by h(s− i, t− j).

Equation (2.3) shows that the PSF is a linear operator. This means that each pixel

value in G is a weighted linear combination of its pixel value and its neighbouring pixels.

Additionally, the blurred image G may be obtained by the one-dimensional or two-

dimensional convolution of the PSF and the exact image F . However, in some cases
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Figure 2.4: Spatially invariant blur.

in two-dimensional PSFs, the vertical and horizontal components of the PSF can be

separated [10] and then the exact image can be affected independently by two one-

dimensional PSFs. Mathematically, it is expressed as:

g(s, t) =

M∑
i=1

hc(s− i)
N∑
j=1

f(i, j)hr(t− j). (2.4)

In this case, the PSF is called a separable PSF and its special structure is a rank-one

matrix. The operation that can calculate the hr and hc is called a Kronecker product [10].
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Figure 2.5: Spatially variant blur.

Most research in the literature compute separable, not non-separable PSF [45–48]. The

separable PSF can be defined as

h(x, y) = hc(y)hr(x), (2.5)

which mean the blurring function is decomposed into products of two functions that

depend on the rows and columns of image, respectively. In other words, the rows
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and columns of blurring function can be computed independently. Whereas, the non-

separable PSF rows and columns cannot be computed as a product of two functions,

and it is expressed as

h(x, y) 6= hc(y)hr(x). (2.6)

Kennedy and Samarasinghe [45] restore the true images corrupted by an unknown 2D

PSF with a separable property using Constant Modulus Algorithm (CMA). They de-

veloped a new BID method for 2D separable PSF using algorithm based on archetype

gradient descent that is used in 1D BID of communication systems. Shi and Reichen-

bach [46] investigate a cubic convolution for non-separable PSF in which the cubic

convolution is a method for image interpolation. In the literature, most studies inves-

tigate the cubic convolution for 1D and 2D separable PSF. In 2003, Reichenbach and

Geng [49] and, then in 2006, Shi and Reichenbach [46] derived a cubic convolution for

2D non-separable PSF.

Fang et al. [50] investigate a new BID of different perspective by introducing separable

PSF to represent the inherent properties of the camera and scene system. Lee and

Hwang [47, 48] present a BID method for mixture of a separable Gaussian Blur. They

assume that the PSF is a separable circular convolution and the 2D PSF derivative to

1D PSF using Kronecker product.

The PSF has the following properties:

• The sum of the component values of the PSF matrix equals one, because it is

assumed the captured image brightness should remain unchanged after deconvo-

lution.

• The size of the PSF matrix is much smaller than the size of the exact image F .
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• Blurring is a local phenomenon, which means that the PSF is restricted to a small

area about its centre and the distance from its centre will be a zero beyond.

• The PSF is spatially invariant. This is assumed in this research study but it may

not be satisfied in practice.

To conclude, the PSF will contain all information about the blurring of the exact image

F [10].

PSFs can be commonly classified into two groups based on their shape/form: parametric

and non-parametric. Parametric PSFs can be easily described using a functional or

parametric form. Specifically, parametric PSFs can be generated by an equation. In

contrast, non-parametric PSFs (arbitrarily shaped) usually cannot be generated by an

equation of their parameters because they have a complex shape. In the context of this

research, PSF refers to the spatially invariant and parametric type of blurring function.

The following shows the most common type of PSFs.

2.3.2 Most Common PSFs

The blurring in images arises from many sources during the capture process. For ex-

ample, it can arise from limitations of the optical system, camera and object motion,

defocused objects, lens error, and environmental effects such as atmospheric perturba-

tions. The most common types of blur are Gaussian blur, motion blur and out-of-focus

blur, which are shown in Figure 2.6:

• Gaussian blur of this kind is normally caused by lens errors or atmospheric

perturbations. The Gaussian filter in 2-D over PSF rows and columns, i and j,

and its centre at point (k, l), according to [10] is given as

h(i, j) = exp

(
− 1

2
[i− k j − l]

[ s21 σ2

σ2 s22

]−1[ i− k
j − l

])
, (2.7)
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Figure 2.6: Different kinds of PSF

where

∑
i,j

h(i, j) = 1, (2.8)

in which s1, s2 and σ are parameters that control the width and orientation of the

PSF. The shape of Gaussian blurs display exponential decay from the centre of

the image. Also, 2-D Gaussian blurs will be separable (rotationally symmetric), if

s1 = s2.

• Motion blur occurs when the camera or object motion is in the x-direction during

the image capture time. According to [11], the motion PSF is given by (2.9), where

L denotes the length of motion and the angle is denoted by ϕ.

h(i, j;L,ϕ) =

{
1
L if

√
i2 + j2 6 L

2 and i
j = − tanϕ

0 elsewhere

}
, (2.9)

where i and j are the PSF pixel coordinates.

• Defocus blur comes from outside the focus of the camera. If the camera system

has a circular aperture, the captured image of any point source is a uniform disk

with radius R. Therefore, the out-of-focus PSF, that coordinates i and j, and its
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centre (k, l), is given by (2.10)

h(i, j;R) =

{
1

πR2 if
√

(i− k)2 + (j − l)2 6 R2

0 elsewhere

}
, (2.10)

Figure 2.7 illustrates what an exact image affected by such blurs looks like.

Figure 2.7: Examples of blurred images

2.4 Image Restoration Filters

This section reviews some of the classical image restoration methods that have been

studied in this research. There are several BID methods used to restore blurred im-

ages, requiring advanced knowledge about the problem. BID is classified into two main

approaches [16] :

• One procedure is to identify the PSF for the true image separately to use it later

on with the known classical image restoration methods. Estimating the PSF and

the true image is a separated procedure.

• The other procedure is to incorporate the process of identifying PSFs with the

restoration algorithm. This involves merging both the estimation and the PSF

true image simultaneously; this results in the development of more complicated

algorithms.
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Some of the most frequently used methods in BID problems are discussed in the following

sections.

2.4.1 Inverse Filtering

The ideal of the inverse filter is to deblur the distorted image by estimating the inverse of

the PSF that blurred the image, and then apply it to the distorted image to recover the

original image. In the case where there is an absence of noise, it can be easy to directly

apply the inverse filter to the distorted image in the spectral (frequency) domain [11],

since the process of convolution will be reformed into multiplication. The inverse filtering

process is given by

F̂ = H−1G, (2.11)

where F̂ is an estimation of the exact image F . As mentioned above, in most cases

of real blurred images, the PSF is not available. On the other hand, the PSF may be

approximated in some situations. An example is when the image had been blurred due

to linear translation or movement of the image pixels during the image capture. In this

case, the PSF can be represented in the spectral domain by a sine function [11]. Thus,

in the frequency domain, one can multiply the blurred image with the inverse of the

PSF to estimate the original image. However, the inverse filter is still a simple method

that cannot be used in practical cases of deblurring. This is due to the difficulties of

estimating the correct values or coefficients of the corresponding PSF. These difficulties

of estimating the correct values of PSF are due to the presence of noise amplification

during deblurring and frequency domain zeros. These issues limit the inverse filter from

being utilised in many image restoration applications.

2.4.2 Wiener Filtering

Inverse filtering reduces a single case of degradation at a time because it is a simple ap-

proach [11], and it is very sensitive to additive noise. Therefore, a restoration algorithm
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has to be developed for each type of degradation. Wiener filtering is used for the linear

estimation of the original image. The approach is based on a least squares method. In

the Fourier domain, the Wiener filter can be expressed as [8],

F̂ =

[(
H∗

|H|2 + δ

)]
where δ =

|G|2

|F|2
. (2.12)

This filter is described in the frequency domain and requires statistical information about

the exact image F and noise N . It removes and inverts blurring and the additive noise,

using the Mean Squared Error (MSE) criterion [8]. In other words, it determines the

blurring function that smoothes noise by minimising the overall MSE. Figure 2.8, shows

the image restoration output using a Wiener filter. The Wiener filter assumes the exact

PSF and noise-to-signal power ratio (PNSR) are known and must be included in its

function calls. An estimate of the PNSR is

PNSR =
‖G − F‖2F
‖F‖2F

, (2.13)

where the subscript F denotes the Frobenius norm.

Figure 2.8: Image de-blurring using Wiener filter. (a) an clear image; (b) a blurred
image; and (c) the restored image.

2.4.3 Iterative Blind Deconvolution Method

The iterative blind deconvolution method (IBD) used to deblur the degraded image use

the Fast Fourier Transform (FFT) and deterministic constraints in the form of finite

support and non-negativity constraints. Many degraded images in the spatial domain
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have been restored by convolution methods, such as IBD method, in the spectral domain

when a given image is too large. These methods are also used when prior information

cannot be represented appropriately in the spectral domain such as the positivity of

image intensities [51].

Let F̂ , G and Ĥ represent the Fourier transforms of the corresponding signals of the lin-

early estimated image f̂ , the degraded image g, and the estimated PSF ĥ, consecutively.

The iterative algorithm is shown in Figure 2.9, as given by [16, 34], where the subscript

itr denotes the number of algorithm iterations.

Figure 2.9: Iterative blind deconvolution method.
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The process of the iterative blind deconvolution method, which is shown in Figure 2.9,

can be summarised as follows:

1. The input to the process is the initial estimation f0 and it is a non-negative value.

2. The Fast Fourier Transform is applied to give F̂itr, which is then inverted by using

the inverse filter. Then, it is used to form a new estimate of G, Ĝitr.

3. The Inverse Fast Fourier Transform (IFFT) is applied to Ĝitr to transform to gitr.

4. Then, the image non-negativity constraints are imposed to reveal a positive con-

strained estimation of gitr.

5. After that, the spectrum of Ĝitr is provided by a Fourier Transform of gitr.

6. Then, F̂itr is estimated by inverting Ĝitr to form an inverse filter, multiplied by

Ĥitr.

7. The Inverse Fourier Transform is applied to F̂itr to give fitr.

8. Finally, the image constraints, being non-negative, are applied to estimate f̂itr.

These steps describe a single iteration of the iterative method, but its loop is repeated

until it finds, g, two positive functions with the required convolution.

Unfortunately, the IBD algorithm has two main problems:

• It is difficult to define the inverse filter in some regions with small values of the

inverted function.

• Both of the frequencies F̂itr and Ĝitr have spectral zeros that provide no knowledge

about that spatial frequency being a part of the blurring process.

The IBD method has low complexity, so it has popular usage [16, 34]. However, the

implementation of this method differs depending on the original image and the PSF.

The advantage of this method is the robustness of the IBD method to noise [11, 52]
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compared to the previously discussed BID methods. The disadvantage of this method

is that the IBD method suffers from instability, convergence, uncertain uniqueness, and

sensitivity to the initial image estimate.

2.4.4 Richardson-Lucy Algorithm

The Richardson-Lucy method is one of the iterative blind deconvolution methods [6]

that is based on Bayes’ theorem of conditional probability. This theorem considers the

original image F , PSF H, and blurred image G as probability functions. Thus, Bayes’

theorem is represented as follows

P (F |Gitr) =
P (Gitr|F )P (F )

M,N∑
i,j=1

P (Gitr|F )P (F )

, (2.14)

where the subscript itr denotes the number of algorithm iterations and i, j indicate the

(i, j)th pixel in the image of size M×N . And Gitr is considered based on its dependence

on F by

P (F ) =

M,N∑
i,j=1

P (F |Gitr)P (Gitr), (2.15)

and

P (F |Gitr) = P (F |Gitr)/P (Gitr). (2.16)

The substitution of (2.14) into (2.15) gives the following

P (F ) = P (F )
∑
itr

P (Gitr|F )P (Gitr)
M,N∑
i,j=1

P (Gitr|F )P (F )

, (2.17)
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It is also recommended for the P (F ) term on the right-hand side, and its initial estima-

tion to be determined using (2.14), which results in the IBD method given in (2.18)

Pitr+1(F ) = Pitr(F )
∑
itr

P (Gitr|F )P (Gitr)
N,M∑
i,j=1

P (Gitr|F )P (F )

. (2.18)

The disadvantage of this method is that it requires an initial assumption of the support

size of the PSF. The support size of the PSF must be either estimated or known.

Consequently, the Richardson-Lucy algorithm is non-blind.

Figure 2.10 shows the image restoration output using the Richardson-Lucy algorithm.

The Richardson-Lucy algorithm assumes the exact PSF is known and the number of

iterations must be specified.

Figure 2.10: Image de-blurring using Richardson-Lucy algorithm. (a) a clear image;
(b) a blurred image; and (c) the restored image.

2.4.5 Regularisation-Based Deblurring Algorithm

As was pointed out earlier, the image estimation of the blurring convolution model, that

is present in (2.1) through inverse filtering, is given as follows:

F̂ =
G

H
= F +

N

H
, (2.19)

The BID is an ill-posed inverse problem because a small bounded error in the input

leads to an amplification of the high frequency error in the output [9]. Therefore, in the

presence of noise, the filter defined in (2.19) behaves poorly and it is better to use the

least squares method or regularisation methods.
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The theory of regularisation methods can reduce the effect of noise in the restored image

by incorporating prior information about the noise or original data. Consequently, it can

achieve meaningful solutions to the ill-posed problem. Let L represent a regularisation

operator in the frequency domain. In order to determine the constrained regularisa-

tion L, there are two methods: truncated singular value decomposition (TSVD) and

Tikhonov regularisation [10, 53]. Figure 2.11, shows the image restoration result using

Regularisation-Based Deblurring method. The Regularisation filter assumed the exact

PSF and the noise power (NP) are known. An estimate of the NP is given by

NP = ‖G − F‖2F , (2.20)

where the subscript F denotes the Frobenius norm.

Figure 2.11: Image de-blurring using Regularisation-Based Deblurring filter. (a) an
clear image; (b) a blurred image; and (c) the restored image.

2.4.6 Maximum Likelihood Restoration Method

Maximum Likelihood Restoration (ML) is an enhanced technique of the iterative con-

strained algorithm. It estimates iteratively the optimisation of F̂ and Ĥ based on a

statistical model. ML is similar to most of the image deblurring methods in that ML

requires prior information of the exact image and the PSF. More precisely, the 2D

autoregressive (AR) model of the exact image f(x, y) is given as follows

f(x, y) = a01f(x, y − 1) + a11f(x− 1, y − 1) + a10f(x− 1, y) + ν(x, y), (2.21)
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where ν(x, y) is an unpredictable spatial component which is the modeling error and aij

are the AR coefficients [7]. ML attempts to estimate the AR model coefficients of the

exact image, variance of additive noise n(x, y) and the PSF in order to derive restoration

filters. Thus, it is assumed that the parameters aij , ν(x, y), and the white noise equal to

variance σν are unknown. In this case, the Maximum-Likelihood method (ML) is used to

define the parameter set, which is θ = {aij , σ2ν , σ2n, H}, from the given distorted image.

In which σ2ν and σ2n are the variances of ν(x, y) and additive noise n(x, y), respectively.

This gives the best estimation for the parameter set of highest probability. This can be

formulated for Gaussian distribution by [7]

Lθ =
∑
u,v

(
logP (u, v) +

g(u, v)g∗(u, v)

P (u, v)

)
, (2.22)

in which P (u, v) is the probability density function (PDF) of the blurred image. The

PDF is obtained by combining the AR model in (2.21) and the image deblurring model

in (2.1), leading to

P (u, v)|g,θ = σ2ν
|H(u, v)|2

|1−A(u, v)|2
+ σ2n, (2.23)

where H(u, v) is the PSF and A(u, v) is the coefficient aij in a 2D discrete Fourier

Transform. Thus, maximising the log likelihood function and estimating the optimal

parameters of θ, the image restoration will then be achieved [7]. However, there are

limitations of this method: the main one is that in order to achieve an acceptable

estimation of PSF, more constraints should be applied; for example, the sum of PSF is

equal to 1. Moreover, the log likelihood function is a non-linear optimisation method

and there are no unique solutions available [54]. Figure 2.12 shows the image restoration

result using the Maximum Likelihood Restoration Method. The ML method requires an

initial estimate of the PSF and returns an improved estimate of the PSF and a deblurred

image.
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Figure 2.12: Image deblurring using the Maximum Likelihood Restoration Method.
(a) a clear image; (b) a blurred image; (c) the restored image.

2.4.7 Total Variation Blind Deconvolution

The Total Variation Blind Image Deconvolution (TVBD) method is a regularization-

based deblurring algorithms. Total Variation Blind Image Deconvolution was developed

in 1998 by Chan and Wong [55]. From that time until the present day, various research

studies have been conducted to enhance and improve this method. The proposed method

will be compared with the most recent TVBD method put forward in 2014 by Perron

and Favaro [3]. Briefly, the TVBD method can be introduced as follows. Suppose that

the model blur degradation is

g = f ⊗ h+ n (2.24)

where g is a blurred image, f the original image, h the blur kernel, and n noise. Then,

to solve the BID problem a classic regularized minimization approach could be used

min
f,h
‖fh− g‖22 + λJ(f) + γW (h), (2.25)

where λJ(f) and γW (h) are regularization terms, in which λ and γ are non-negative

regularization parameters that weigh their contribution and the functional J(f) and

W (h) are the smoothness priors for f and h, respectively. To enhance the convergence

of regularization algorithms, Chan and Wong [55] consider additional constraints which
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is positivity of h entries and integration to 1

‖h‖1
.
=

∫
|h(x)|dx = 1, h(x) ≥ 0, f(x) ≥ 0, (2.26)

where with x indicates either 1D or 2D coordinates. Furthermore, they do not use any

regularization on the h by setting γ = 0. Therefore, by combining the constraints in

(2.26) with (2.25) the following minimization is studied:

min
f,h
‖fh− g‖22 + λJ(f) subject to h ≥ 0, ‖h‖1 = 1 (2.27)

Chan and Wong used a sparse gradient prior via total variation J(f) = ‖f‖BV
.
=∫

‖∇f(x)‖2dx or J(f) = ‖fx‖1 +‖fy‖1, with ∇f .
= [fx fy]

T as the gradient of f and

x
.
= [x y]T . Then, they used the alternating minimization algorithm (AM) to solve

the problem in (2.27). The algorithm alternates between the estimation of the origi-

nal image f given the latest estimate of blur kernel h, and the estimation of the blur

kernel h given the updated image f . Perron and Favaro [3] enhanced the iterative algo-

rithm of AM to be Projected Alternating Minimization (PAM). Perron and Favaro [3]

made the imposing constraints as something that was selected sequentially rather than

during the gradient descent on h, and it was seen as rather acceptable of the correct

procedure AM. The pseudo-code of their algorithm is summarized in Algorithm 2.1:

Algorithm 2.1: Total Variation Blind Image Deconvolution (TVBID)

Input: g, size of blur, initial large λ, final λmin

Output: f, h

1. f0 ← pad(g);

2. h0 ← uniform;

3. while not converged do

4. f t+1 ← f t − εf (ht • (ht ◦ f t − g)− λ∇ · ∇f
t

|∇f t|);

5. ht+1/3 ← ht − εh(f t+1 ◦ (ht ◦ f t+1 − g));
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6. ht+2/3 ← max {ht+1/3, 0};

7. ht+1 ← ht+2/3

h‖t+2/3‖1
;

8. λ← max {0.99λ, λmin};

9. t← t+ 1;

10. end

11. f ← f t+1;

12. h← ht+1;

Figure 2.13 shows the image restoration result using the Total Variation Blind Decon-

volution Method that was enhanced by Perron and Favaro [3].

Figure 2.13: Image deblurring using Total Variation Blind Deconvolution [3]. (a) a
clear image; (b) a blurred image; (c) the restored image.

2.4.8 Maximum a Posteriori (MAP)

The maximum a posteriori (MAP) distribution is another BID approach. This method

seeks a (f̂ , ĥ) pair, that maximizes a posteriori probability:

(f̂ , ĥ) = arg max log p(f, h|g). (2.28)

The MAPf,h should minimize the following objective [56]

p(f, h|g) ∝ p(g|f, h)p(f)p(h), (2.29)
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where p(f) and p(h) are the image prior and kernel prior, respectively. The likelihood

term p(g|f, h) is a data fitting term and is equal to

log p(g|f, h) = −λ‖h⊗ f − g‖2. (2.30)

The assumption of a uniform prior on h and the prior p(f) favours natural images where

their gradient distribution is sparse. It can be measured as [56]

log p(f) = −
∑
i

|jx,i(f)|α + |jy,i(f)|α + C, (2.31)

where jx,i(f) and jy,i(f) are the horizontal and vertical derivations at pixel i. The

simplest non-trivial filters are [1,−1] and [1,−1]T [4, 56]. Moreover, C is a constant

normalization term. Furthermore, the exponent value α is a sparse prior and it has

various options including the Gaussian prior α = 2 and the Laplacian prior α = 1;

natural images often correspond to α in the range of [0.5, 0.8] [56]. Most BID methods

in the literature are MAP estimators [4], but, actually they do not find a global minimizer

because this is intractable and may sometime be counterproductive [4].

The important and general idea of the highlighted methods has been illustrated in the

following studies. Firstly, Fergus et al. (2006) show that the alternating minimiza-

tion approach, which means computing, simultaneously, the exact image (f) and the

kernel (h), fails to compute MAPf,h correctly. Therefore, instead they used MAPh ap-

proach [23], which computes the kernel (h) by maximizing the marginalized distribution.

Then the exact image (f) was estimated by deblurring the blurred image with estimated

kernel h. For priors, a variational Bayesian approach and a Gaussian mixture model have

been used in this method. On the other hand, Shan et al. (2008) [57] use an iterative

minimization approach (MAPf,h). In this approach a kernel prior and exact image prior

are used. The blur kernel is modelled by an exponentially distributed prior. The exact

image prior is designed to achieve two objectives: A prior to reduce ill-posedness of

the deconvolution problem and also a prior to reduce ringing artifacts in the deblurred

images. Therefore this prior was composed from two priors: local prior and global prior.
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Cho and Lee (2009) [58] modified the alternating minimization (MAPf,h) approach to

improve the observed sharp edge restoration and noise suppression in smooth regions.

Therefore, estimation of the kernel h can yield good results at the edges. They used a

shock filter to predict and restore strong edges. A shock filter is a tool that enhances

the image features. So, the sharp edges can be recovered from distorted step signals.

Later on, Levin et al. (2011) [59] used MAPh algorithm instead, based on Fergus et al.

(2006) [23]. Levin et al. derived a simple approximation of the MAPh algorithm and

it is a modification of MAPf,h algorithms. In this, algorithm priors are used on images

and they show that good results are obtained using Gaussian priors. However sparse

priors improve performance but they have no closed-form formula. They suggest the

use of an approximation model based on samples to approximate these formulae. For

natural images Levin et al. suggest the use of prior values in the range [0.6,0.8].

In 2012, Babacan et al. [5] proposed a general framework based on Bayesian inference

with Super Gaussian priors. In this approach a large family of priors are used to model

natural images and it includes some of the existing modeling and inference methods

as special cases. The author states that this framework is very effective, efficient and

flexible. In 2013, Xu et al. [60] and Shearer et al. [4] used and developed the alternating

minimization approach MAPf,h. Xu et al. [60] introduced a new sparse L0 approxima-

tion scheme on the image. In this approach, a shock filter is not used, but a cost L0

function is used instead. This cost function is approximated by a family of loss functions

incorporated in a new regularization term. This regularization term is incorporated in

the optimization objective and leads to consistent minimization and fast convergence.

Shearer et al. [4] used incremental sparse edge approximation for the blur kernels. This

method is developed for camera shake blurred images and starts by estimating a blur

kernel from the strongest edges in the image and then refined gradually by allowing

weaker and weaker image edges. Finally, in 2015 Zhou et al. [61] used a Dirichlet dis-

tribution to approximate the MAP distribution of blur. They proposed a variational

Dirichlet approximation (VD) that can also be applied with MAP BID methods whose

blur estimation models are quadratic. For example, Levin et al. [59] and Babacan et
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al. [5] state that the algorithms of MAP distribution differ primarily in the assump-

tion and the prior information about the blurred image they include to perform the

deconvolution task. Sometimes, MAP implementations work well but other times they

fail.

It is observed that the MAP method suffers from a no-blur solution. No-blur solution

occurs when the calculated kernel is a scalar value and the deblurred image is identically

equal to the blurred image, which is one of the undesirable solutions.

The developed method result was compared with Babacan et al. [5] and Shearer et

al. [4] in Chapter 5, Figure 2.14 shows an example of their results. These algorithms are

suitable for small PSF functions, but, the quality of the deblurred images depends on

the prior. The estimation of the prior values of the original image and the kernel is not

an easy task and different authors use different methods for their estimation.

Figure 2.14: Image deblurring using the MAP-based method. (a) a clear image; (b) a
blurred image; (c) the restored image based on implementing the method of Shearer et
al. [4]; (d) the restored image based on implementing the method of Babacan et al. [5].

2.4.9 Nongaussianity Approach to Blind Image Deconvolution

Nongaussianity is one of the central concepts in the theory of Independent Component

Analysis (ICA) [62–66]. It is measured through the use of higher order statistics. ICA is a

data analysis method that is widely used for blind source separation for one dimensional

data and recently has been applied to two dimensional data such as images [67–69].

In ICA, the classical and most widely used statistics for measuring nongaussianity are

Kurtosis and Negentropy [63–65, 70]. These statistics are used to measure the closeness

of a random variable distribution to that of a Gaussian random variable distribution.
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The Central Limit Theorem states that the distribution of the sum of independent

random variables tends towards that of a Gaussian distribution as the number of the

summed random variables increases. In other words the distribution of two random

variables is closer to Gaussian distribution than any of the summed random variables

distributions.

Kurtosis is a fourth-order cumulant statistic that measures how high or low the peak of

the random variables distribution is. The normalised version of this measure is defined

as follows [63, 66]:

Kurt(y) = E[y4]− 3(E[y2])2. (2.32)

For a normalised random variable, the kurtosis simplifies to Kurt(y) = E[y4] − 3 .

This implies that the Kurtosis of a normalised Gaussian random variable is equal to

zero. It follows that kurtosis can have positive values in which case the random variable

distribution has higher peak than the Gaussian random variable and also it can have

negative values where the distribution peak is flatter and lower than that of a Gaussian

random variable. Nongaussianity of a random variable is measured by the absolute value

of the kurtosis.

nongaussianity(y) = abs(E[y4]− 3(E[y2])2). (2.33)

As the nongaussianity value of a random variable increases, the random variable distri-

bution becomes farther away from that of a Gaussian random variable distribution. Non-

gaussianity as defined with the above formula becomes zero for standardised Gaussian

random variables and greater than zero for other standardised nongaussian variables.

The second widely used measure of nongaussianity is the Negentropy. This statistic cap-

tures the idea that the more random and unstructured the variable is, the larger is its
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entropy. Nogaussianity is measured by subtracting the random variable entropy from

that of a Gaussian random variable with the same covariance (which has the largest

entropy value). Negentropy is also approximated by the following formula:

nongaussianity(y) =
1

2
E[y3]2 +

1

48
Kurt(y)2. (2.34)

The Kurtosis and Negentropy approximation are two classical measures of nongaussian-

ity. Given that the kurtosis is sensitive to outliers, the above negentropy approxima-

tion is also sensitive to outliers. Hence the above definitions are not robust enough in

application; more robust version of these measures has been developed, see for exam-

ple [63, 66, 67, 70].

Independent Component Analysis depends greatly on the nongaussianity concept. The

basic data model of the ICA theory is as follows:

X = As. (2.35)

Where X is the random vector variable whose components are the mixtures X1, . . . , Xn,

s is the sources random vector variable with components S1, . . . , Sn and A is the mixing

matrix with components aij . In this model the independent components S1, . . . , Sn are

latent variables (unknown) and the mixing matrix A is assumed to be unknown. The

only data available is the observed (measured) X1, . . . , Xn variables and the task, under

some sufficiently generic assumptions, is to estimate both s and A using the measured

data.

The ICA approach assumes that the components S1, . . . , Sn are statistically independent

and have nongaussian (unknown) distributions. ICA is closely related to, and one way of,

performing blind source separation (BSS) [62, 71]. In BSS, as in the ICA based methods,
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the source signal is recovered from the observed signals without prior knowledge. It is

also assumed that the sources components are statistically independent. The ICA based

BSS method relies on the Central Limit Theorem of statistics and its implication in

the algorithm development, in particular the nongaussianity and independence of the

sources components implications.

The ICA approach relies on the basic principle of finding an estimator that maximises

the nongaussianity and hence independence of the estimated variables and therefore pro-

vides an estimator that gives close approximation for the S1, . . . , Sn components given

the measured X1, . . . , Xn variables. Given that the mixing matrix A is unknown, the

estimated source components values are not exact. In particular, for each component

there are two local maxima with negative and positive values and hence the ICA ap-

proach provides optimal estimates up to an ambiguous sign and amplitude. In the cases

where the sources components are all Gaussian random variable, ICA fails to estimate

the sources components.

Some of the early applications of the ICA in image processing and denoising can be found

in [72–74]. Bell and Sejnowski compared the ICA based image filters with other decor-

relating filters and found out that the ICA based filters have more sparsely distributed

(nongaussian) outputs on natural scenes. Hyvarinen et al. [72] propose a method for

image denoising based on ICA where the denoising parameters need to be learned from

noise free images. Qingfu et al. [73] propose a simplified method based on Hyvarinen

et al.’s denoising method in which only one heuristic parameter is used and no noise

free images are required. From the above, it can be seen that ICA is a nongaussianity

based approach that recovers the original signal/image from the observed signal/image

without prior knowledge and with only very general assumption about the source data.

The statistical independence of the sources signals is assumed and is fundamental in

this approach. The ICA approach to signal separation and denoising would fail in the

cases where the statistical distributions of the sources signals are all Gaussian. The

ICA approach relies on the principle that the solution of the ICA problems is the re-

covered source signals/images with the maximum nongaussianity. Therefore, finding a
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combination of the observed signal/image that has the maximum nongaussianity solves

the problem and restores the independent source signal/image. When the original sig-

nals are i.i.d (Identically Independent distributions) over space, blind deconvolution of

images becomes a special case of ICA with only one observed image that consists of

one unknown source image (original) mixed with itself at different spatial location [67].

Using ICA principles for signal/image restoration requires a preprocessing step in which

the observed signal/image is centred and normalised before applying the nongaussianity

measures.

Umeyama [68] presented a blind image deconvolution method based on ICA and its

principles. The algorithm of this method starts by processing the input blurred image

with Gabor filters and the resulting images from these filters and the source blurred

image are then fed into the ICA algorithm. Gabor filters have characteristics that

resembles certain characteristics of the cells in the visual cortex of some mammals.

These filters decompose an input image into a number of filtered differential images. The

implemented ICA algorithm in this method uses an online stochastic gradient method to

estimate the weight vector and hence the original image. The application of the Gabor

filters on the input blurred image results in a number of images that are derivative of

the original image and are used as an input into the ICA. These images and the original

blurred image are fed to the ICA algorithm. This method of image restoration does

not constrain the shape of the convolution filter and it only assumes that the original

image and its derivatives are independent components. The ICA algorithm used in this

method starts by transforming the input images into vectors composed from the image

pixels values. The image is scanned in a left-to-right and top-to-bottom manner. Then,

the data is centred, to make it zero mean, and whitened. The reported implementation

of the method assumes the PSF is uniform and is applied to artificial and real images

without additive noise. It was reported that the proposed method works well for different

shapes of PSF and the PSF estimation was fairly good.

In more recent development, Hujun et al. [67] state that the classical methods of image

restoration are either domain specific, applicable for a particular type of blurring function
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or require prior knowledge; they also state that gradient based image deblurring methods

can be easily trapped in local minima. Hujun et al. [67] present a method for blind image

deconvolution and deblurring based on the Central Limit Theorem, the ICA principles,

nongaussianity measures and genetic algorithms. The presented scheme is based on a

single image and assumes no prior knowledge about the image, the blurring function or

the noise. Experiments were conducted on spatial invariant point spread functions PSFs

with blurring image. The task of the developed method is to find the deblurring filter

that can be deconvoluted with the deblurring image to restore the true image.

The algorithm starts with genetic parameters initialization and a measurement of the

blurred image nongaussianty before the image is transformed into the frequency domain.

In the frequency domain, an optimal blurring kernel is searched for in combination with

frequency domain image restoration through inverse/wiener filtering. The restored image

is then converted to the spatial domain to calculate its nongaussianity. The algorithm

evolves the solution using the nongaussianity measure as the fittest function for the

child population generation. The algorithm iterates until it converges or stops after a

set number of iterations.

Hujun et al.’s method was tested on artificially blurred images with atmospheric turbu-

lence blur, uniform out of focus blur and linear motion blur. With the use of PSNR,

the performance of this method is compared with the standard methods; Wiener filter,

Regularized filter, Richardson-Lucy method and Blind Richardson-Lucy method. The

comparison, in most cases, shows a better performance in terms of PSNR. Hujun et al.’s

method depends on the nongaussianity measure in evolving the solution to convergence

and hence its performance in natural images depends on the performance of the non-

gaussianity measure in the presence of outliers and on the level of noise present in the

blurred image.

Kurtosis in the spatial domain suffers from deblurring noise and ringing artefacts [11].

Therefore the robustness of BID schemes, based on spatial domain kurtosis nongaussian-

ity measure, becomes unpractical. To overcome these issues, Khan et al. [75] developed

a new nongaussianity measure, spectral Kurtosis, and presented a BID scheme based on
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the statistical independence of the of true image and the blurring PSF. The scheme uses

the developed spectral kurtosis measure in combination with a GA to optimise the spec-

tral kurtosis in the frequency domain rather than in the spatial domain. This method

assumes, as is the case in the ICA technique, that the sources are statistically indepen-

dent. In this case, the sources are the true image and the filter function (PSF). Assuming

the true image is non-Gaussian, the developed scheme tries to maximise the nongaus-

sianity of the deblurred image and hence increase the independence of the blurred image

sources. It is reported [75] that the developed spectral kurtosis quality measure max-

imises at close or at the true point spread function. Khan and Yin state that the spectral

domain approach to image deblurring offers several advantages over the spatial domain.

In particular, the spectral kurtosis image quality measure is independent of distortion

features such as ringing and noise and does not require reference image. Khan [11] also

reports that the scheme offers several advantages over the spatial kurtosis based scheme

in terms of computational efficiency and robustness.

As the classical quality performance measures of image restoration are based on errors

between the restored image and the reference image [76], these measures are not ap-

plicable when a reference image is not available and hence not applicable in deblurring

schemes that incorporate performance maximization criteria. One solution for this is

issue is proposed by Khan et al. [76]. Khan et al. proposed a scheme, see 2.15, of

measuring the improvement of the deblurred image quality by reblurring the restored

image using a candidate PSF and then using PSNR between the original blurred image

and the reblurred image. Evaluation tests for the scheme were conducted with noiseless

blurred images and Weiner Filter to compute the deblurred image from a candidate

PSF generated on the basis of the PSNR values. It is reported that the Wiener filter

required manual adjustment to tune the NSR parameter to reduce the noise level in the

deblurred images. Khan et al. [76] report that in comparison to spatial kurtosis measure,

the PSNR measure of the blurred and reblurred images is less error prone to noise and

ringing artefacts arising from the Wiener filter.
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Figure 2.15: schematic diagram of the non-gaussianity based deblurring scheme.

Nongaussianity schemes to BID are based on the statistical assumption of the indepen-

dence of the sources signals that combine to produce the measured signal/image and

the statistical central limit theorem. This approach to blind source separation and im-

age restoration has received considerable attention in the last two decades and several

schemes for blurred images restoration are proposed in the literature. Some of these

schemes use the ICA algorithms as one of the deblurring processing stages while others

use the nongaussianity measures to evolve the solutions to convergence. The robustness

or performance of these methods is affected by the used nongaussianity measure and the

optimisation technique. Robust nongaussianity quality measures are developed and the

application of these quality measures in BID schemes is reported.

2.4.10 Approximate Greatest Common Divisor (AGCD)

Linear algebra was first used to deblur images by Pillai and Liang [18, 19]. They used

the greatest common divisor (GCD) method to extract the original image from two

blurred versions of the true image without assuming a priori knowledge about the PSF.

In this method, the real image is the GCD between the two blurred versions of the true

image. In particular, they used a one-dimensional Sylvester resultant matrix algorithm

to compute the GCD. The literature review has shown that there has been little further
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development of the solution of the BID problem using the GCD method since then.

Statistical methods, namely Bayesian, have been used by many researchers in image

restoration, as discussed previously. These methods suffer from no-blur solutions which

are a consequence of the dependence of the methods on priori assumptions about the

blurring function and the noise level [56].

In 2005, Raymond Heindl [77] introduced a slightly improved version of Pillai and Liang’s

method. The GCD method in its original form suffers from high sensitivity to noise and

also using the Sylvester matrix is computationally expensive. Therefore, Li et al. in

2010 [1, 2] introduced a new method based on the Bezout matrix in order to develop an

efficient GCD algorithm. Along with constraining the solution, they developed the BID

algorithm based on the GCD algorithm for univariate polynomials and the Fast Fourier

Transform (FFT). However, despite their method based on the Bezout matrix being less

computationally expensive compared to the developed method based on the Sylvester

matrix, the result obtained from the developed method based on the Sylvester matrix

is more robust in the presence of noise than the result obtained from their method (see

Chapter 6).

In 2012, Danelakis et al. [38] used the approximate greatest common divisor (AGCD)

instead of GCD by introducing the fast upper triangularisation of the modified Sylvester

matrix. However, the limitation of their method is the weakness of work on the large

size of the two-dimensional PSF. Their method works on a separable and three-by-three

PSF. They assume that the three-by-three PSF is symmetric with respect to its middle

elements. Thus, the first and last rows of the PSF are computed as the AGCD of two

selected rows of the blurred image. Then, the first and last columns of the PSF are

computed as the AGCD of two selected columns of the blurred image, as well. After

that, in order to calculate the middle element, they use the common property of PSF,

which is the sum of all PSF elements equal to 1. Therefore, the middle element is

computed by subtracting from 1 the sum of the AGCD’s coefficients already found.

In describing all these methods and their limitations, the intention has been to answer

one question: ”Is it possible to develop a new BID method that can recover the PSFs,
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separable or non-separable, that is not sensitive to additive noise?”. Therefore, the

current research has been conducted to develop a new BID method that can overcome

almost all of the limitations detailed in the literature. The next chapter demonstrates

the proposed BID method, one which overcomes the limitations in the literature, and

examines extent to which the proposed BID method works.

Figure 2.16: Image deblurring using the AGCD-based method developed by Li et
al. [1, 2]. (a) a clear image; (b) the first blurred image caused by Gaussian blur; (c)

the second blurred image caused by out-of-focus blur; (d) the restored image.

2.5 The Measurement of Image Performance

In order to compare the results of the developed method with the state-of-the-art meth-

ods, the measurement of image performance for BID must be considered. Often, the

differences between two images are measured using signal-to-noise ratio (SNR), the peak

signal to signal noise ratio (PSNR), mean squared error (MSE), and root mean squared

error (RMSE).

The formulae of these measurement procedures are listed below. Let K be the exact

image and W be the estimated version of K from the blurred version of K. The images

are of size M ×N . The equations used for each of the above procedures are given in the

following:

MSE =
1

MN

M∑
i=1

N∑
j=1

[K(i, j)−W (i, j)]2, (2.36)
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RMSE =
√
MSE, (2.37)

where the MSE and RMSE are the mean square errors between the true image signal

and the noise signal, while the SNR is the power ratio between meaningful information

(true image data) and unwanted information (noise)

SNR =
10

log 10
log


[maxi,j{K(i, j)−W (i, j)}]2
M∑
i=1

N∑
j=1

[K(i, j)−W (i, j)]2

 . (2.38)

PSNR performance measure is the ratio of the square of the maximum signal intensity. In

addition to the above, the performance criterion of Relative Error is also used. Relative

Error is defined as the absolute value of the error between the estimated image and the

true exact image divided by the absolute value of the exact image.

Relative error =
‖W −K‖F
‖K‖F

, (2.39)

where the subscript F denotes the Frobenius norm. Relative error is used when an

indication of how good a measurement is in relation to its actual measured image.

This error takes into account the size of the exact image when it is computed. In

particular, a moderate error compare to small size of image would give a significant

value; however, a moderate error value when compared to a large exact image value

may not give a significant value. Hence, Relative Error is considered to be a suitable

estimation performance measure for image restoration in this research study.

This research study uses some of the above performance criteria to compare the perfor-

mance of the developed method and the state-of-the-art methods in recovering blurred

images.
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2.6 Summary

This chapter has reviewed the basic concepts of image deconvolution, including the prob-

lem formulation. This is followed by a brief introduction to PSF including a definition,

description of some of the properties of the blurring function, and the most commonly

occurring types of blur.

The serious distortion of the image comes from the PSF which is a function that describes

the procedure of blurring an image. There are two type of the PSF. The first one is

known as a spatially invariant blur in which case the influence of the blur is the same

for every pixel in the blurred image. The second one is known as a spatially variant

blur in which case the blur varies over the image. In general, The blurring in images

arises from many sources during the capture process. For example, it can arise from

limitations of the optical system, camera and object motion, defocused objects, lens

error, and environmental effects such as atmospheric perturbations. The most common

types of blur are Gaussian blur, motion blur and out-of-focus blur.

Furthermore, some image restoration filters are described, starting with basic image

restoration filters followed by the most recent approaches. These image restoration filters

and the BID methods can be listed as follows: Inverse Filtering, Wiener Filtering, Iter-

ative Blind Deconvolution Method, Richardson-Lucy Algorithm, Regularisation-Based

Deblurring Algorithm, Maximum Likelihood Restoration Method, Total Variation Blind

Deconvolution, Maximum a Posteriori (MAP) based method, Nongaussianity Approach

to Blind Image Deconvolution, and the Approximate Greatest Common Divisor (AGCD)

to Blind Image Deconvolution. Functionalities, advantages, limitations, and examples

of all the discussed image restoration filters and the BID method are provided at this

chapter.

The measurements of image quality are detailed at the end of this chapter. The following

chapter will illustrate the most important tools used in the proposed BID method.
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The Approximate Greatest

Common Divisor method for

image restoration

3.1 Introduction

The determination of the true image requires calculating the blurring function (PSF).

Removing the blurring function from the blurred image is considered to be more signif-

icant than removing noise [42]. Using linear algebra for solving the blind image decon-

volution (BID) is connected to the computation of the greatest common divisor (GCD)

of two bivariate polynomials, as was discussed in Section 2.4.10. It is important to de-

fine the GCD of two exact polynomials and the approximate greatest common divisor

(AGCD) of two inexact polynomials before proceeding further with the image deblur-

ring algorithm. This chapter provides a brief introduction of the GCD of two univariate

polynomials. Then, the computation of the AGCD that has been used in this research

is illustrated in this chapter. As has been mentioned, the problem of BID is an example

of an ill-posed linear problem [42]. Thus, the AGCD computations must be done with

52
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care. Therefore, the AGCD computations are performed using an approximate polyno-

mial factorisation by the Sylvester resultant matrix of two inexact polynomials that was

developed by Winkler et al. [17]. A brief introduction of the Sylvester resultant matrix

and its subresultant matrices is considered in the next section.

3.2 Greatest Common Divisor (GCD)

The computation of the GCD of two exact univariate polynomials is a basic method

in the algebraic computation field. It can be defined easily by the following: Let f(x)

and g(x) refer to the two exact polynomials of degrees m and n, respectively, and their

coefficients are known exactly:

f(x) = a0x
m + a1x

m−1 + · · ·+ am, a0 6= 0, (3.1)

and

g(x) = b0x
n + b1x

n−1 + · · ·+ bn, b0 6= 0, (3.2)

where a0, a1, . . . , am and b0, b1, . . . , bn are the coefficients of f(x) and g(x), respectively.

The GCD of f(x) and g(x) is d(x), is defined as a non-constant common divisor poly-

nomial of the highest degree,

d(x) =
f(x)

u(x)
=
g(x)

v(x)
, (3.3)

where u(x) and v(x) are quotient polynomials and are co-prime which means that their

greatest common divisor is equal to 1 or nonzero constant. The computation of the

degree and coefficients of GCD using the Sylvester resultant matrix is presented in the

next section.



Chapter 3. The Approximate GCD method for image restoration 54

3.3 Sylvester Resultant Matrix

The Sylvester resultant matrix is a type of resultant matrix that is associated with two

univariate polynomials. The Sylvester resultant matrix can be used to calculate the

GCD and an AGCD of two polynomials. If the two polynomials are not co-prime, it is

possible to calculate the degree and coefficients of their GCD using the Sylvester resul-

tant matrix by two ways. The first method based on the Sylvester resultant matrix is

that the degree of the GCD is equal to the rank loss of their Sylvester resultant matrix

[78]. Then, the coefficients of the GCD can be obtained by reducing the Sylvester resul-

tant matrix to an upper triangular form through the LU or QR decompositions [79]. The

LU decomposition is a standard method of decomposing matrices. In this decomposi-

tion, the matrix is decomposed into a product of two triangular matrices where the first

is lower triangular and the second is upper triangular. Lower triangular matrices have

all the elements above the diagonal which are zeros whereas upper triangular matrices

have all the elements below the diagonal which are zeros. While, QR decomposition is

a method of decomposing a matrix into a product of two matrices where the right hand

side of the product is an orthogonal matrix Q and the left hand side of the product is

an upper triangular matrix R. Therefore, the coefficients of GCD are contained in the

last non-zero row of the matrices U or R, respectively. Unfortunately, this computa-

tion of GCD using the Sylvester resultant matrix becomes more complicated when the

two polynomials become relatively prime (co-prime) regarding the additive noise that

perturbs the coefficients of these polynomials.

The second method based on the Sylvester resultant matrix is that the degree and

coefficients of the GCD are computed using the Sylvester resultant matrix and its sub-

resultant matrix (see Theorem 3.1)

Theoretically, the coefficients of these polynomials with additive noise can transform the

singular matrix to a non-singular matrix. In that case, the Sylvester resultant matrix

of these polynomials has full rank. Consequently, it is necessary to implement some
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pre-processing operations on the two inexact polynomials before using the Sylvester

resultant matrix [17]. These operations are considered in the next section.

The Sylvester resultant matrix of two exact polynomials can be briefly introduced as

follows: Assume that f = f(x) and g = g(x) refer to the two exact polynomials of

degrees m and n, respectively, equation (3.1) and( 3.2) can be rewritten as follows:

f(x) =
m∑
i=0

aix
m−i, a0 6= 0, (3.4)

and

g(x) =

n∑
i=0

bix
n−i, b0 6= 0. (3.5)

Then, the Sylvester resultant matrix S(f, g) ∈ R(m+n)×(m+n) of the two polynomials

f(x) and g(x) is given by:

S(f, g) =



a0

a1 a0
... a1

. . .

am−1
...

. . . a0

am am−1
. . . a1

am
. . .

...

. . . am−1

am

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0

b1 b0
... b1

. . .

bn−1
...

. . . b0

bn bn−1
. . . b1

bn
. . .

...

. . . bn−1

bn



,

︸ ︷︷ ︸ ︸ ︷︷ ︸
n columns m columns (3.6)

The first n columns are occupied by the coefficients ai of f(x), and the last m columns

are occupied by the coefficients bi of g(x), and each of the two sub-matrices is Toeplitz.
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The Sylvester resultant matrix and its subresultant matrices are used in order to compute

the GCD of two exact polynomials. The following theorem shows the computation of

the degree and coefficient of GCD of f and g using the Sylvester subresultant matrix.

Theorem 3.1. [80, 81] The exact polynomials f(x) and g(x) have a common divisor

of degree k ≥ 1 if, and only if, the rank of its Sylvester subresultant matrix Sk(f, g) is

less than or equal to m+n−2k+ 1. The degree of the common divisor of f(x) and g(x)

is equal to k = 1, . . . , t, and there is no common divisor of degree k ≥ t+ 1 if, and only

if, the rank of Sk(f, g) satisfies:

rank Sk(f, g) ≤ m+ n− 2k + 1, k = 1, . . . , t,

rank Sk(f, g) = m+ n− 2k + 2, k = t+ 1, . . . ,min (m,n), (3.7)

Proof. Since the polynomials f(x) and g(x) are not co-prime, which means that they

have a non-constant common divisor polynomial dk(x) of the degree of k, as well as

quotient polynomials uk(x) and vk(x), they will satisfy the following equations:

f(x) = dk(x)uk(x), deg uk < deg f = m, (3.8)

and

g(x) = dk(x)vk(x), deg vk < deg g = n, (3.9)

where at dk(x), vk(x), and vk(x) are polynomials given by

dk(x) =
k∑
i=0

dk,ix
k−i, (3.10)

uk(x) =

m−k∑
i=0

uk,ix
m−k−i, (3.11)
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vk(x) =

n−k∑
i=0

vk,ix
n−k−i, (3.12)

for all common divisors of degree k = 1, . . . , t, where t is the greatest degree of the

non-constant common divisor polynomials of f(x) and g(x). From (3.8) and (3.9),

dk(x) =
f(x)

uk(x)
=

g(x)

vk(x)
. (3.13)

Then it follows that

f(x)vk(x) = g(x)uk(x). (3.14)

This equation can be written in matrix form as follows:

[
Cn−k+1(f) Dm−k+1(g)

] vk

−uk

 = Sk

 vk

−uk

 = 0, k = 1, . . . , t, (3.15)

where Cn−k+1(f) ∈ R(m+n−k+1)×(n−k+1) and Dm−k+1(g) ∈ R(m+n−k+1)×(m−k+1) are

Toeplitz matrices of the coefficients of f(x) and g(x), and vk and uk are vectors of the

coefficients of vk(x) and uk(x), respectively.

Cn−k+1(f) =



a0

a1
. . .

...
. . . a0

am−1
. . . a1

am
. . .

...

. . . am−1

am



, Dm−k+1(g) =



b0

b1
. . .

...
. . . b0

bn−1
. . . b1

bn
. . .

...

. . . bn−1

bn



, (3.16)

and

uk =

[
uk,0 uk,1 . . . uk,m−k−1 uk,m−k

]T
, (3.17)
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where uk 6= 0 for all k = 1, . . . , t, and uk ≡ 0 for k = t+ 1, . . . ,min (m,n), and

vk =

[
vk,0 vk,1 . . . vk,n−k−1 vk,n−k

]T
, (3.18)

where, as well, vk 6= 0 for all k = 1, . . . , t and vk ≡ 0 for k = t+ 1, . . . ,min(m,n).

The Toeplitz matrices Cn−k+1(f) and Dm−k+1(g) are expressed in one Sylvester resul-

tant matrix S = S(f, g), in which Sk = Sk(f, g) ∈ R(m+n−k+1)×(m+n−2k+2) is the kth

Sylvester subresultant matrix, which is formed by deleting some rows and columns from

Sk = Sk(f, g). The kth Sylvester subresultant matrix Sk(f, g) is obtained by deleting the

last (k−1) rows of its matrix and the last (k−1) columns of Cn−k+1(f) and Dm−k+1(g).

Theoretically, it is clear that the Sylvester subresultant matrix for the index k = 1 yields

the Sylvester resultant matrix S1(f, g) = S(f, g).

The Sk(f, g) is singular for k ≤ t and non-singular if, and only if, f and g are co-prime.

In other words, there are three cases for the rank of the coefficient matrix in (3.15):

• There is more than one solution of (3.15) for k = 1, . . . , t− 1.

• There is one solution of (3.15) for k = t.

• There is no solution of (3.15) (apart from the zero solution) for k ≥ t+ 1.

The next section discusses the three operations that must be processed before the

Sylvester matrix of the two inexact polynomials is used to compute an AGCD.

3.4 Pre-processing Operations

This section discusses the pre-processing operations that must be applied to the given

polynomials before their GCD is computed [17]. Section 3.3 has shown that the Sylvester

resultant matrix and its subresultant matrices Sk(f, g) can be used to determine the

degree of the GCD of two exact f(x) and g(x). In contrast, the situation is different

when two inexact polynomials f̂(x) and ĝ(x) are considered because the matrix Sk(f̂ , ĝ)
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is reduced to a matrix of full rank because f̂(x) and ĝ(x) are co-prime because of the

noise that is present in f̂(x) and ĝ(x).

In order to perform successive approximate GCD computations of two inexact polyno-

mials f̂(x) and ĝ(x), three pre-processing operations are applied for the improvement of

computational results on rank estimation. These three pre-processing operations have

been discussed in [80–82]. The first operation normalises each polynomial by the geo-

metric mean of its coefficients. The second and the third operations minimise the ratio

of the maximum coefficient in magnitude to the minimum coefficient in magnitude using

two parameters α and θ that will be determined. α is a parameter that originates from

the partitioned structure of the Sylvester matrix, and a parameter θ is used in order

to scale the independent variable x. The parameter θ has been introduced in order to

transform the normalised forms of the inexact polynomials f̂(x) and ĝ(x) into another

set of polynomials, whose coefficient variations are smaller.

The next subsections illustrate extensively the three pre-processing operations that re-

quire successive approximate GCD computations.

3.4.1 Normalisation

It was mentioned in Section 3.3 that the Sylvester matrix Sk(f̂ , ĝ) has a partitioned

structure because the first n − k + 1 columns are occupied by the coefficients of f̂(x),

whereas the last m − k + 1 columns are occupied by the coefficients of ĝ(x). This

partitioned structure may lead to the Sylvester matrix Sk(f̂ , ĝ) being unbalanced, espe-

cially if coefficients f̂(x) are significantly larger or smaller than the coefficients of ĝ(x).

More precisely, if coefficients f̂(x) are much larger than the coefficients of ĝ(x), then

|âi| � |b̂j |, i = 0, . . . ,m, j = 0, . . . , n, and the rank of S(f̂ , ĝ) is approximately equal to

n even if f̂(x) and ĝ(x) are co-prime. On the other hand, if the coefficients f̂(x) are

much smaller than the coefficients of ĝ(x), then the rank of S(f̂ , ĝ) is approximately

equal to m. Therefore, it is necessary to take precautions to address this problem by

normalising the polynomials.
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Consequently, the geometric mean of the coefficients of both polynomials f̂(x) and ĝ(x)

was used to provide better balance. The literature shows that the two-norm mean of the

coefficient polynomials has been used frequently for normalisation for better conditioned

[81, 83, 84]. However, it is shown that it is advantageous to normalise by using the

geometric mean instead of other norms, for example, 1−, 2−, and ∞ norm, because it

provides a better and more balanced average when the coefficients of a polynomial vary

widely in magnitude [80, 81, 84].

Thus, f̄(x) and ḡ(x) are scaled from f̂(x) and ĝ(x) by the geometric means of their

coefficients, and are given by

f̄(x) =

m∑
i=0

āix
m−i, āi =

âi

(
∏m
i=0 |âi|)

1
m+1

(3.19)

and

ḡ(x) =
n∑
i=0

b̄ix
n−i, b̄i =

b̂i

(
∏n
i=0 |b̂i|)

1
n+1

(3.20)

where āi and b̄i are the normalised coefficients, and âi and b̂i are the non-normalised co-

efficients of f̂(x) and ĝ(x), respectively; in the geometric means, especially, it is assumed

that the coefficients are non-zero or the normalisation will be unstable. If, however, one

or more of these coefficients are zero, then the geometric mean will be computed with

respect to the non-zero coefficients only, rather than all of them.

3.4.2 Relative scaling of polynomials

The second pre-processing operation is introduced as follows:

GCD(f̂ , ĝ) ∼ GCD(f̂ , αĝ), (3.21)
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where α is an arbitrary non-zero scalar multiplier and ∼ denotes equivalence to an

arbitrary non-zero scalar multiplier. Thus, the polynomial ĝ(x) can be generalised to

αĝ(x). Since inexact polynomials are considered, this equivalence fails numerically be-

cause different scalar values of α may lead to different AGCDs. In order to obtain a good

computational result for AGCD, the variable α has to be used as a parameter that will

be computed according to a specific criterion such that good results are obtained [80, 81].

According to the normalised forms of f̂(x) and ĝ(x) in (3.19) and (3.20), respectively, α

can be construed as the relative weight of ĝ(x) to the unit weight of f̂(x).

The inclusion of the parameter α was first introduced in [85], where it was shown that

the rank of S(f̂ , αĝ) is difficult to obtain by using a random value of α and not all

the values of α are associated with a well-defined rank of S(f̂ , αĝ). Consequently, it is

important to carefully choose the procedure of computing an optimal value of α in order

to obtain a good approximation for an AGCD [80]; this will be illustrated in Section

3.4.4.

3.4.3 Scaling the independent variable

The third pre-processing operation will introduce the parameter θ that scales the inde-

pendent variable x. This is achieved by the substitution

x = θy, (3.22)

where θ is a parameter that will be determined to minimise the ratio of the maximum

coefficient in magnitude to the minimum coefficient in magnitude, and y is the new

independent variable. This operation is important because polynomials computations

will be unreliable if the coefficients of polynomials have a significant variation in mag-

nitude [86, 87]. The polynomials f̄(x) and ḡ(x) in (3.19) and (3.20), respectively, are

transformed to the polynomials f̃(y) and g̃(y) that are represented as
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f̃(y) =
m∑
i=0

(āiθ
m−i)ym−i, (3.23)

and

g̃(y) =
n∑
i=0

(b̄iθ
n−i)yn−i. (3.24)

Once the AGCD of the two polynomials, f̃(y) and g̃(y), is computed, the polynomial

of the GCD d̃(y) is re-expressed in terms of the independent variable (x) by using the

relationship y = x/θ.

The method used to calculate the values of the parameters α and θ is studied in [84] and

it has been extended into two polynomials in [80, 81]. The rest of this section discusses

the procedure of choosing the optimal values α0 and θ0 of α and θ.

3.4.4 Calculating optimal values of the scaling parameters

The optimal values α0 and θ0 of α and θ, respectively, have been computed using the

minimisation problem that has been studied in [17]. This computation is important

to compute a good approximation of the GCD of Sk(f̃θ(x), αg̃θ(x)) of the two poly-

nomials f̃(x) and g̃(x). Therefore, the optimal value α0 and θ0 of α and θ can be

determined simultaneously, such that the ratio of the maximum coefficient in magnitude

to the minimum coefficient in magnitude of S(f̃ , αg̃), whose entries are {āiθm−i}mi=0 and

{αb̄jθn−j}nj=0, is minimised,

α0, θ0 = arg min
α,θ

{
max

{
maxi=0,...,m

∣∣āiθm−i∣∣ ,maxj=0,...,n

∣∣αb̄jθn−j∣∣}
min

{
mini=0,...,m |āiθm−i| ,minj=0,...,n

∣∣αb̄jθn−j∣∣}
}
. (3.25)
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and this minimisation is converted into a linear programming problem (LP) [17, 88].

The solution of the LP problem yields the polynomials and all the GCD computations

for the calculation of the PSF are reformed on these polynomials. It can represent the

two polynomials as follows:

f̃θ(y) =
m∑
i=0

(āiθ
m−i
0 )ym−i, (3.26)

and

g̃θ(y) =
n∑
i=0

(b̄iθ
n−i
0 )yn−i. (3.27)

Then it will modify the Sylvester resultant matrix and its subresultant matrix of the

given polynomials f̂(x) and ĝ(x) after they are processed to S(f̃θ(y), αg̃θ(y)); this can

be written as follows:

S(f̃θ, αg̃θ) =



ā0θ
m
0

ā1θ
m−1
0 ā0θ

m
0

... ā1θ
m−1
0

. . .

ām−1θ0
...

. . . ā0θ
m
0

ām ām−1θ0
. . . ā1θ

m−1
0

ām
. . .

...

. . . ām−1θ0

ām

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α0b̄0θ
n
0

α0b̄1θ
n−1
0 α0b̄0θ

n
0

... α0b̄1θ
n−1
0

. . .

α0b̄n−1θ0
...

. . . α0b̄0θ
n
0

α0b̄n α0b̄n−1θ0
. . . α0b̄1θ

n−1
0

α0b̄n
. . .

...

. . . α0b̄n−1θ0

α0b̄n



.

︸ ︷︷ ︸ ︸ ︷︷ ︸
n columns m columns (3.28)
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This Sylvester matrix and its subresultant matrices are used for the computation of

an approximate GCD of two inexact polynomials Sk(f̃θ0 , α0g̃θ0). This computation is

considered in the next section.

3.5 Approximate Greatest Common Divisor (AGCD)

The computation of the GCD of two polynomials arises in several applications, for ex-

ample, computer-aided geometric design [89, 90], computer vision [91, 92], and computer

graphics [93]. Euclid’s algorithm is the classical method for the calculation of the GCD

of two polynomials, but it cannot be used to calculate an AGCD of two polynomials.

Practically, the given polynomials f̂ and ĝ are usually defined by inexact polynomials

and the coefficients of polynomials are corrupted by noise since the computation of their

GCD is performed in a floating point environment. Consequently, it is impossible to

calculate the GCD of two inexact polynomials but it is possible to compute only an

AGCD. More precisely, theoretically, the two inexact polynomials may have a non-

constant GCD but the additive noise makes these polynomials co-prime. Therefore, it is

necessary to perturb these inexact polynomials in order to induce a non-constant GCD.

Then, the AGCD of the given inexact polynomials can be computed. There are several

different AGCDs of two inexact polynomials corresponding to the criterion that is used

for their calculation, for example, the nearest polynomial of given maximum degree or

the polynomial of maximum degree within a given error tolerance [17].

Several methods have been developed in order to compute an AGCD of two polynomials:

for instance, modifications to Euclid’s algorithm [94], singular value decomposition [95],

and the QR decomposition [96]. The Sylvester matrix and approximate polynomial

factorisation (APF) have been considered in [97]. In this research, the developed method

that has been applied to calculate the AGCD of two inexact polynomials f̂(x) and ĝ(x)

is the approximate polynomial factorisation (APF).



Chapter 3. The Approximate GCD method for image restoration 65

f̂(x) ≈ uk(x)dk(x) ĝ(x) ≈ vk(x)dk(x), (3.29)

where dk(x) is a non-constant common divisor polynomial of the degree of k, and uk(x)

and vk(x) are quotient polynomials.

The APF requires the degree of an AGCD to be known. Therefore, the computation of

an AGCD is divided into two stages: the first stage involves calculating the degree of

an AGCD of two inexact polynomials using the Sylvester resultant matrix S(f̂ , ĝ). The

second stage involves calculating the coefficients of an AGCD of their polynomials using

approximate polynomial factorisation (APF). This section will present these two stages

theoretically. It is noted that the two given inexact polynomials f̂(x) and ĝ(x) will

be transformed into f̃θ(y) and g̃θ(y) after applying the three pre-processed operations

discussed in Section 3.4.

3.5.1 The computation of the degree of an AGCD

The computation of the degree of the AGCD constitutes an important step in the com-

putation of the AGCD. Small errors in the computed degree will have a great effect on

the computed AGCD polynomial.

The degree of the AGCD requires the computation of the rank of the Sylvester matrix

and its sub-resultant matrices, as shown by Theorem 3.1. Existing methods for the

calculation of the degree of the AGCD vary in their estimation accuracy from good to

poor. The SVD method used in conjunction with the AGCD(f̃θ, αg̃θ) does not give

an accurate estimation of the degree [17, 97] that is required by the AGCD. Thus,

the principal angle and residual methods are used in [17, 88, 97] and they give an

accurate estimation of the degree. However, this accuracy comes at a high cost in terms

of computational time, which would limit its practical usage. Because these methods

depend on the computation of the SVD of the Sylvester matrix of the two polynomials
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and all its sub-resultant matrices k = 1, . . . ,min(m,n), this means that the computation

of the SVD of the Sylvester matrix of (f̃θ, αg̃θ) must be computed min(m,n) times.

In contrast, the update formula for the QR decomposition is more efficient than its

equivalent for the SVD. Thus the degree of the AGCD of two polynomials should

be computed using QR decomposition, not the SVD. The SVD is a standard tool to

calculate the rank for a matrix but the update formula for the QR decomposition is

efficient in which the SVD and QR are cubic in complexity but the update formula

for the QR in Matlab is quadratic complexity. Thus, QR decomposition can be used

to compute the degree of the AGCD. The QR decomposition is applied only to the

Sylvester matrix.

Then, the QR of the sub-resultant matrices is achieved through the use of a simple

update algorithm which involves a simple delete operation on the previous QR decom-

position. In this research, the QR decomposition method is used for both its accuracy

and computational efficiency.

To ensure the completeness of this research, the QR procedure developed by Bourne et

al. [98] is described in detail in the following paragraphs.

LetQkRk be the QR decomposition of the Sylvester matrix and its sub-resultant matrices

of f̃θ(y) and g̃θ(y) from k = 1, . . . ,min(m,n). For each Rk, define the diagonal elements

by rk,i,i where i = 1, 2, . . . ,m+n−2k+2. The singularity of Sk(f̃θ(y), g̃θ(y)) is reflected

by the value µk, because if:

µk =
maxi |rk,i,i|
mini |rk,i,i|

, k = 1, . . . ,min(m,n), (3.30)

then when the value of µk is close to 1, the sub-resultant matrix is of full rank, whereas

when the value is much higher than one then the sub-resultant matrix is nearly singular.

It follows that the degree t of an AGCD can be calculated using the values of µk because

it follows from Theorem 3.1 and (3.30) that the µk values satisfy
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µk =

{
∞, k = 1, . . . , t

γk <∞, k = t+ 1, . . . ,min(m,n)

}
. (3.31)

The µk values for singular Rk would be infinite while the µk for full-rank Rk will have

finite values, because at least one diagonal entry of Rk is zero for k = 1, . . . , t. Conse-

quently, the degree of the AGCD can be found from the computed µk using the following

criterion:

t = arg min
k

(µk − µk+1), k = 1, . . . ,min(m,n). (3.32)

The computed AGCD degree is then used to compute the coefficient values of the AGCD

polynomial, as described in the next section. It is important to note that these tests are

heuristic, but many computational experiments have shown that they yield very good

results for the degree of an AGCD of two inexact polynomials.

3.5.2 The computation of the coefficients of an AGCD using the Ap-

proximate Polynomial Factorization

The computation of the coefficients of an AGCD is considered in this section. Ap-

proximate Polynomial Factorization (APF) is used for computing the coefficients of an

AGCD [17]. They used the structured non-linear total least norm (SNTLN) method for

computation of a structured low-rank approximation of the Sylvester resultant matrix

Sd(f̃θ(y), αg̃θ(y)) of the two given inexact polynomials f̂(x) and ĝ(x), where f̃θ(y) and

g̃θ(y) are the two inexact polynomials f̂(x) and ĝ(x) after the pre-processing operations

that are defined in (3.26) and (3.27) respectively. The method of the structured non-

linear total least norm (SNTLN) is used to compute the coefficients of AGCD(f̃θ(y), αg̃θ(y))

by applying it to the approximate polynomial factorisation of f̃θ(y) and g̃θ(y)
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f̃(y) ≈ ũt(y)d̃t(y) and g̃(y) ≈ ṽt(y)d̃t(y) (3.33)

where d̃t is an AGCD of degree t of the inexact polynomials f̃θ(y) and g̃θ(y), and ũt(y)

and ṽt(y) are the quotient polynomials. It is important to note that the degree of an

AGCD (t) and the optimal value of the scaling θ0 and α0 are known using the methods

described in Sections 3.5.1 and 3.4.4, respectively. It follows that

d̃t = d̃θ(y) =

t∑
i=0

(
d̃θ,i

θt−i0

)
θt−iyt−i =

t∑
i=0

(
r̃iθ

t−i) yt−i, (3.34)

and

ũt = ũθ(y) =
m−t∑
i=0

(
ũi

θm−t−i0

)
θm−t−iym−t−i =

m−t∑
i=0

(
c̃iθ

m−t−i) ym−t−i (3.35)

ṽt = ṽθ(y) =
n−t∑
i=0

(
ṽi

θn−t−i0

)
θn−t−iyn−t−i =

n−t∑
i=0

(
ẽiθ

n−t−i) yn−t−i, (3.36)

where the quotient polynomials are co-prime, since

r̃i =
d̃θ,i

θt−i0

, c̃i =
ũθ,i

θm−t−i0

, and ẽi =
ṽθ,i

θn−t−i0

. (3.37)

It follows from (3.26), (3.27), (3.34), (3.35), and (3.36) that the full form of (3.33) is

m∑
i=0

(
āiθ

m−i) ym−i ≈ (m−t∑
i=0

(
c̃iθ

m−t−i) ym−t−i)( t∑
i=0

(
r̃t,iθ

t−i) yt−i) , (3.38)
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and

α0

n∑
i=0

(
b̄iθ

n−i) yn−i ≈ (n−t∑
i=0

(
ẽiθ

n−t−i) yn−t−i)( t∑
i=0

(
r̃t,iθ

t−i) yt−i) , (3.39)

which can be written in matrix form Ct,1(c̃t, θ)

Ct,2(ẽt, θ)

 r̃t(θ) ≈

 f̃(θ)

α0g̃(θ)

 , (3.40)

where Ct,1(c̃t, θ) and Ct,2(ẽt, θ) are Toeplitz matrices.

Ct,1(c̃t, θ) =



c̃t,0θ
m−t

c̃t,1θ
m−t−1 c̃t,0θ

m−t

c̃t,2θ
m−t−2 c̃t,1θ

m−t−1 . . .

... c̃t,2θ
m−t−2 . . . c̃t,0θ

m−t

...
...

. . . c̃t,1θ
m−t−1

c̃t,m−t−1θ
...

. . . c̃t,2θ
m−t−2

c̃t,m−t c̃t,m−t−1θ
. . .

...

c̃t,m−t
. . .

...

. . . c̃t,m−t−1θ

c̃t,m−t



∈ R(m+1)×(t+1), (3.41)
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and

Ct,2(ẽt, θ) =



ẽt,0θ
n−t

ẽt,1θ
n−t−1 ẽt,0θ

n−t

ẽt,2θ
n−t−2 ẽt,1θ

n−t−1 . . .

... ẽt,2θ
n−t−2 . . . ẽt,0θ

n−t

...
...

. . . ẽt,1θ
n−t−1

ẽt,n−t−1θ
...

. . . ẽt,2θ
n−t−2

ẽt,n−t ẽt,n−t−1θ
. . .

...

ẽt,n−t
. . .

...

. . . ẽt,n−t−1θ

ẽt,n−t



∈ R(n+1)×(t+1), (3.42)

and

f̃(θ) =

[
ā0θ

m ā1θ
m−1 · · · ām−1θ ām

]T
∈ Rm+1,

g̃(θ) =

[
b̄0θ

n b̄1θ
n−1 · · · b̄n−1θ b̄n

]T
∈ Rn+1,

r̃t(θ) =

[
rt,0θ

t rt,1θ
t−1 · · · rt,t−1θ rt,t

]T
∈ Rt+1. (3.43)

The application of the method of SNTLN requires adding a structured matrix to the

coefficient matrix on the left-hand side and a structured vector to the right-hand side of

the approximate (3.40), in order to perturb the approximate equation to the equation

that has an exact solution. Therefore, the approximate equation is replaced by

 Ct,1(c̃, θ) + Et,1(zt, θ)

Ct,2(ẽ, θ) + Et,2(zt, θ)

 r̃t(θ) =

 f̃(θ) + st(pt, θ)

(α0 + β0) (g̃(θ) + wt(qt, θ))

 , (3.44)
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where

Et,1(zt, θ) =



zt,0θ
m−t

zt,1θ
m−t−1 . . .

zt,2θ
m−t−2 . . . zt,0θ

m−t

...
. . . zt,1θ

m−t−1

...
. . . zt,2θ

m−t−2

zt,m−t−1θ
. . .

...

zt,m−t
. . .

...

. . . zt,m−t−1θ

zt,m−t



∈ R(m+1)×(t+1), (3.45)

and

Et,2(zt, θ) =



zt,m−t+1θ
n−t

zt,m−t+2θ
n−t−1 . . .

zt,m−t+3θ
n−t−2 . . . zt,m−t+1θ

n−t

...
. . . zt,m−t+2θ

n−t−1

...
. . . zt,m−t+3θ

n−t−2

zt,m+n−2tθ
. . .

...

zt,m+n−2t+1
. . .

...

. . . zt,m+n−2tθ

zt,m+n−2t+1



∈ R(n+1)×(t+1).

(3.46)

Et,1 and Et,2 are Toeplitz matrices of the perturbations zt,i

zt =

[
zt,0 · · · zt,m−t zt,m−t+1 · · · zt,m+n−2t+1

]T
∈ Rm+n−2t+2, (3.47)
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that are added to the coefficients c̃t,i and ẽt,i, are given by the vectors st = st(pt, θ) ∈

Rm+1 and wt = wt(qt, θ) ∈ Rn+1,

st = [ pt,0θ
m pt,1θ

m−1 · · · pt,m−1θ pt,m ]T ∈ Rm+1, (3.48)

wt = [ qt,0θ
n qt,1θ

n−1 · · · qt,n−1θ qt,n ]T ∈ Rn+1, (3.49)

where

pt = [ pt,0 pt,1 · · · pt,m−1 pt,m ]T ∈ Rm+1, (3.50)

qt = [ qt,0 qt,1 · · · qt,n−1 qt,n ]T ∈ Rn+1, (3.51)

are vectors of the perturbations that are added to the coefficients of f̃θ(y) and g̃θ(y),

respectively. The perturbation β0 is added to α0.

The computations of the vectors zt, pt, qt and r̃(θ), and the scalars β0 and θ require

an approximate equation in (3.44) to be solved. This equation is non-linear and the

Newton-Raphson method is used to solve this equation.

An approximate solution for (3.44) is associated with the following residual:

r(β0, θ, zt, r̃t, pt, qt) =

 f̃(θ) + st(pt, θ)

(α0 + β0) (g̃(θ) + wt(qt, θ))


−

 Ct,1(c̃t, θ) + Et,1(zt, θ)

Ct,2(ẽt, θ) + Et,2(zt, θ)

 r̃t(θ). (3.52)
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Therefore, a first-order Taylor expansion yields

r(β0 + δβ0, θ + δθ, zt + δzt, r̃t + δr̃t, pt + δpt, qt + δqt)

=

 f̃(θ + δθ) + st(pt + δpt, θ + δθ)

(α0 + β0 + δβ0) (g̃(θ + δθ) + wt(qt + δqt, θ + δθ))

 (3.53)

−

 Ct,1(c̃t, θ + δθ) + Et,1(zt + δzt, θ + δθ)

Ct,2(ẽt, θ + δθ) + Et,2(zt + δzt, θ + δθ)

 r̃t(θ + δθ). (3.54)

where

r̃t(θ + δθ) = r̃t(θ) +
d(r̃t(θ))

dθ
δθ = r̃t(θ) +



tr̃t,0θ
t−1

(t− 1) r̃t,1θ
t−2

...

2r̃t,t−2θ

r̃t,t−1

0


. (3.55)

In order to simplify the analysis of the expression of (3.53) and ( 3.54), let us first

consider (3.53).

The approximation of the first order of the first expression in (3.53) is

f̃(θ + δθ) + st(pt + δpt, θ + δθ) ≈ f̃ + st +
∂ f̃

∂θ
δθ +

∂st
∂θ

δθ +

m∑
i=0

∂st
∂pt,i

δpt,i, (3.56)

and the approximation of the first order of the second expression is

(α0 + β0 + δβ0)
(
g̃(θ + δθ) + wt(qt + δqt, θ + δθ)

)
≈ (α0 + β0) (g̃ + wt) + (α0 + β0)

(
∂g̃
∂θ δθ + ∂wt

∂θ δθ +
∑n

i=0
∂wt
∂qt,i

δqt,i

)
+ (g̃ + wt) δβ0,

(3.57)
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where

∂ f̃

∂θ
=



mā0θ
m−1

(m− 1) ā1θ
m−2

...

ām−1

0


,

∂st
∂θ

=



mpt,0θ
m−1

(m− 1) pt,1θ
m−2

...

pt,m−1

0


, (3.58)

and

∂g̃

∂θ
=



nb̄0θ
n−1

(n− 1) b̄1θ
n−2

...

b̄n−1

0


,

∂wt

∂θ
=



nqt,0θ
n−1

(n− 1) qt,1θ
n−2

...

qt,n−1

0


, (3.59)

The vectors s and w can be written using square diagonal matrices as s = Spt and

w = Wqt, respectively, where

S = S(θ) = diag

[
θm θm−1 · · · θ 1

]
∈ R(m+1)×(m+1), (3.60)

W = W (θ) = diag

[
θn θn−1 · · · θ 1

]
∈ R(n+1)×(n+1). (3.61)

Therefore, it follows that

m∑
i=0

∂st
∂pt,i

δpt,i = Sδpt and

n∑
i=0

∂wt

∂qt,i
δqt,i = Wδqt, (3.62)
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and thus

f̃(θ + δθ) + st(pt + δpt, θ + δθ) ≈ f̃ + st +
∂ f̃

∂θ
δθ +

∂st
∂θ

δθ + Sδpt, (3.63)

and

(α0 + β0 + δβ0)
(
g̃(θ + δθ) + wt(qt + δqt, θ + δθ)

)
≈ (α0 + β0) (g̃ + wt) + (α0 + β0)

(
∂g̃

∂θ
δθ +

∂wt

∂θ
δθ +Wδqt

)
+ (g̃ + wt) δβ0. (3.64)

Then, by using (3.63) and (3.64), the expression in (3.53) can be written as

 f̃ + st

(α0 + β0) (g̃ + wt)

+

 ∂ f̃
∂θδθ + ∂st

∂θ δθ + Sδpt

(α0 + β0)
(
∂g̃
∂θ δθ + ∂wt

∂θ δθ +Wδqt

)
+ (g̃ + wt) δβ0

 .
(3.65)

Now, let us consider the expression in Eqn 3.54. The following equation

Bt = Bt(c̃t, ẽt, θ) =

 Ct,1(c̃t, θ)

Ct,2(ẽt, θ)

 and Et = Et(zt, θ) =

 Et,1(zt, θ)

Et,2(zt, θ)

 , (3.66)

allows the expression in Eqn. 3.54 to be rewritten as

−
(
Bt(c̃t, ẽt, θ + δθ) + Et(zt + δzt, θ + δθ)

)
r̃t(θ + δθ), (3.67)

whose first order equal to

−

(
Bt +

∂Bt
∂θ

δθ + Et +
∂Et
∂θ

δθ +

m+n−2t+1∑
i=0

∂Et
∂zt,i

δzt,i

)(
r̃t(θ) +

d (r̃t(θ))

dθ
δθ

)
= − (Bt + Et) r̃t −

(
∂Bt
∂θ

δθ +
∂Et
∂θ

δθ + δEt

)
r̃t − (Bt + Et)

dr̃t
dθ
δθ, (3.68)
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where

∂Bt
∂θ

=

 ∂Ct,1(c̃t,θ)
∂θ

∂Ct,2(ẽt,θ)
∂θ

 and δEt =

m+n−2t+1∑
i=0

∂Et
∂zt,i

δzt,i. (3.69)

can be used to obtain the matrices
∂Ct,1(c̃t,θ)

∂θ and
∂Ct,2(ẽt,θ)

∂θ from (3.41) and (3.42),

respectively,



(m− t) c̃t,0θm−t−1

(m− t− 1) c̃t,1θ
m−t−2 (m− t) c̃t,0θm−t−1

(m− t− 2) c̃t,2θ
m−t−3 (m− t− 1) c̃t,1θ

m−t−2 . . .

... (m− t− 2) c̃t,2θ
m−t−3 . . . (m− t) c̃t,0θm−t−1

...
...

. . . (m− t− 1) c̃t,1θ
m−t−2

c̃t,m−t−1
...

. . . (m− t− 2) c̃t,2θ
m−t−3

0 c̃t,m−t−1
. . .

...

0
. . .

...

. . . c̃t,m−t−1

0



,(3.70)
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and



(n− t) ẽt,0θn−t−1

(n− t− 1) ẽt,1θ
n−t−2 (n− t) ẽt,0θn−t−1

(n− t− 2) ẽt,2θ
n−t−3 (n− t− 1) ẽt,1θ

n−t−2 . . .

... (n− t− 2) ẽt,2θ
n−t−3 . . . (n− t) ẽt,0θn−t−1

...
...

. . . (n− t− 1) ẽt,1θ
n−t−2

ẽt,n−t−1
...

. . . (n− t− 2) ẽt,2θ
n−t−3

0 ẽt,n−t−1
. . .

...

0
. . .

...

. . . ẽt,n−t−1

0



. (3.71)

Moreover, let Yt(r̃t, θ) ∈ R(m+n+2)×(m+n−2t+2), and

Yt(r̃t, θ) =

 Yt,1(r̃t, θ)

Yt,2(r̃t, θ)

 , (3.72)

where Yt,1(r̃t, θ) ∈ R(m+1)×(m+n−2t+2) and Yt,2(r̃t, θ) ∈ R(n+1)×(m+n−2t+2),

Yt,1(r̃t, θ) =

[
Ct,3(r̃t)Θt,1 0m+1,n−t+1

]
, Ct,3(r̃t) ∈ R(m+1)×(m−t+1), (3.73)

Yt,2(r̃t, θ) =

[
0n+1,m−t+1 Ct,4(r̃t)Θt,2

]
, Ct,4(r̃t) ∈ R(n+1)×(n−t+1), (3.74)

where Ct,3(r̃t) and Ct,4(r̃t) have the same form, which are Toeplitz matrices of r̃t, but

with different dimensions, and Θt,1 and Θt,2 are given by
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Θt,1 = diag

[
θm−t θm−t−1 · · · θ 1

]
∈ R(m−t+1)×(m−t+1), (3.75)

Θt,2 = diag

[
θn−t θn−t−1 · · · θ 1

]
∈ R(n−t+1)×(n−t+1). (3.76)

The expression in (3.68) can be simplified by differentiating, with respect to z, both

sides of the equation.

Yt(r̃t, θ)zt = Et(zt, θ)r̃t, (3.77)

to give,

δEt(zt, θ)r̃t = Yt(r̃t, θ)δzt. (3.78)

It follows that, (3.54) can be written as

− (Bt + Et) r̃t − (Bt + Et)
dr̃t
dθ
δθ − Ytδzt −

(
∂Bt
∂θ

r̃ +
∂Et
∂θ

r̃t

)
δθ. (3.79)

Then, the expressions in (3.65) and (3.79) are substituted to (3.53) and (3.54), respec-

tively, yielding

r(β0 + δβ0, θ + δθ, zt + δzt, r̃t + δr̃t, pt + δpt, qt + δqt)

≈ r(β0, θ, zt, r̃t, pt, qt)

+

 S 0m+1,n+1 0m+1,1
∂ f̃t
∂θ + ∂st

∂θ

0n+1,m+1 (α0 + β0)W g̃t + wt (α0 + β0)
(
∂g̃t
∂θ + ∂wt

∂θ

)



δpt

δqt

δβ0

δθ


− (Bt + Et)

dr̃t
dθ
δθ − Ytδzt −

(
∂Bt
∂θ

r̃t +
∂Et
∂θ

r̃t

)
δθ. (3.80)
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Therefore, the calculation of the jth iteration in the Newton-Raphson method for the

solution of z, p, q, β0 and θ is

 Yt

∣∣∣∣ −S 0m+1,n+1 0m+1,1

0n+1,m+1 − (α0 + β0)W −(g̃ + wt)

−
(
∂ f̃
∂θ + ∂st

∂θ

)
+
(
∂Ct,1

∂θ +
∂Et,1

∂θ

)
r̃t + (Ct,1 + Et,1)

dr̃t
dθ

−(α0 + β0)
(
∂g̃
∂θ + ∂wt

∂θ

)
+
(
∂Ct,2

∂θ +
∂Et,2

∂θ

)
r̃t + (Ct,2 + Et,2)

dr̃t
dθ


(j)



δzt

δpt

δqt

δβ0

δθ



(j)

= r(j)(β0, θ, zt, r̃t, pt, qt). (3.81)

In the (j+ 1)th iteration, the improved estimates of zt, pt, qt, β0 and θ are obtained from



zt

pt

qt

β0

θ



(j+1)

=



zt

pt

qt

β0

θ



(j)

+



δzt

δpt

δqt

δβ0

δθ



(j)

, (3.82)

where the initial values are

z
(0)
t = 0, p

(0)
t = 0, q

(0)
t = 0, β

(0)
0 = 0, θ(0) = θ0. (3.83)

Furthermore, the initial value of r̃t(θ) is estimated by the least squares solution of (3.40)

r̃
(0)
t (θ0) ≈

 Ct,1(c̃t, θ0)

Ct,2(ẽt, θ0)


†  f̃(θ0)

α0g̃(θ0)

 . (3.84)
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where X† = (XTX)−1XT .

It is clearly obvious that (3.81) is of the form

C(j)y(j) = g(j), (3.85)

C(j) =

 Yt

∣∣∣∣ −S 0m+1,n+1 0m+1,1

0n+1,m+1 − (α0 + β0)W −(g̃ + wt)

−
(
∂ f̃
∂θ + ∂st

∂θ

)
+
(
∂Ct,1

∂θ +
∂Et,1

∂θ

)
r̃t + (Ct,1 + Et,1)

dr̃t
dθ

−(α0 + β0)
(
∂g̃
∂θ + ∂wt

∂θ

)
+
(
∂Ct,2

∂θ +
∂Et,2

∂θ

)
r̃t + (Ct,2 + Et,2)

dr̃t
dθ


(j)

,

(3.86)

where C(j) ∈ R(m+n+2)×(2m+2n−2t+6), y(j) ∈ R2m+2n−2t+6, g(j) ∈ Rm+n+2,

y(j) =



δz
(j)
t

δp
(j)
t

δq
(j)
t

δβ
(j)
0

δθ(j)


and g(j) = r(j)(β0, θ, zt, r̃t, pt, qt). (3.87)

Since a requirement is to calculate the solution that is nearest to the given inexact data,

it therefore must minimise the function

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



z
(j+1)
t − zt(0)

p
(j+1)
t − pt(0)

qt(j+1) − qt(0)

β
(j+1)
0 − β(0)0

θ(j+1) − θ0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



z
(j)
t + δz

(j)
t

p
(j)
t + δp

(j)
t

q
(j)
t + δq

(j)
t

β
(j)
0 + δβ

(j)
0

θ(j) + δθ(j) − θ0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
:=
∥∥∥E(j)y(j) − f (j)

∥∥∥ ,

(3.88)
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where

E(j) = I2m+2n−2t+6, and f (j) = −
[
z
(j)
t p

(j)
t q

(j)
t β

(j)
0 θ(j) − θ0

]T
. (3.89)

Consequently, the method of SNTLN yields the following least squares problem (LSE)

with an equality constraint.

min
y(j)

∥∥∥E(j)y(j) − f (j)
∥∥∥ subject to C(j)y(j) = g(j). (3.90)

C(j), f (j), and g(j) are updated between successive iterations, where the initial value of

f = 0. In each iteration, the vector y will be calculated and this enables f to be updated

from (3.68).

To conclude, the investigation of this method has shown that good results can be

achieved with polynomials that have multiple roots of high degree.

3.6 Summary

This chapter started with a review of the basic concepts of the GCD of two polynomials,

including the definition and its computation using the Sylvester resultant matrix. Then,

the computation of AGCD that is applied in this research was discussed, along with

the three pre-processing operations that must be applied to improve the reliability of

the computations performed on the Sylvester resultant matrix. The computation of an

AGCD of two inexact polynomial is separated into two stages. Firstly, calculation of the

degree of an AGCD and it is done using the QR decomposition. Then, the coefficient of

an AGCD is computed explicitly since applying the APF. The final section of the chapter

considered the method of APF in detail. Due to the ill-posed problem, in the literature,

many of the algorithms of AGCD fail to compute the correct value of its degree and

coefficient [80]. The algorithm used in this study has been used to compute the multiple

roots of hard classes of inexact polynomials and it is shown that it gives very good

results [80]. In addition to the high accuracy of AGCD algorithm that is described in this
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chapter, there are some advantages in using the APF and QR decomposition. First, it

can compute the numerical rank of the Sylvester resultant matrix directly using the given

data without any prior information. Second, the multiplicity structure of the polynomial

is preserved. Third, exploitation of the properties of QR decomposition makes the

developed algorithm much faster that SVD. Finally, the APF implementation for the

AGCD computation using SNTLN results in explicitly computed coefficients without

the need for an extra computation stage as another method. However, a disadvantage of

this method is that the given data must be non-zero value as the geometric mean of the

Sylvester resultant matrix is applied. This case is not considered an issue in practical

cases as its occurrence is not very likely to happen.



Chapter 4

Blind Image Deconvolution for

Separable PSF

4.1 Introduction

The limitations of the literature regarding the solution of the BID problem were discussed

in Chapter 2. This chapter considers the application of a solution of BID using linear

algebra, specifically, operations on polynomials. The pixel values of the blurred image

G, deblurred image F , and the PSF H can be considered as coefficients of bivariate

polynomials, and G is the multiplication of two bivariate polynomials F and H, in

which the polynomials are the representation G, F , and H of G, F , and H, respectively.

Therefore, this consideration allows H to be computed as the Approximate Greatest

Common Divisor (AGCD), which is then deconvolved from the blurred image G, thereby

obtaining a good approximation of the original image F . The AGCD computations are

performed using an approximate factorisation of two inexact polynomials that is used

to calculate a structured low-rank approximation of the Sylvester resultant matrix of

two inexact polynomials. As was mentioned in Chapter 2, the theory of linear algebra

has also been used for BID in [18, 19, 38]. However, the work developed in this research

differs from the work in these papers in several ways:

83
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• This work allows the degrees and coefficients of the AGCD, which consist of the

horizontal and vertical extents of the PSF, to be calculated without any knowledge

about the noise level or the signal-to-noise ratio (SNR). This is unlike the work

reported in [1, 2, 38] which required the SNR to be known for the calculation of

the degrees of the AGCD. The SNR is the threshold in a stopping criterion in

the algorithm. In contrast, [18, 19] used performance and visual inspection of the

deblurred images to determine estimates of the degrees of the AGCD.

• This work is applicable for computing the PSF of various and wide width sizes in

opposition to that reported in [38].

• The Fourier transform is used to calculate a separable PSF in [1, 2, 18, 19, 38]. In

contrast, the developed work uses the exact pixel values of blurred and deblurred

images and the PSF as the coefficients of polynomials, and it shows that the

Fourier transform is not required. However, the developed work uses the Fourier

transform and non-linear structured matrix method for a non-separable PSF in

order to compare the result with the previous work in the literature [1, 2](see

Chapter 6).

The developed method including the calculation of the PSF and its deconvolution from

a blurred image is considered in this chapter, starting in Section 4.2 by representing

the convolution operation that defines the formation of G and the multiplication of two

polynomials F and H. It is assumed that the PSF is separable and Section 4.3 interprets

the separable PSF that is equal to an AGCD of two polynomials. The extension of the

method to form a non-separable PSF from a separable PSF is discussed in the next

chapter.

4.2 The Convolution Operation

The mathematical model of an image represents the image as a two-dimensional, in

which its components are the pixel values of the image. The method discussed in this
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thesis works with a grayscale image that can be represented as a matrix. The matrix

represents the image as bivariate polynomials and its coefficients are the components of

the matrix. In particular, let the coefficients f(i, j) of the bivariate polynomial F (x, y)

be the pixel value of the original image F , and F (x, y) be of the degrees M − 1 in x and

N − 1 in y,

F (x, y) =
M−1∑
i=0

N−1∑
j=0

f(i, j)xM−1−iyN−1−j , (4.1)

In addition, let the coefficients h(k, l) of a bivariate polynomial H(x, y) be the pixel

value of a spatially invariant PSF H, and H(x, y) be of the degrees p in x and r in y,

H(x, y) =

p∑
k=0

r∑
l=0

h(k, l)xp−kyr−l. (4.2)

Consequently, the convolution in (2.1) reduces to the multiplication of two polynomials.

In the absence of noise, the blurred image is formed by the multiplication of the original

image F with PSF H,

G(x, y) = F (x, y)H(x, y), (4.3)

G(x, y) =

M−1∑
i=0

N−1∑
j=0

p∑
k=0

r∑
l=0

f(i, j)h(k, l)xM+p−1−(i+k)yN+r−1−(j+l), (4.4)

and substituting (i+ k) with s, and (j + l) with t, yields
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G(x, y) =
M−1∑
i=0

N−1∑
j=0

p+i∑
s=i

r+j∑
t=j

f(i, j)h(s− i, t− j)xM+p−1−syN+r−1−t. (4.5)

Thereby the coefficient of xM+p−1−syN+r−1−t in G(x, y) is

g(s, t) =
M−1∑
i=0

N−1∑
j=0

f(i, j)h(s− i, t− j), (4.6)

where h(k, l) = 0 if k < 0 or l < 0. It follows that equation (2.3) is equivalent to (4.6),

which means that image F with H is equivalent to the multiplication of the polynomial

form of the exact image F by the polynomial form of H. Therefore, the deblurred image

can be computed by the division of the polynomial form of G by the polynomial form of

H.

Equation (4.5) and (4.6) show that the blurred image G is larger than the original image

F . Specifically, if F is a polynomial of degree M − 1 in x and N − 1 in y, where x and y

are the columns and rows of the matrix representing the image, and H is a polynomial

of degrees p and r in x and y, respectively, it therefore follows that G is a polynomial

of degrees M + p − 1 in x and N + r − 1 in y, and thus the extension of pixels along

the columns and rows from F to G is p and r. This extension is removed when the H is

deconvolved from G, thereby yielding a deblurred image which will be of the same size

as F .

4.3 Polynomial Computations for BID

Section 4.2 showed that an image that was blurred by a spatially invariant blur can

be produced by the multiplication of the bivariate polynomials of the exact image with

a PSF. This multiplication of polynomials shows that the PSF is equal to an AGCD
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of two polynomials. This section considers the polynomial multiplication in detail. It

follows from section 4.2 that, in noise free cases, equation (2.1) can be written as

G(x, y) = H(x, y)F (x, y), (4.7)

where H(x, y) is a separable PSF that satisfies

H(x, y) = Hc(x)Hr(y). (4.8)

then (4.7) is generalised to

G(x, y) = Hc(x)Hr(y)F (x, y). (4.9)

Consider two rows and two columns of G, x = r1 and x = r2, and y = c1 and y = c2,

respectively,

G(r1, y) = Hc(r1)Hr(y)F (r1, y), (4.10)

G(r2, y) = Hc(r2)Hr(y)F (r2, y), (4.11)

G(x, c1) = Hc(x)Hr(c1)F (x, c1), (4.12)

G(x, c2) = Hc(x)Hr(c2)F (x, c2), (4.13)

where Hc(r1), Hc(r2), Hr(c1) and Hr(c2) are constants. Since the equations for the rows

r1 and r2 have the same form as the equations for the columns c1 and c2, it is adequate to

consider one of them only, either the equations for the rows or the columns. Therefore,

consider the equations for the rows which are in the independent variable y,

G(r1, y) = Hc(r1)Hr(y)F (r1, y), (4.14)
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G(r2, y) = Hc(r2)Hr(y)F (r2, y). (4.15)

It is obvious that if the polynomials form of the rows F (r1, y) and F (r2, y), of F , are

coprime, then

Hr(y) = AGCD

(
G(r1, y), G(r2, y)

)
. (4.16)

Because of the assumption that the PSF is separable, the arguments r1 and r2 appear

on the right-hand side, not on the left-hand side of this equation, and they are indices

to any two rows of G. Equation (4.16) shows that if we consider the pixel values of

a given blurred image as the coefficient of a polynomial, the row component Hr(y) of

a spatially invariant and separable PSF is equal to an AGCD of any two rows of the

blurred image. It is clear that the computation of the column component of the PSF

follows identically. Then, the PSF can be computed from (4.8). After that, the deblurred

image is calculated as divisions of two approximate polynomials.

F̂ (x, y) ≈ G(x, y)

Hc(x)Hr(y)
. (4.17)

The approximate polynomial divisions are done separately, starting with the row com-

ponent Hr(y) of the computed PSF

Q(x, y) ≈ G(x, y)

Hr(y)
, (4.18)

where Q(x, y) represents the partially deblurred image Q in polynomial form after the

Hr(y) has been deconvolved from G(x, y). It follow that

Hr(y)Q(x, y) ≈ G(x, y), (4.19)

and this approximation equation is applied to all the rows of G. In matrix form, the

approximation equation (4.19) can be written as

Trqi ≈ gi, i = 1, . . . ,M + p, (4.20)
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where Tr ∈ R(N+r)×N is a lower triangular Toeplitz matrix, whose entries are the coef-

ficients of Hr(y), qi ∈ RN is the conversion of the ith row of Q, and gi ∈ RN+r is the

conversion of the ith row of the G. Moreover, r and p are defined in (4.2). The blurred

image Q is obtained by solving (4.20) in the least squares sense for each vector qi. Then,

in order to obtain the deblurred image F̂ , the column component of the PSF must be

deconvolved from Q and it follows from (4.17) and (4.18) that

Hc(x)F̂ (x, y) ≈ Q(x, y), (4.21)

which is also applied to all the columns of Q. Identically with (4.20), the N approxima-

tions in a matrix form can be written as follows:

Tcf̂j ≈ qj , j = 1, . . . , N, (4.22)

where Tc ∈ R(M+p)×M is a Toeplitz matrix, whose entries are the coefficients of Hc(x),

f̂j ∈ RM is the jth column of F̂ , and qj ∈ RM+p is the jth column of Q.

Consequently, the deblurred image F̂ that is defined in (4.17) is formed from the vectors

f̂j .

F̂ = [f̂1f̂2 . . . f̂N−1f̂N ] ∈ RM . (4.23)

The analysis in this section shows that the PSF can be obtained by two separate AGCD

computations. These operations are ill-posed and thus the AGCD computations must be

done with care. Therefore, the AGCD computations are performed using an approximate

polynomial factorisation by the Sylvester resultant matrix of two inexact polynomials

that was discussed in Chapter 3.
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4.4 Implementations

The implementation of the BID developed method for separable PSF is considered in

this section. The algorithm has been implemented in the Matlab programming en-

vironment. This environment provides an excellent framework for dealing with matrix

computation.

The developed BID procedure for separable PSF starts with loading the raw blurred

image into Matlab using a standard Matlab function. Given the PSF is assumed to

be separable and spatially invariant, two columns and two rows are needed from the

blurred image to calculate the size of the PSF matrix. Twenty five pairs of rows and

twenty five pairs of columns are selected randomly for the computation of the size of

PSF. Each of the twenty five pairs generates twenty five sizes for the PSF matrix rows

and columns. The PSF matrix size is then selected on the basis of the most common

(mode) size found for the rows and most common size for columns. The PSF sizes are

represented by the degree of the AGCD. The details of the computation of the degree

of the AGCD are found in section 3.5.1.

The mode is chosen as the method for selecting the size of the PSF matrix since it is

the computed degree for a pair of rows or columns and not an average of the computed

degrees. The median can also be used since it is again a computed degree. The mean

is deemed to be not suitable for the computation of the degree of the PSF matrix, since

it is an average of the computed degrees. The performed experiment showed that the

mode and median were the same; however, the mean showed different values from the

mode or median.

The coefficients of the PSF matrix of size as determined above is then computed from

a randomly selected pair of rows and columns from the blurred image. The deblurred

image is then deconvolved using the computed PSF and the blurred image. Algorithm 4.4

gives the Matlab implementation of the Blind Image Deconvolution for separable and

spatially invariant blur.
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Algorithm 4.4: Developed Blind Image Deconvolution for Separable and

Spatially Invariant PSF

Input: A blurred image G.

Output: A deblurred image F̂ and computed PSF Ĥ.

Begin:

1. Calculate the size of G, which is M ×N .

% Calculate the size of the PSF.

% Twenty five trials are used in the computation of the size of the PSF represented

by the degree of AGCD

2. Define two random vectors RR1 and RR2 of size twenty five for rows random

selection with values ranging from one to maximum size of G row.

3. Define two random vectors RC1 and RC2 of size twenty five for columns random

selection with values ranging from one to maximum size of G column.

4. Initialise two vectors of size twenty five with zeros DR and DC to store the result

of the calculated degrees of the AGCD.

5. while i ≤ 25 do

6. r1 = G(RR1(i), :);

7. r2 = G(RR2(i), :);

8. Pre-process r1 and r2 using the algorithms detailed in section 3.4 which produces

r̃1θ0 and α0r̃2θ0 .

9. Calculate the degree of AGCD(r̃1θ0 , α0r̃2θ0) using the QR decomposition of the

Sylvester resultant matrix and its sub-resultant matrix S(r̃1θ0 , α0r̃2θ0) as detailed

in section 3.5.1.
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10. Save the result in DR(i).

11. end

12. while i ≤ 25 do

13. c1 = G(:, RC1(i));

14. c2 = G(:, RC2(i));

15. Pre-process c1 and c2 using the algorithms detailed in section 3.4 which produces

c̃1θ0 and α0c̃2θ0 .

16. Calculate the degree of AGCD(c̃1θ0 , α0c̃2θ0) using the QR decomposition of the

Sylvester resultant matrix and its sub-resultant matrix S(c̃1θ0 , α0c̃2θ0) as detailed

in section 3.5.1.

17. Save the result in DC(i).

18. end

19. Set DegreeR = mode(DR);

20. Set DegreeC = mode(DC);

% Calculate the entries of the PSF matrix represented by the coefficients of AGCD

using DegreeR and DegreeC .

21. Set r1 = G(min(RR1), :);

22. Set r2 = G(max(RR2), :);

23. Preprocess r1 and r2 resulting in r̃1θ0 and α0r̃2θ0 using the algorithms detailed in

section 3.4.

24. Compute the coefficients of AGCD(r̃1θ0 , α0r̃2θ0) results in HR as detailed in sec-

tion 3.5.2.

25. Set c1 = G(:,min(RC1));

26. Set c2 = G(:,max(RC2));
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27. Preprocess c1 and c2 resulting in c̃1θ0 and α0c̃2θ0 using the algorithms detailed in

section 3.4.

28. Compute the coefficients of AGCD(c̃1θ0 , α0c̃2θ0) results in HC as detailed in sec-

tion 3.5.2.

29. Form the PSF matrix as a product of HR and HC.

30. Ĥ = HR.HC

% Compute the deblurred image F̂ .

31. F̂ =
G
Ĥ

.

End

Algorithm 4.4 is used in the following examples to deblur raw images produced from

exact images. The blurred raw image is produced using the following formula:

G = (H+ E)⊗F +N (4.24)

The above blurring formula contains noise terms E and N . However, in this research

study noise was not addressed and has been left for future investigations. In the following

experiments very low and insignificant white noise levels has been added. These levels

are impractical and cannot be used to justify the developed algorithms performance with

noise.

4.4.1 Example

This section contains three examples in which the distorted image is restored using Al-

gorithm 4.4. Raw images of 180× 180 pixels have been used to examine the developed

method performance in recovering the true image and the associated PSF. The following
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examples show that the developed method resulted in a better image estimation perfor-

mance compared with other methods described in Chapter 2. This better performance

can be attributed to the preservation of the polynomial representation of the image.

The Teoplitz structure matrices that represent the images are preserved throughout the

algorithm derivation.

Example 4.1. Grass true image of size 180 × 180 pixels processed with a Gaussian

blurring PSF of size 9× 9.

The distorted image produced using the above PSF and recovered image using Algo-

rithm 4.4 are shown in Figure 4.3. Algorithm 4.4

The results of the developed AGCD method processing are given in Figures 4.1, 4.2

and 4.3. Figure 4.1 shows the distribution of the computed PSF row and column sizes.

The most frequently computed rank (the mode) is 8 for rows and columns, and therefore

the size of the PSF is 9×9. Table 4.1 shows the mode, median and mean values for the

distribution of the computed rank for both rows and columns. The table shows that the

mode, median and mean are the same since all the computed rank values are the same.

Figure 4.2 shows the computed PSF in comparison with the exact PSF, and it shows

clearly that the developed method gives a good estimate of the PSF.

Figure 4.3 shows the restored image using the developed method. Figure 4.4 and Ta-

ble 4.2 gives a comparison of the SNR, MSE and Relative error performance measures

among the state-of-the-art BID methods. PSNR was not used since it did not show any

significant differences among all the compared methods.

Table 4.1: PSF’s computed degrees for Example 4.1.

Computing Rank Mode Median Mean

Rows 8 8 8

Columns 8 8 8

Table 4.2 shows that the developed method has better estimation performance in terms of

SNR, MSE and Relative error despite that the algorithm assumed no prior information

of the PSF or its size.
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Figure 4.1: PSF’s computed row and column size using the developed AGCD method
for Example 4.1.

Figure 4.2: The true and computed PSFs that are applied to the distorted image in
Example 4.1.

Figure 4.3: Blind Image Deconvolution using the developed method, for Example 4.1.
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Figure 4.4: Comparisons between the result of Example 4.1 using Algorithm 4.4
and existing methods. (a) An original image and (b) a blurred image obtained after
the addition of measurement error to the PSF and additive noise. Deblurred images
of the image in (b) obtained by (c) AGCD computations and APF. The deblurred
images are obtained by (d) Richardson-Lucy algorithm [6], (e) maximum likelihood
algorithm (ML) [7], (i) Wiener algorithm [8] and (f) the regularisation method [9].
These are implemented in the image processing toolbox in Matlab. The deblurred
images obtained through statistical methods are shown in (g) Shearer et al. [4], (h)

Babacan et al. [5] and (j) Perrone and Favaro methods [3].
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Table 4.2: Comparison table for Example 4.1.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 43.34 4.6× 10−5 8.5× 10−3

Richardson-Lucy specified specified 16.74 2.12× 10−2 1.95× 10−1

Wiener specified specified 24.33 3.69× 10−3 8.16× 10−2

ML specified specified 16.88 2.05× 10−2 1.94× 10−1

Regularisation specified specified 18.72 1.34× 10−2 1.65× 10−1

Shearer et al. specified not specified 16.26 2.37× 10−2 2.27× 10−1

Babacan et al. specified not specified 15.21 3.01× 10−2 2.27× 10−1

Perrone and Favaro specified not specified 16.94 2.02× 10−2 2.11× 10−1



Chapter 4. Blind Image Deconvolution for Separable PSF 98

Example 4.2. Camera-man true image of size 180× 180 pixels processed with a Gaus-

sian blurring PSF of size 25× 25.

The distorted image produced using the above PSF and recovered image using Algo-

rithm 4.4 are shown in Figure 4.7. Algorithm 4.4

The results of the developed AGCD method processing are given in Figures 4.5, 4.6

and 4.7. Figure 4.5 shows the distribution of the computed PSF row and column sizes.

The most frequently computed rank (the mode) is 24 for rows and columns, and therefore

the size of the PSF is 25× 25. Table 4.3 shows the mode, median and mean values for

the distribution of the computed rank for both rows and columns. The table shows that

the mode, median and mean are the same since all the computed rank values are the

same.

Figure 4.6 shows the computed PSF in comparison with the exact PSF, and it shows

clearly that the developed method gives a good estimate of the PSF.

Figure 4.7 shows the restored image using the developed method. Figure 4.8 and Ta-

ble 4.4 gives a comparison of the SNR, MSE and Relative error performance measures

among the state-of-the-art BID methods. PSNR was not used since it did not show any

significant differences among all the compared methods.

Figure 4.5: PSF’s computed row and column size using the developed AGCD method
for Example 4.2.
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Table 4.3: PSF’s computed degrees for Example 4.2.

Computing Rank Mode Median Mean

Rows 24 24 24

Columns 24 24 24

Figure 4.6: The true and computed PSFs that are applied to the distorted image in
Example 4.2.

Figure 4.7: Blind Image Deconvolution using the developed method, for Example 4.2.

Table 4.4: Comparison table for Example 4.2.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 53.64 4× 10−6 2.20× 10−3

Richardson-Lucy specified specified 17.54 1.76× 10−2 2.25× 10−1

Wiener specified specified 22.34 5.84× 10−3 9.46× 10−2

ML specified specified 17.24 1.89× 10−2 2.20× 10−1

Regularisation specified specified 20.62 8.67× 10−3 1.68× 10−1

Shearer et al. specified not specified 15.90 2.57× 10−2 2.49× 10−1

Babacan et al. specified not specified 14.09 3.90× 10−2 2.51× 10−1

Perrone and Favaro specified not specified 13.68 4.29× 10−2 2.04× 10−1
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Figure 4.8: Comparisons between the result of Example 4.2 using Algorithm 4.4
and existing methods. (a) An original image and (b) a blurred image obtained after
the addition of measurement error to the PSF and additive noise. Deblurred images
of the image in (b) obtained by (c) AGCD computations and APF. The deblurred
images are obtained by (d) Richardson-Lucy algorithm [6], (e) maximum likelihood
algorithm (ML) [7], (i) Wiener algorithm [8] and (f) the regularisation method [9].These
are implemented in the image processing toolbox in Matlab. The deblurred images
obtained through statistical methods are shown in (g) Shearer et al. [4], (h) Babacan

et al. [5] and (j) Perrone and Favaro methods [3].
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Table 4.4 shows that the developed method has better estimation performance in terms of

SNR, MSE and Relative error despite that the algorithm assumed no prior information

of the PSF or its size.
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Example 4.3. Girl-face true image of size 180× 180 pixels processed with a Gaussian

blurring PSF of size 35× 35.

The distorted image produced using the above PSF and recovered image using Algo-

rithm 4.4 are shown in Figure 4.11. Algorithm 4.4

The results of the developed AGCD method processing are given in Figures 4.9, 4.10

and 4.11. Figure 4.9 shows the distribution of the computed PSF row and column sizes.

The most frequently computed rank (the mode) is 34 for rows and columns, and therefore

the size of the PSF is 35× 35. Table 4.5 shows the mode, median and mean values for

the distribution of the computed rank for both rows and columns. The table shows that

the mode and median are the same but the mean is different, since all the computed rank

values are not the same.

Figure 4.10 shows the computed PSF in comparison with the exact PSF, and it shows

clearly that the developed method gives a good estimate of the PSF.

Figure 4.11 shows the restored image using the developed method. Figure 4.12 and

Table 4.6 gives a comparison of the SNR, MSE and Relative error performance measures

among the state-of-the-art BID methods. PSNR was not used since it did not show any

significant differences among all the compared methods.

Figure 4.9: PSF’s computed row and column size using the developed AGCD method
for Example 4.3.
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Table 4.5: PSF’s computed degrees for Example 4.3.

Computing Rank Mode Median Mean

Rows 34 34 48.24

Columns 34 34 34.080

Figure 4.10: The true and computed PSFs that are applied to the distorted image in
Example 4.3.

Figure 4.11: Blind Image Deconvolution using the developed method, for Exam-
ple 4.3.

Table 4.6: Comparison table for Example 4.3.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 28.08 1.55× 10−3 2.80× 10−2

Richardson-Lucy specified specified 18.55 1.39× 10−2 2.64× 10−1

Wiener specified specified 21.78 6.63× 10−3 1.20× 10−1

ML specified specified 18.66 1.36× 10−2 2.55× 10−1

Regularisation specified specified 18.44 1.43× 10−2 1.78× 10−1

Shearer et al. specified not specified 15.73 2.67× 10−2 2.94× 10−1

Babacan et al. specified not specified 14.96 3.19× 10−2 3.07× 10−1

Perrone and Favaro specified not specified 14.92 3.22× 10−2 2.72× 10−1
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Figure 4.12: Comparisons between the result of Example 4.3 using Algorithm 4.4
and existing methods. (a) An original image and (b) a blurred image obtained after
the addition of measurement error to the PSF and additive noise. Deblurred images
of the image in (b) obtained by (c) AGCD computations and APF. The deblurred
images are obtained by (d) Richardson-Lucy algorithm [6], (e) maximum likelihood
algorithm (ML) [7], (i) Wiener algorithm [8] and (f) the regularisation method [9].
These are implemented in the image processing toolbox in Matlab. The deblurred
images obtained through statistical methods are shown in (g) Shearer et al. [4], (h)

Babacan et al. [5] and (j) Perrone and Favaro methods [3].
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Table 4.6 shows that the developed method has better estimation performance in terms of

SNR, MSE and Relative error despite that the algorithm assumed no prior information

of the PSF or its size.
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4.5 Summary

This chapter has considered the application of a solution of BID using linear algebra,

specifically, an AGCD of two inexact polynomials. The method that has been discussed

in this chapter considers the PSF as separable. The mathematical model of an image

represents the image as a two-dimensional, in which its components are the pixel values

of the image. The method discussed in this thesis works with a grayscale image that can

be represented as a matrix. The matrix represents the image as bivariate polynomials

and its coefficients are the components of the matrix. Therefore, the blurred image is the

multiplication of two bivariate polynomials the original image and the PSF. Therefore,

this consideration allows the separable PSF to be obtained by two separate AGCD

computations. These operations are ill-posed and thus the AGCD computations must be

done with care. Therefore, the AGCD computations are performed using an approximate

polynomial factorisation by the Sylvester resultant matrix of two inexact polynomials

that was discussed in Chapter 3. Then, by deconvolved the computed PSF from the

blurred image, thereby obtaining an approximation of the original image.

The implementation of the BID theory for separable PSF is considered and some ex-

amples and results are included at the end of the chapter. the examples shows that

the developed method has better estimation performance in terms of SNR, MSE and

Relative error despite that the algorithm assumed no prior information of the PSF or

its size.

The extension of the method to form a non-separable PSF from separable PSF is con-

sidered in the next chapter.



Chapter 5

Blind Image Deconvolution for

non-Separable PSF

5.1 Introduction

Chapter 4 showed the developed BID method for a separable PSF and it was shown that

a separable PSF can be calculated using one blurred image, and then a deblurred form

of the blurred image can be obtained by deconvolving the computed separable PSF from

the blurred image. However, the method discussed in Chapter 4 is not appropriate for

non-separable PSF. This chapter shows that this problem requires two blurred images

for non-separable PSF calculation. These two blurred images are required to have the

same blurring PSF . These images may be obtained from one imaging system for two

different scenes. This method is practical for situations where the PSF is caused by the

camera.

The algorithm required for deblurring an image that is formed by a non-separable PSF

is illustrated in the next section. The next chapter provides an extension of the devel-

oped work which reproduces the results by using the z-fourier transform and non-linear

structure matrix method APF in a totally blind image deconvolution for a non-separable

PSF.

107
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5.2 The Extension of the Blind Image Deconvolution Method

This section demonstrates the computations that must be included for a non-separable

PSF computation. The method that is presented in this section is considered to be a

modified form of the developed method for the solution of the BID problem. Precisely,

as was mentioned in Chapter 4, if the PSF is separable, the solution of the BID problem

requires one blurred image, and the computation of the AGCD for the PSF computation

requires the selection of two rows and two columns from the blurred image. In contrast,

if the PSF is non-separable, the solution of the BID problem requires two blurred images,

and the computation of the PSF requires the computation of the AGCD of the ith pair

of rows and jth pair of columns of the blurred images.

Let G1 and G2 be two different blurred images of F1 and F2, respectively, and the

blurred images are formed by the same spatially invariant and non-separable PSFH. The

bivariate polynomial form of G1, G2, F1, F2 andH are G1, G2, F1, F2 and H, respectively.

Then the convolution operation of the blurred images can be written as follows:

G1(x, y) = H(x, y)F1(x, y), (5.1)

G2(x, y) = H(x, y)F2(x, y). (5.2)

For simplicity, it is assumed that the G1 and G2 have the same size of (M+p)×(N+r),

where the size of the exact images F1 and F2 are M × N and the size of the H is

(p+ 1)× (r + 1).

Consider r1(i) and r2(i) as the ith pair of rows of G1 and G2, respectively, and c1(j)

and c2(j) are the jth pair of columns of G1 and G2

r1(i) = G1(i, y) = H(i, y)F1(i, y), (5.3)
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r2(i) = G2(i, y) = H(i, y)F2(i, y), (5.4)

c1(j) = G1(x, j) = H(x, j)F1(x, j), (5.5)

c2(j) = G2(x, j) = H(x, j)F2(x, j). (5.6)

It is obvious that if the polynomial forms of F1,2(i, y) and F1,2(x, j) of F are coprime,

then

H(i, y) =AGCD

(
r1(i), r2(i))

)
i = 1, . . . ,M + p,

(5.7)

H(x, j) =AGCD

(
c1(j), c2(j)

)
j = 1, . . . , N + r.

(5.8)

Therefore, the AGCD algorithm of two univariate polynomials, which was discussed in

Sections 3.3, 3.4 and 3.5, is applied to every pair of rows and every pair of columns of G1

and G2. There are then two sets of PSF H. The first set is obtained by considering the

rows of the blurred images G1 and G2, and the second set is obtained by considering the

columns of G1 and G2. The components of the two sets of H are obtained by a sequence

of independent computations of an AGCD along each row and column. Thus, every

sequence of AGCDs has different scale factors associated with it. In order to compute

the PSF H, these scale factors must be removed. The method for their removal has been

described in detail in [1, 18, 19].

Let A(i, j) and B(i, j) be matrices of order (M + p)× (N + r) of the coefficients of the

AGCD computation that correspond to the two obtained sets of H using (5.7) and (5.8),
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respectively. Then a matrix of order M ×N of the GCD computation.

A(i, j) = a′(i)H(i, j), i = 1, . . . ,M + p; j = 1, . . . , N + r, (5.9)

B(i, j) = b′(j)H(i, j), i = 1, . . . ,M + p; j = 1, . . . , N + r, (5.10)

where a′(i) and b′(j) are non-zero scaler multipliers, since every AGCD is defined with

an arbitrary non-zero scaler multiplier. Therefore, H(i, j) can be rewritten as:

A(i, j)a(i) = H(i, j), i = 1, . . . ,M + p; j = 1, . . . , N + r, (5.11)

B(i, j)b(j) = H(i, j), i = 1, . . . ,M + p; j = 1, . . . , N + r, (5.12)

where

a(i) =
1

a′(i)
, (5.13)

b(i) =
1

b′(i)
. (5.14)

Then, the elimination of H(i, j) between (5.11) and (5.12) yields

A(i, j)a(i)−B(i, j)b(j) = 0, i = 1, . . . ,M + p; j = 1, . . . , N + r, (5.15)

In a matrix form, equation (5.15) can be written as

[
S1 −S2

]
y = 0, y =

 y1

y2

 (5.16)
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where S1 ∈ C(M+p)(N+r)×(M+p) and S2 ∈ C(M+p)(N+r)×(N+r); they are given by

S1 =



A(1, 1) 0 0 . . . 0

A(1, 2) 0 0 . . . 0

A(1, 3) 0 0 . . . 0

. . . . . . . . . . . . . . .

A(1, N + r) 0 0 . . . 0

0 A(2, 1) 0 . . . 0

0 A(2, 2) 0 . . . 0

0 A(2, 3) 0 . . . 0

. . . . . . . . . . . . . . .

0 A(2, N + r) 0 . . . 0

...
...

...
...

...

0 0 0 . . . A(M + p, 1)

0 0 0 . . . A(M + p, 2)

0 0 0 . . . A(M + p, 3)

. . . . . . . . . . . . . . .

0 0 0 . . . A(M + p,N + r)



, (5.17)
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and

S2 =



B(1, 1) 0 0 . . . 0

0 B(1, 2) 0 . . . 0

0 0 B(1, 3) . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . B(1, N + r)

B(2, 1) 0 0 . . . 0

0 B(2, 2) 0 . . . 0

0 0 B(2, 3) . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . B(2, N + r)

...
...

...
...

...

B(M + p, 1) 0 0 . . . 0

0 B(M + p, 2) 0 . . . 0

0 0 B(M + p, 3) . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . B(M + p,N + r)



, (5.18)

respectively, and

y1 =

[
a(1) a(2) . . . a(M + p)

]T
∈ CM+p, (5.19)

y2 =

[
b(1) b(2) . . . b(N + r)

]T
∈ CN+r. (5.20)

Equation 5.15 has the coefficient matrix that has unit rank loss and the vector y that lies

in its null space. Therefore, the solution of y can be computed by applying the singular

value decompositions (SVD) of the coefficient of the matrix in (5.16). Hence, H(i, j) is

approximated from (5.11) and (5.12) by

H(i, j) =
1

2

(
A (i, j) a (i) +B (i, j) b (j)

)
, (5.21)
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where i = 1, . . . ,M + p. and j = 1, . . . , N + r. Furthermore, H(i, j) is the computed

H that is considered as the average of the two estimates of a blur H(i, j). The first

estimation of H(i, j) is computed by considering the rows of the given degraded images,

and the second estimation of H(i, j) is computed by considering the columns of the given

degraded images.

Finally, in order to recover the original images F1 and F2, the polynomial division is

applied to deconvolve the component of the PSF H from G1 and G2 respectively.

The algorithm and the results of the modified method are described in the next section.

5.3 Implementation

The implementation of the BID developed method for non-seprable PSF is considered

in this section. The developed BID procedure for non-separable PSF starts with load-

ing two raw blurred images that are formed by the same spatially invariant and non-

separable PSF into Matlab using a standard function. To calculate the degree of the

PSF, the blurred image is sampled for user selectable pairs of rows or columns. The

number of pairs is selected at random. Each order of rows and columns is then used

to calculate the degree of the PSF row-wise and column-wise between the two blurred

images.

The degree used in the AGCD is then selected on the basis of the most common (mode)

of the computed degrees. The computed degree from the pairs for spatially invariant

PSF functions should be the same. However, noise present in the blurred images affects

the computed values and hence the most common (mode) value is used as the degree of

the PSF.

The coefficients of the non-separable PSF are then computed from all the selectable

pairs of rows and columns of the two blurred images. The deblurred images are then

deconvolved from the computed PSF. Algorithm 5.3 gives the Matlab implementation
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for Blind Image Deconvolution for non-separable and spatially invariant blur.

Algorithm 5.3: Developed Blind Image Deconvolution for Non-Separable

and Spatially Invariant PSF

Input: Two blurred images G1 and G2.

Output: The deblurred images F̂1 F̂1 and computed PSF Ĥ.

Begin:

1. Calculate the size of G1 and G2, which is M ×N .

% Calculate the size of the PSF.

% Twenty five trials are used in the computation of the size of the PSF represented

by the degree of AGCD

2. Define a random vector RR of size twenty five for rows random selection with

values ranging from one to maximum size of G1 and G2 row.

3. Define a random vector RC of size twenty five for columns random selection with

values ranging from one to maximum size of G1 and G2 column.

4. Initialise two vectors of size twenty five with zeros DR and DC to store the result

of the calculated degrees of the AGCD.

5. while i ≤ 25 do

6. r1 = G1(RR(i), :);

7. r2 = G2(RR(i), :);

8. Pre-process r1 and r2 using the algorithms detailed in section 3.4 which produces

r̃1θ0 and α0r̃2θ0 .
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9. Calculate the degree of AGCD(r̃1θ0 , α0r̃2θ0) using the QR decomposition of the

Sylvester resultant matrix and its sub-resultant matrix S(r̃1θ0 , α0r̃2θ0) as detailed

in section 3.5.1.

10. Save the result in DR(i).

11. end

12. while i ≤ 25 do

13. c1 = G1(:, RC(i));

14. c2 = G2(:, RC(i));

15. Pre-process c1 and c2 using the algorithms detailed in section 3.4 which produces

c̃1θ0 and α0c̃2θ0 .

16. Calculate the degree of AGCD(c̃1θ0 , α0c̃2θ0) using the QR decomposition of the

Sylvester resultant matrix and its sub-resultant matrix S(c̃1θ0 , α0c̃2θ0) as detailed

in section 3.5.1.

17. Save the result in DC(i).

18. end

19. Set DegreeR = mode(DR);

20. Set DegreeC = mode(DC);

% Calculate the entries of the PSF matrix represented by the coefficients of AGCD

using DegreeR and DegreeC .

% Calculate the M univariate AGCD for each row of G1 with the associated row

of G2.

21. Define a matrix A of size M ×N to embed the computed AGCD for each row of

G1 with the associated row of G2.

22. for i = 1 : M

(a) r1 = G1(i, :);
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(b) r2 =

mathcalG2(i, :);

(c) Preprocess r1 and r2 resulting in r̃1θ0 and α0r̃2θ0 using the algorithms detailed

in section 3.4.

(d) Compute the coefficients of AGCD(r̃1θ0 , α0r̃2θ0) results in d(i) as detailed in

section 3.5.2.

(e) Embed the d(i) in the matrix A.

A(i, :) = d(i)

(f) end

% Calculate the N univariate AGCD for each column of G1 with the associated

column of G2.

23. Define a matrix B of size M ×N to embed the computed AGCD for each row of

G1 with the associated row of G2.

24. for j = 1 : N

(a) c1 = G1(:, j);

(b) c2 = G2(:, j);

(c) Pre-process c1 and c2 using the algorithms detailed in section 3.4 which

produces c̃1θ0 and α0c̃2θ0 .

(d) Compute the coefficients of AGCD(c̃1θ0 , α0c̃2θ0) results in d(j) as detailed in

section 3.5.2.

(e) Embed the d(j) in the matrix B.

B(:, j) = d(j)

(f) end

% compute the PSF matrix as a product of A and B.

25. Solve (5.16) using the singular value decomposition SVD of the coefficient matrix

in (5.16) for calculating the solution of a(i), i = 1, . . . ,M and b(j), n = 1, . . . , N .
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26. Compute the PSF Ĥ using (5.21).

27. Compute the deblurred images F̂1 and F̂1 by using the division polynomial oper-

ation

F̂1 = G1
Ĥ

and F̂2 = G2
Ĥ

.

End

Algorithm 5.3 is used in the following examples to deblur a pair of raw images produced

from the same non-separable blur in their exact images. The blurred raw image is

produced using (5.1) and (5.2).

The exact images are processed by non-separable Gaussian blurring PSF H with small

error (E1 and E2) and then small noise is added to the result of the convolution of the

process N1 and N2. However in this research study noise was not addressed and has

been left for future investigations. In the following experiments very low and insignificant

white noise levels have been added. These levels are impractical and cannot be used to

justify the developed algorithm’s performance with noise.

5.3.1 Example

This section contains three examples in which the distorted image is restored using

Algorithm 5.3. Raw images of 120×120 pixels have been used to examine the developed

method. The results of each of the examples are compared with other image deblurring

methods described in Chapter 2 using performance measures as discussed in Section 2.5.

The following examples show that the developed method resulted in a better image

estimation performance compared with other methods described in Chapter 2.

Example 5.1. Girl-face and lena true images of size 180× 180 pixels processed with a

non-separable Gaussian blurring PSF of size 9× 9.

The distorted images produced using the above PSF and recovered image using Algo-

rithm 5.3 are shown in Figure 5.3. Algorithm 5.3
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The results of the developed AGCD method processing are given in Figures 5.1, 5.2

and 5.3. Figure 5.1 shows the distribution of the computed PSF row and column sizes.

The most frequently computed rank (the mode) is 8 for rows and columns, and therefore

the size of the PSF is 9× 9. Table 5.1 shows the mode, median and mean values for the

distribution of the computed rank for both rows and columns. The table shows that the

mode, median and mean are the same since all the computed rank values are the same.

Figure 5.2 shows the computed PSF in comparison with the exact PSF, and it shows

clearly that the developed method gives a good estimate of the PSF.

Figure 5.3 shows the restored image using the developed method. Figures 5.4 and 5.5 and

Tables 5.2 and 5.3 give a comparison of the SNR, MSE and Relative error performance

measures among the state-of-the-art BID methods. PSNR was not used since it did not

show any significant differences among all the compared methods.

Figure 5.1: PSF’s computed row and column size using the developed AGCD method
for Example 5.1.

Table 5.1: PSF’s computed degree for Example 5.1.

Computing Rank Mode Median Mean

Rows 8 8 8

Columns 8 8 8
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Figure 5.2: The true and computed PSFs that are applied to the distorted images in
Example 5.1.

Figure 5.3: Blind Image Deconvolution using the developed method, for Example 5.1.

Table 5.2: Comparison table for the first distorted image in Example 5.1.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 77.17 1.92× 10−8 3.07× 10−4

Richardson-Lucy specified specified 20.37 9.17× 10−3 0.2115

Wiener specified specified 43.64 4.3× 10−5 6.34× 10−3

ML specified specified 12.80 0.0525 0.4037

Regularisation specified specified 22.11 6.16× 10−3 0.0862

Shearer et al. specified not specified 19.33 0.0117 0.2063

Babacan et al. specified not specified 18.67 0.0136 0.1918

Perrone and Favaro specified not specified 19.11 0.0123 0.1523
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Figure 5.4: Comparisons between the result of the first distorted image in Example 5.1
using Algorithm 5.3 and existing methods.(a) An original image and (b) a blurred
image obtained after the addition of measurement error to the PSF and additive noise.
Deblurred images of the image in (b) obtained by (c) AGCD computations and APF.
The deblurred images are obtained by (d) Richardson-Lucy algorithm [6], (e) Wiener
algorithm [8], (f) maximum likelihood algorithm (ML) [7] and (g) the regularisation
method [9]. These are implemented in the image processing toolbox in Matlab. The
deblurred images obtained through statistical methods are shown in (h) Shearer et

al. [4], (i) Babacan et al. [5] and (j) Perrone and Favaro methods [3].
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Figure 5.5: Comparisons between the result of the second distorted image in Ex-
ample 5.1 using Algorithm 5.3 and existing methods. (a) An original image and (b) a
blurred image obtained after the addition of measurement error to the PSF and additive
noise. Deblurred images of the image in (b) obtained by (c) AGCD computations and
APF. The deblurred images are obtained by (d) Richardson-Lucy algorithm [6], (e)
Wiener algorithm [8], (f) maximum likelihood algorithm (ML) [7] and (g) the regulari-
sation method [9]. These are implemented in the image processing toolbox in Matlab.
The deblurred images obtained through statistical methods are shown in (h) Shearer

et al. [4], (i) Babacan et al. [5] and (j) Perrone and Favaro methods [3].
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Table 5.3: Comparison table for the second distorted image in Example 5.1.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 75.18 3.04× 10−8 2.58× 10−4

Richardson-Lucy specified specified 18.39 0.0144 0.2118

Wiener specified specified 46.71 2.1× 10−5 7.16× 10−3

ML specified specified 18.61 0.0137 0.2097

Regularisation specified specified 24.53 3.52× 10−3 0.0930

Shearer et al. specified not specified 20.27 9.4× 10−3 0.1754

Babacan et al. specified not specified 19.43 0.0114 0.1983

Perrone and Favaro specified not specified 21.17 7.6× 10−3 0.1621

Table 5.2 and 5.3 show that the developed method has better estimation performance

in terms of SNR, MSE and Relative error despite that the algorithm assumed no prior

information of the PSF or its size.
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Example 5.2. Girl and pumpkin true images of size 180× 180 pixels processed with a

non-separable Gaussian blurring PSF of size 15× 15.

The distorted images produced using the above PSF and recovered image using Algo-

rithm 5.3 are shown in Figure 5.8. Algorithm 5.3

The results of the developed AGCD method processing are given in Figures 5.6, 5.7

and 5.8. Figure 5.6 shows the distribution of the computed PSF row and column sizes.

The most frequently computed rank (the mode) is 14 for rows and columns, and therefore

the size of the PSF is 15× 15. Table 5.4 shows the mode, median and mean values for

the distribution of the computed rank for both rows and columns. The table shows that

the mode and median are the same but the mean is different since all the computed rank

values are not the same.

Figure 5.7 shows the computed PSF in comparison with the exact PSF, and it shows

clearly that the developed method gives a good estimate of the PSF.

Figure 5.8 shows the restored image using the developed method. Figures 5.9 and 5.10

and Tables 5.5 and 5.6 give a comparison of the SNR, MSE and Relative error perfor-

mance measures among the state-of-the-art BID methods. PSNR was not used since it

did not show any significant differences among all the compared methods.

Table 5.4: PSF’s computed degree for Example 5.2.

Computing Rank Mode Median Mean

Rows 14 14 14.04

Columns 14 14 14

Table 5.5 and 5.6 show that the developed method has better estimation performance

in terms of SNR, MSE and Relative error despite that the algorithm assumed no prior

information of the PSF or its size.
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Figure 5.6: PSF’s computed row and column size using the developed AGCD method
for Example 5.2.

Figure 5.7: The true and computed PSFs that are applied to the distorted images in
Example 5.2.

Table 5.5: Comparison table for the first distorted image in Example 5.2.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 36.11 2.45× 10−4 0.2464

Richardson-Lucy specified specified 17.45 0.0180 0.0342

Wiener specified specified 32.02 6.28× 10−4 0.2429

ML specified specified 17.61 0.0173 0.2848

Regularisation specified specified 22.47 5.66× 10−3 0.1317

Shearer et al. specified not specified 18.36 0.0146 0.2360

Babacan et al. specified not specified 17.50 0.0178 0.2590

Perrone and Favaro specified not specified 19.01 0.0126 0.2127
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Figure 5.8: Blind Image Deconvolution using the developed method, for Example 5.2.

Table 5.6: Comparison table for the second distorted image in Example 5.2.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 37.19 1.91× 10−4 0.0276

Richardson-Lucy specified specified 16.84 0.0206 0.2870

Wiener specified specified 27.06 1.96× 10−3 0.0454

ML specified specified 16.79 0.0210 0.2848

Regularisation specified specified 18.66 0.0136 0.1778

Shearer et al. specified not specified 16.80 0.0209 0.2624

Babacan et al. specified not specified 15.66 0.0271 0.2813

Perrone and Favaro specified not specified 16.55 0.0221 0.2503
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Figure 5.9: Comparisons between the result of the first distorted image in Example 5.2
using Algorithm 5.3 and existing methods. (a) An original image and (b) a blurred
image obtained after the addition of measurement error to the PSF and additive noise.
Deblurred images of the image in (b) obtained by (c) AGCD computations and APF.
The deblurred images are obtained by (d) Richardson-Lucy algorithm [6], (e) Wiener
algorithm [8], (f) maximum likelihood algorithm (ML) [7] and (g) the regularisation
method [9]. These are implemented in the image processing toolbox in Matlab. The
deblurred images obtained through statistical methods are shown in (h) Shearer et

al. [4], (i) Babacan et al. [5] and (j) Perrone and Favaro methods [3].



Chapter 5. Blind Image Deconvolution for non-Separable PSF 127

Figure 5.10: Comparisons between the result of the second distorted image in Ex-
ample 5.2 using Algorithm 5.3 and existing methods. (a) An original image and (b) a
blurred image obtained after the addition of measurement error to the PSF and additive
noise. Deblurred images of the image in (b) obtained by (c) AGCD computations and
APF. The deblurred images are obtained by (d) Richardson-Lucy algorithm [6], (e)
Wiener algorithm [8], (f) maximum likelihood algorithm (ML) [7] and (g) the regulari-
sation method [9]. These are implemented in the image processing toolbox in Matlab.
The deblurred images obtained through statistical methods are shown in (h) Shearer

et al. [4], (i) Babacan et al. [5] and (j) Perrone and Favaro methods [3].



Chapter 5. Blind Image Deconvolution for non-Separable PSF 128

Example 5.3. Grass and camera-man true images of size 180 × 180 pixels processed

with a non-separable Gaussian blurring PSF of size 25× 25.

The distorted images produced using the above PSF and recovered image using Algo-

rithm 5.3 are shown in Figure 5.13. Algorithm 5.3

The results of the developed AGCD method processing are given in Figures 5.11, 5.12

and 5.13. Figure 5.11 shows the distribution of the computed PSF row and column sizes.

The most frequently computed rank (the mode) is 24 for rows and columns, and therefore

the size of the PSF is 25× 25. Table 5.7 shows the mode, median and mean values for

the distribution of the computed rank for both rows and columns. The table shows that

the mode, median and mean are the same since all the computed rank values are the

same.

Figure 5.12 shows the computed PSF in comparison with the exact PSF, and it shows

clearly that the developed method gives a good estimate of the PSF.

Figure 5.13 shows the restored image using the developed method. Figures 5.14 and 5.15

and Tables 5.8 and 5.9 give a comparison of the SNR, MSE and Relative error perfor-

mance measures among the state-of-the-art BID methods. PSNR was not used since it

did not show any significant differences among all the compared methods.

Table 5.7: PSF’s computed degree for Example 5.3.

Computing Rank Mode Median Mean

Rows 24 24 24

Columns 24 24 24

Table 5.8 and 5.9 show that the developed method has better estimation performance

in terms of SNR, MSE and Relative error despite that the algorithm assumed no prior

information of the PSF or its size.
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Figure 5.11: PSF’s computed row and column size using the developed AGCD method
for Example 5.3.

Figure 5.12: The true and computed PSFs that are applied to the distorted images
in Example 5.3.

Table 5.8: Comparison table for the first distorted image in Example 5.3.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 43.01 5.0× 10−5 9.99× 10−3

Richardson-Lucy specified specified 15.93 0.0255 0.2823

Wiener specified specified 23.56 4.40× 10−3 0.0919

ML specified specified 15.63 0.0273 0.2714

Regularisation specified specified 16.86 0.0206 0.1829

Shearer et al. specified not specified 14.47 0.0357 0.3052

Babacan et al. specified not specified 13.71 0.0425 0.2863

Perrone and Favaro specified not specified 13.25 0.0474 0.2270



Chapter 5. Blind Image Deconvolution for non-Separable PSF 130

Figure 5.13: Blind Image Deconvolution using the developed method, for Exam-
ple 5.3.

Table 5.9: Comparison table for the second distorted image in Example 5.3.

BID Methods Size of PSF PSF SNR MSE Relative error

Developed method (APF) not specified not specified 35.78 2.64× 10−4 0.02478

Richardson-Lucy specified specified 15.46 0.0284 0.2399

Wiener specified specified 20.15 9.67× 10−3 0.1407

ML specified specified 15.12 0.0307 0.2330

Regularisation specified specified 16.26 0.0236 0.2003

Shearer et al. specified not specified 13.40 0.0457 0.2868

Babacan et al. specified not specified 12.44 0.0570 0.2750

Perrone and Favaro specified not specified 14.28 0.0373 0.3052
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Figure 5.14: Comparisons between the result of the first distorted image in Exam-
ple 5.3 using Algorithm 5.3 and existing methods. (a) An original image and (b) a
blurred image obtained after the addition of measurement error to the PSF and addi-
tive noise. Deblurred images of the image in (b) obtained by (c) AGCD computations
and APF. The deblurred images are obtained by (d) Richardson-Lucy algorithm [6], (e)
Wiener algorithm [8], (f) maximum likelihood algorithm (ML) [7] and (g) the regulari-
sation method [9].These are implemented in the image processing toolbox in Matlab.
The deblurred images obtained through statistical methods are shown in (h) Shearer

et al. [4], (i) Babacan et al. [5] and (j) Perrone and Favaro methods [3].
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Figure 5.15: Comparisons between the result of the second distorted image in Ex-
ample 5.3 using Algorithm 5.3 and existing methods. (a) An original image and (b) a
blurred image obtained after the addition of measurement error to the PSF and additive
noise. Deblurred images of the image in (b) obtained by (c) AGCD computations and
APF. The deblurred images are obtained by (d) Richardson-Lucy algorithm [6], (e)
Wiener algorithm [8], (f) maximum likelihood algorithm (ML) [7] and (g) the regulari-
sation method [9]. These are implemented in the image processing toolbox in Matlab.
The deblurred images obtained through statistical methods are shown in (h) Shearer

et al. [4], (i) Babacan et al. [5] and (j) Perrone and Favaro methods [3].
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5.4 Summary

This chapter has considered the application of a BID solution to non-separable blur

using linear algebra, specifically, the AGCD of two inexact polynomials. The method

discussed in this chapter is appropriate for spatially invariant non-separable blur PSFs.

In contrast to Chapter 4 showed the developed BID method for a separable PSF and it

was shown that a separable PSF can be calculated using one blurred image, and then

a deblurred form of the blurred image can be obtained by deconvolving the computed

separable PSF from the blurred image. However, using one image is not appropriate for

non-separable PSF and it requires two blurred images for the PSF calculation.

The implementation of this algorithm for non-separable PSF is discussed and some

examples and results are included at the end of the chapter. The examples considered

in this chapter examined blurs that are nearly separable which means they are simple

cases of non-separable blur. The complex non-separable blur using motion blur combined

with Gaussian blur can not be solve with this BID method. This research show that for

complex non-separable blur frequency domain implementation of the method is more

appropriate. Applying the z-fourier transform and non-linear structure matrix method

APF in a blind image deconvolution is more appropriate for a non-separable PSF. The

extension of the developed work that reproduced the results by using the frequency

domain and APF in a totally blind image deconvolution for a complex non-separable

PSF is provided in the next chapter.



Chapter 6

Blind Image Deconvolution for

Non-Separable PSF using the

Z-Fourier Transform

6.1 Introduction

Chapter 5 showed the developed BID method for a non-separable PSF, and it was shown

that it can be calculated from the AGCD of two different blurred images. The cases

considered in Chapter 5 used non-complex non-separable blurring functions. Blurring

functions that have complex non-separable structure required the spectral domain im-

plementation of the method developed in Chapter 5. In this research study It was found

that the frequency domain implementation of the method is more suitable and applica-

ble for non-separable PSF estimation, in general, and complex structure non-separable

function, in particular. The spatial domain implementation of the method as presented

in Chapter 5 did not perform well with non-separable PSF. The implementation of the

method in the frequency domain solved the non-separable case of the PSF with better

estimation results.

134
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As has been mentioned in Chapter 5, this research requires two different blurred images

that have been blurred by the same PSF to produce the blurred images. In real examples,

this scenario works in cases where the blurring function occurs in the impulse response

of the camera system (see Figure 6.1). However, the related work in [18, 19, 38] uses a

Figure 6.1: Real-life model of two blurred images captured using the same camera.

different scenario in order to recover the true image. They assume that the true image

can be calculated as the AGCD of two blurred images, in which two blurred images of

the same scene are given. In practice, it is difficult to provide two blurred images that

are perfectly aligned (see Figure 6.2) and in this case the theory of linear algebra is not

appropriate to solve the problem of BID. In other words, it is important that every

row and column that correspond to each other in the two blurred images have the same

coordinates. Then, the row and column components in the true image can be computed

as the AGCD between each row and column that correspond to each other in the two

blurred images. To compare the performance of the BID methods based on the theory

of linear algebra [1, 2] with the developed method, the developed method was modified

to recover the true image by providing another blurred version of the same scene. The

modified method was improved to reproduce the result by using z-Fourier transform and

a non-linear structure matrix method APF in a totally blind image deconvolution for a
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Figure 6.2: Real-life model of two blurred images of the same scene using different
cameras.

non-separable PSF. This chapter will start by presenting a brief introduction about the

z-Fourier transform. The modified method and its performance will then be illustrated.

6.2 Introduction of Z-Fourier Transform

The Fourier transform is one of the most commonly used techniques in control theory

and signal processing. It is a one-to-one transform since it transforms the signal from a

time-domain f(x) to a frequency-domain F(n). Its benefit is that the z-Fourier transform

allows the analysis of a signal through its frequency content.
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The 1D Fourier transform F(n) of the function values f(x) at the discrete points x =

0, 1, . . . , N − 1 can be defined as

F(n) =
1

N

N−1∑
x=0

f(x) exp(−2πix
n

N
), n = 0, 1, . . . , N − 1, (6.1)

where F(n) is a periodic function of period N because the counter n ranges from 0 to

N − 1 and F(n + N) = F(n). Additionally, it is observed that the z-Fourier transform

value of F(n) corresponds to the value of the polynomial f̂(z). It is defined as

f̂(z) =
1

N

N−1∑
x=0

f(x)zx, (6.2)

where z is a complex number

z = exp(−2πi
n

N
), n = 0, 1, . . . , N − 1. (6.3)

Then, the z-transform of the function values f(x) is the function Nf̂(z) for x =

0, 1, . . . , N − 1.

In the image processing, the 2D Fourier transform is commonly used. It can be defined

as the 2D Fourier transform of a M ×N . The image is

F(m,n) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y) exp(−2πix
m

M
) exp(−2πiy

n

N
) (6.4)

=
1

M

M−1∑
x=0

[
1
N

∑N−1
y=0 f(x, y) exp(−2πiy nN )

]
exp(−2πix

m

M
), (6.5)

where m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1. And because of

F(m+M,n) = F(m,n+N) = F(m+M,n+N) = F(m,n), (6.6)

it means that the F(m,n) is a periodic function of the period M and N and the 2D

Fourier transform is formed by two 1D Fourier transforms. Equation (6.5) shows that

the function values of the z-Fourier transform F(m,n) correspond to the values of the
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bivariate polynomial f̂(z1, z2),

f̂(z1, z2) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)zx1z
y
2 , (6.7)

where z1 and z2 are complex numbers

z1 = exp(−2πi
m

M
) and z2 = exp(−2πi

n

N
), (6.8)

where m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1. The 2D z-Fourier transform of the

function values f(x, y) of x = 0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1 is the function

MNf(z1, z2).

This research uses a Vandermonde matrix to compute the z-Fourier transform. The

Vandermonde matrix is one class of the structured matrices and one of its applications

in the signal processing field is the computation of the z-Fourier transform and Inverse z-

Fourier Transform. The Vandermonde matrix can be applied to the z-Fourier transform

as in the following:

Let’s define the functions of 1D z-Fourier transform in (6.2) in a matrix form at the N th

roots of unity as

f̂(z)N =



f̂(0)

f̂(1)

f̂(2)

...

f̂(N − 1)


, (6.9)
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f(x)N =



f(0)

f(1)

f(2)

...

f(N − 1)


, (6.10)

and the Vandermonde matrix VN

VN =



1 1 1 . . . 1

1 zN z2N . . . zN−1N

1 z2N z4N . . . z
2(N−1)
N

1 . . . . . . . . . . . .

...
...

...
...

...

1 zN−1N z
2(N−1)
N . . . z

(N−1)(N−1)
N


. (6.11)

These matrices allow the z-Fourier transform to be expressed as follows

f̂(z)N = VNf(x)N . (6.12)

The VN matrix is called the z-Fourier transform matrix. This research applied a Van-

dermonde matrix to compute the 2D z-Fourier transform. The next section illustrates

the developed BID by using z-Fourier transform and APF for a non-separable PSF.

6.3 The Modification of the Blind Image Deconvolution

Mmethod using DFT

This section demonstrates the computations that must be included for a non-separable

PSF computation using z-Fourier transform. The method that is presented in this

section is considered to be a modified form of the developed method that was discussed

in Chapter 5. This modification aims to examine the feasibility of the Sylvester matrix

and APF for blind image deconvolution.
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This section is concerned with solving the BID problem when the extra knowledge

required for the restoration of a true image is provided by another blurred version of the

same scene; this means that it requires two blurred images of the same scene. The true

image will be the AGCD of the two blurred images. The computation of AGCD in this

case requires the use of the Fourier Transform to be applied.

Let G1 and G2 be two blurred versions of the true F , and the blurred images be formed

by spatially invariant and non-separable PSF H1 and H2, respectively.

The bivariate polynomial form of G1, G2, F , H1 and H2 are G1, G2, F,H1 and H2,

respectively. The convolution operation of the blurred images can then be written as

follows:

G1(x, y) = H1(x, y)F (x, y), (6.13)

G2(x, y) = H2(x, y)F (x, y). (6.14)

For simplicity, it is assumed that the G1 and G2 have the same size of (M+p)×(N+r),

where the size of the exact images F are M×N and the size of the H is (p+1)× (r+1).

Then the z-Fourier transform of the blurred images is

G1(z1, z2) =

M+p∑
x=1

N+r∑
y=1

b1(x, y)zx1z
y
2 , (6.15)

G2(z1, z2) =

M+p∑
x=1

N+r∑
y=1

b2(x, y)zx1z
y
2 . (6.16)

The convolution operation of the blurred images in the 2D z-transform can then be

written as follows:

G1(z1, z2) = H1(z1, z2)F(z1, z2), (6.17)
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G2(z1, z2) = H2(z1, z2)F(z1, z2). (6.18)

The aim of this application is to determine the true image, thus, it is assumed that the

additive noise and measurement error are equal to zero. The substitution z1 in (6.17)

and (6.18) by its value in (6.8) then yields M + p univariate polynomials G1 and G1 in

the variable z2,

G1(e
−2πi m

M+p , z2) = H1(e
−2πi m

M+p , z2)F(e
−2πi m

M+p , z2), (6.19)

G2(e
−2πi m

M+p , z2) = H2(e
−2πi m

M+p , z2)F(e
−2πi m

M+p , z2), (6.20)

for all m = 1, 2, . . . ,M + p. It follows that the univariate polynomial F is the GCD of

G1 and G2 for each value of m.

AGCD

(
G1(m, z2),G2(m, z2))

)
= F(m, z2)AGCD

(
H1(m, z2),H2(m, z2))

)
m = 1, . . . ,M + p,

(6.21)

As long as, with high probability, H1(m, z2) and H2(m, z2) are coprime, thus

AGCD

(
H1(m, z2),H2(m, z2))

)
= c(m) m = 1, . . . ,M + p,

(6.22)

where c(m) is a constant for each value of m. The substitution of (6.22) into (6.21)

allows the M + p univariate polynomial F(m, z2) to be calculated, provided that the

degree and the coefficient of AGCDs of G1(m, z2) and G2(m, z2) can be calculated using

the QR decomposition and APF methods, respectively. The computation of the AGCD

has been discussed in Chapter 4.

AGCD

(
G1(m, z2),G2(m, z2)

)
= F(m, z2)c(m) m = 1, . . . ,M + p,

(6.23)
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in which F(m, z2) is the mth row of the z-transform of the true image that is associated

with the AGCD of the mth row of the the z-transform of the blurred image. Then,

for each value m, the value of z2 in (6.23) is substituted by its value in (6.8) from

n = 1, 2, . . . , N + r.

A(m,n) = F(e
−2πi m

M+p , e−2πi
n

N+r )c(m). (6.24)

It follows that the column version of the exact image allows it to be similarly computed

by substituting z2 in G1 and G2. Then, the N + r univariate polynomials F(z1, n) can

be calculated as their AGCD. After that, by substituting z1 by its value in (6.8), it will

obtain another matrix

B(m,n) = F(e
−2πi m

M+p , e−2πi
n

N+r )k(n), (6.25)

where B(m,n) is the z-Fourier transform of the true image that is associated with the

AGCD of the nth column of the z-transform of the blurred image. Whereas, k(n) is a

constant that is a function of n. Equation (6.24) and (6.25) yields

A(m,n)a(m)−B(m,n)b(n) = 0, m = 1, . . . ,M + p;n = 1, . . . , N + r, (6.26)

where

a(m) =
1

c(m)
, (6.27)

b(n) =
1

k(n)
. (6.28)

It clearly shows that (6.26) is identical to (5.15). Thus, the functions a(m) and b(n) are

computed similarly by applying SVD to (5.16).
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Hence, the estimated Fourier transform of the true image is then computed by

F =
1

2

(
A (m,n) a (m) +B (m,n) b (n)

)
, (6.29)

Finally, the 2D Inverse z-Fourier Transform of (6.29) yields an estimate of the true

image F . The algorithm and the result of the modified method, which computed the

true image from two blurred versions of an image using AGCD, is described in the next

section.

6.4 Implementation

The implementation of the BID algorithm for non-separable PSF using the structure

matrix and z-Fourier transform is considered in this section. The developed BID pro-

cedure for non-separable PSF starts by loading a raw blurred image formed by the two

non-separable PSFs into Matlab using a standard function.

To calculate the true image, z-Fourier transform is applied to the two blurred images

using a Vandermonde matrix. Then, the degree of the true image is computed by

selecting pairs of rows or columns from the blurred images. The number of pairs is

selected at random. Each order of rows and columns is then used to calculate the degree

of the true image row-wise and column-wise between the two blurred images.

The degree used in the AGCD is then selected on the basis of the most common (mode)

of the computed degrees. The coefficients of the true image in the z-Fourier transform

are then computed from all pairs of rows and columns of the two blurred images. The

deblurred images are then deconvolved by applying the Inverse z-Fourier Transform. Al-

gorithm 6.4 gives the Matlab implementation for the developed BID using the structure

matrix and z-Fourier transform.

Algorithm 6.4: Developed Blind Image Deconvolution using the structure

matrix and z-Fourier transform
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Input: Two blurred images G1 and G2.

Output: The deblurred image F .

Begin:

1. Calculate the size of G1 and G2, which is M ×N .

2. Calculate the G1 and G2, which are the 2D z-Fourier transform of G1 and G2,

respectively.

3. Define the random number of pairs of ith rows or jth columns of G1 and G2, which

is the trial number for the calculation of the degree of AGCD

4. Initialise the array that stores the result of the calculation of the degree of AGCD.

The size of the array depends on the random number of trials on rows or columns.

5. while number of trials do

6. Select the two polynomials f(x) and g(x) which have a pair of ith rows or jth

columns from G1 and G2.

7. Pre-process f(x) and g(x) to be the polynomials f̃θ0(y) and α0g̃θ0(y).

8. Calculate the value of t for the trial using the QR decomposition of the Sylvester

resultant matrix and its sub-resultant matrix S(f̃θ0 , α0g̃θ0) using (3.32).

9. Save the result into an array that has been defined for the calculation of the degree

of AGCD.

10. end

11. The computed t is equal to the mode of the entries in the array that stores the

result of the calculation of the degree of AGCD.

12. Calculate the M univariate AGCD for each row of G1 with the associated row of

G2.

For i = 1 : M
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(a) Define the ith row vector r1 = G1(i, :) and r2 = G2(i, :)

(b) Pre-process the coefficients of the two inexact polynomials r1 and r2 by:

(I) Normalise the coefficient by the geometric mean r̂1 and r̂2.

(II) Compute the optimal value of α0 and θ0 by using the linear programming

problem (LP ).

(c) Compute the coefficient d(i) of AGCD(r̂1θ0 , α0r̂2θ0) by using Approximate

Polynomial Factorisation APF.

(d) Embed the ith row of the coefficient of AGCD d(i) in the matrix A.

A(i, :) = d(i)

End For

13. Calculate the N univariate AGCD for each column of G1 with the associated

column of G2.

For j = 1 : N

(a) Define the jth column vector c1 = G1(:, j) and c2 = G2(:, j)

(b) Pre-process the coefficients of the two inexact polynomials c1 and c2 by:

(I) Normalise the coefficient by the geometric mean ĉ1 and ĉ2.

(II) Compute the optimal value of α0 and θ0 by using the linear programming

problem (LP ).

(c) Compute the coefficient d(j) of AGCD(ĉ1θ0 , α0ĉ2θ0) by using Approximate

Polynomial Factorisation APF.

(d) Embed the jth column of the coefficient of AGCD d(j) in the matrix B.

B(:, j) = d(j)

End For

14. solve (5.16) using the singular value decomposition SVD of the coefficient matrix

in (5.16) to calculate the solution of a(i), i = 1, . . . ,M and b(j), n = 1, . . . , N .

15. Compute the recovered true images in z-Fourier transform F using (6.26).
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16. Apply the inverse z-Fourier transform to the F to compute the recovered true

image F .

End

Algorithm 6.4 is used in the following examples to recover the true images.

6.4.1 Example

This section contains three examples in which the distorted image is restored using

Algorithm 6.4. Raw images of 180×180 pixels have been used to examine the developed

method. The effect of noise and non-separable PSF on image restoration is examined in

these examples.

The examples show that the use of the method of AGCD by the APF technique resulted

in a better version estimation of the exact image compared with other linear algebra

methods described in [1, 2]. Additionally, the examples show that the method that used

the Bezout matrix [1, 2] is much more sensitive to the noise than the developed methods

that use the Sylvester resultant matrix.

Example 6.1. In this example, an exact image is blurred by non-separable Gaussian

blurring PSF H1 and non-separable motion blurring PSF H2 of size 27× 17 pixels (see

Figure 6.3) in order to generate the two distorted versions of the images. Each of

the non-separable PSFs and images have an error E = 0 and additive noise N = 0,

respectively.

The distorted images are then processed using Algorithm 6.4 and another linear algebra

method developed by Li et al. [1, 2]. The results of each of the processing methods are

given in Figure 6.5, with Figure 6.4 showing the computed value of t using (3.32). The

most frequently computed degree (the mode) is 179 for rows and columns, and the size

of the deblurred image is therefore 180× 180.
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Figure 6.3: The (a) first and (b) second PSFs that are applied to the two distorted
versions of the true images, respectively, in Example 6.1.

Figure 6.4: The histogram of the degree of AGCD between two polynomials in rows
and columns in the absence of noise for Example 6.1.

Table 6.1: computing the degree of AGCD between two polynomials in rows and
columns in the absence of noise for Example 6.1.

Mode Median Mean

Computing Rank in Rows 179 179 179

Computing Rank in Columns 179 179 179
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Figure 6.5: Blind Image Deconvolution using (d) the developed method and (e) the
method developed by Li et al. [1, 2], for Example 6.1.

Then another two blurred images were generated from the true image using the same

PSFs in Figure 6.3. But in this case, each of the PSFs has an error E = 1× 10−7 and

then noise N = 1× 10−8 is added to the result of each of the convolutions.

The distorted images are then processed similarly using Algorithm 6.4 and the method

developed by Li et al. [1, 2]. The results of each of the processing methods, in the presence

of noise, are given in Figure 6.7, whereas Figure 6.6 shows the computed value of t and

the most frequently computed degree (the mode) is 179 for rows and columns, and the

size of the deblurred image is therefore 180× 180, which is correct.

Table 6.2: computing the degree of AGCD between two polynomials in rows and
columns in the presence of noise for Example 6.1.

Mode Median Mean

Computing Rank in Rows 179 179 179.6

Computing Rank in Columns 179 179 171.88

Table 6.3 gives a comparison of the relative errors produced with the BID method that is

based on linear algebra. It clearly shows that the developed method better estimates the

exact image.
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Figure 6.6: The histogram of the degree of AGCD between two polynomials in rows
and columns in the presence of noise for Example 6.1.

Figure 6.7: Blind Image Deconvolution of a noisy blurred image using (d) the devel-
oped method and (e) the method developed by Li et al. [1, 2], for Example 6.1.

Table 6.3: Comparison table for the distorted image in Example 6.1.

BID Methods Additive noise Size of PSF SNR MSE Relative error

APF absent not specified 172.21 6.008× 10−18 5.13× 10−9

APF present not specified 28.68 0.0014 0.0605

Li et al. absent specified 43.68 4.282× 10−5 0.0147

Li et al. present specified 23.898 0.0041 0.1079
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Example 6.2. In this example, two non-separable PSFs are generated as a result of

the compilation of separable Gaussian blurring and non-separable motion blur. These

two non-separable PSFs of size 19× 11 pixels are shown in Figure 6.8. An exact image

is processed by the generated non-separable PSFs. Each of the non-separable PSFs and

images have an error E = 0 and additive noise N = 0, respectively.

Figure 6.8: The (a) first and (b) second PSFs that are applied to the two distorted
versions of the true images, respectively, in Example 6.2.

In the absence of noise, the distorted images are processed using Algorithm 6.4 and

another linear algebra method developed by Li et al. [1, 2]. The results of each of the

processing methods are given in Figure 6.10, where Figure 6.9 shows the computed value

of t using (3.32). The most frequently computed degree (the mode) is 179 for rows and

columns, and the size of the deblurred image is therefore 180× 180.

Table 6.4: computing the degree of AGCD between two polynomials in rows and
columns in the absence of noise for Example 6.2.

Mode Median Mean

Computing Rank in Rows 179 179 179

Computing Rank in Columns 179 179 179

Then another two blurred versions of the image were generated using the same PSFs in

Figure 6.8. But in this case, each of PSF has an error E = 1 × 10−6 and then noise

N = 1× 10−7 is added to the result of each of the convolutions.
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Figure 6.9: The histogram of the degree of AGCD between two polynomials in rows
and columns in the absence of noise for Example 6.2

Figure 6.10: Blind Image Deconvolution using (d) the developed method and (e) the
method developed by Li et al. [1, 2], for Example 6.2.

The distorted images are then processed similarly using Algorithm 6.4 and the method

developed by Li et al. [1, 2]. The results of each of the processing methods, in the presence

of noise, are given in Figure 6.12, whereas Figure 6.11 shows the computed value of t,

and the most frequently computed degree (the mode) is 179 for rows and columns, and

the size of the deblurred image is therefore 180× 180, which is correct.

Table 6.6 gives a comparison of the relative errors produced with the BID method based

on linear algebra. It clearly shows that the developed method better estimates the exact
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Figure 6.11: The histogram of the degree of AGCD between two polynomials in rows
and columns in the presence of noise for Example 6.2

Table 6.5: computing the degree of AGCD between two polynomials in rows and
columns in the presence of noise for Example 6.2.

Mode Median Mean

Computing Rank in Rows 179 179 179

Computing Rank in Columns 179 179 179.04

Figure 6.12: Blind Image Deconvolution of a noisy blurred image using (d) the de-
veloped method and (e) the method developed by Li et al. [1, 2], for Example 6.2.
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image. Furthermore, the method developed by Li et al. [1, 2] fails to recover the true

image in the presence of noise and measurement error.

Table 6.6: Comparison table for the distorted image in Example 6.2.

BID Methods Additive noise Size of PSF SNR MSE Relative error

APF absent not specified 228.71 1.35× 10−23 5.39× 10−12

APF present not specified 27.29 0.0019 0.0707

Li et al. absent specified 52.92 5.099× 10−6 0.0034

Li et al. present specified 8.1396 0.1535 0.5852
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Example 6.3. In this example, two non-separable PSFs are generated as a result of the

compilation of separable Gaussian blurring and non-separable motion blur. These two

non-separable PSFs of size 39 × 33 pixels are shown in Figure 6.13. An exact image

is processed by generating non-separable PSFs. Each of the non-separable PSFs and

images have an error E = 0 and additive noise N = 0, respectively.

Figure 6.13: The (a) first and (b) the second PSFs that are applied to the two
distorted versions of the true images, respectively, in Example 6.3.

In the absence of noise, the distorted images are processed using Algorithm 6.4 and

another linear algebra method developed by Li et al. [1, 2]. The results of each of the

processing methods are given in Figures 6.15, where Figure 6.14 shows the computed

value of t using (3.32). The most frequently computed degree (the mode) is 179 for rows

and columns, and the size of the deblurred image is therefore 180× 180.

Table 6.7: computing the degree of AGCD between two polynomials in rows and
columns in the absence of noise for Example 6.3.

Mode Median Mean

Computing Rank in Rows 179 179 179

Computing Rank in Columns 179 179 179

Then another two blurred versions of the image were generated using the same PSFs in

Figure 6.13. But in this case, each of the PSF has an error E = 1×10−7 and then noise

N = 1× 10−8 is added to the result of each of the convolutions.
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Figure 6.14: The histogram of the degree of AGCD between two polynomials in rows
and columns in the absence of noise for Example 6.3.

Figure 6.15: Blind Image Deconvolution using (d) the developed method and (e) the
method developed by Li et al. [1, 2], for Example 6.3.
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The distorted images are then processed similarly using Algorithm 6.4 and the method

developed by Li et al. [1, 2]. The results of each of the processing methods, in the

presence of noise, are given in Figure 6.17, whereas Figure 6.3 shows that the most

frequently computed degree (the mode) is 179 for rows and columns, and the size of the

deblurred image is therefore 180× 180, which is correct.

Figure 6.16: The histogram of the degree of AGCD between two polynomials in rows
and columns in the presence of noise for Example 6.3

Table 6.8: computing the degree of AGCD between two polynomials in rows and
columns in the presence of noise for Example 6.3.

Mode Median Mean

Computing Rank in Rows 179 179 179

Computing Rank in Columns 179 179 179

Table 6.9 gives a comparison of the relative errors produced with the BID method that is

based on linear algebra. It clearly shows that the developed method better estimates the

exact image. Furthermore, the method developed by Li et al. [1, 2] fails to recover the

true image in a large amount of non-spreadable PSF, even in the absence of noise and

measurement error.
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Figure 6.17: Blind Image Deconvolution of a noisy blurred image using (d) the de-
veloped method and (e) the method developed by Li et al. [1, 2], for Example 6.3.

Table 6.9: Comparison table for the distorted image in Example 6.3.

BID Methods Additive noise Size of PSF SNR MSE Relative error

APF absent not specified 210.82 8.27× 10−22 5.34× 10−11

APF present not specified 29.125 0.0012 0.0656

Li et al. absent specified 8.7567 0.1331 0.7822

Li et al. present specified 9.1345 0.1221 0.7713

6.5 Summary

This chapter has considered the application of a BID solution of non-separable blur

using the structure matrix and z-Fourier transform. The true image is calculated as

the AGCD of two blurred images, in which two blurred images of the same scene are

given. Chapter 5 showed the developed BID method for a non-separable PSF, and it

was shown that it can be calculated from the AGCD of two different blurred images.

The cases considered in Chapter 5 used non-complex non-separable blurring functions.

Therefore, This chapter was found that the frequency domain implementation of the

method is more suitable and applicable for non-separable PSF estimation, in general,

and complex structure non-separable function, in particular.
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The implementation of the developed method in the frequency domain is presented in

this chapter. The developed frequency domain algorithm has been applied on non-

separable blur of different sizes. The implementation of the method in the frequency

domain solved the non-separable case of the PSF with better estimation results. The

results of the method is compared to another algebraic deblurring method, Li et al. [1,

2]. The developed method showed better estimation of the true image than the Li

et al. method. Algebraic methods in general are sensitive to noise. With low level

of noise, the experiments showed that Li et al. method failed to recover the image

whereas the developed method in this research was able to estimate the image well.

The level of noise used in the experiments is low in relation to statistical BID methods,

however it is relatively high level in algebraic BID methods. In comparison to the

spatial implementation of the method presented in Chapter 5, the frequency domain

implementation of the developed method is able to estimate the true images with non-

separable PSF of any complexity.



Chapter 7

Developed Method Performance

and Discussion

7.1 Introduction

This research study focused on the development of a solution for the blind image decon-

volution problem, specifically, blurred images that are influenced by spatially invariant

blur. The developed BID method is designed to be robust and computationally efficient

in the estimation of the PSF. This is achieved by implementing an AGCD computation

method using APF, which is considered in Chapters 4 and 5. This chapter will analyse

and discuss in more detail the performance of the developed method and compare the

results to the state-of-the-art methods. It examines and compare the performance of

the BID methods, as applied to artificially blurred images, in recovering the original

image by considering different levels of additive noise, measurement errors and the size

of the PSF. The results show that this method as applied to artificially blurred images

has a better performance than the state-of-the-art methods (discussed in Chapter 2).

The application of the developed method to real blurred images without pre-processing

failed consistently as discussed in Section 7.3. This chapter will start by analysis of four

image deconvolution experiments.

159
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7.2 Experiments and Discussions

Four experiments have been carried out, using Matlab. Experiment one examines the

performance of the BID methods, including the developed method, in relation to changes

in PSF width and additive noise. Experiment two examines the behaviour of the state-of-

the-art methods in recovering the true image from a blurred image with an unknown PSF

size. The third experiment examines the performance of the developed method against

other state-of-the-art linear algebra methods. Images with different additive noise levels

and errors in PSF were used in this experiment. In all three experiments, an image size of

180× 180 is used. Lastly, experiment four examines the performance of the deblurring

algorithms for feature detection. Face feature detection and circle feature detection

experiments are performed on deblurred images from various deblurring algorithms.

7.2.1 Experiment One: BID performance with variable PSF width and

additive noise

The true images, aerial map of San Diego, Camera man, girl face and grass(see Fig-

ure 7.1), are used to generate blurred images with PSFs of different size and different

levels of additive noise. The blurred images are then processed by nine deblurring meth-

ods. These methods are grouped into three sets. Set 1 consists of four basic deblur-

ring methods: Richardson-Lucy algorithm [6], maximum likelihood algorithm (ML) [7],

Wiener algorithm [8] and the regularisation method [9]. These are implemented in the

image processing toolbox in the Matlab. Set 2 consists of three methods based on

Bayesian statistics theory: the methods of Shearer et al. [4], Babacan et al. [5] and

Perrone and Favaro [3]. The third set consists of two methods based on linear algebra,

specifically AGCD; these are the APF methods developed in this research study and

method of Li et al. [1, 2].

Forty-two blurred images were generated from each true images. Each of these forty-two

blurred images is generated from a unique PSF and noise level. The following levels of
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Figure 7.1: The true images that are used for experiment one

noise and PSF sizes are used: PSF sizes: 5, 15, 25, 35, 45, 55.

Noise levels: N = 10−11, 10−10, 10−9, 10−8, 10−7, 10−6.

The blurring model used in the generation of the blurred images is given by the following

formula:

G = H⊗F +N , (7.1)

The generated blurred images are then processed with each of the above methods, in

turn, to produce the deblurred images. The deblurred images are then compared to the

original image using the performance criterion, specifically, Relative Error. The error

results are given in Figures 7.2, 7.6 and 7.10.

Figures 7.2, 7.3, 7.4 and 7.5 shows the error results of the four basic methods that

are implemented in the image processing toolbox in the Matlab. The minimum error

obtained from this set of methods is of the same order of magnitude. The minimum error

ranged from 0.0448 to 0.0905, corresponding to zero additive noise and the smallest PSF

size, which equals 5×5. The maximum error ranged from 0.2440 to 0.3859, corresponding

to the largest noise level added, which is ε = 10−6, and the largest PSF size, which equals

55× 55.
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The figures show a jump in the error value when the PSF size increased from the smallest

PSF size, 5×5, to a PSF size of 15×15. In addition, the additive error level did not affect

the error results in any significant way. This shows that, in the previous experiments,

decreasing the noise level for a particular PSF does not improve the quality of the

deblurred image. In other words, the quality of the deblurred images did not improve,

regardless of the additive noise level present in the blurred images. This also shows that

the size of the PSF is an effective factor that has a considerable impact on the quality

of the produced images. The error results for this set of methods are high compared to

the results of the developed method discussed later.

Figure 7.2: Basic deblurring methods error results of experiment one when a true
image of San Diega has used

The second set of results, from Bayesian-based methods, are presented in Figures 7.6,
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Figure 7.3: Basic deblurring methods error results of experiment one a true image of
camera man has used

7.7, 7.8 and 7.9. The minimum recorded error for this set of methods is again of

the same order of magnitude. The lowest error value recorded for this set is, however,

higher than the lowest error recorded for the basic methods in the first set of results.

The minimum error ranged from 0.1244 to 0.1541, corresponding to zero additive noise

and the smallest PSF size, which equals 5× 5. The maximum error ranged from 0.2576

to 0.3166, corresponding to the largest added noise level, which is ε = 10−6, and the

largest PSF size, which equals 55× 55. The highest level of error for this set is similar

to the results of set one.

The figures show a gradual increase in the error as the size of the PSF is increased.

The resulting image error increased by about two times the lowest error value in the
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Figure 7.4: Basic deblurring methods error results of experiment one a true image of
grass has used

worst case of a blurred image. Similar to the basic deblurring methods, the error in the

resulting image did not improve as the additive noise decreased to zero.

The third set of error results, from linear algebra-based methods, are presented in Fig-

ures 7.10, 7.11, 7.12, and 7.13. The minimum error values are 4.77× 10−13 for method

of Li et al. [1, 2] and 1.16×10−13 for the developed APF method. These error levels are

of the order of 10−10 times than the error results of the set one and set two deblurring

methods. Method of Li et al. [1, 2] shows a jump in the error value when the PSF size

increased from the smallest PSF size of 5 × 5 to a PSF size of 15× 15. The error level

increased considerably for this size of PSF and remained constant for higher PSF sizes.

The image quality improved with the decrease in the additive error level. However, in
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Figure 7.5: Basic deblurring methods error results of experiment one a true image of
girl face has used

comparison to the error results from set one and set two methods, the error results of the

method of Li et al. [1, 2] are lower and approximately of the same order of magnitude

for high PSF sizes.

Figure 7.10, 7.11, 7.12, and 7.13 shows the error results of the developed APF method.

The error results are considerably smaller than that of set one and two and the method

of Li et al. [1, 2]. The increase in the size of the PSF did not affect the error result

values and it remained almost as low as in the free of additive noise and smallest size

PSF cases. In these experiments, the developed method had a better performance than

all the other methods, in particular, it determines the correct size and elements of the

PSF and then uses it in recovering the original image. In addition, this method, as noted
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Figure 7.6: Bayesian statistical theory based methods error results of experiment one
when a true image of San Diega has used

above, does not require any prior knowledge about the PSF, which is a prerequisite for all

the other methods. The additive noise level did affect the resultant error in the recovered

image. It is expected that as the noise level increases, the error in the deblurred image

increases; however, the error results of this method for the worst considered case are

still lower than that of all other methods. In this research study, the noise level has

been taken into account during the calculation of the PSF, as discussed in Chapters 4

and 5. Regardless of the additive noise level present in the blurred image, the developed

algorithm is able to compute the correct PSF. The additive noise level should be taken

into consideration during the deconvolution stage in order to recover a better quality

image from the blurred image. In this research study the noise level was not taken

into account in the deconvolution process and will be considered in future work. It is

expected that, by taking into account the additive noise in the deconvolution stage, the
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Figure 7.7: Bayesian statistical theory based methods error results of experiment one
when a true image of camera man has used

resultant error in the recovered image will be much lower than in the currently obtained

results. It is also expected that the error values will increase at a much smaller rate as

the noise level increases.
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Figure 7.8: Bayesian statistical theory based methods error results of experiment one
when a true image of grass has used
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Figure 7.9: Bayesian statistical theory based methods error results of experiment one
when a true image of girl face has used

Figure 7.10: Linear algebra theory based methods error results of experiment one
when a true image of San Diego has used
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Figure 7.11: Linear algebra theory based methods error results of experiment one
when a true image of cameraman has used

Figure 7.12: Linear algebra theory based methods error results of experiment one
when a true image of girl face has used
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Figure 7.13: Linear algebra theory based methods error results of experiment one
when a true image of grass has used
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7.2.2 Experiment Two: PSF size error effects on BID methods’ per-

formance

The performance of four BID methods was investigated by varying the size of the PSF

used in the algorithms. The same experiment was repeated on four different true images.

The true images of Camera man, Lena, Pumpkins, and SanDiego’s map are used. All

true images are of size 180×180 pixels. The experiment started by processing each true

image with a PSF of size 23× 23 pixels, producing a set of four blurred images.

Each of the blurred images are then processed with four BID methods: Li et al., Shearer

et al. [4], Babacan et al. [5] and Perrone and Favaro [3]. The size of the PSF used in

the processing algorithms was then varied from 3 to 43, corresponding to an error in

the range of −20 to +20 in the true PSF size used(23). The output of the processing

algorithms and the recovered images are then compared to the true image and the

relative error is computed. Figure 7.14 shows the results of the experiment for the four

true images.

The four sub figures show that the relative error of the recovered images is considerably

high for the largest negative PSF size error. As the size of the PSF is increased from 3 to

43 in the methods of Shearer et al. [4] and Babacan et al. [5], the relative error remained

approximately constant throughout. However, in the method of Perrone and Favaro [3]

the relative error performance worsened as the PSF size increased. The method of Li

et al. [1, 2] showed similar behaviour to the method of Perrone and Favaro [3] except

for when the size of the PSF used in the algorithm approached the true PSF size. The

method of Li et al. [1, 2] gave a considerably better performance when the used PSF

size in the algorithm matched the true PSF size.

These results show the importance of the accurate identification of the true PSF size.

Inaccurate identification of the PSF size affects the performance of the method of Li

et al. [1, 2] significantly. The theory of these methods claims that these methods are

totally blind; however, it was found from the implemented algorithm that the PSF size

is a parameter and is required in the image recovery process.
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The performance of these methods suffers greatly from the lack of PSF size determi-

nation. In practice, the size of the PSF varies and is dependent on many variables.

Assumptions about the size of the PSF become impractical and hence it is very bene-

ficial to develop methods that identify the PSF size automatically as part of the image

recovery algorithm. The developed method in this research study, the APF method,

does exactly that. As Experiment One shows, this method is able to identify correctly

the size of the PSF from a small size up to a very large size of 55× 55.

Figure 7.14: BID methods relative error performance against used PSF size error

The method of Li et al. [1, 2] showed sensitivity to the error in the PSF size; in particular,

the performance of the method improved when the error in the PSF size decreased to

zero. This is to be expected as algebraic-based methods systematically identify the PSF
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from the given data. In contrast, statistically-based methods require a prior probability

distribution and hence the results of the recovered images depend on this prior because

different prior yield different deblurred images. This would result in a significant number

of failed recovered images, due to its high sensitivity to the prior value, which demands

high effort and in some cases is not possible to compute accurately.

7.2.3 Experiment Three: algebraic methods PSF determination per-

formance

The recovery of the real images from the blurred images is affected significantly by the

accuracy of the computed PSF. In other words, the correct identification of the PSF is

an important factor in the recovery process of the true images. In this experiment, the

performance of methods of Li et al. [1, 2] and the APF in recovering the true PSF is

considered. A true image of a girl’s face of size 180× 180 is processed with two known

PSFs of sizes 15× 15 and 25× 25. In addition, the following two sets of noise levels and

PSF additive measurement errors are used during the blurred image generation:

Additive noise levels: N = 0, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6. PSF measurement

error levels: E = 0, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6.

Forty-nine blurred images are then produced for each PSF using the following processing

algorithm:

G = (H+ E)⊗F +N , (7.2)

Each one of the ninety-eight blurred images, corresponding to the two true PSFs, is

then processed through the methods of Li et al. [1, 2] and the APF. The computed

PSFs are then compared to the true PSF using a relative error criterion for each method

discussed in (2.39). Figure 7.15 shows the relative error results for both the methods of

Li et al. [1, 2] and the APF.
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Figure 7.15: Relative error comparison between the true PSF and the computed PSFs
using the methods of Li et al. [1, 2] and the APF



Chapter 7. Developed Method Performance and Discussion 176

The figure shows that the relative error of the method of Li et al. [1, 2] is consistently

higher than that in the APF method. In particular, the highest relative error reported

by the APF method is of the same order as the lowest relative error reported by the

method of Li et al. [1, 2]. In other words, the worst performance, the case with high

levels of additive and measurement noise, for the APF is similar to the best performance

of the method of Li et al. [1, 2] in the case of no additive and measurement noise.

From the figure, it can be observed that the relative error patterns for the two PSFs

are approximately the same for the APF method. In contrast to this, for the method of

Li et al. [1, 2], the pattern of the relative error is inconsistent and depends on the true

PSF. This shows that the computation of the PSF, in the APF method, is not affected

by the size of the true PSF.

7.2.4 Experiment Four: Feature detection performance

Feature detection is an important area of image processing. Images are normally pre-

processed to remove blur from them before feature detection processing commences. The

performance of the detection algorithms depends on the quality of the pre-processed

(deblurred) images. In this section the performance of the deblurring algorithms are

examined using feature detection methods. Face feature detection and circle feature

detection experiments are performed on deblurred images using various deblurring algo-

rithms. In each section, the quality of the feature detection, and hence the quality of the

deblurring algorithm, is compared to many of the state-of-the-art deblurring algorithms.

7.2.4.1 Face feature detection performance

A true image of a group of eight people is used in this experiment. The image is of

size 550 × 200 and shows eight faces clearly visible. This image is then blurred with a

Gaussian blurring function of size 25× 25 (see Figure 7.16). A cascade object detector

function based on the Viola-Jones algorithm is used. This algorithm is implemented in

the computer vision system toolbox in Matlab. The true image was first processed
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through the feature detector and the results are shown in the top part of Figure 7.16.

The figure shows that the detector successfully identified all the eight faces in the true

image as expected. The bottom part of the figure shows the feature detector results

when the blurred image is used instead of the true image. The results show that only

one face was detected successfully. This establishes a baseline for the feature detector

performance against which the performance of the deblurring algorithms can be based.

Nine deblurring algorithms are then used to recover the true image from the blurred

image (bottom of Figure 7.16) before processing it through the feature detector. Fig-

ure 7.17 shows the detection performance on images deblurred using the basic deblurring

algorithms. The detection performance when the Richardson-Lucy and ML deblurring

algorithms are used is the same, in which the same three faces were identified. Using the

Regularisation algorithm to deblur the image before processing it through the feature

detector improved the detection considerably. Six out of the eight faces were detected in

this case. The best detection performance, using the basic methods, was achieved using

the Wiener algorithm where seven faces were detected.

The performance of the feature detector on a deblurred image using the statistical meth-

ods, methods of Shearer et al. [4], Babacan et al. [5] and Perrone and Favaro [3] are shown

in Figure 7.18. The results show that the use of the Perrone and Favaro algorithm to

deblur the image worsened the feature detector’s performance while the use of the Baba-

can et al. [5] algorithm made no difference to the feature detection. The exception of

these methods is Shearer et al. [4]. Using the deblurring algorithm of Shearer et al. [4],

the performance of the detector improved with a detection of four faces out of the eight

faces. The performance of the statistical deblurring methods in general was worse than

that of the basic deblurring algorithms. However the performance of the Shearer et

al. [4] deblurring algorithm was marginally better than the Richardson-Lucy and ML

methods, with four faces being detected rather than three.

Figure 7.19 shows the results obtained from the feature detector when the algebraic

deblurring methods were used to recover the image. The feature detector identified
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Figure 7.16: The face detector results using (a) the original image and (b) the blurred
image.

all eight faces in the deblurred image. This shows that the algebraic methods are far

superior to the statistical and the basic state-of-the-art deblurring methods.

In order to further confirm the performance of the deblurring algorithms, the true image

was processed with an increasing size of PSF function, from size 3 × 3 to size 55 × 55.

Each of the blurred images is then recovered using the nine deblurring algorithms. The

recovered images are then processed with the face feature detector. The ratio of the

number of faces detected are plotted in Figure 7.20.

The figure shows that when the statistical methods are used to recover the true image,

the face detection performance deteriorated as the PSF increased. The detection ratio

dropped to zero faces as the PSF size increased to size 23× 23. The performance of the

Richardson-Lucy algorithm and the ML algorithm is identical. The face detection ratio

for these methods started with a ratio lower than one (all faces detected) and remained

constant until a PSF size of 23 × 23 where the detection ratio dropped to zero and

remained zero for higher PSF sizes. The regularization and Wiener algorithms showed
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Figure 7.17: The face detector results on a deblurred image using the BID methods
with their function implemented in Matlab.
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Figure 7.18: The face detector results on a deblurred image using the BID methods
based on the statistical methods.

better performance than the other basic and statistical algorithms. The detection ratio

of the Wiener algorithm remained above 50% with a performance better than 50% for

smaller PSF sizes. The regularization algorithm showed an identical performance to

the Wiener algorithm for PSF sizes less than or equal to 23 × 23. However, the ratio

of detection started to deteriorate as the PSF size increased and eventually the ratio

dropped to zero at PSF size 43× 43.

The performance of the linear algebra-based methods is the best, by far, among all the

compared deblurring algorithms, as shown in the figure. The detection rate remained
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Figure 7.19: The face detector results on a deblurred image using the BID methods
based on linear algebra methods.

close to 100%. The APF algorithm showed 100% performance for all the PSF function

sizes. The algorithm performance of Li et al.’s [1, 2] method fluctuated between 90%

and 100% detection rates. This shows that the developed APF algorithm image recovery

quality is very close to the true image. The face detection ratio remained constant with

a 100% detection rate for all PSF sizes, from size 3 × 3 to size 55 × 55. Real blurred

images are rarely blurred with PSF of size 55 × 55 or more. This shows that the APF

method is faithfully able to deconvolve the components of the blurring function from

the components of the true image even when the blurring is high.

7.2.4.2 Circle feature detection performance

In this section the effects of additive noise N (error in the image) and measurement

error E (error in the true PSF) on the deblurring algorithms’ performance is investigated

through the use of a circle detection algorithm. The noise and measurement error in the

blurred image are modelled as follows:
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Figure 7.20: The performance of the face feature detector on a deblurred image using
BID methods.

G = F ⊗ (H+ E) +N . (7.3)

The circle detection algorithm used is the imfindcircles.m function implemented in

Matlab image processing toolbox. This function uses the circular Hough transform to

find the centres and radii of circles in an image. This function takes a range parameter

that specifies the minimum and maximum value for the radii of interest.

For this experiment a true image of size 300×205 is used. The image contains a number

of circles with different radii and centres as shown in Figure 7.21. This image is processed

through the circle finder, which returned a set of eighteen circles. For each circle the

center and radius is returned in float number format.

To measure the performance of the deblurring algorithms, the true image is processed

with a separable Gaussian PSF of size 35× 35, measurement error of ε = 1× 10−8, and

an additive noise of ε = 1× 10−7. The resulting image is then used as an input for the

nine deblurring algorithms.
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Figure 7.21: The result of the circle detector using (a) the original image and (b) the
blurred image.

The deblurred images that result from the nine deblurring algorithms are then processed

in the circle finder algorithm. The detection performance when the Richardson-Lucy,

Regularisation, ML and Wiener deblurring algorithms are used is shown in Figures 7.22.

Sixty-five out of the eighteen circles were detected when the Richardson-Lucy and ML

algorithms were used. Using the Regularisation algorithm to deblur the image before

processing it through the feature detector resulted in worsening the detection. Seventy-

six circles were detected in this case. The best detection performance, using the basic

methods, was achieved using the Wiener algorithm, where thirty-eight circles were de-

tected.

The performance of the feature detector on a deblurred image using the statistical meth-

ods, methods of Shearer et al. [4], Babacan et al. [5] and Perrone and Favaro [3] are shown

in Figure 7.23. The results show that the use of the method of Shearer et al. to deblur

the image worsened the feature detector performance by detecting seventy-eight circles

while the use of Babacan et al.’s [5] algorithm provided forty-three detector circles. The

use of Perrone and Favaro’s method to deblur the image provided sixty-two detector

circles.

The performance of the linear algebra-based methods is the best, by far, among all the

compared deblurring algorithms, as shown in Figure 7.24. The APF algorithm was able

to detect the eighteen circles with no extra circles being detected, while Li et al.’s [1, 2]

method detected nineteen out of the eighteen circles. This shows that the developed
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Figure 7.22: The result of the circle detector on a deblurred image using the BID
methods with their function implemented in Matlab

Figure 7.23: The results of the circle detector on a deblurred image using the BID
methods based on the statistical methods.
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APF algorithm image recovery quality is very close to the true image. This shows that

the APF method is faithfully able to deconvolve the components of the blurring function

from the components of the true image even in the presence of high additive noise and

measurement error.

Figure 7.24: The circle detector results on a deblurred image using the BID methods
based on linear algebra methods.

The results of the circle finder are then compared and plotted in Figure 7.25. The

horizontal axis represents the deblurring method used whereas the vertical axis shows

the number of circles found. Three colours are used to categorize the results of each

deblurring algorithm. A blue colour represents the number of circles detected exactly,

and a green colour represents the circles found within a tolerance of ±0.5 from the true

value. Circles that are detected outside the tolerance range are represented by a red

colour.

From Figure 7.25, the results of the APF method are shown in the form of thirteen

found circles in blue. This means that the thirteen found circles in the deblurred image

are exactly the ones found in the true image. The figure shows clearly that all the other

deblurring algorithms resulted in a performance that is sub-optimal from that of the

APF algorithm.
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Figure 7.25: The performance of the circle feature detector on a deblurred image
using BID methods.
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7.3 Real Images Processing

In this section the application of the developed algebraic based BID method to three

real blurred images without pre-processing is considered. The three real images used

in this experiment are extracted from Anat Levin database [56, 59]. These images

(image1,image2 and image3)are of size 255× 255 and shown in Figure 7.26.

Figure 7.26: Real blurred image.

The developed BID method was applied to the above three images using the developed

AGCD algorithm. The results of the application of the developed method in the spatial

domain on the three real images failed. The algorithm failed with an exception failure

due to NaN in the AGCD coefficient computation. Once this exception occurred the

algorithm stops and no more results could be obtained. This exception occurred on all

the three experimented images.

The frequency domain application of the AGCD algorithm on the above three images

is considered next. In this method the images are loaded and transformed into the fre-

quency domain before the application of the AGCD algorithm. In this case no exception

failure was encountered, however the resulted deblurred images are visually worse than
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the blurred real images. The results of the frequency domain deblurring of the three

images is shown on Figure 7.27.

Figure 7.27: The result of deblurring the real blurred image.

The above results could have been expected as the algebraic methods are more sensitive

to errors than statistical methods in general. In addition, the developed AGCD algebraic

method requires the presence of the image boundary pixels which results due to the

process of blurring. These boundaries size depends on the type of convolution and the

size of the PSF, as mentioned on Chapter 1. Therefore, a first step for a successful

AGCD deblurring of real blurred images, the boundaries need to be computed first

before applying the AGCD method.

7.4 Summary

The developed BID method is designed to be robust and computationally efficient in the

estimation of the PSF. This is achieved by implementing an AGCD computation method

using APF, which is considered in Chapters 4 and 5. This chapter has examined and

compared the performance of the developed APF method against the state-of-the-art

methods. The analysis and the three sets of experiments considered in this chapter show
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the superiority of the developed method over the state-of-the-art methods in deblurring

artificially blurred images. The experiments in this chapter examine and compare the

performance of the BID methods in recovering the original image by considering different

levels of additive noise, measurement errors and the size of the PSF. Four experiments

have been carried out, using Matlab. Experiment one examines the performance of the

BID methods, including the developed method, in relation to changes in PSF width and

additive noise. Experiment two examines the behaviour of the state-of-the-art methods

in recovering the true image from a blurred image with an unknown PSF size. The third

experiment examines the performance of the developed method against other state-of-

the-art linear algebra methods. Images with different additive noise levels and errors in

PSF were used in this experiment. In all three experiments, an image size of 180× 180

is used.

The application of the developed AGCD BID method to three real blurred images failed

consistently on all three images. In the spatial domain the developed algorithm failed

with NaN exception failure while in the frequency domain the developed method failed

in resulting in a deblurred image that is visually worse than the input image. This

points to the sensitivity of the developed method to boundary condition and the need

to develop a robust algorithm for the computation of these boundaries before applying

the developed method.

Experiment four examines the performance of the deblurring algorithms for feature de-

tection. Face feature detection and circle feature detection experiments are performed

on deblurred images from various deblurring algorithms. Using relative error as a cri-

terion, the error level of the APF method in recovering the true images is considerably

lower than the other developed methods. Also, the APF method show consistency in

computing the PSF and in particular the error in the computation does not depend on

the true size of the PSF.



Chapter 8

Conclusions and Future Work

8.1 Introduction

The blind image deconvolution problem is the central subject of this doctoral thesis.

There are a number of approaches for solving the BID problem, including basic methods,

that were implemented in the image processing toolbox in Matlab, statistical methods,

which are recently developed, and linear algebraic methods. The approach adopted in

this research study for solving this problem falls within the class of linear algebraic

methods. As the acronym of BID suggests, there should be no prior knowledge assumed

about the true image and the PSF. The algebraic approach offers a way of solving

the BID problem without requiring any prior knowledge about the true image. This

chapter presents the overall conclusions for the adopted approach in this research study

for solving the BID problem and also provides suggestions for future research.

8.2 Conclusions

Images play a significant and important role in diverse areas of everyday modern life.

Examples of the areas where the use of images is routine includes medicine, forensic

investigation, engineering applications and astronomical science. The procedures and

190
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methods that depend on image processing would benefit considerably from blur-free

images. Most of the images, unfortunately, are affected by noise and blur that result

from the practical limitations of image sourcing systems. The blurring and noise effects

render the image less useful. An efficient method for image restoration is hence important

for many applications.

The restoration of true images from blurred images is the inverse of the naturally oc-

curring problem of true image convolution by a blurring function. The deconvolution of

images from blurred images is a non-trivial task. One challenge is that the computation

of the PSF is an ill-posed problem, i.e. an infinite number of solutions are possible.

Another challenge is that deconvolution is ill-conditioned. Small perturbations in the

blurred image can lead to a large deviation from the true image. A further challenge

is that most of the practical applications of image restoration require computationally

fast and accurate algorithms in order to be of any practical use.

The performance of the state-of-the-art image restoration methods varies in terms of

computational speed and accuracy. In addition, most of these methods require prior

knowledge about the true image and the blurring function which is, in a significant

number of applications, an impractical requirement. The development of image restora-

tion methods that require no prior knowledge about the true image and the blurring

functions is hence desirable. Previous attempts of developing BID methods resulted in

methods that have robust performance against noise perturbations. Their good perfor-

mance is, however, limited to PSFs of small size. In addition, even for PSF of a small

size, these methods required the size of the PSFs to be known and an estimate of the

noise level present in the blurred image.

A BID method that truly requires no knowledge of the PSF size and noise level present

in the blurred image as well as offers good accuracy and a speedy performance is highly

desirable. Polynomial linear algebra offers a way of computing the PSF size and its com-

ponents without requiring any prior knowledge about the true image and the blurring

PSF. This research study has developed a BID method for image restoration based on
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AGCD computation, specifically, the approximate polynomial factorization APF algo-

rithm. The developed method used the structure preserving Sylvester resultant matrix

algorithm in the computation of the AGCD and QR decomposition for computing the

degree of the AGCD.

Representing images as bivariate polynomials, and assuming that the blurred image is

the result of the convolution of a PSF bivariate polynomial and the true image bivariate

polynomial, enables the use of polynomial linear algebra techniques to extract the true

images from the blurred images. The AGCD represent the PSF and the true image is

the polynomial division of the blurred image by the PSF.

In practice, PSF can be spatially variant or invariant. PSF spatial invariance means

that the blurred image pixels are the convolution of the true image pixels and the same

PSF. Some of the PSF bivariate functions, separable functions, can be further simplified

as the multiplication of two univariate polynomials. This research study is focused on

the invariant separable and non-separable PSF cases.

The developed BID method for restoring images consists of three main processing steps.

The first step is the AGCD degree calculation, followed by the coefficient calculation

of the AGCD, and finally the deconvolution of the true image from the blurred image.

Experiments have been designed and performed to measure the performance of the

developed method and the results were compared to the state-of-the-art methods. The

results show a significant improvement in calculating the PSF size and its component

values as well as an improvement in the restored images quality under perfect boundary

condition. This method allows for the computation of the PSF of variable sizes and is

not limited to small sizes.

Further research work and suggestions are considered in the next section.
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8.3 Suggestion for Future Research

As stated in the previous section, this research study has focused on the case of spatially

invariant PSF. An important case in image deblurring is that of the spatially variant

PSF. The application of the algebraic method for the spatially variant PSF was not

considered in this research study. A future development of the spatially variant PSF

case in the context of algebraic method is needed to further evaluate the applicability of

algebraic method to the BID problem. This area of research is challenging and requires

the development of methods that can compute the PSF size and its component values

in different regions from the blurred image.

Two dimensional convolution, under perfect boundary conditions, has been used to

examine the feasibility of the structure preserving Sylvester resultant matrix and the

Approximate Polynomial Factorisation (APF) for totally BID problem. Natural images

processing requires the estimation of the image’s boundaries. This is another challenging

area for further research. A proposed framework to tackle this area of research is shown

in Figure 8.1. Future research in this area should investigate the feasibility of the existing

extrapolation method in restoring blurred image boundaries or develop methods that

are capable of estimating these boundaries. A boundary size estimation method needs

to be developed in order to extrapolate the boundary pixel value. The performance of

the developed method in this research study should be investigated in relation to this

case of non perfect or estimated boundary conditions.

Figure 8.1: Proposed boundary extrapolation framework for naturally blurred images.

Further research studies should consider the performance of the algebraic based BID

methods in the presence of various levels of additive noise. The research should consider
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the existing denoising methods and their applicability in the deblurring of images using

algebraic methods and the developed method in this research study in particular. It

would be beneficial to see how these methods perform in the presence of a moderate

level of noise. This could be done by denoising naturally or artificially blurred images

before processing them by the developed BID method in a pre-processing stage.

8.4 Summary

In summary, blind image deconvolution is a non-trivial task. The representation of im-

ages through bivariate polynomials opened the way for using linear algebra techniques

to solve this problem, under perfect boundary conditions. This research study imple-

ments an efficient algorithm for BID problem, such that prior knowledge of the blurring

function (PSF) and exact image are not required. The proposed algorithm is designed

to incorporate the identification of PSF and the restoration of the image in two sepa-

rate computational algorithms. The first algorithm computes the blur function from a

blurred image, and is then used in the second algorithm to remove the blur from the

blurred image. This is done by representing the blurred and deblurred images, and the

PSF as bivariate polynomials in which the coefficients are the pixel values. The PSF

is formulated as the approximate greatest common divisor (AGCD) of two degraded

images that are represented by two bivariate polynomials. This research is carried out

using approximate polynomial factorisation (APF) computational algorithms using a

structure-preserving Sylvester resultant matrix method of two polynomials to compute

a robust AGCD. The proposed work differs from other work in that it does not require

any prior knowledge to recover an image from its blurred version.

Results obtained from applying linear algebra techniques to the image deblurring prob-

lem show that these techniques are more effective in removing the blurring effects from

the processed images. Further research recommendations and pointers have been given

in this chapter for future work. For example, considering the performance of the al-

gebraic based BID methods in the presence of various levels of additive noise and for
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blurred image. The completion of these suggested areas of future work would be ben-

eficial to gain a more accurate picture of the strengths and benefits of using algebraic

methods in image deblurring methods.
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