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Abstract

This thesis is concerned with the Mass Transference Principle and its applications in

Diophantine approximation. The Mass Transference Principle, proved by Beresnevich

and Velani in 2006, is a powerful result allowing for the transference of Lebesgue

measure statements for lim sup sets arising from sequences of balls in Rk to Hausdor�

measure statements. The signi�cance of this result is especially prominent in

Diophantine approximation, where many sets of interest arise naturally as lim sup

sets.

We establish a general form of the Mass Transference Principle for systems of

linear forms conjectured by Beresnevich, Bernik, Dodson and Velani in 2009. This

improves upon an earlier result in this direction due to Beresnevich and Velani from

2006. In addition, we present a number of applications of this �new� mass transference

principle for linear forms to problems in Diophantine approximation, some of which

were previously out of reach when using the result of Beresnevich and Velani. These

include a general transference of Lebesgue measure Khintchine�Groshev type theorems

to Hausdor� measure statements. The statements we obtain are applicable in both the

homogeneous and inhomogeneous settings as well as allowing transference under any

additional constraints on approximating integer points. In particular, we establish

Hausdor� measure counterparts of some Khintchine�Groshev type theorems with

primitivity constraints recently proved by Dani, Laurent and Nogueira.

Using a Hausdor� measure analogue of the inhomogeneous Khintchine�Groshev

Theorem (established via the mass transference principle for linear forms), we give

an alternative proof of most cases of a general inhomogeneous Jarník�Besicovitch

Theorem which was originally proved by Levesley in 1998. We additionally show that

without monotonicity Levesley's theorem no longer holds in general.

We conclude this thesis by discussing the concept of a mass transference principle

for rectangles. In particular, we demonstrate how some known results may be extended

using a slicing technique.
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1 | Introduction

In this chapter we gather background information and preliminaries which will be

required throughout as well as give an overview of the contents of subsequent chapters.

Much of this chapter is based on the surveys [4, 6]. For further information we also refer

the reader to the many interesting and classical books on Diophantine approximation

including, but not limited to, [11, 16, 30, 46, 47].

1.1 One Dimensional Approximation

Lying at the heart of Diophantine approximation is the question:

�How well can any given real number be approximated by rational numbers?�

It is well known that rationals are dense in the reals and so one answer to this question

is essentially �as well as you like�. Therefore, we re�ne our question and consider,

for example, how well real numbers can be approximated by rationals with given

denominators.

Trivially, given any real number x and natural number q we can always �nd p ∈ Z
such that ∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

2q

or, equivalently,

|qx+ p| ≤ 1

2
. (1.1)

For aesthetic reasons we shall typically favour this latter formulation.

In fact, this is rather weaker than what is actually always possible. A fundamental

theorem of Dirichlet, the proof of which relies on the pigeonhole principle, provides us

with a much stronger statement.
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Chapter 1. Introduction 9

Theorem 1.1 (Dirichlet [22]). For any x ∈ R and any Q ∈ N, there exist integers p

and q such that 1 ≤ q ≤ Q and

|qx+ p| < 1

Q
.

An immediate consequence of the above theorem is that if we replace the right-hand

side of (1.1) with 1
q
then, although it may not hold for every q ∈ N, for any x ∈ R the

inequality still holds in�nitely often.

Theorem 1.2 (Dirichlet [22]). For any x ∈ R, there exist in�nitely many pairs

(p, q) ∈ Z× N such that

|qx+ p| < 1

q
. (1.2)

From a slightly di�erent viewpoint, we can also consider questions such as: what

can be said about the set of x ∈ R for which (1.2) holds if we replace the right-hand

side with a general function of q?

Given any function ψ : N→ R+, which we call an approximating function, de�ne

A(ψ) := {x ∈ I : |qx+ p| < ψ(q) for in�nitely many pairs (p, q) ∈ Z× N},

where I denotes the unit interval [0, 1]. Here, and throughout, we are using the notation

R+ := [0,∞). The restriction of our attention to points in the unit interval here is

purely for simplicity and causes no loss of generality since the approximation properties

of real numbers are una�ected by integer translations. Similarly, when we consider

approximation in higher dimensions we shall restrict our attention to points in the unit

cube. We refer to the points in A(ψ) as ψ-approximable points. We will be interested

throughout in the �size� of A(ψ) and other related sets. In particular, we will be

concerned with Lebesgue measure, Hausdor� dimension and Hausdor� measures.

For monotonic ψ, a fundamental theorem of Khintchine gives us an elegant criterion

for determining the Lebesgue measure of A(ψ). For a set X ⊂ Rk we will denote by

|X| the k-dimensional Lebesgue measure of X.

Theorem 1.3 (Khintchine [35]). Let ψ : N→ R+ be an approximating function. Then

|A(ψ)| =


0 if

∑∞
q=1 ψ(q) <∞,

1 if
∑∞

q=1 ψ(q) =∞ and ψ is monotonic.
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Remark. The above theorem is a modern improved version of Khintchine's original

theorem (see, for example, [6]). In [35] the stronger condition that qψ(q) is monotonic

was assumed.

An important observation, which will be central to most of what follows, is that

A(ψ) and other sets we will be interested in can be expressed as lim sup sets.

De�nition 1.4. Let (Ai)i∈N be a collection of subsets of a set Y . Then

lim sup
i→∞

Ai := {x ∈ Y : x ∈ Ai for in�nitely many i ∈ N}.

Equivalently,

lim sup
i→∞

Ai :=
∞⋂
k=1

∞⋃
i=k

Ai.

For lim sup sets, the following result from probability theory provides a su�cient

condition for the set to have Lebesgue measure zero.

Lemma 1.5 (Borel�Cantelli Lemma). Let (Ω,m) be a �nite measure space and let

(Ai)i∈N be a sequence of m-measurable sets in Ω. If

∞∑
i=1

m(Ai) <∞,

then

m(lim sup
i→∞

Ai) = 0.

To see this, suppose we are given an arbitrary ε > 0. Then, we can choose N ∈ N
such that

∑
i≥N m(Ai) < ε. Finally, since lim supi→∞Ai ⊂

⋃
i≥N Ai, it follows by the

subadditivity of measures that

m

(
lim sup
i→∞

Ai

)
≤ m

(⋃
i≥N

Ai

)
≤
∑
i≥N

m(Ai) < ε.

Similar covering arguments to this one used to prove the Borel�Cantelli Lemma

are fairly standard and appear relatively often in Diophantine approximation. They

are often used for establishing the �convergence� part of statements like Khintchine's

Theorem, as we shall now demonstrate. Indeed, we shall see this kind of argument

appearing in a variety of settings throughout these pages.
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Returning to the set A(ψ), let B(x, r) denote a ball in R (i.e. an interval) of

radius r centred at x. For each (p, q) ∈ Z × N with B
(
p
q
, ψ(q)

q

)
∩ I 6= ∅, de�ne

B(p,q)(ψ) := B
(
p
q
, ψ(q)

q

)
∩ I. Then,

A(ψ) = lim sup
(p,q)

B(p,q)(ψ).

Suppose, for the moment, that
∑∞

q=1 ψ(q) <∞. Thus, we must have ψ(q)→ 0 as

q →∞ and, therefore, it follows that

∑
(p,q)∈Z×N

B(p,q)(ψ)∩I 6=∅

|B(p,q)(ψ)| �
∞∑
q=1

q · 2ψ(q)

q
= 2

∞∑
q=1

ψ(q) <∞.

Remark. Here, and throughout, we are using the standard Vinogradov notation. Thus,

we write A � B if A ≤ cB for some positive constant c and A � B if A ≥ c′B for

some positive constant c′. Finally, if A� B and A� B we write A � B and say that

A and B are comparable.

The convergence part of Khintchine's Theorem follows on taking Ω = I and m

to be Lebesgue measure in the Borel�Cantelli Lemma. Notice that, in deriving the

convergence part of Khintchine's Theorem, we have not required any monotonicity

assumptions on the approximating function ψ. Statements like Khintchine's Theorem,

so-called �zero-one� laws, with the measure of a set depending on the convergence or

divergence of a certain sum, appear quite frequently for sets of interest in Diophantine

approximation. It is often the case that the convergence parts of such statements

follow from the Borel�Cantelli Lemma and require no monotonicity assumptions.

On the other hand, a counter-example constructed by Du�n and Schae�er [25]

shows that the monotonicity assumption is absolutely crucial in the divergence part

of Khintchine's Theorem. They constructed a function θ : N → R+ for which∑∞
q=1 θ(q) =∞, yet |A(θ)| = 0. At the same time, they also posed a conjecture

on what should be true when considering general (not necessarily monotonic)

approximating functions.

For an approximating function ψ : N → R+, let A′(ψ) denote the set of points

x ∈ I for which the inequality

|qx+ p| < ψ(q)

is satis�ed for in�nitely many pairs (p, q) ∈ Z× N with gcd(p, q) = 1.
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It follows from the Borel�Cantelli Lemma that

|A′(ψ)| = 0 if
∞∑
q=1

ϕ(q)
ψ(q)

q
<∞,

where ϕ(q) is the standard Euler function; recall that ϕ : N → N is de�ned by

ϕ(q) = #{1 ≤ p ≤ q : gcd(p, q) = 1}.

Du�n and Schae�er predicted that the complementary divergence statement

should also be true.

Conjecture 1.6 (Du�n�Schae�er Conjecture [25]). Let ψ : N → R+ be any

approximating function and denote by ϕ(q) the Euler function. If

∞∑
q=1

ϕ(q)
ψ(q)

q
=∞ then |A′(ψ)| = 1.

Remark 1.7. Cassels [15] and Gallagher [27] have shown, respectively, that |A(ψ)| and
|A′(ψ)| only take the values 0 or 1. As a consequence of this, in order to establish the

Du�n�Schae�er Conjecture, it would su�ce to show that |A′(ψ)| > 0 which seems

more achievable than showing directly that |A′(ψ)| = 1.

In the same paper, Du�n and Schae�er proved their conjecture subject to an

additional assumption.

Theorem 1.8 (Du�n�Schae�er Theorem [25]). Let ψ : N → R+ be any

approximating function and denote by ϕ(q) the Euler function. Suppose that

∞∑
q=1

ϕ(q)
ψ(q)

q
=∞

and, additionally,

lim sup
Q→∞

∑Q
q=1 ϕ(q)ψ(q)

q∑Q
q=1 ψ(q)

> 0. (1.3)

Then, |A′(ψ)| = 1.
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1.2 Simultaneous Approximation

In higher dimensions, instead of rational numbers, we can consider how well points in

Rm can be approximated by rational points, i.e. vectors in Rm where all of the entries

are rational. In this case, given an approximating function ψ : N→ R+, we let Am(ψ)

denote the set of points x ∈ Im such that

|qx + p| < ψ(q) (1.4)

for in�nitely many pairs (p, q) ∈ Zm × N. Here, | · | is the supremum norm, i.e.

|qx + p| = max
1≤i≤m

|qxi + pi|.

We refer to points in Am(ψ) as simultaneously ψ-approximable points. Note that

A1(ψ) = A(ψ).

In the setting of simultaneous approximation, we have the following analogue of

Dirichlet's Theorem (Theorem 1.1) � see, for example, [6, 46].

Theorem 1.9 (Higher-Dimensional Dirichlet [22]). For any x = (x1, . . . , xm) ∈
Rm and Q ∈ N, there exists (p, q) ∈ Zm × N with 1 ≤ q ≤ Q such that

|qx + p| < 1

Q
1
m

.

In line with how Theorem 1.2 follows from Theorem 1.1, the next statement is a

corollary to Theorem 1.9.

Theorem 1.10 (Dirichlet [22]). For any x ∈ Rm, there exist in�nitely many pairs

(p, q) ∈ Zm × N such that

|qx + p| < 1

q
1
m

.

In particular, Am(q 7→ q−
1
m ) = Im.

For more general approximating functions, Khintchine also extended his

one-dimensional theorem to the setting of simultaneous approximation.

Theorem 1.11 (Khintchine [36]). Let ψ : N → R+ be an approximating function.
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Then

|Am(ψ)| =


0 if

∑∞
q=1 ψ(q)m <∞,

1 if
∑∞

q=1 ψ(q)m =∞ and ψ is monotonic.

Remark. As with the one dimensional case, Khintchine again had stronger

monotonicity conditions on his original statement of this theorem in [36]. For this

modern version see, for example, [6].

As in the one-dimensional case, the convergence part of Khintchine's Theorem is a

consequence of the Borel�Cantelli Lemma and requires no monotonicity assumptions.

Unlike in the one-dimensional case though, monotonicity is not needed at all in

Theorem 1.11 when m ≥ 2, not even for the divergence case. That this is the case is

due to a result of Gallagher. To state Gallagher's result, let us denote by A′m(ψ) the

set of x ∈ Im such that (1.4) is satis�ed for in�nitely many (p, q) ∈ Zm ×N such that

gcd(p1, p2, . . . , pm, q) = 1. Note that A′1(ψ) = A′(ψ).

Theorem 1.12 (Gallagher [28]). Let m ≥ 2. For any approximating function

ψ : N→ R+,

|A′m(ψ)| = 1 if
∞∑
q=1

ψ(q)m =∞.

Note that A′m(ψ) ⊂ Am(ψ). In particular, if |A′m(ψ)| = 1, then |Am(ψ)| = 1.

Thus, combining Gallagher's Theorem with Khintchine's Theorem (Theorem 1.11)

completely removes any monotonicity conditions from the latter whenever m ≥ 2.

Theorem 1.13 (Khintchine + Gallagher). Let m ≥ 2 and let ψ : N → R+ be an

approximating function. Then

|Am(ψ)| =


0 if

∑∞
q=1 ψ(q)m <∞,

1 if
∑∞

q=1 ψ(q)m =∞.

We conclude this section by mentioning the analogue of the Du�n�Schae�er

Conjecture for simultaneous approximation. In order to do so, let us denote by A′′m(ψ)

the set of points x ∈ Im for which the inequality (1.4) is satis�ed for in�nitely many

(p, q) ∈ Zm × N which also have gcd(pi, q) = 1 for all 1 ≤ i ≤ m. The following

conjecture, which includes the Du�n�Schae�er Conjecture (since A′′1(ψ) = A′(ψ))
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and naturally extends it to the setting of simultaneous approximation, was formulated

by Sprindºuk [47, Chapter 1, Section 8].

Conjecture 1.14 (Higher-Dimensional Du�n�Schae�er Conjecture [47]). Let

ψ : N→ R+ be any approximating function and denote by ϕ(q) the Euler function. If

∞∑
q=1

ϕ(q)m
ψ(q)m

qm
=∞ then |A′′m(ψ)| = 1.

For m > 1, Sprindºuk's conjecture (Conjecture 1.14) was proved in the a�rmative

by Pollington and Vaughan [41]. Meanwhile, the Du�n�Schae�er Conjecture in the

case of one-dimensional approximation still represents one of the most signi�cant,

unresolved, and long-standing conjectures in Diophantine approximation.

As well as being extended to higher dimensions, giving us the theory of

simultaneous approximation, the fundamental theorems of Dirichlet and Khintchine

have also been generalised in numerous other directions. In later chapters we will

be particularly interested in generalisations of these theorems in two directions.

Analogues of these results in the setting of approximation by linear forms will be

mentioned in Chapter 3, and in Chapter 5 we shall provide some discussion of the

theory of weighted simultaneous approximation. To some extent, in Chapter 3,

we will also be interested in inhomogeneous approximation and approximation with

restrictions imposed on the �approximating points�.

Aside from those mentioned, there is a vast array of other directions in which the

results from these �rst two sections have been generalised. For much more extensive

surveys of such results we refer the reader to, for example, [4, 6] and references therein.

1.3 Limitation of Lebesgue Measure

In Diophantine approximation, there exist many elegant zero-one laws, such as

Khintchine's Theorem, which give simple criteria � usually the convergence or

divergence of a certain sum � for determining the Lebesgue measure of sets of interest.

While these results are quite attractive, we will present in this section an illustrative

example which demonstrates a limitation of such statements. In particular, such

statements do not allow us to distinguish further between sets which have Lebesgue

measure zero even when, intuitively, we may have good reason to believe that the

sets under consideration are not the same �size�. For example, let us consider the
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approximating function ψ : N → R+ de�ned by ψ(q) = q−τ for some τ > 0. In this

case we write A(τ) in place of A(ψ) and refer to the points in A(τ) as τ -approximable

points. By Khintchine's Theorem we see that if τ > 1 then |A(τ)| = 0. However,

for any τ1 < τ2 we have A(τ2) ⊂ A(τ1) and intuitively one would expect that as τ

increases the size of A(τ) should decrease. Nevertheless, all that can be inferred from

Khintchine's Theorem is that for any τ > 1 the set of τ -approximable points has

Lebesgue measure zero.

In order to distinguish such sets we have to appeal to a measure �ner than Lebesgue

measure. For this purpose we consider Hausdor� dimension and, more generally,

Hausdor� measures. In the next section we will provide the de�nitions and some

properties of Hausdor� measures and dimension. In the subsequent section we will

provide statements which allow us to distinguish sets such as the τ -approximable

points via Hausdor� measures and dimension.

1.4 Hausdor� Measures and Dimension

In this section we give a brief account of Hausdor� measures and dimension.

Throughout, by a dimension function we shall mean a left continuous, non-decreasing

function f : R+ → R+ such that f(r) → 0 as r → 0 . We say that f is doubling if

there exists a constant λ > 1 such that for x > 0 we have f(2x) ≤ λf(x).

Given a ball B := B(x, r) in Rk with respect to some norm ‖ · ‖ on Rk, we de�ne

V f (B) := f(r)

and refer to V f (B) as the f -volume of B. Alternatively, we could consider balls with

respect to a metric on Rk but here, for the most part, we will just be concerned with

balls determined by norms. Note that if | · | is the k-dimensional Lebesgue measure,

‖·‖ is the Euclidean norm on Rk, and f(x) = |B(0, 1)|xk, then V f is simply the volume

of B in the usual geometric sense; i.e. V f (B) = |B|. In the case when f(x) = xs for

some s ≥ 0, we write V s for V f .

The Hausdor� f -measure with respect to the dimension function f will be denoted

by Hf and is de�ned as follows. Suppose F is a subset of Rk. For ρ > 0, a ρ-cover for

F is a countable collection {Bi} of balls in Rk with radii r(Bi) ≤ ρ for each i such that

F ⊂
⋃
iBi. Clearly such a cover exists for every ρ > 0. For a dimension function f ,
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de�ne

Hf
ρ(F ) := inf

{∑
i

V f (Bi) : {Bi} is a ρ-cover for F

}
.

The Hausdor� f -measure, Hf (F ), of F with respect to the dimension function f

is de�ned by

Hf (F ) := lim
ρ→0
Hf
ρ(F ) = sup

ρ>0
Hf
ρ(F ) .

Observe that, for a given f , this limit exists (but may be in�nite) since the quantity

Hf
ρ(F ) is non-decreasing as ρ → 0. This is because as ρ decreases the number of

available ρ-covers also decreases.

We note that the precise value of Hf (F ) may vary depending on the norm

with which Rk is endowed. While it should be clear from the context which norm

is being used, it is worth noting that we are usually interested in the supremum

norm when discussing simultaneous approximation. For considering approximation

by linear forms, in Chapter 3 we de�ne another speci�c norm (3.1) which turns out

to be particularly convenient. If we have the further assumption that the dimension

function f is doubling, then the Hausdor� measure only varies by a constant when

the underlying norm is changed. In particular, if we are dealing with sets which

have either zero or in�nite Hausdor� f -measure, then the underlying norm becomes

essentially irrelevant in this case.

A simple consequence of the de�nition of Hf is the following useful fact (see, for

example, [26]).

Lemma 1.15. If f and g are two dimension functions such that the ratio f(r)
g(r)
→ 0 as

r → 0, then Hf (F ) = 0 whenever Hg(F ) <∞.

Proof. Let ε > 0 and choose ρ > 0 such that f(r)
g(r)

< ε for all r < ρ. By de�nition, we

have

Hf
ρ(F ) = inf

{∑
i

V f (Bi) : {Bi} is a ρ-cover for F

}

= inf

{∑
i

V f (Bi)

V g(Bi)
V g(Bi) : {Bi} is a ρ-cover for F

}

< ε inf

{∑
i

V g(Bi) : {Bi} is a ρ-cover for F

}
= εHg

ρ(F ).

The result follows on letting ρ→ 0 and noting that ε was chosen to be arbitrary.
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Often we are interested in Hausdor� dimension and the classical Hausdor�

s-measure. The Hausdor� s-measure, which we denote by Hs, can be obtained by

letting f(r) = rs (s ≥ 0). The Hausdor� dimension of a set F , dimH F , is then

de�ned as

dimH F = inf
{
s > 0 : Hs(F ) = 0

}
.

One interesting property of Hausdor� measure is that, for subsets of Rk, Hk is

a constant multiple of the k-dimensional Lebesgue measure. Indeed, these constants

are known explicitly � see [26]. However, it will su�ce for us to know that Hk is

comparable to the k-dimensional Lebesgue measure.

For Hausdor� s-measures, there exists a kind of analogue of the Borel�Cantelli

Lemma, christened the Hausdor��Cantelli Lemma by Bernik and Dodson [11], which

gives a su�cient criterion for a set F , which is or is a subset of a lim sup set, to have

Hs(F ) = 0. This immediately also yields an upper bound for Hausdor� dimension.

Lemma 1.16 (Hausdor��Cantelli Lemma). Let (Ei)i∈N be a sequence of subsets

in Rk with diameter di → 0 as i→∞. Suppose that, for some s > 0 we have that

∞∑
i=1

dsi <∞.

Then,

Hs

(
lim sup
i→∞

Ei

)
= 0.

In particular,

dimH

(
lim sup
i→∞

Ei

)
≤ s.

Proof. For each i ∈ N, let Bi be a ball of radius di which covers Ei. Let ε > 0 and

ρ > 0 be arbitrary.

Let N ∈ N be such that
∑

i≥N d
s
i < ε and di < ρ for all i ≥ N . This is possible

due to the assumptions that
∑∞

i=1 d
s
i <∞ and di → 0.

Note that
⋃
i≥N Bi is a ρ-cover for lim supi→∞Ei. Hence, we have

Hs
ρ(lim sup

i→∞
Ei) ≤

∑
i≥N

r(Bi)
s =

∑
i≥N

dsi < ε.
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Since ε > 0 and ρ > 0 were chosen arbitrarily it follows that

Hs

(
lim sup
i→∞

Ei

)
= 0.

Furthermore, by the de�nition of Hausdor� dimension it follows that

dimH

(
lim sup
i→∞

Ei

)
≤ s.

Remark. By the same argument one can prove similar statements for more general

Hausdor� f -measures.

One of the advantages of Hausdor� dimension is that, in many cases, it allows us to

distinguish sets of Lebesgue measure zero. Lebesgue null sets, i.e. sets X with |X| = 0,

can still have intricate geometric structure and, as discussed, may not necessarily be

of the same size. By appealing to the Hausdor� dimension of such sets we can often

quickly get an indication of their relative size.

If we are faced with two sets, X and Y , with the same Hausdor� dimension, we can

next appeal to their Hausdor� s-measure at the critical value dimHX = dimH Y = s

to see if that provides a way of distinguishing their size. However, it is worth noting

that, computing Hausdor� s-measures is typically more complicated that determining

Hausdor� dimension.

While Hausdor� dimension and Hausdor� s-measures help us to say much more

about the size of sets than Lebesgue measure often can, sometimes we may desire an

even sharper indication of the size or dimension of a set. This is where Hausdor�

f -measures come into play. If we stumble across sets X and Y which, as well as

having the same (trivial) Lebesgue measure, have the same Hausdor� dimension

dimH X = dimH Y = s and furthermore satisfy Hs(X) = Hs(Y ), there may still be

a dimension function f such that X and Y can be distinguished via their Hausdor�

f -measure. For an explicit example of two such sets, see [48, Chapter 1].

For further information regarding Hausdor� measures and dimension we refer the

reader to [26, 40, 43].
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1.5 Theorems of Jarník and Besicovitch

With the de�nitions of Hausdor� measures and dimension now at our disposal, we

return to our example from Section 1.3. While Lebesgue measure proved to be

insu�cient for allowing us to distinguish between sets of τ -approximable points for

values of τ > 1, we have somewhat more luck if we consider the Hausdor� dimensions

of these sets. The following theorem, proved independently by both Jarník and

Besicovitch, indicates that our earlier intuition, that A(τ) should get �smaller� as

τ increases, is correct.

Theorem 1.17 (Jarník�Besicovitch Theorem, Jarník [33], Besicovitch [12]). Let

τ > 1. Then

dimH(A(τ)) =
2

τ + 1
.

As predicted, at least if we look at these sets from the perspective of Hausdor�

dimension, the above theorem shows that as τ increases the size of A(τ) decreases. In

a further study, Jarník later proved a much stronger statement regarding the Hausdor�

measures of more general sets of ψ-approximable points.

Theorem 1.18 (Jarník's Theorem, Jarník [34]). Let ψ : N → R+ be an

approximating function and let f be a dimension function such that r−mf(r) → ∞
as r → 0 and the function r−mf(r) is decreasing. Then

Hf (Am(ψ)) =


0 if

∑∞
q=1 q

mf
(
ψ(q)
q

)
<∞,

∞ if
∑∞

q=1 q
mf
(
ψ(q)
q

)
=∞ and ψ is monotonic.

Remark 1.19. The statement we give here is a modern-day improvement on Jarník's

original theorem, which required the additional hypotheses that rψ(r)m is decreasing,

rψ(r)m → 0 as r → ∞ and rm+1f
(
ψ(r)
r

)
is decreasing. However, in [5] it was shown

that monotonicity of ψ su�ces in Jarník's Theorem, thus leaving us with the above

�cleaner� statement.

Now, considering the case when m = 1 and f(r) = rs for s ∈ (0, 1), Jarník's
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Theorem tells us that

Hs(A(τ)) =


0 if

∑∞
q=1 q

1−sτ−s <∞,

∞ if
∑∞

q=1 q
1−sτ−s =∞.

From here we can easily recover the Jarník�Besicovitch Theorem. Furthermore, we

gain the additional information that H
2
τ+1 (A(τ)) = ∞, which the Jarník�Besicovitch

Theorem alone does not yield. By a similar argument, Jarník's Theorem

also allows for the easy inference of information about the Hausdor� dimension

of sets of simultaneously τ -approximable points in higher dimensions. Let

Am(τ) := Am(q 7→ q−τ ) denote the set of τ -approximable points in Rm. Then, the

following is an immediate consequence of Jarník's Theorem.

Theorem 1.20 (Jarník [34]). For τ > 1
m
,

dimH(Am(τ)) =
m+ 1

τ + 1
and H

m+1
τ+1 (Am(τ)) =∞.

Despite the generality of Jarník's Theorem, a consequence of the assumption that

r−mf(r)→∞ as r → 0 is that Jarník's Theorem does not cover the natural case where

f(r) = rm. Nevertheless, following the improvements on Jarník's Theorem made in

[5], the modern versions of the theorems of Khintchine (Theorem 1.11) and Jarník

(Theorem 1.18) can be combined into the following unifying statement which can be

thought of as the Hausdor� measure analogue of Khintchine's Theorem.

Theorem 1.21 (Khintchine�Jarník Theorem [5]). Let ψ : N → R+ be an

approximating function and let f be a dimension function such that r−mf(r) is

monotonic. Then

Hf (Am(ψ)) =


0 if

∑∞
q=1 q

mf
(
ψ(q)
q

)
<∞,

Hf (Im) if
∑∞

q=1 q
mf
(
ψ(q)
q

)
=∞ and ψ is monotonic.

While, on the surface, it appears that the Khintchine�Jarník Theorem is a

consequence of combining two independent results � Khintchine's Theorem for

Lebesgue measure and Jarník's Theorem for Hausdor� measures � there is actually

a much deeper connection. It turns out that Khintchine's Theorem implies Jarník's
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Theorem and so, in fact, Khintchine's Theorem alone underpins the Khintchine�Jarník

Theorem. That is, a statement about Lebesgue measure implies a seemingly more

general statement about Hausdor� measures. This is especially surprising given

that our motivation for considering Hausdor� measure in the �rst place was because

we were �nding that Lebesgue measure was not giving us su�cient information.

This implication is just one of the surprising consequences of the Mass Transference

Principle, which will be introduced in the next section.

As with the Lebesgue measure statements of Dirichlet and Khintchine, the

Hausdor� measure results of Jarník and Besicovitch have also been generalised in

various directions. Again, we will be interested in the extensions of these results to

the setting of approximation by linear forms in Chapters 3 and 4, and in Chapter 5

we will encounter some results analogous to the Jarník�Besicovitch Theorem in the

context of weighted simultaneous approximation.

1.6 The Mass Transference Principle

Originally discovered by Beresnevich and Velani in 2006, the Mass Transference

Principle is a remarkable result which allows us to transfer a Lebesgue measure

statement for a lim sup set de�ned by a sequence of balls in Rk to a Hausdor� measure

statement for a related lim sup set. Over the intervening years since its initial discovery,

the Mass Transference Principle has become an important tool in metric Diophantine

approximation. This is largely because, as alluded to earlier, many sets of interest in

Diophantine approximation arise as lim sup sets.

In this section we present statements of the Mass Transference Principle and the

more general theorem proved by Beresnevich and Velani in [7]. In Section 1.7 we will

touch upon a couple of applications and some surprising consequences associated with

the Mass Transference Principle.

We take this opportunity to remark that the Mass Transference Principle is the

basis for the rest of what will be discussed in this thesis. More speci�cally, the main

result of this thesis (Theorem 2.2) is an extension of the Mass Transference Principle

to systems of linear forms. Furthermore, the proof of Theorem 2.2 presented in the

next chapter is based heavily on the proof of the Mass Transference Principle given

in [7]. In the subsequent two chapters, various applications of Theorem 2.2 will be

discussed. The �nal chapter of this thesis will also be concerned with generalisations of
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the Mass Transference Principle in another direction, to rectangles, which is of interest

for weighted simultaneous approximation.

1.6.1 The Mass Transference Principle

To state the Mass Transference Principle we �rst introduce a little extra notation.

Given a dimension function f : R+ → R+ and a ball B := B(x, r) in Rk of radius r

centred at x, let Bf := B(x, f(r)
1
k ). We write Bs instead of Bf if f(x) = xs for some

s > 0. In particular, we have Bk = B.

Theorem 1.22 (Mass Transference Principle, Beresnevich � Velani [7]). Let

{Bj}j∈N be a sequence of balls in Rk with r(Bj)→ 0 as j →∞. Let f be a dimension

function such that x−kf(x) is monotonic and let Ω be a ball in Rk. Suppose that, for

any ball B in Ω,

Hk
(
B ∩ lim sup

j→∞
Bf
j

)
= Hk(B) .

Then, for any ball B in Ω,

Hf
(
B ∩ lim sup

j→∞
Bk
j

)
= Hf (B) .

Remark. Strictly speaking, the statement of the Mass Transference Principle given

initially by Beresnevich and Velani, [7, Theorem 2], corresponds to the case where Ω

is taken to be Rk in Theorem 1.22. The statement we have opted to give above is a

consequence of [7, Theorem 2].

The Mass Transference Principle allows us to transfer a Lebesgue measure

statement for a lim sup set of balls to a Hausdor� measure statement for a lim sup

set of balls which are obtained by �shrinking� the original balls in a certain manner

according to f . This is a remarkable result given that Lebesgue measure can be

considered to be much �coarser� than Hausdor� measure.

The motivation which led to the Mass Transference Principle was a desire to

�nd a general Hausdor� measure analogue of the Du�n�Schae�er Conjecture (see

Conjectures 1.6 and 1.14). We shall elaborate on this, together with some other

applications of the Mass Transference Principle, in the next section.
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1.6.2 A more general mass transference principle

In addition to the Mass Transference Principle, which is in itself a truly remarkable

result, Beresnevich and Velani also record in [7] a natural generalisation which allows

for the transference of Hg measure statements to Hf measure statements for lim sup

sets of balls in a locally compact metric space. We now make this more precise.

Let (X, d) be a locally compact metric space and let g be a doubling dimension

function. Recall that we say g is doubling if there exists a constant λ > 1 such that

for x > 0 we have g(2x) ≤ λg(x). Furthermore, suppose that there exist constants

0 < c1 < 1 < c2 <∞ and r0 > 0 such that

c1g(r) ≤ Hg(B(x, r)) ≤ c2g(r)

for any ball B = B(x, r) with centre x ∈ X and radius r ≤ r0. In this case, given a

ball B := B(x, r) and any dimension function f we de�ne Bf,g := B(x, g−1f(r)). Note

that Bg,g = B.

Theorem 1.23 (Beresnevich � Velani [7]). Let (X, d) be a locally compact metric

space and let g be a doubling dimension function. Let {Bj}j∈N be a sequence of balls

in X with r(Bj) → 0 as j → ∞ and let f be a dimension function such that f(x)
g(x)

is

monotonic. Suppose that, for any ball B in X,

Hg(B ∩ lim sup
j→∞

Bf,g
j ) = Hg(B).

Then, for any ball B in X, we have

Hf (B ∩ lim sup
j→∞

Bg,g
j ) = Hf (B).

In the case that g(x) = xk andX = Rk, Theorem 1.23 precisely matches the original

statement of the Mass Transference Principle given by [7, Theorem 2]. However,

Theorem 1.23 is applicable in more general settings. For example, by taking X to be

the middle-third Cantor set in Theorem 1.23, Levesley, Salp, and Velani [39] have used

Theorem 1.23 as a tool for proving an assertion of Mahler on the existence of very well

approximable numbers in the middle-third Cantor set. We shall revisit this particular

application of Theorem 1.23 in Section 1.7.4.
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1.7 Some Consequences of the Mass Transference Principle

In this section we mention a few notable consequences of the Mass Transference

Principle. First, we will discuss the Hausdor� measure analogue of the Du�n�Schae�er

Conjecture, which gave rise to the discovery of the Mass Transference Principle in the

�rst place. Then we will show how the Mass Transference Principle can be used to

deduce Jarník's Theorem given Khintchine's Theorem and how the Jarník�Besicovitch

Theorem actually follows already from Dirichlet's Theorem. We will conclude this

section by mentioning one application of the more general mass transference principle

(Theorem 1.23) stated in the previous section.

1.7.1 Hausdor� measure Du�n�Schae�er Conjecture

In [7], Beresnevich and Velani proposed a version of the Du�n�Schae�er Conjecture for

Hausdor� measures. Their statement naturally extends Conjecture 1.14 and, according

to them, represents �the `real' problem and the truth of which yields a complete metric

theory�. The Mass Transference Principle further supports this view and was used to

show that, in fact, the Du�n�Schae�er Conjecture for Lebesgue measure gives rise to

the more general analogous statement for Hausdor� measures.

Throughout this section, we will assume that any dimension function f satis�es the

hypothesis that r−mf(r) is monotonic. Recall that A′′m(ψ) denotes the set of points

x ∈ Im for which the inequality (1.4) is satis�ed for in�nitely many (p, q) ∈ Zm × N
which also have gcd(pi, q) = 1 for all 1 ≤ i ≤ m. Before we present the Du�n�Schae�er

Conjecture for Hausdor� measures, we �rst make the following observation.

Observation 1.24. Denote by ϕ the standard Euler function. If

∞∑
q=1

f

(
ψ(q)

q

)
ϕ(q)m <∞, (1.5)

then

Hf (A′′m(ψ)) = 0.

Proof. This observation can be established via a relatively easy covering argument.

We �rst note that, without loss of generality, we may assume that ψ(q)
q
→ 0 as q →∞.

Suppose that this is not the case, then there must exist some c > 0 such that ψ(q)
q
> c
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for in�nitely many q ∈ N. Therefore, in order for the sum in (1.5) to converge, there

must be some c′ > 0 such that f(x) = 0 for all x < c′. Consequently, we must have

Hf (X) = 0 for any set X ⊂ Rm. In particular, Hf (A′′m(ψ)) = 0 in this case and so we

may assume that ψ(q)
q
→ 0 as q →∞, as claimed.

For each (p, q) ∈ Zm × N with B
(

p
q
, ψ(q)

q

)
∩ Im 6= ∅, let B(p,q)(ψ) := B

(
p
q
, ψ(q)

q

)
be the ball in Rm (with respect to the supremum norm) centred at p

q
with radius ψ(q)

q
.

Now, let ρ > 0 be arbitrary and let Q(ρ) ∈ N be such that ψ(q)
q

< ρ for every

q ≥ Q(ρ). Observe that ⋃
q≥Q(ρ)

⋃
p∈Zm:

gcd(pi,q)=1, 1≤i≤m
B(p

q
,
ψ(q)
q )∩Im 6=∅

B(p,q)(ψ)

is a ρ-cover for A′′m(ψ). Thus, remembering that we are only interested in balls which

intersect Im, it follows that

Hf
ρ(A′′m(ψ)) ≤

∑
q≥Q(ρ)

∑
p∈Zm:

gcd(pi,q)=1, 1≤i≤m
B(p

q
,
ψ(q)
q )∩Im 6=∅

f

(
ψ(q)

q

)
�

∑
q≥Q(ρ)

ϕ(q)mf

(
ψ(q)

q

)
.

Since we assumed that
∑∞

q=1 f
(
ψ(q)
q

)
ϕ(q)m < ∞, we can make the right-hand

side of the above arbitrarily small by taking ρ to be su�ciently small. The claim then

follows from the de�nition of Hausdor� measure.

In [7], Beresnevich and Velani proposed that the following corresponding opposite

statement should also be true.

Conjecture 1.25 (Hausdor� Measure Du�n�Schae�er Conjecture [7]). Let

ψ : N→ R+ be any approximating function and let f be a dimension function such

that r−mf(r) is monotonic. If

∞∑
q=1

ϕ(q)mf

(
ψ(q)

q

)
=∞ then Hf (A′′m(ψ)) = Hf (Im).

Setting f(r) = rm in the above we see that we immediately recover Conjecture 1.14

and so Conjecture 1.25 really is a natural extension of the usual Du�n�Schae�er

Conjecture to Hausdor� measures. In fact, using the Mass Transference Principle,
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Beresnevich and Velani proved that Conjecture 1.14 implies Conjecture 1.25 and hence

that they are actually equivalent. Before we proceed to give a proof of this statement,

we �rst record another straightforward, but nevertheless convenient, observation.

Observation 1.26. Let c > 0 and let x ∈ Im. Then, for every su�ciently large q ∈ N,
there exists a p = (p1, p2, . . . , pm) ∈ Zm such that for each 1 ≤ i ≤ m we have

|qxi − pi| < cq and gcd(pi, q) = 1.

Proof. Fix 1 ≤ i ≤ m. Note that if we could �nd pi with gcd(pi, q) = 1 in the interval

I∗ := (qxi − cq, qxi + cq)

then we would be done. In fact, we will show that it is possible to �nd a suitable value

of pi in the subinterval

I := (max{qxi − cq, 0}, qxi + cq) ⊂ I∗.

Observe that the number of prime divisors of q is less than log2 q.

Now, let us consider how many primes lie in the interval I. If I = (qxi−cq, qxi+cq)
then, by the Prime Number Theorem (see, for example, [3]), the number of primes in

I is (or is possibly one less than)

π(qxi + cq)− π(qxi − cq) ∼
qxi + cq

log(qxi + cq)
− qxi − cq

log(qxi − cq)
,

where π(x) is the number of primes less than or equal to x. As q →∞,

qxi + cq

log(qxi + cq)
− qxi − cq

log(qxi − cq)
→ 2cq

log q
.

Furthermore, 2cq
log q

> log2 q for all large enough q and so, for each such q, there are

primes contained in I which are not divisors of q. For each suitably large q we may

just take pi to be one such prime.

In the case that I = (0, qxi + cq) we use essentially the same argument.

Theorem 1.27 (Beresnevich � Velani [7]). Conjecture 1.14 implies Conjecture 1.25.

Proof. First note that we may assume without loss of generality that ψ(q)
q
→ 0 as

q →∞. Otherwise, in light of Observation 1.26, we see thatA′′m(ψ) = Im and the result
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follows immediately. Also recall that we are given that
∑∞

q=1 f
(
ψ(q)
q

)
ϕ(q)m =∞.

For each (p, q) ∈ Zm × N with gcd(pi, q) = 1 for 1 ≤ i ≤ m and either

B
(

p
q
, ψ(q)

q

)
∩ Im 6= ∅ or B

(
p
q
, f
(
ψ(q)
q

) 1
m

)
∩ Im 6= ∅, let us denote by B(p,q)(ψ) the

ball in Rm, with respect to the supremum norm, centred at p
q
of radius ψ(q)

q
. Notice

that

A′′m(ψ) = Im ∩ lim sup
(p,q)

B(p,q)(ψ).

In order to use the Mass Transference Principle, we also consider the balls Bf
(p,q)(ψ) of

radius f
(
ψ(q)
q

) 1
m
centred at p

q
for the same pairs (p, q) in Zm ×N as before. We note

that

Im ∩ lim sup
(p,q)

Bf
(p,q)(ψ) = A′′m(θ)

where θ(q) := qf
(
ψ(q)
q

) 1
m
.

Now, assuming the validity of the Du�n�Schae�er Conjecture (Conjecture 1.14)

gives us that |A′′m(θ)| = 1 since, by assumption,

∞∑
q=1

ϕ(q)m
θ(q)m

qm
=
∞∑
q=1

ϕ(q)mqmf

(
ψ(q)

q

)
1

qm
=
∞∑
q=1

ϕ(q)mf

(
ψ(q)

q

)
=∞.

Thus, for any ball B ⊂ Im, we have

Hm(B ∩ lim sup
(p,q)

Bf
(p,q)(ψ)) = Hm(B).

By the Mass Transference Principle, it follows that for any ball B ⊂ Im we have

Hf (B ∩ lim sup
(p,q)

B(p,q)(ψ)) = Hf (B).

In particular, we have

Hf (A′′m(ψ)) = Hf (Im ∩ lim sup
(p,q)

B(p,q)(ψ)) = Hf (Im),

as required.

Since Pollington and Vaughan [41] showed that Conjecture 1.14 holds for m ≥ 2,

an immediate consequence of the above equivalence is that Conjecture 1.25 also holds

for m ≥ 2 for general approximating functions ψ.
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1.7.2 Khintchine's Theorem implies Jarník's Theorem

In this section we will indicate how Jarník's Theorem follows from Khintchine's

Theorem as a corollary of the Mass Transference Principle. Strictly speaking, since

the statements we have provided represent modern improved versions of Khintchine's

Theorem and Jarník's Theorem, the argument we present below does not quite

immediately let us extract Theorem 1.18 from Theorem 1.11 � some discrepancies

arise between monotonicity conditions. However, we shall bypass these issues in this

section by assuming, as Jarník originally did, that qm+1f
(
ψ(q)
q

)
is decreasing � see

Remark 1.19.

We note that, without loss of generality, we may assume ψ(q)
q
→ 0 as q → ∞. To

see this, suppose for the moment that this is not the case. Then, there exists some

c > 0 such that ψ(q)
q

> c for in�nitely many q ∈ N. In particular, this means that

f
(
ψ(q)
q

)
> f(c) in�nitely often. If f(c) > 0 then the assumption that qm+1f

(
ψ(q)
q

)
is decreasing is violated. Thus, we must have f(x) = 0 for all x ≤ c. Consequently,

for any set X ∈ Rm we have Hf (X) = 0 and the desired result follows. Thus, we may

assume without loss of generality that ψ(q)
q
→ 0 as q →∞.

For each (p, q) ∈ Zm×N with B
(

p
q
, ψ(q)

q

)
∩ Im 6= ∅ or B

(
p
q
, f
(
ψ(q)
q

) 1
m

)
∩ Im 6= ∅

let B(p,q)(ψ) := B
(

p
q
, ψ(q)

q

)
be the ball in Rm, with respect to the supremum norm,

centred at p
q
with radius ψ(q)

q
. Then,

Am(ψ) = Im ∩ lim sup
(p,q)

B(p,q)(ψ) = Im ∩
∞⋂
Q=1

⋃
q≥Q

⋃
p∈Zm

B(p,q)(ψ).

First of all, we will deal with the convergence part of Jarník's Theorem. This relies

on a standard covering argument and does not utilise the Mass Transference Principle

at all, nor does it require the additional monotonicity assumption we have imposed.

To prove the convergence part let ρ > 0 and let Q(ρ) ∈ N be such that ψ(q)
q
< ρ for all

q ≥ Q(ρ). Then, ⋃
q≥Q(ρ)

⋃
p∈Zm

B(p
q
,
ψ(q)
q )∩Im 6=∅

B(p,q)(ψ)

is a ρ-cover for Am(ψ). Since we are only concerned with balls which have non-empty
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intersection with Im we see that

Hf
ρ(Am(ψ))�

∑
q≥Q(ρ)

qmf

(
ψ(q)

q

)
. (1.6)

Since
∑∞

q=1 q
mf
(
ψ(q)
q

)
converges by assumption, we can make the sum on the

right-hand side of (1.6) arbitrarily small by taking ρ to be su�ciently small. The

result then follows from the de�nition of Hausdor� measure.

For the divergence part we are given
∑∞

q=1 q
mf
(
ψ(q)
q

)
=∞. We note that

Bf
(p,q)(ψ) = B

(
p

q
, f

(
ψ(q)

q

) 1
m

)

and

Im ∩ lim sup
(p,q)

Bf
(p,q)(ψ) = A(θ)

where θ(q) := qf
(
ψ(q)
q

) 1
m
. By Khintchine's Theorem we have that |Am(θ)| = 1 since

∞∑
q=1

θ(q)m =
∞∑
q=1

[
qf

(
ψ(q)

q

) 1
m

]m
=
∞∑
q=1

qmf

(
ψ(q)

q

)
=∞

and, by our additional assumption, we have that θ(q) is decreasing. Thus,

|Im ∩ lim sup
(p,q)

Bf
(p,q)(ψ)| = |Im|.

So, applying the Mass Transference Principle with Ω = Im we conclude that for any

ball B in Im we have

Hf (B ∩ lim sup
(p,q)

Bp,q(ψ)) = Hf (B).

In particular,

Hf (Am(ψ)) = Hf (Im ∩ lim sup
(p,q)

B(p,q)(ψ)) = Hf (Im).
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1.7.3 Dirichlet's Theorem implies the Jarník�Besicovitch Theorem

Another extraordinary consequence of the Mass Transference Principle is that

the Jarník�Besicovitch Theorem (Theorem 1.17) actually follows from Dirichlet's

Theorem. In fact, we will show here how the Jarník�Besicovitch Theorem follows

from Theorem 1.2 and does not even require the full power of Theorem 1.1.

Recall that the consequence of Dirichlet's Theorem recorded in Theorem 1.2 states

that for any x ∈ R there exist in�nitely many pairs (p, q) ∈ Z × N such that∣∣∣x− p
q

∣∣∣ < 1
q2
.

Consider τ > 1. For a �xed s > 0, for each (p, q) ∈ Z×N with B
(
p
q
, 1
qτ+1

)
∩ I 6= ∅

or B
(
p
q
, 1
qs(τ+1)

)
∩ I 6= ∅, let B(p,q)(τ) = B

(
p
q
, 1
qτ+1

)
. Observe that

A(τ) = I ∩ lim sup
(p,q)

B(p,q)(τ).

Now,

Bs
(p,q)(τ) = B

(
p

q
,

1

qs(τ+1)

)
and so, by Dirichlet's Theorem, if s(τ + 1) ≤ 2 we have

I ∩ lim sup
(p,q)

Bs
(p,q)(τ) = I.

That is, if s ≤ 2
τ+1

then |I ∩ lim sup(p,q) B
s
(p,q)(τ)| = |I|. In this case, we can apply the

Mass Transference Principle with Ω = I to conclude that

Hs(A(τ)) = Hs(I ∩ lim sup
(p,q)

B(p,q)(τ)) = Hs(I) =∞

when s ≤ 2
τ+1

. It follows that dimH(A(τ)) ≥ 2
τ+1

.

The corresponding upper bound, dimH(A(τ)) ≤ 2
τ+1

, can be obtained via a

standard covering argument like the ones we have seen previously. We note that,

for any N ∈ N,
A(τ) ⊂ I ∩

⋃
q≥N

⋃
p∈Z

B
(
p
q
, 1
qτ+1

)
∩I 6=∅

B(p,q)(τ).

Let ρ > 0 and take Q(ρ) to be such that 1
qτ+1 < ρ for all q ≥ Q(ρ). Since we are only
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interested in balls intersecting I, we see that

Hs
ρ(A(τ))�

∑
q≥Q(ρ)

q1−s(τ+1).

Whenever s > 2
τ+1

, the right-hand side can be made arbitrarily small by taking ρ to

be su�ciently small. So, Hs(A(τ)) = 0 when s > 2
τ+1

and, hence, dimH(A(τ)) ≤ 2
τ+1

.

Combining the upper and lower bounds yields dimHA(τ) = 2
τ+1

, as required.

1.7.4 Mahler's assertion � an application of Theorem 1.23

We end this section by also mentioning one example of a use of Theorem 1.23, the

more general mass transference principle recorded in Section 1.6.2. As indicated there,

we shall discuss how Levesley, Salp, and Velani [39] have used Theorem 1.23 as a

tool for proving an assertion of Mahler on the existence of very well approximable

numbers in the middle-third Cantor set. They were able to do this because, unlike

Theorem 1.22, which just applies to lim sup sets in Rk, Theorem 1.23 can be applied

to lim sup sets in more general metric spaces. In this particular case, Levesley, Salp

and Velani have made use of the fact that Theorem 1.23 can be used when X is the

standard middle-third Cantor set. Themiddle-third Cantor set, which shall be denoted

throughout byK, is the set of x ∈ [0, 1] which have a ternary expansion containing only

0s and 2s. Alternatively, the middle-third Cantor set can be obtained by removing the

open middle-third from the unit interval and then subsequently repeatedly removing

the open middle-third of every remaining interval. It is well known that

|K| = 0 and dimH K =
log 2

log 3
.

As a result of Dirichlet's Theorem, we know that for any x ∈ R there exist in�nitely

many pairs (p, q) ∈ Z× N for which∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
.

If the exponent in the denominator of the right-hand side of the above can be

improved (i.e. increased) for some x ∈ R then x is said to be very well approximable;

that is, a real number x is said to be very well approximable if there exists some ε > 0
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such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

q2+ε
(1.7)

for in�nitely many pairs (p, q) ∈ Z×N. We will denote the set of very well approximable

numbers by W . If, further, (1.7) is satis�ed for every ε > 0 for some x ∈ R \ Q then

x is called a Liouville number. We will denote by L the set of all Liouville numbers.

It is known (see, for example, [14]) that

|W| = 0, dimH(W) = 1,

|L| = 0, and dimH(L) = 0.

Furthermore, both of the sets W and L are uncountable.

Regarding the intersection of W with the middle-third Cantor set, Mahler is

attributed with having made the following claim.

Mahler's Assertion. There exist very well approximable numbers, other than

Liouville numbers, in the middle-third Cantor set; i.e.

(W \ L) ∩K 6= ∅.

Remark. We refer the reader to [39] for discussion of the precise origin of this claim

and also for some discussion regarding why it is natural/necessary to exclude Liouville

numbers from Mahler's assertion.

Now, let B = {3n : n = 0, 1, 2, . . . } and, given an approximating function

ψ : N→ R+, consider the set

AB(ψ) :=

{
x ∈ [0, 1] :

∣∣∣∣x− p

q

∣∣∣∣ < ψ(q) for in�nitely many (p, q) ∈ Z× B
}
.

In the case that ψ(q) = q−τ for some τ > 0, write AB(τ) in place of AB(ψ).

Remark. Although it is slightly inconsistent with other notation used throughout, we

have decided to use this particular notation here for clarity and since it is in keeping

with the notation used in [39].

Levesley, Salp and Velani have used the general mass transference principle

(Theorem 1.23) as a tool for establishing the following statement regarding Hausdor�

measures of the set AB(ψ) ∩K in [39].
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Theorem 1.28. Let f be a dimension function such that r−
log 2
log 3f(r) is monotonic.

Then,

Hf (AB(ψ) ∩K) =


0 if

∑∞
n=1 f(ψ(3n))× (3n)

log 2
log 3 <∞,

Hf (K) if
∑∞

n=1 f(ψ(3n))× (3n)
log 2
log 3 =∞.

Taking f(r) = rs in Theorem 1.28, and noting that AB(τ) ∩K ⊂ W ∩K for any

τ > 2, we deduce that dimH (W ∩K) ≥ log 2
2 log 3

. Combining this with the fact that

dimH L = 0, we obtain the following corollary to Theorem 1.28. For further details on

the derivation of this corollary we refer the reader to [39].

Corollary 1.29 (Levesley � Salp � Velani [39]). We have

dimH((W \ L) ∩K) ≥ log 2

2 log 3
.

The truth of Mahler's assertion follows immediately from this corollary.

1.8 Overview

While they are exceptional results with some astonishing applications, both the original

Mass Transference Principle (Theorem 1.22) and its generalisation given by Theorem

1.23 concern lim sup sets arising from sequences of balls. Throughout this thesis, we

will mostly be concerned with an extension of the Mass Transference Principle to the

case where the lim sup sets of interest are de�ned by sequences of neighbourhoods of

approximating planes, or linear forms, and some of the associated applications. We

shall also brie�y discuss some recent progress towards establishing a mass transference

principle when the lim sup sets of interest are de�ned by sequences of rectangles.

In Chapter 2, we will present the statement and proof of a mass transference

principle for systems of linear forms. In Chapter 3, we will discuss a number of

applications of this theorem. Speci�cally, we develop a very general framework for

transferring Lebesgue measure statements to Hausdor� measure statements in the

context of approximation by linear forms. The material in Chapters 2 and 3 can be

found in [1].
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In Chapter 4, we shall discuss a general inhomogeneous Jarník�Besicovitch

Theorem introduced by Levesley in [38]. In particular, we shall demonstrate how

one of the consequences of the mass transference principle for linear forms can be used

to provide an alternative proof of most of the cases of Levesley's result. Additionally,

we will show that the monotonicity condition imposed in Levesley's theorem cannot

be removed. The results from Chapter 4 appear in [2, Section 3.3].

In Chapter 5 we shall provide some discussion of weighted simultaneous

approximation before mentioning some recent progress towards proving mass

transference principles for rectangles. Chapter 5 is based on [2, Section 4] and the

contributions made in Section 5.3 appear in [2, Section 4.2].



2 | A Mass Transference Principle

for Systems of Linear Forms

As mentioned previously, the �ndings of Khintchine, Jarník and Besicovitch described

in Chapter 1 have been sharpened and generalised in numerous ways. One direction

in which such results have been extended, and which we will be particularly interested

in here and in subsequent chapters, is to involve problems concerning systems of linear

forms.

As discussed in the previous chapter, many sets of interest in Diophantine

approximation can be naturally expressed as lim sup sets. There we were mostly

concerned with sets expressible as lim sup sets of balls in Rk. In the setting of

approximation by linear forms, which we will now be concerned with, many of the sets

of interest can be expressed as lim sup sets determined by sequences of neighbourhoods

of �approximating planes�, i.e. linear forms.

In this chapter we will be dealing with the extension of the Mass Transference

Principle in this setting. This is not an entirely new direction of research. Indeed,

such an extension has already been obtained in [8]. However, the mass transference

principle result of [8] carries some technical conditions which arise as a consequence

of the �slicing� technique that was used for the proof (for a simple demonstration of

the idea of �slicing� see the proofs of Propositions 5.11 and 5.12 in Chapter 5). These

conditions were conjectured to be unnecessary by Beresnevich, Bernik, Dodson and

Velani in [4]. In this chapter we state and prove an extension of the Mass Transference

Principle for systems of linear forms which veri�es this conjecture and thereby improves

upon the result obtained in this direction by Beresnevich and Velani in [8].

The mass transference principle for linear forms that we present in this chapter is

the main result in [1] and constitutes the main result presented in this thesis. In the

following two chapters, we will discuss various applications of this result.

The contents of this chapter appear as in [1] modulo minimal modi�cations made

for the purposes of readability.

36
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2.1 Statement of Main Result (Theorem 2.2)

Let k,m ≥ 1 and l ≥ 0 be integers such that k = m+ l. Let R := (Rj)j∈N be a family

of planes in Rk of common dimension l. For every j ∈ N and δ ≥ 0, de�ne

∆(Rj, δ) := {x ∈ Rk : dist(x, Rj) < δ},

where dist(x, Rj) = inf{‖x− y‖ : y ∈ Rj} and ‖ · ‖ is any �xed norm on Rk.

Let Υ : N → R : j 7→ Υj be a non-negative real-valued function on N such that

Υj → 0 as j →∞. Consider

Λ(Υ) := {x ∈ Rk : x ∈ ∆(Rj,Υj) for in�nitely many j ∈ N}.

In [8], the following was established.

Theorem 2.1 (Beresnevich � Velani [8]). Let R and Υ be as given above. Let V be a

linear subspace of Rk such that dimV = m = codim R,

(i) V ∩Rj 6= ∅ for all j ∈ N, and

(ii) supj∈N diam(V ∩∆(Rj, 1)) <∞.

Let f and g : r → g(r) := r−lf(r) be dimension functions such that r−kf(r) is

monotonic and let Ω be a ball in Rk. Suppose that, for any ball B in Ω,

Hk
(
B ∩ Λ

(
g(Υ)

1
m

))
= Hk(B).

Then, for any ball B in Ω,

Hf (B ∩ Λ(Υ)) = Hf (B).

Remark. In the case that l = 0, Theorem 2.1 coincides with the Mass Transference

Principle (Theorem 1.22) stated earlier.

Remark. Conditions (i) and (ii) essentially say that V should intersect every plane

and that the angle of intersection between V and each plane should be bounded away

from 0. In other words, every plane Rn ought not to be parallel to V and should

intersect V in precisely one place.
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The conditions (i) and (ii) in Theorem 2.1 arise as a consequence of the particular

proof strategy employed in [8]. However, it was conjectured [4, Conjecture E] that

Theorem 2.1 should be true without conditions (i) and (ii). By adopting a di�erent

proof strategy � one similar to that used to prove the Mass Transference Principle

in [7] rather than �slicing� � we are able to remove conditions (i) and (ii) and,

consequently, prove the following.

Theorem 2.2. Let R and Υ be as given above. Let f and g : r → g(r) := r−lf(r) be

dimension functions such that r−kf(r) is monotonic and let Ω be a ball in Rk. Suppose

that, for any ball B in Ω,

Hk
(
B ∩ Λ

(
g(Υ)

1
m

))
= Hk(B). (2.1)

Then, for any ball B in Ω,

Hf (B ∩ Λ(Υ)) = Hf (B). (2.2)

At �rst glance, conditions (i) and (ii) in Theorem 2.1 do not seem particularly

restrictive. Indeed, there are a number of interesting consequences of this theorem �

see [4, 8]. However, in the following chapter we present applications of Theorem 2.2

which may well be out of reach when using Theorem 2.1.

We proceed now by establishing the remaining necessary preliminaries and some

auxiliary lemmas in Sections 2.2 and 2.3 before presenting the full proof of Theorem 2.2

in Section 2.4.

2.2 Preliminaries

Firstly, recall that, given a ball B := B(x, r) in Rk, with respect to a �xed norm ‖ · ‖
on Rk, and a dimension function f : R+ → R+ we write V f (B) := f(r) and refer to

V f (B) as the f -volume of B. If f(x) = xs for some s ≥ 0, we write V s instead of V f .

We observed earlier that if | · | is k-dimensional Lebesgue measure, ‖ · ‖ is the

Euclidean norm, and f(x) = |B(0, 1)|xk, then V f is simply the volume of B in the

usual geometric sense; i.e. V f (B) = |B|. In particular, for any ball B in Rk we

have that V k(B) is comparable to |B|. Another observation we made earlier is that,

for subsets of Rk, Hk is also comparable to the k-dimensional Lebesgue measure.

Combining these two facts, it follows that there are constants 0 < c1 < 1 < c2 < ∞
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such that for any ball B in Rk we have

c1 V
k(B) ≤ Hk(B) ≤ c2 V

k(B). (2.3)

A general and classical method for obtaining a lower bound for the Hausdor�

f -measure of an arbitrary set F is the following mass distribution principle. This will

play a central role in our proof of Theorem 2.2 in Section 2.4.

Lemma 2.3 (Mass Distribution Principle). Let µ be a probability measure

supported on a subset F of Rk. Suppose there are positive constants c and ro such

that

µ(B) ≤ c V f (B)

for any ball B with radius r ≤ ro . If E is a subset of F with µ(E) = λ > 0 then

Hf (E) ≥ λ/c .

The above lemma is stated as it appears in [7] since this version is most useful for

our current purposes.

We conclude this section by stating a basic, but extremely useful, covering lemma

which we will use throughout. Let B := B(x, r) be a ball in Rk. For any λ > 0, we

denote by λB the ball B scaled by a factor λ; i.e. λB := B(x, λr).

Lemma 2.4 (The 5r-covering Lemma [40]). Every family F of balls of uniformly

bounded diameter in Rk contains a disjoint subfamily G such that⋃
B∈F

B ⊂
⋃
B∈G

5B.

2.3 The KG,B Covering Lemma

Our strategy for proving Theorem 2.2 is similar to that used for proving the Mass

Transference Principle for balls in [7]. There are however various technical di�erences

that account for the di�erent shape of approximating sets. First of all we will require

a covering lemma analogous to the KG,B-lemma established in [7, Section 4]. This

appears as Lemma 2.5 below. The balls obtained from Lemma 2.5 correspond to

planes in the lim sup set Λ(g(Υ)
1
m ). Furthermore, for the proof of Theorem 2.2 it is

necessary for us to obtain from each of these �larger� balls a collection of balls which
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correspond to the �shrunk� lim sup set Λ(Υ). The desired properties of this collection

and the existence of such a collection are the contents of Lemma 2.7.

To save on notation, throughout let Υ̃j := g(Υj)
1
m . For an arbitrary ball B ∈ Rk

and for each j ∈ N de�ne

Φj(B) := {B(x, Υ̃j) ⊂ B : x ∈ Rj} .

Analogously to Lemma 5 from [7] we will require the following covering lemma.

Lemma 2.5. Let R, Υ, g and Ω be as in Theorem 2.2 and assume that (2.1) is

satis�ed. Then for any ball B in Ω and any G ∈ N, there exists a �nite collection

KG,B ⊂
{

(A; j) : j ≥ G, A ∈ Φj(B)
}

satisfying the following properties :

(i) if (A; j) ∈ KG,B then 3A ⊂ B;

(ii) if (A; j), (A′; j′) ∈ KG,B are distinct then 3A ∩ 3A′ = ∅; and

(iii) Hk

( ⋃
(A;j)∈KG,B

A

)
≥ 1

4×15k
Hk(B).

Remark 2.6. Essentially, KG,B is a collection of balls drawn from the families Φj(B).

We write (A; j) for a generic ball from KG,B to �remember� the index j of the family

Φj(B) that the ball A comes from. However, when we are referring only to the ball A

(as opposed to the pair (A; j)) we will just write A. Keeping track of the associated

j will be absolutely necessary in order to be able to choose the �right� collection of

balls within A that at the same time lie in an Υj-neighbourhood of the relevant Rj.

Indeed, for j 6= j′ we could have A = A′ for some A ∈ Φj(B) and A′ ∈ Φj′(B).

Proof of Lemma 2.5. For each j ∈ N, consider the collection of balls

Φ3
j(B) := {B(x, 3Υ̃j) ⊂ B : x ∈ Rj}.

By (2.1), for any G ≥ 1 we have that

Hk

(⋃
j≥G

(∆(Rj, 3Υ̃j) ∩B)

)
= Hk(B).
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Observe that ⋃
L∈Φ3

j (B)

L ⊂ ∆(Rj, 3Υ̃j) ∩B

and that the di�erence of the two sets lies within 3Υ̃j of the boundary of B. Then,

since Υj → 0, and consequently Υ̃j → 0, as j →∞, we have that

Hk

⋃
j≥G

⋃
L∈Φ3

j (B)

L

 ∼ Hk

(⋃
j≥G

(∆(Rj, 3Υ̃j) ∩B)

)
= Hk(B) as G→∞.

In particular, there exists a su�ciently large G′ ∈ N such that for any G ≥ G′ we have

Hk

⋃
j≥G

⋃
L∈Φ3

j (B)

L

 ≥ 1

2
Hk(B).

However, for any G < G′ we also have⋃
j≥G

⋃
L∈Φ3

j (B)

L ⊃
⋃
j≥G′

⋃
L∈Φ3

j (B)

L.

Thus, for any G ∈ N we must have

Hk

⋃
j≥G

⋃
L∈Φ3

j (B)

L

 ≥ 1

2
Hk(B). (2.4)

In fact, using the same argument as above it is possible to show that for any G ∈ N
we have Hk

(⋃
j≥G

⋃
L∈Φ3

j (B) L
)
≥ (1 − ε)Hk(B) for any 0 < ε < 1 and hence that

we must have Hk
(⋃

j≥G
⋃
L∈Φ3

j (B) L
)

= Hk(B). However, (2.4) is su�cient for our

purposes here.

By Lemma 2.4, there exists a disjoint subcollection

G ⊂ {(L; j) : j ≥ G, L ∈ Φ3
j(B)}

such that
◦⋃

(L;j)∈G

L ⊂
⋃
j≥G

⋃
L∈Φ3

j (B)

L ⊂
⋃

(L;j)∈G

5L.

Now, let G ′ consist of all the balls from G but shrunk by a factor of 3; so the balls



Chapter 2. A Mass Transference Principle for Systems of Linear Forms 42

in G ′ will still be disjoint when scaled by a factor of 3. Formally,

G ′ := {(1
3
L; j) : (L; j) ∈ G}.

Then, we have that

◦⋃
(A;j)∈G′

A ⊂
⋃
j≥G

⋃
L∈Φ3

j (B)

L ⊂
⋃

(A;j)∈G′
15A. (2.5)

From (2.4) and (2.5) we have that

Hk

 ⋃
(A;j)∈G′

A

 =
∑

(A;j)∈G′
Hk(A)

=
∑

(A;j)∈G′

1

15k
Hk(15A)

≥ 1

15k
Hk

 ⋃
(A;j)∈G′

15A


≥ 1

15k
Hk

⋃
j≥G

⋃
L∈Φ3

j (B)

L


≥ 1

2× 15k
Hk(B).

Next note that, since the balls in G ′ are disjoint and contained in B and Υ̃j → 0 as

j →∞, we have that

Hk

 ⋃
(A;j)∈G′
j≥N

A

→ 0 as N →∞.

Therefore, there exists a su�ciently large N0 ∈ N such that

Hk

 ⋃
(A;j)∈G′
j≥N0

A

 <
1

4× 15k
Hk(B).

Taking KG,B to be the subcollection of (A; j) ∈ G ′ with G ≤ j < N0 ensures that KG,B

is a �nite collection of balls while still satisfying the required properties (i)�(iii).
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Lemma 2.7. Let R, Υ, g, Ω and B be as in Lemma 2.5 and assume that (2.1) is

satis�ed. Furthermore, assume that r−kf(r) → ∞ as r → 0. Let KG,B be as in

Lemma 2.5. Then, provided that G is su�ciently large, for any (A; j) ∈ KG,B there

exists a collection C(A; j) of balls satisfying the following properties:

(i) each ball in C(A; j) is of radius Υj and is centred on Rj;

(ii) if L ∈ C(A; j) then 3L ⊂ A;

(iii) if L,M ∈ C(A; j) are distinct then 3L ∩ 3M = ∅;

(iv)
1

7k
Hk
(
∆(Rj,Υj) ∩ 1

2
A
)
≤ Hk

 ⋃
L∈C(A;j)

L

 ≤ Hk
(
∆(Rj,Υj) ∩ A

)
; and

(v) there exist some constants d1, d2 > 0, independent of G and j, such that

d1 ×

(
g(Υj)

1
m

Υj

)l

≤ #C(A; j) ≤ d2 ×

(
g(Υj)

1
m

Υj

)l

. (2.6)

Proof. First of all note that, by the assumption that r−kf(r)→∞ as r → 0, we have

that
Υj

Υ̃j

→ 0 as j →∞ .

In particular we can assume that G is su�ciently large so that

6Υj < Υ̃j for any j ≥ G. (2.7)

Let x1, . . . ,xt ∈ Rj ∩ 1
2
A be any collection of points such that

‖xi − xi′‖ > 6Υj if i 6= i′ (2.8)

and t is maximal possible. The existence of such a collection follows immediately from

the fact that Rj ∩ 1
2
A is bounded and, by (2.8), the collection is discrete. Let

C(A; j) := {B(x1,Υj), . . . , B(xt,Υj)} .

Thus, property (i) is trivially satis�ed for this collection C(A; j). Recall that, by

construction, A ∈ Φj(B), which means that the radius of 1
2
A is 1

2
Υ̃j. If L ∈ C(A; j),

say L := B(xi,Υj), and A is centred at x0, then for any y ∈ 3L we have that

‖y− xi‖ < 3Υj while ‖xi − x0‖ ≤ 1
2
Υ̃j. Then, using (2.7) and the triangle inequality,
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we get that

‖y − x0‖ ≤ ‖y − xi‖+ ‖xi − x0‖ ≤ 3Υj + 1
2
Υ̃j < Υ̃j.

Hence, 3L ⊂ A whence property (ii) follows. Further, property (iii) follows

immediately from condition (2.8).

By the maximality of the collection x1, . . . ,xt, for any x ∈ Rj ∩ 1
2
A there exists an

xi from this collection such that ‖x− xi‖ ≤ 6Υj. Hence,

∆(Rj,Υj) ∩ 1
2
A ⊂

⋃
L∈C(A;j)

7L .

Thus,

Hk(∆(Rj,Υj) ∩ 1
2
A) ≤

∑
L∈C(A;j)

Hk(7L)

≤
∑

L∈C(A;j)

7kHk(L)

= 7kHk

 ◦⋃
L∈C(A;j)

L

 .

On the other hand, by property (ii), we have that

◦⋃
L∈C(A;j)

L ⊂ ∆(Rj,Υj) ∩ A ,

which together with the previous inequality establishes property (iv).

Finally, property (v) is an immediate consequence of property (iv) upon noting

that

Hk
(
∆(Rj,Υj) ∩ 1

2
A
)
� Hk

(
∆(Rj,Υj) ∩ A

)
� Υm

j Υ̃l
j

and

Hk

 ⋃
L∈C(A;j)

L

 = #C(A; j)Hk(L) � #C(A; j) Υk
j ,

where l is the dimension of Rj, m = k − l and L is any ball from C(A; j).
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2.4 Proof of Theorem 2.2

As with the proof of the Mass Transference Principle given in [7] and the proof of

Theorem 2.1 given in [8], we begin by noting that we may assume that r−kf(r)→∞
as r → 0. To see this we �rst observe that, by Lemma 1.15, if r−kf(r) → 0 as r → 0

we have that Hf (B) = 0 for any ball B in Rk. Furthermore, since B ∩Λ(Υ) ⊂ B, the

result follows trivially.

Now suppose that r−kf(r)→ λ as r → 0 for some 0 < λ <∞. In this case, Hf is

comparable to Hk and so it would be su�cient to show that Hk(B ∩Λ(Υ)) = Hk(B).

Since r−kf(r) → λ as r → 0 we have that the ratio f(r)
rk

is bounded between positive

constants for su�ciently small r. In turn, this implies that, in this case, the ratio of

the values g(Υj)
1
m and Υj is uniformly bounded between positive constants. It then

follows from [9, Lemma 4] that

Hk
(
B ∩ Λ

(
g(Υ)

1
m

))
= Hk(B ∩ Λ(Υ)).

This together with (2.1) then implies the required result in this case.

Thus, for the rest of the proof we may assume without loss of generality that

r−kf(r)→∞ as r → 0. With this assumption it is a consequence of Lemma 1.15 that

Hf (B0) =∞ for any ball B0 in Ω, which we �x from now on. Therefore, our goal for

the rest of the proof is to show that

Hf (B0 ∩ Λ(Υ)) =∞.

To this end, for each η > 1, we will construct a Cantor subset Kη of B0 ∩ Λ(Υ) and a

probability measure µ supported on Kη satisfying the condition that for any arbitrary

ball D of su�ciently small radius r(D) we have

µ(D)� V f (D)

η
, (2.9)

where the implied constant does not depend on D or η. By the Mass Distribution

Principle (Lemma 2.3) and the fact that Kη ⊂ B0 ∩ Λ(Υ), we would then have that

Hf (B0 ∩ Λ(Υ)) ≥ Hf (Kη)� η and the proof is �nished by taking η to be arbitrarily

large.
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2.4.1 The desired properties of Kη

We will construct the Cantor set Kη :=
⋂∞
n=1 K(n) so that each level K(n) is a �nite

union of disjoint closed balls and the levels are nested, that is K(n) ⊃ K(n + 1) for

n ≥ 1. We will denote the collection of balls constituting level n by K(n). As with

the Cantor set in [7], the construction of Kη is inductive and each level K(n) will

consist of local levels and sub-levels. So, suppose that the (n− 1)th level K(n− 1) has

been constructed. Then, for every B ∈ K(n − 1) we construct the (n,B)-local level,

K(n,B), which will consist of balls contained in B. The collection of balls K(n) will

take the form

K(n) :=
⋃

B∈K(n−1)

K(n,B).

Looking even more closely at the construction, each (n,B)-local level will consist of

local sub-levels and will be of the form

K(n,B) :=

lB⋃
i=1

K(n,B, i). (2.10)

Here, K(n,B, i) denotes the ith local sub-level and lB is the number of local sub-levels.

For n ≥ 2 each local sub-level will be de�ned as the union

K(n,B, i) :=
⋃

B′∈G(n,B,i)

⋃
(A;j)∈KG′,B′

C(A; j) , (2.11)

where B′ will lie in a suitably chosen collection of balls G(n,B, i) within B, KG′,B′

will arise from Lemma 2.5 and C(A; j) will arise from Lemma 2.7. It will be apparent

from the construction that the parameter G′ becomes arbitrarily large as we construct

levels. The set of all pairs (A; j) that contribute to (2.11) will be denoted by K̃(n,B, i).

Thus,

K̃(n,B, i) :=
⋃

B′∈G(n,B,i)

KG′,B′ and K(n,B, i) =
⋃

(A;j)∈K̃(n,B,i)

C(A; j).

If additionally we start with K(1) := B0 then, in view of the de�nition of the sets

C(A; j), the inclusion Kη ⊂ B0 ∩ Λ(Υ) is straightforward. Hence the only real part of

the proof will be to show the validity of (2.9) for some suitable measure supported on

Kη. This will require several additional properties which are now stated.
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The properties of levels and sub-levels of Kη

(P0) K(1) consists of one ball, namely B0.

(P1) For any n ≥ 2 and any B ∈ K(n− 1) the balls

{3L : L ∈ K(n,B)}

are disjoint and contained in B.

(P2) For any n ≥ 2, any B ∈ K(n − 1) and any i ∈ {1, . . . , lB} the local sub-level

K(n,B, i) is a �nite union of some collections C(A; j) of balls satisfying properties

(i)�(v) of Lemma 2.7, where the balls 3A are disjoint and contained in B.

(P3) For any n ≥ 2, B ∈ K(n− 1) and i ∈ {1, . . . , lB} we have∑
(A;j)∈K̃(n,B,i)

V k(A) ≥ c3 V
k(B)

where c3 := 1
2k+3×5k×15k

(
c1
c2

)2

with c1 and c2 as de�ned in (2.3).

(P4) For any n ≥ 2, B ∈ K(n − 1), any i ∈ {1, . . . , lB − 1} and any L ∈ K(n,B, i)

and M ∈ K(n,B, i+ 1) we have

f(r(M)) ≤ 1

2
f(r(L)) and g(r(M)) ≤ 1

2
g(r(L)).

(P5) The number of local sub-levels is de�ned by

lB :=



[
c2 η

c3Hk(B)

]
+ 1 , if B = B0 := K(1),

[
V f (B)

c3 V k(B)

]
+ 1 , if B ∈ K(n) with n ≥ 2,

and satis�es lB ≥ 2 for B ∈ K(n) with n ≥ 2. Here, for x ∈ R, [x] denotes the

greatest integer less than or equal to x.

Properties (P1) and (P2) are imposed to make sure that the balls in the Cantor

construction are su�ciently well separated. On the other hand, properties (P3) and
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(P5) make sure that there are �enough� balls in each level of the construction of the

Cantor set. Property (P4) essentially ensures that all balls involved in the construction

of a level of the Cantor set are su�ciently small compared with balls involved in the

construction of the previous level. All of the properties (P1)�(P5) will play a crucial

role in the measure estimates we obtain in Section 2.4.4 and Section 2.4.5.

2.4.2 The existence of Kη

In this section we show that it is possible to construct a Cantor set with the properties

outlined in Section 2.4.1. In what follows we will use the following notation:

Kl(n,B) :=
l⋃

i=1

K(n,B, i) and K̃l(n,B) :=
l⋃

i=1

K̃(n,B, i) .

Level 1. The �rst level is de�ned by taking the arbitrary ball B0. Thus, K(1) := B0

and Property (P0) is trivially satis�ed. We proceed by induction. Assume that the

�rst (n−1) levels K(1), K(2), . . . , K(n−1) have been constructed. We now construct

the nth level K(n).

Level n. To construct the nth level we will de�ne local levels K(n,B) for each

B ∈ K(n − 1). Therefore, from now on we �x some ball B ∈ K(n − 1) and a

su�ciently small constant ε := ε(B) > 0 which will be determined later. Recall that

each local level K(n,B) will consist of local sub-levels K(n,B, i) where 1 ≤ i ≤ lB

and lB is given by Property (P5). Let G ∈ N be su�ciently large so that Lemmas 2.5

and 2.7 are applicable. Furthermore, suppose that G is large enough so that

3Υj < g(Υj)
1
m whenever j ≥ G, (2.12)

Υk
j

f(Υj)
< ε

r(B)k

f(r(B))
whenever j ≥ G, and (2.13)

[
f(Υj)

c3 Υk
j

]
≥ 1 whenever j ≥ G, (2.14)

where c3 is the constant appearing in Property (P3) above. Note that the existence

of G satisfying (2.12)�(2.14) follows from the assumption that r−kf(r)→∞ as r → 0

and the condition that Υj → 0 as j →∞.
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Sub-level 1. With B and G as above, let KG,B denote the collection of balls arising

from Lemma 2.5. De�ne the �rst sub-level of K(n,B) to be

K(n,B, 1) :=
⋃

(A;j)∈KG,B

C(A; j) ,

thus

K̃(n,B, 1) = KG,B and G(n,B, 1) = {B} .

By the properties of C(A; j) (Lemma 2.7), it follows that (P1) is satis�ed within this

sub-level. From the properties of KG,B (Lemma 2.5) and Lemma 2.7 it follows that

(P2) and (P3) are satis�ed for i = 1.

Higher sub-levels. To construct higher sub-levels we argue by induction. For l < lB,

assume that the sub-levels K(n,B, 1), . . . , K(n,B, l) satisfying properties (P1)�(P4)

with lB replaced by l have already been de�ned. We now construct the next sub-level

K(n,B, l + 1).

As every sub-level of the construction has to be well separated from the previous

ones, we �rst verify that there is enough �space� left over in B once we have removed

the sub-levels K(n,B, 1), . . . , K(n,B, l) from B. More precisely, let

A(l) := 1
2B \

⋃
L∈Kl(n,B)

4L .

We will show that

Hk
(
A(l)
)
≥ 1

2
Hk( 1

2B) . (2.15)

First, observe that

Hk

 ⋃
L∈Kl(n,B)

4L

 ≤ ∑
L∈Kl(n,B)

Hk(4L)

(2.3)

≤ 4kc2

∑
L∈Kl(n,B)

V k(L)

= 4kc2

l∑
i=1

∑
L∈K(n,B,i)

V k(L)

= 4kc2

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

#C(A; j)×Υk
j
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(2.6)

≤ 4kc2d2

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

(
g(Υj)

1
m

Υj

)l

Υk
j

= 4kc2d2

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

g(Υj)
l
mΥm

j

= 4kc2d2

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

g(Υj)
k
m

Υm
j

g(Υj)

= 4kc2d2

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

g(Υj)
k
m

Υk
j

f(Υj)
.

Hence, by (2.13), we get that

Hk

 ⋃
L∈Kl(n,B)

4L

 ≤ 4kc2d2ε
r(B)k

f(r(B))

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

g(Υj)
k
m

= 4kc2d2ε
r(B)k

f(r(B))

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

V k(A)

(2.3)

≤ 4k
c2

c1

d2ε
r(B)k

f(r(B))

l∑
i=1

∑
(A;j)∈K̃(n,B,i)

Hk(A)

(P2)

≤ 4k
c2

c1

d2ε
r(B)k

f(r(B))
lHk(B)

≤ 4k
c2

c1

d2ε
r(B)k

f(r(B))
(lB − 1)Hk(B). (2.16)

If B = B0, set ε = ε(B0) :=
1

2d2

(
c1

c2

)2
c3

2k4k
f(r(B0))

η
.

Otherwise, if B 6= B0, set

ε = ε(B) := ε(B0)× η

f(r(B0))
=

1

2d2

(
c1

c2

)2
c3

2k4k
.

Then, it follows from (2.16) combined with (P5) that

Hk

 ⋃
L∈Kl(n,B)

4L

 ≤ 1
2
Hk
(

1
2
B
)
,

thus verifying (2.15).
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By construction, Kl(n,B) is a �nite collection of balls. Therefore, the quantity

dmin := min{r(L) : L ∈ Kl(n,B)}

is well-de�ned and positive. Let A(n,B, l) be the collection of all the balls of diameter

dmin centred at a point in A(l). By the 5r-covering lemma (Lemma 2.4), there exists a

disjoint subcollection G(n,B, l + 1) of A(n,B, l) such that

A(l) ⊂
⋃

B′∈A(n,B,l)

B′ ⊂
⋃

B′∈G(n,B,l+1)

5B′.

The collection G(n,B, l + 1) is clearly contained within B and, since the balls in this

collection are disjoint and of the same size, it is �nite. Moreover, by construction

B′ ∩
⋃

L∈Kl(n,B)

3L = ∅ for any B′ ∈ G(n,B, l + 1) ; (2.17)

i.e. the balls in G(n,B, l + 1) do not intersect any of the 3L balls from the previous

sub-levels. It follows that

Hk

 ⋃
B′∈G(n,B,l+1)

5B′

 ≥ Hk(A(l))
(2.15)

≥ 1
2 H

k( 1
2B) .

On the other hand, since G(n,B, l + 1) is a disjoint collection of balls we have that

Hk

 ⋃
B′∈G(n,B,l+1)

5B′

 ≤ ∑
B′∈G(n,B,l+1)

Hk(5B′)

(2.3)

≤ 5k
c2

c1

∑
B′∈G(n,B,l+1)

Hk(B′)

= 5k
c2

c1

Hk

 ◦⋃
B′∈G(n,B,l+1)

B′

 .

Hence,

Hk

 ◦⋃
B′∈G(n,B,l+1)

B′

 ≥ c1

2c25k
Hk( 1

2B) . (2.18)
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Now we are ready to construct the (l + 1)th sub-level K(n,B, l + 1). Let

G′ ≥ G+ 1 be su�ciently large so that Lemmas 2.5 and 2.7 are applicable to every ball

B′ ∈ G(n,B, l + 1) with G′ in place of G. Furthermore, ensure that G′ is su�ciently

large so that for every i ≥ G′,

f(Υi) ≤ 1
2

min
L∈Kl(n,B)

f(r(L)) and g(Υi) ≤ 1
2

min
L∈Kl(n,B)

g(r(L)). (2.19)

Imposing the above assumptions on G′ is possible since there are only �nitely many

balls in Kl(n,B), Υj → 0 as j →∞, and f and g are dimension functions.

Now, to each ball B′ ∈ G(n,B, l+ 1) we apply Lemma 2.5 to obtain a collection of

balls KG′,B′ and de�ne

K(n,B, l + 1) :=
⋃

B′∈G(n,B,l+1)

⋃
(A;j)∈KG′,B′

C(A; j).

Consequently,

K̃(n,B, l + 1) =
⋃

B′∈G(n,B,l+1)

KG′,B′ .

Since G′ ≥ G, properties (2.12)�(2.14) remain valid. We now verify properties

(P1)�(P5) for this sub-level.

Regarding (P1), we �rst observe that it is satis�ed for balls in⋃
(A;j)∈KG′,B′

⋃
L∈C(A;j)

L

by the properties of C(A; j) and the fact that the balls inKG′,B′ are disjoint. Next, since

any balls in KG′,B′ are contained in B′ and the balls B′ ∈ G(n,B, l+ 1) are disjoint, it

follows that (P1) is satis�ed for balls L in K(n,B, l+1). Finally, combining this with

(2.17), we see that (P1) is satis�ed for balls L in Kl+1(n,B). That (P2) is satis�ed

for this sub-level is a consequence of Lemma 2.5 (i) and (ii) and the fact that the balls

B′ ∈ G(n,B, l + 1) are disjoint.

To establish (P3) for i = l + 1 note that∑
(A;j)∈K̃(n,B,l+1)

V k(A) =
∑

B′∈G(n,B,l+1)

∑
(A;j)∈KG′,B′

V k(A)

(2.3)

≥ 1

c2

∑
B′∈G(n,B,l+1)

∑
(A;j)∈KG′,B′

Hk(A).
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Then, by Lemma 2.5 and the disjointness of the balls in G(n,B, l + 1), we have

that ∑
(A;j)∈K̃(n,B,l+1)

V k(A) ≥ 1

c2

∑
B′∈G(n,B,l+1)

1

4× 15k
Hk (B′)

=
1

c2 × 4× 15k
Hk

 ⋃
B′∈G(n,B,l+1)

B′


(2.18)

≥ 1

c2 × 4× 15k
c1

2× c2 × 5k
Hk
(

1
2
B
)

(2.3)

≥ 1

2k+3 × 5k × 15k

(
c1

c2

)2

V k(B)

= c3V
k(B).

Finally, (P4) is trivially satis�ed as a consequence of the imposed condition (2.19)

and (P5), that lL ≥ 2 for any ball L in K(n,B, l + 1), follows from (2.14).

Hence, properties (P1)�(P5) are satis�ed up to the local sub-level K(n,B, l + 1)

thus establishing the existence of the local level K(n,B) = KlB(n,B) for each

B ∈ K(n− 1). In turn, this establishes the existence of the nth level K(n) (and

also K(n)).

2.4.3 The measure µ on Kη

In this section, we de�ne a probability measure µ supported on Kη. We will eventually

show that the measure satis�es (2.9). For any ball L ∈ K(n), we attach a weight µ(L)

de�ned recursively as follows.

For n = 1, we have that L = B0 := K(1) and we set µ(L) := 1. For subsequent

levels the measure is de�ned inductively.

Let n ≥ 2 and suppose that µ(B) is de�ned for every B ∈ K(n− 1). In particular,

we have that ∑
B∈K(n−1)

µ(B) = 1 .

Let L be a ball in K(n). By construction, there is a unique ball B ∈ K(n − 1) such
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that L ⊂ B. Recall, by (2.10) and (2.11), that

K(n,B) :=
⋃

(A;j)∈K̃lB (n,B)

C(A; j)

and so L is an element of one of the collections C(A′; j′) appearing in the right-hand

side of the above. We therefore de�ne

µ(L) :=
1

#C(A′; j′)
× g(Υj′)

k
m∑

(A;j)∈K̃lB (n,B)

g(Υj)
k
m

× µ(B) .

Thus µ is inductively de�ned on any ball appearing in the construction of Kη.

Furthermore, µ can be uniquely extended in a standard way to all Borel subsets F of

Rk to give a probability measure µ supported on Kη. Indeed, for any Borel subset F

of Rk,

µ(F ) := µ(F ∩Kη) = inf
∑

L∈C(F )

µ(L) ,

where the in�mum is taken over all covers C(F ) of F ∩Kη by balls L ∈
⋃
n∈N

K(n). See

[26, Proposition 1.7] for further details.

We end this section by observing that

µ(L) ≤ 1

d1

(
g(Υj′ )

1
m

Υj′

)l × g(Υj′)
k
m∑

(A;j)∈K̃lB (n,B)

g(Υj)
k
m

× µ(B)

=
f(Υj′)

d1

∑
(A;j)∈K̃lB (n,B)

g(Υj)
k
m

× µ(B). (2.20)

This is a consequence of (2.6) and the relationship between f and g. In fact, the above

inequality can be reversed if d1 is replaced by d2.
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2.4.4 The measure of a ball in the Cantor set construction

The goal of this section is to prove that

µ(L)� V f (L)

η
(2.21)

for any ball L in K(n) with n ≥ 2. We will begin with the level n = 2. Fix any ball

L ∈ K(2) = K(2, B0). Further let (A′; j′) ∈ K̃lB0
(2, B0) be such that L ∈ C(A′; j′).

Then, by (2.20), the de�nition of µ and the fact that µ(B0) = 1, we have that

µ(L) ≤ f(Υj′)

d1

∑
(A;j)∈K̃lB0

(2,B0)

g(Υj)
k
m

. (2.22)

Next, by properties (P3) and (P5) of the Cantor set construction, we get that∑
(A;j)∈K̃lB0

(2,B0)

g(Υj)
k
m =

∑
(A;j)∈K̃lB0

(2,B0)

V k(A)

=

lB0∑
i=1

∑
(A;j)∈K̃(2,B0,i)

V k(A)

(P3)

≥
lB0∑
i=1

c3V
k(B0)

= lB0c3V
k(B0)

(2.3)

≥ lB0

c3

c2

Hk(B0)

(P5)

≥ c2η

c3Hk(B0)

c3

c2

Hk(B0) = η. (2.23)

Combining (2.22) and (2.23) gives (2.21) as required since f(Υj′) = f(r(L)) = V f (L).

Now let n > 2 and assume that (2.21) holds for balls in K(n − 1). Consider an

arbitrary ball L in K(n). Then there exists a unique ball B ∈ K(n − 1) such that

L ∈ K(n,B). Further let (A′; j′) ∈ K̃lB(n,B) be such that L ∈ C(A′; j′). Then it
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follows from (2.20) and our induction hypothesis that

µ(L)� f(Υj′)

d1

∑
(A;j)∈K̃lB (n,B)

g(Υj)
k
m

× V f (B)

η
. (2.24)

Now, we have that

∑
(A;j)∈K̃lB (n,B)

g(Υj)
k
m =

lB∑
i=1

∑
(A;j)∈K̃(n,B,i)

V k(A)

(P3)

≥
lB∑
i=1

c3V
k(B)

= lBc3V
k(B)

(P5)

≥ V f (B)

c3V k(B)
c3V

k(B)

= V f (B). (2.25)

Since V f (L) = f(Υj′), combining (2.24) and (2.25) gives (2.21) and thus completes

the proof of this section.

2.4.5 The measure of an arbitrary ball

Set r0 := min{r(B) : B ∈ K(2)}. Take an arbitrary ball D such that r(D) < r0. We

wish to establish (2.9) for D, i.e. we wish to show that

µ(D)� V f (D)

η
,

where the implied constant is independent of D and η. In accomplishing this goal the

following lemma from [7] will be useful.

Lemma 2.8. Let A := B(xA, rA) and M := B(xM , rM) be arbitrary balls such that

A ∩M 6= ∅ and A \ (cM) 6= ∅ for some c ≥ 3. Then rM ≤ rA and cM ⊂ 5A.

A good part of the subsequent argument will follow the same reasoning as given in

[7, Section 5.5]. However, there will also be obvious alterations to the proofs that arise

from the di�erent construction of a Cantor set used here. Recall that the measure

µ is supported on Kη. Without loss of generality, we will make the following two
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assumptions:

• D ∩Kη 6= ∅;

• for every n large enough D intersects at least two balls in K(n).

If the �rst of these were false then we would have µ(D) = 0 as µ is supported on Kη

and so (2.9) would trivially follow. If the second assumption were false then D would

have to intersect exactly one ball, say Lni , from levels Kni with arbitrarily large ni.

Then, by (2.21), we would have µ(D) ≤ µ(Lni) → 0 as i → ∞ and so, again, (2.9)

would be trivially true.

By the above two assumptions, we have that there exists a maximum integer n

such that

D intersects at least 2 balls from K(n) (2.26)

and D intersects only one ball B from K(n− 1).

By our choice of r0, we have that n > 2. If B is the only ball from K(n− 1) which

has non-empty intersection with D, we may also assume that r(D) < r(B). To see

this, suppose to the contrary that r(B) ≤ r(D). Then, since D ∩ Kη ⊂ B and f is

increasing, upon recalling (2.21) we would have

µ(D) ≤ µ(B)� V f (B)

η
=
f(r(B))

η
≤ f(r(D))

η
=
V f (D)

η
,

and so we would be done.

Now, since K(n,B) is a cover for D ∩Kη, we have

µ(D) ≤
lB∑
i=1

∑
L∈K(n,B,i)
L∩D 6=∅

µ(L)

=

lB∑
i=1

∑
(A;j)∈K̃(n,B,i)

∑
L∈C(A;j)
L∩D 6=∅

µ(L)

(2.21)
�

lB∑
i=1

∑
(A;j)∈K̃(n,B,i)

∑
L∈C(A;j)
L∩D 6=∅

V f (L)

η
. (2.27)
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To estimate the right-hand side of (2.27) we consider the following types of sub-levels:

Case 1 : Sub-levels K(n,B, i) for which

#{L ∈ K(n,B, i) : L ∩D 6= ∅} = 1.

Case 2 : Sub-levels K(n,B, i) for which

#{L ∈ K(n,B, i) : L ∩D 6= ∅} ≥ 2 and

#{(A; j) ∈ K̃(n,B, i) with D ∩ L 6= ∅ for some L ∈ C(A; j)} ≥ 2.

Case 3 : Sub-levels K(n,B, i) for which

#{L ∈ K(n,B, i) : L ∩D 6= ∅} ≥ 2 and

#{(A; j) ∈ K̃(n,B, i) with D ∩ L 6= ∅ for some L ∈ C(A; j)} = 1.

Strictly speaking we also need to consider the sub-levels K(n,B, i) for which

#{L ∈ K(n,B, i) : L ∩D 6= ∅} = 0.

However, these sub-levels do not contribute anything to the sum on the right-hand

side of (2.27).

Dealing with Case 1. Let K(n,B, i∗) denote the �rst sub-level within Case 1 which has

non-empty intersection with D. Then there exists a unique ball L∗ in K(n,B, i∗) such

that L∗ ∩D 6= ∅. By (2.26) there is another ball M ∈ K(n,B) such that M ∩D 6= ∅.
By Property (P1), 3L∗ and 3M are disjoint. It follows that D \ 3L∗ 6= ∅. Therefore,
by Lemma 2.8, we have that r(L∗) ≤ r(D) and so, since f is increasing,

V f (L∗) ≤ V f (D). (2.28)

By Property (P4) we have, for any i ∈ {i∗ + 1, . . . , lB} and any L ∈ K(n,B, i), that

V f (L) = f(r(L)) ≤ 2−(i−i∗) f(r(L∗)) = 2−(i−i∗) V f (L∗).
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Using these inequalities and (2.28) we see that the contribution to the right-hand side

of (2.27) from Case 1 is:

∑
i∈Case 1

∑
L∈K(n,B,i)
L∩D 6=∅

V f (L)

η
≤
∑
i≥i∗

2−(i−i∗)V
f (L∗)

η
≤ 2

V f (L∗)

η
≤ 2

V f (D)

η
. (2.29)

Dealing with Case 2. LetK(n,B, i) be any sub-level subject to the conditions of Case 2.

Then there exist distinct balls (A; j) and (A′; j′) in K̃(n,B, i) and balls L ∈ C(A; j)

and L′ ∈ C(A′; j′) such that L ∩D 6= ∅ and L′ ∩D 6= ∅. Since L ∩D 6= ∅ and L ⊂ A,

we have that A ∩D 6= ∅. Similarly, A′ ∩D 6= ∅. Furthermore, by Property (P2), the

balls 3A and 3A′ are disjoint and contained in B. Hence, D \ 3A 6= ∅. Therefore, by
Lemma 2.8, r(A) ≤ r(D) and A ⊂ 3A ⊂ 5D. Similarly, A′ ⊂ 3A′ ⊂ 5D. Hence, on

using (2.6), we get that the contribution to the right-hand side of (2.27) from Case 2

is estimated as follows

∑
i∈Case 2

∑
(A;j)∈K̃(n,B,i)

∑
L∈C(A;j)
L∩D 6=∅

V f (L)

η
≤

∑
i∈Case 2

∑
(A;j)∈K̃(n,B,i)

A⊂5D

#C(A; j)
f(Υj)

η

(2.6)
�

∑
i∈Case 2

∑
(A;j)∈K̃(n,B,i)

A⊂5D

(
g(Υj)

1
m

Υj

)l
f(Υj)

η

=
∑

i∈Case 2

∑
(A;j)∈K̃(n,B,i)

A⊂5D

g(Υj)
l
mΥ−lj Υl

jg(Υj)

η

=
∑

i∈Case 2

∑
(A;j)∈K̃(n,B,i)

A⊂5D

g(Υj)
l
m

+1

η

=
∑

i∈Case 2

∑
(A;j)∈K̃(n,B,i)

A⊂5D

g(Υj)
k
m

η

=
∑

i∈Case 2

∑
(A;j)∈K̃(n,B,i)

A⊂5D

V k(A)

η
.
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Combining this with properties (P2) and (P5) we get

∑
i∈Case 2

∑
(A;j)∈K̃(n,B,i)

∑
L∈C(A;j)
L∩D 6=∅

V f (L)

η

(2.3)
� 1

c1η

∑
i∈Case 2

∑
(A;j)∈K̃(n,B,i)

A⊂5D

Hk(A)

(P2)
=

1

c1η

∑
i∈Case 2

Hk

 ⋃
(A;j)∈K̃(n,B,i)

A⊂5D

A


≤ 1

c1η

∑
i∈Case 2

Hk(5D)

≤ 1

c1η
5klBHk(D)

(2.3)

≤ c2

c1η
5klBV

k(D)

(P5)

≤ c2

c1η
5k
(

2V f (B)

c3V k(B)

)
V k(D).

Recalling our assumption that r(D) < r(B) and the fact that r−kf(r) is decreasing,

we obtain that

∑
i∈Case 2

∑
(A;j)∈K̃(n,B,i)

∑
L∈C(A;j)
L∩D 6=∅

V f (L)

η
� c2

c1η
5k

2

c3

V f (D)

V k(D)
V k(D)

=
2c25k

c1c3

V f (D)

η

� V f (D)

η
. (2.30)

Dealing with Case 3. First of all note that for each level i of Case 3 there exists a

unique (Ai; ji) ∈ K̃(n,B, i) such that D has a non-empty intersection with balls in

C(Ai; ji). Let K(n,B, i∗∗) denote the �rst sub-level within Case 3. Then there exists

a ball L∗∗ in K(n,B, i∗∗) such that L∗∗ ∩ D 6= ∅. By (2.26) there is another ball

M ∈ K(n,B) such that M ∩D 6= ∅. By Property (P1), 3L∗∗ and 3M are disjoint. It

follows that D \ 3L∗∗ 6= ∅ and therefore, by Lemma 2.8, we have that r(L∗∗) ≤ r(D)

and so, since g is increasing, we have that

g(r(L∗∗)) ≤ g(r(D)). (2.31)
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Furthermore, by Property (P4), for any i ∈ {i∗∗ + 1, . . . , lB} and any L ∈ K(n,B, i)

we have that

g(r(L)) ≤ 2−(i−i∗∗) g(r(L∗∗)).

Thus, the contribution to the sum (2.27) from Case 3 is estimated as follows

∑
i∈Case 3

∑
(A;j)∈K̃(n,B,i)

∑
L∈C(A;j)
L∩D 6=∅

V f (L)

η
≤

∑
i∈Case 3

∑
L∈C(Ai;ji)
L∩D 6=∅

V f (L)

η

=
∑

i∈Case 3

∑
L∈C(Ai;ji)
L∩D 6=∅

f(Υji)

η

�
∑

i∈Case 3

(
r(D)

Υji

)l
f(Υji)

η

=
∑

i∈Case 3

r(D)l
g(Υji)

η

� r(D)l

η

∑
i∈Case 3

g(Υji∗∗ )

2i−i∗∗

≤ 2
r(D)l

η
g(Υji∗∗ ).

Noting that Υji∗∗ = r(L∗∗) and recalling (2.31) we see that

∑
i∈Case 3

∑
(A;j)∈K̃(n,B,i)

∑
L∈C(A;j)
L∩D 6=∅

V f (L)

η
� 2

r(D)l

η
g(r(D)) = 2

f(r(D))

η
� V f (D)

η
. (2.32)

Finally, combining (2.29), (2.30) and (2.32) together with (2.27) gives µ(D) � V f (D)
η

and thus completes the proof of Theorem 2.2.



3 | Hausdor� Measure Khintchine�

Groshev Type Statements

In this chapter we highlight merely a few applications of Theorem 2.2 which we hope

give an idea of the breadth of its consequences. In Section 3.1 we show that, using

Theorem 2.2, with relative ease we are able to remove the last remaining monotonicity

condition from a Hausdor� measure analogue of the classical Khintchine�Groshev

Theorem � this is essentially the analogue of Khintchine's Theorem for approximation

by linear forms. We also show how the same outcome may be achieved, albeit

with a somewhat longer proof, by using Theorem 2.1 instead of Theorem 2.2. In

Section 3.2 we obtain a Hausdor� measure analogue of the inhomogeneous version of

the Khintchine�Groshev Theorem.

In Section 3.3 we present Hausdor� measure analogues of some recent results of

Dani, Laurent and Nogueira [18]. They have established Khintchine�Groshev type

statements in which the approximating points (p,q) are subject to certain primitivity

conditions. We obtain the corresponding Hausdor� measure results. On the way to

realising some of the results outlined above, in Section 3.2 and Section 3.3 we develop

several more general statements which reformulate Theorem 2.2 in terms of transferring

Lebesgue measure statements to Hausdor� measure statements for very general sets

of Ψ-approximable points (see Theorems 3.10, 3.11 and 3.14). The recurring theme

throughout this section is that given more-or-less any Khintchine�Groshev type

statement, Theorem 2.2 can be used to establish the corresponding Hausdor� measure

result.

The contents of this chapter are taken from [1, Section 2]. Although we have

included minor additions and modi�cations in an attempt to improve clarity, most of

the material appears here as it appears in [1].

62
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3.1 The Khintchine�Groshev Theorem for Hausdor� Measures

Let n ≥ 1 and m ≥ 1 be integers. Denote by Inm the unit cube [0, 1]nm in Rnm.

Throughout this section we consider Rnm equipped with the norm ‖ · ‖ : Rnm → R
de�ned as follows:

‖x‖ =
√
n max

1≤`≤m
|x`|2 (3.1)

where x = (x1, . . . ,xm) with each x` representing a column vector in Rn for 1 ≤ ` ≤ m,

and | · |2 is the usual Euclidean norm on Rn. The role of the norm (3.1) will become

apparent soon, namely through the proof of Theorem 3.2 below.

Given a function ψ : N→ R+, let An,m(ψ) denote the set of x ∈ Inm such that

|qx + p| < ψ(|q|)

for in�nitely many (p,q) ∈ Zm × Zn \ {0}. Here, | · | denotes the supremum norm,

x = (xi`) is regarded as an n×m matrix and p and q are regarded as a row vectors.

Thus, qx represents a point in Rm given by the system

q1x1` + · · ·+ qnxn` (1 ≤ ` ≤ m)

of m real linear forms in n variables. We will say that the points in An,m(ψ)

are ψ-approximable. That An,m(ψ) satis�es an elegant zero-one law in terms of

nm-dimensional Lebesgue measure when the function ψ is monotonic is the content of

the classical Khintchine�Groshev Theorem. We opt to state here a modern improved

version of this result which is best possible (see [10]).

As usual, |X| will denote the k-dimensional Lebesgue measure of X ⊂ Rk.

Theorem 3.1 (Beresnevich � Velani [10]). Let ψ : N → R+ be an approximating

function and let nm > 1. Then

|An,m(ψ)| =


0 if

∑∞
q=1 q

n−1ψ(q)m <∞,

1 if
∑∞

q=1 q
n−1ψ(q)m =∞.

The earliest versions of this theorem were due to Khintchine [35] and Groshev

[29] and included various extra constraints including monotonicity of ψ. A famous

counterexample constructed by Du�n and Schae�er [25], mentioned earlier in
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Chapter 1, shows that, while Theorem 3.1 also holds when m = n = 1 and ψ is

monotonic, the monotonicity condition cannot be removed whenm = n = 1 and so it is

natural to exclude this situation by letting nm > 1. In the latter case, the monotonicity

condition has been removed completely, leaving Theorem 3.1. That monotonicity may

be removed in the case n = 1 is due to a result of Gallagher [28] (see Theorems 1.12

and 1.13 in Chapter 1) and in the case where n > 2 it is a consequence of a result due

to Schmidt [45]. Alternatively, for n > 2 this also follows from a more general result

due to Sprindºuk [47, Chapter 1, Section 5] (see Theorem 3.6). For further details

we refer the reader to [4] and references therein. The �nal unnecessary monotonicity

condition to be removed was the n = 2 case. Formally stated as Conjecture A in [4],

this case was resolved in [10].

Regarding the Hausdor� measure theory we shall show the following.

Theorem 3.2. Let ψ : N → R+ be any approximating function and let nm > 1. Let

f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is

monotonic. Then,

Hf (An,m(ψ)) =


0 if

∑∞
q=1 q

n+m−1g
(
ψ(q)
q

)
<∞,

Hf (Inm) if
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
=∞.

Theorem 3.2 is not entirely new and was in fact previously obtained in [4] via

Theorem 2.1 subject to ψ being monotonic in the case that n = 2. The deduction there

was relying on a theorem of Sprindºuk (namely, Theorem 3.6) rather than Theorem

3.1 (which is what we shall use). In fact, with several additional assumptions imposed

on ψ and f , the result was �rst obtained by Dickinson and Velani [21].

Theorem 3.3 (Dickinson � Velani [21]). Let f be a dimension function such that

r−nmf(r) → ∞ as r → 0 and r−nmf(r) is non-increasing. Suppose ψ : N → R+ is

an approximating function such that ψ(q)
q

is decreasing, qnψ(q)m → 0 as q → ∞ and

qnψ(q)m is non-increasing. Furthermore, suppose that qn(m+1)ψ(q)−m(n−1)f
(
ψ(q)
q

)
is

non-increasing. Then

Hf (An,m(ψ)) =


0 if

∑∞
q=1 f

(
ψ(q)
q

)
ψ(q)−m(n−1)qn(m+1)−1 <∞,

∞ if
∑∞

q=1 f
(
ψ(q)
q

)
ψ(q)−m(n−1)qn(m+1)−1 =∞.
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While the above theorem due to Dickinson and Velani constitutes the �rst

Hausdor� measure result obtained for the sets An,m(ψ), the �rst Hausdor� dimension

results were obtained even earlier by Bovey and Dodson [13].

Returning to Theorem 3.2, the convergence case of the proof makes use of standard

covering arguments that, with little adjustment, can be drawn from [21]. For

completeness we shall include this argument here.

Thereafter we shall give two proofs for the divergence case of Theorem 3.2, one

using Theorem 2.1 and the other using Theorem 2.2. The reason for this is to show

the advantage of using Theorem 2.2 on the one hand, and to explicitly exhibit obstacles

in using Theorem 2.1 in other settings on the other hand. In the proofs we will use

the following notation. For (p,q) ∈ Zm × Zn \ {0} let

Rp,q := {x ∈ Rnm : qx + p = 0}.

Note that, throughout the proofs of Theorem 3.2, (p,q) will play the role of the index

j appearing in Theorem 2.1 and Theorem 2.2. Also note that for δ ≥ 0 we have

∆(Rp,q, δ) = {x ∈ Rnm : dist(x, Rp,q) < δ},

where

dist(x, Rp,q) = inf
z∈Rp,q

‖x− z‖ =

√
n|qx + p|
|q|2

.

As with the results of Cassels and Gallagher mentioned in Remark 1.7, it is also

the case that the sets of interest when we are approximating by systems of linear forms

satisfy the dichotomy that their measures only take the values 0 or 1. In this setting

the result is due to Beresnevich and Velani and will be useful shortly in deriving (3.3).

In order that we might state the result of Beresnevich and Velani in its full generality,

we �rst introduce a little more notation.

Given Ψ : Zn → R+, let An,m(Ψ) be the set of x ∈ Inm for which

|qx + p| < Ψ(q) (3.2)

is satis�ed for in�nitely many pairs (p,q) ∈ Zm × Zn \ {0}. We denote by

A′n,m(Ψ) the set of points x ∈ Inm for which (3.2) is satis�ed for in�nitely many

pairs (p,q) ∈ Zm × Zn \ {0} with gcd(p,q) := gcd(p1, p2, . . . , pm, q1, q2, . . . , qn) = 1.

Finally, let A′′n,m(Ψ) be the set of points x ∈ Inm for which (3.2) is satis�ed for in�nitely
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many pairs (p,q) ∈ Zm×Zn \{0} with gcd(pi,q) := gcd(pi, q1, q2, . . . , qn) = 1 for each

i = 1, . . . ,m. If Ψ(q) = ψ(|q|) for some function ψ : N → R+ we write, respectively,

An,m(ψ), A′n,m(ψ) and A′′n,m(ψ) in place of An,m(Ψ), A′n,m(Ψ) and A′′n,m(Ψ).

Theorem 3.4 (Beresnevich � Velani [9]). For any n,m ∈ N and any approximating

function Ψ : Zn → R+, we have that

|An,m(Ψ)| ∈ {0, 1}, |A′n,m(Ψ)| ∈ {0, 1}, and |A′′n,m(Ψ)| ∈ {0, 1}.

Proof of convergence part of Theorem 3.2. We begin by noting that without loss of

generality we may assume that ψ(q)
q
→ 0 as q → ∞. In particular, this means that

ψ(q)� q.

Recall that, in the convergence case, we are given that
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
<∞.

Using the fact that |q| ≤ |q|2 we note that, for a �xed (p,q) ∈ Zm × Zn \ {0},

{x ∈ Rnm : |qx + p| < ψ(|q|)} =

{
x ∈ Rnm :

√
n|qx + p|
|q|2

<

√
nψ(|q|)
|q|2

}
⊂
{
x ∈ Rnm :

√
n|qx + p|
|q|2

<

√
nψ(|q|)
|q|

}
= ∆

(
Rp,q,

√
nψ(|q|)
|q|

)
.

Thus, for each N ∈ N we have

An,m(ψ) ⊂
⋃
q≥N

⋃
q∈Zn\{0}
|q|=q

⋃
p∈Zm

∆

(
Rp,q,

√
nψ(q)

q

)
∩ Inm.

Observe that, for a �xed (p,q) ∈ Zm × Zn \ {0} with |q| = q, we may cover

∆
(
Rp,q,

√
nψ(q)
q

)
∩ Inm with a collection Cp,q of balls of common radius ψ(q)

q
satisfying

#Cp,q �
(

q

ψ(q)

)m(n−1)

.

Furthermore, note that for a �xed q with |q| = q,

#

{
p ∈ Zm : ∆

(
Rp,q,

√
nψ(q)

q

)
∩ Inm 6= ∅

}
� qm

and, also, that the number of vectors q ∈ Zn with |q| = q is � qn−1.
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Finally, since ψ(q)
q
→ 0 as q → ∞, for any M ∈ N there exists an NM ∈ N such

that for any q ≥ NM we have ψ(q)
q
≤ 1

M
. Thus, it follows from the de�nition of Hf

that

Hf

ρ= 1
M

(An,m(ψ))�
∑
q≥NM

f

(
ψ(q)

q

)
×
(
ψ(q)

q

)−m(n−1)

qm+n−1

=
∑
q≥NM

g

(
ψ(q)

q

)
qm+n−1.

The proof is completed by letting M → ∞ and noting that the term on the

right-hand side of the above tends to 0.

Next, we turn our attention to proving the divergence part of Theorem 3.2 via the

two routes outlined above. We note that if ψ(r) ≥ 1 for in�nitely many r ∈ N, then
An,m(ψ) = Inm and the divergence case of Theorem 3.2 is trivial. Hence, without loss

of generality we may assume that ψ(r) ≤ 1 for all r ∈ N. First we show how

Theorem 2.1 and Theorem 3.1 imply the divergence case of Theorem 3.2. (3.3)

Proof. Recall that
∞∑
q=1

qn+m−1g

(
ψ(q)

q

)
=∞. (3.4)

To use Theorem 2.1 we have to restrict the approximating integer points q in order

to meet conditions (i) and (ii) of Theorem 2.1. We will use the same idea as in [4];

namely, we will impose the requirement that |q| = |qK | for a �xed K ∈ {1, . . . , n}.
Sprindºuk's Theorem (Theorem 3.6) that is used in [4] allows for the introduction of

this requirement almost instantly. Unfortunately, this is not the case when one is using

Theorem 3.1 and hence we will need a new argument. For each 1 ≤ i ≤ n de�ne the

auxiliary functions Ψi : Zn \ {0} → R+ by setting

Ψi(q) =


ψ(|q|) if |q| = |qi|,

0 otherwise.

In what follows, similarly to An,m(ψ), we consider sets An,m(Ψ) of points x ∈ Inm such

that

|qx + p| < Ψ(q)
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for in�nitely many pairs (p,q) ∈ Zm × Zn \ {0}, where Ψ : Zn \ {0} → R+ is a

multivariable function. Since, by de�nition, Ψi(q) ≤ ψ(|q|) for each 1 ≤ i ≤ n and

each q ∈ Zn \ {0}, it follows that

An,m(Ψi) ⊂ An,m(ψ) for each 1 ≤ i ≤ n. (3.5)

By (3.5), to complete the proof of (3.3), it is su�cient to show that

Hf (An,m(ΨK)) = Hf (Inm) for some 1 ≤ K ≤ n. (3.6)

Without loss of generality we will assume that K = 1. De�ne

S := {(p,q) ∈ Zm × Zn \ {0} : |q| = |q1| and |p| ≤M |q|},

where

M := max

{
2n, sup

r∈N

2√
n
g

(
ψ(r)

r

) 1
m

}
. (3.7)

Note that, since g is increasing and ψ(r) ≤ 1, the constant M is �nite. Let

Υp,q :=
Ψ1(q)

|q|
for each (p,q) ∈ S. The purpose for introducing this auxiliary set

S will become apparent later. Now, for each (p,q) ∈ S,

∆(Rp,q,Υp,q) ∩ Inm =

{
x ∈ Inm :

√
n|qx + p|
|q|2

<
Ψ1(q)

|q|

}

=

{
x ∈ Inm : |qx + p| < |q|2Ψ1(q)√

n|q|

}

⊂
{
x ∈ Inm : |qx + p| < Ψ1(q)

}
,

since |q|2 ≤
√
n |q|. It follows that Λ(Υ) ∩ Inm ⊂ An,m(Ψ1) ⊂ Inm, where

Λ(Υ) = lim sup
(p,q)∈S

∆(Rp,q,Υp,q)

and, in taking this limit, (p,q) ∈ S can be arranged in any order. Therefore, (3.6)

will follow on showing that

Hf (Λ(Υ) ∩ Inm) = Hf (Inm) . (3.8)
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Showing (3.8) will rely on Theorem 2.1. First of all observe that conditions (i) and

(ii) are met with the m-dimensional subspace

V := {x = (x1,x2, . . . ,xm) ∈ Rnm : xi` = 0 for all ` = 1, . . . ,m and i = 2, . . . , n}.

Indeed, regarding condition (i), we have that Rp,q ∩ V consists of the single element
−p1
q1
−p2
q1

. . . −pm
q1

0 0 . . . 0
...

... · · · ...

0 0 . . . 0

 ,

and so is non-empty. Regarding condition (ii), for (p,q) ∈ S we have that

V ∩∆(Rp,q, 1) = {x ∈ V : dist(x, Rp,q) < 1}

=

{
x ∈ V :

√
n|qx + p|
|q|2

< 1

}

=

{
x ∈ Rnm : max

1≤`≤m

√
n|q1x1,` + p`|
|q|2

< 1 and xi` = 0 for i 6= 1

}

⊂
{
x ∈ Rnm : max

1≤`≤m

∣∣∣∣x1,` +
p`
q1

∣∣∣∣ < 1 and xi` = 0 for i 6= 1

}
since |q1| = |q| and |q|2 ≤

√
n|q|. Hence diam(V ∩∆(Rp,q, 1)) ≤ 2 and we are done.

Now let θ : N→ R+ be given by

θ(r) =
r√
n
g

(
ψ(r)

r

) 1
m

and, for each 1 ≤ i ≤ n, let Θi : Zn \ {0} → R+ be given by

Θi(q) =
|q|√
n
g

(
Ψi(q)

|q|

) 1
m

=


θ(|q|) if |q| = |qi|,

0 otherwise.
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Similarly to (3.5), we have that An,m(Θi) ⊂ An,m(θ) for each 1 ≤ i ≤ n. Furthermore,

An,m(θ) =
n⋃
i=1

An,m(Θi). (3.9)

Indeed, the �⊃� inclusion follows from the above. To show the converse, note

that for any x ∈ An,m(θ) the inequality |qx + p| < θ(|q|) is satis�ed for

in�nitely many (p,q) ∈ Zm × Zn \ {0}. Clearly, for each q ∈ Zn \ {0} we have that

θ(|q|) = Θi(q) for some 1 ≤ i ≤ n. Therefore, there is a �xed i ∈ {1, . . . , n} such that

|qx + p| < θ(|q|) = Θi(q) is satis�ed for in�nitely many (p,q) ∈ Zm×Zn \ {0}. This
means that x ∈ An,m(Θi) for some i, thus verifying (3.9).

Next, observe that, by (3.4), the sum

∞∑
q=1

qn−1θ(q)m =
∞∑
q=1

qn+m−1

√
n
m g

(
ψ(q)

q

)
=

1√
n
m

∞∑
q=1

qn+m−1g

(
ψ(q)

q

)

diverges. Therefore, by Theorem 3.1, we have that |An,m(θ)| = 1. Hence, by (3.9),

there exists some 1 ≤ K ≤ n such that |An,m(ΘK)| > 0. By the zero-one laws in

Theorem 3.4, we know that |An,m(ΘK)| ∈ {0, 1}. Hence,

|An,m(ΘK)| = 1. (3.10)

Without loss of generality we will suppose that K = 1, the same as in (3.6).

Now, using the fact that |q| ≤ |q|2, for (p,q) ∈ S we have that

∆(Rp,q, g(Υp,q)
1
m ) ∩ Inm =

{
x ∈ Inm :

√
n|qx + p|
|q|2

< g

(
Ψ1(q)

|q|

) 1
m

}

=

{
x ∈ Inm : |qx + p| < |q|2√

n
g

(
Ψ1(q)

|q|

) 1
m

}

⊃

{
x ∈ Inm : |qx + p| < |q|√

n
g

(
Ψ1(q)

|q|

) 1
m

}
= {x ∈ Inm : |qx + p| < Θ1(q)}.

Furthermore, observe that if {x ∈ Inm : |qx + p| < Θ1(q)} 6= ∅, then |p| ≤ M |q| and
so (p,q) ∈ S. To see this, suppose that x ∈ {x ∈ Inm : |qx + p| < Θ1(q)} and note
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that if |qx + p| < Θ1(q) then

|qx` + p`| < Θ1(q) ≤ |q|√
n
g

(
ψ(|q|)
|q|

) 1
m

for each 1 ≤ ` ≤ m.

Using the reverse triangle inequality, it can be seen that for each 1 ≤ ` ≤ m,

|p`| ≤
|q|√
n
g

(
ψ(|q|)
|q|

) 1
m

+ |qx`|

=
|q|√
n
g

(
ψ(|q|)
|q|

) 1
m

+
n∑
i=1

qixi`.

Since x ∈ Inm, it follows that

|p`| ≤
|q|√
n
g

(
ψ(|q|)
|q|

) 1
m

+
n∑
i=1

|q| = |q|√
n
g

(
ψ(|q|)
|q|

) 1
m

+ n|q|.

By the de�nition of M , we see that |p`| ≤ M |q| for each 1 ≤ ` ≤ m. Hence,

|p| ≤M |q| if {x ∈ Inm : |qx + p| < Θ1(q)} 6= ∅ and so, in this case, (p,q) ∈ S.

Therefore,

An,m(Θ1) ⊂ Λ(g(Υ)
1
m ) ∩ Inm ⊂ Inm.

In particular, |Λ(g(Υ)
1
m ) ∩ Inm| = 1 and so for any ball B ⊂ Inm we have that

Hnm(Λ(g(Υ)
1
m ) ∩B) = Hnm(B). Hence, we may apply Theorem 2.1 with k = nm,

l = m(n − 1) and m to conclude that, for any ball B ⊂ Inm, we have

Hf (B ∩ Λ(Υ)) = Hf (B). In particular, Hf (Λ(Υ) ∩ Inm) = Hf (Inm) and the proof

is thus complete.

We now show how

Theorem 2.2 and Theorem 3.1 imply the divergence case of Theorem 3.2. (3.11)

Proof. As before, we are given the divergence condition (3.4). For each pair

(p,q) ∈ Zm × Zn \ {0} with |p| ≤M |q|, where M is given by (3.7), let

Rp,q := {x ∈ Rnm : qx + p = 0} and Υp,q :=
ψ(|q|)
|q|

.
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For such pairs (p,q) we have that

∆(Rp,q,Υp,q) ∩ Inm =

{
x ∈ Inm :

√
n|qx + p|
|q|2

<
ψ(|q|)
|q|

}
⊂ {x ∈ Inm : |qx + p| < ψ(|q|)}

since |q|2 ≤
√
n |q|. Therefore

Λ(Υ) ∩ Inm ⊂ An,m(ψ) ⊂ Inm,

where the lim sup is taken over (p,q) ∈ Zm × Zn \ {0} with |p| ≤M |q|.

Consequently, if we could show that Hf (Λ(Υ) ∩ Inm) = Hf (Inm) the divergence

part of Theorem 3.2 would follow.

De�ne θ : N→ R+ by

θ(r) =
r√
n
g

(
ψ(r)

r

) 1
m

and note that

∆(Rp,q, g(Υp,q)
1
m ) ∩ Inm =

{
x ∈ Inm :

√
n|qx + p|
|q|2

< g

(
ψ(|q|)
|q|

) 1
m

}

=

{
x ∈ Inm : |qx + p| < |q|2√

n
g

(
ψ(|q|)
|q|

) 1
m

}

⊃

{
x ∈ Inm : |qx + p| < |q|√

n
g

(
ψ(|q|)
|q|

) 1
m

}
= {x ∈ Inm : |qx + p| < θ(|q|)} ,

where this penultimate inclusion follows since |q| ≤ |q|2. Observe that if

{x ∈ Inm : |qx + p| < θ(|q|)} 6= ∅, then |p| ≤ M |q|. This can be seen using the same

argument as the one beginning on page 70. It follows that

An,m(θ) ⊂ Λ(g(Υ)
1
m ) ∩ Inm.

Now, by Theorem 3.1 and the divergence condition (3.4), we know that
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|An,m(θ)| = 1 since

∞∑
q=1

qn−1θ(q)m =
∞∑
q=1

qn+m−1

√
n
m g

(
ψ(q)

q

)
=∞.

Hence, |Λ(g(Υ)
1
m ) ∩ Inm| = 1 and so we may apply Theorem 2.2 with k = nm,

l = m(n− 1) and m to conclude that, for any ball B ⊂ Inm, we have

Hf (B ∩ Λ(Υ)) = Hf (B). In particular, Hf (Λ(Υ) ∩ Inm) = Hf (Inm) and the proof

is complete.

Remark 3.5. Note that the proof of (3.11) is not only shorter and simpler than that of

(3.3) but it also does not rely on the zero-one law of Theorem 3.4. This seemingly minor

point becomes a substantial obstacle in trying to use the same line of argument as for

(3.3) in other settings, for example, in inhomogeneous problems. The point is that, as

of now, we do not have an inhomogeneous zero-one law similar to Theorem 3.4 �

see [42] for partial results and further comments. The approach based on using

Theorem 2.2, on the other hand, works with ease in the inhomogeneous and other

settings.

3.2 Inhomogeneous Systems of Linear Forms

In this section we will be concerned with the inhomogeneous version of the

Khintchine�Groshev Theorem presented in the previous section. Given an

approximating function Ψ : Zn \ {0} → R+ and a �xed y ∈ Im, we denote by Ay
n,m(Ψ)

the set of x ∈ Inm for which

|qx + p− y| < Ψ(q)

holds for in�nitely many (p,q) ∈ Zm × Zn \ {0}. In the case that Ψ(q) = ψ(|q|) for
some function ψ : N→ R+ we write Ay

n,m(ψ) for Ay
n,m(Ψ).

For n ≥ 2 we will represent by P (Zn) the set of primitive vectors in Zn; that is,
the non-zero integer vectors (v1, v2, . . . , vn) ∈ Zn \ {0} with gcd(v1, v2, . . . , vn) = 1.

Regarding inhomogeneous Diophantine approximation, we have the following

general statement due to Sprindºuk [47, Chapter 1, Section 5].

Theorem 3.6 (Sprindºuk [47]). Let m ≥ 1 and n ≥ 2 be integers. Let Ψ : Zn → R+

be an approximating function such that Ψ(q) = 0 whenever q /∈ P (Zn) and let y ∈ Im
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be �xed. Then,

|Ay
n,m(Ψ)| =


0 if

∑
q∈Zn Ψm(q) <∞,

1 if
∑

q∈Zn Ψm(q) =∞.

The following inhomogeneous version of the classical Khintchine�Groshev Theorem

can be deduced as a corollary to Theorem 3.6 by restricting the approximating function

Ψ so that it depends only on |q| (for further explanation of how see, for example, [4]).

In the case that ψ is monotonic this statement also follows as a consequence of the

ubiquity technique, see [5, Section 12.1].

Inhomogeneous Khintchine�Groshev Theorem. Let m,n ≥ 1 be integers and

let y ∈ Im. If ψ : N → R+ is an approximating function which is assumed to be

monotonic if n = 1 or n = 2, then

|Ay
n,m(ψ)| =


0 if

∑∞
q=1 q

n−1ψ(q)m <∞,

1 if
∑∞

q=1 q
n−1ψ(q)m =∞.

The following is the Hausdor� measure version of the above statement.

Theorem 3.7. Let m,n ≥ 1 be integers, let y ∈ Im, and let ψ : N → R+ be

an approximating function. Let f and g : r → g(r) := r−m(n−1)f(r) be dimension

functions such that r−nmf(r) is monotonic. In the case that n = 1 or n = 2 suppose

also that rg
(
ψ(r)
r

) 1
m
is monotonic. Then,

Hf (Ay
n,m(ψ)) =


0 if

∑∞
q=1 q

n+m−1g
(
ψ(q)
q

)
<∞,

Hf (Inm) if
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
=∞.

Remark 3.8. Although the condition that rg
(
ψ(r)
r

) 1
m

being monotonic when n = 1

or n = 2 is the one that we naturally arrive at upon combining Theorem 2.2 with

the Inhomogeneous Khintchine�Groshev Theorem, it is worth noting here that this

condition may be relaxed. In the case when n = 2, by appealing to the more

general theorem of Sprindºuk (Theorem 3.6), we will show that it is possible to
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replace monotonicity of rg
(
ψ(r)
r

) 1
m

in the statement of Theorem 3.7 with the more

aesthetically pleasing assumption that ψ is monotonically decreasing. When n = 1 we

believe it should be possible to make the same assumption replacement by using ideas

from ubiquity (see [5, Section 12.1] and references within).

Proof of Theorem 3.7 � Convergence. We appeal to a standard covering argument, as

in the proof of the convergence part of Theorem 3.2. We �rst note that we may assume

without loss of generality that ψ(q)
q
→ 0 as q →∞. For each pair (p,q) ∈ Zm×Zn\{0}

let

Rp,q = {x ∈ Rnm : qx + p− y = 0}.

Recall that for δ ≥ 0 we have

∆(Rp,q, δ) = {x ∈ Rnm : dist(x, Rp,q) < δ},

and, in this case,

dist(x, Rp,q) = inf
z∈Rp,q

‖x− z‖ =

√
n|qx + p− y|
|q|2

.

Since |q| ≤ |q|2, for any �xed pair (p,q) ∈ Zm × Zn \ {0} we have

{x ∈ Rnm : |qx + p− y| < ψ(|q|)} =

{
x ∈ Rnm :

√
n|qx + p− y|
|q|2

<

√
nψ(|q|)
|q|2

}
⊂
{
x ∈ Rnm :

√
n|qx + p− y|
|q|2

<

√
nψ(|q|)
|q|

}
= ∆

(
Rp,q,

√
nψ(|q|)
|q|

)
.

Thus, for each N ∈ N we have

Ay
n,m(ψ) ⊂

⋃
q≥N

⋃
q∈Zn\{0}
|q|=q

⋃
p∈Zm

∆

(
Rp,q,

√
nψ(q)

q

)
∩ Inm.

The proof can now be completed by using the same covering argument used to prove

the convergence part of Theorem 3.2.

Remark 3.9. We note here that in both the Inhomogeneous Khintchine�Groshev

Theorem and Theorem 3.7, the Hausdor� measure version we have just recorded,

the monotonicity conditions on ψ when n = 1 or n = 2 are only required for the
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divergence cases. For both of these theorems the proofs of the convergence parts

follow from standard covering arguments for which no monotonicity conditions need

to be imposed.

The divergence part of the proof of Theorem 3.7 may be obtained directly using

Theorem 2.2 � the argument is almost identical to that used for obtaining the

divergence part of Theorem 3.2 via Theorem 2.2. However, by exploiting this argument

a little further, we may actually use Theorem 2.2 to prove the following two more

general statements from which both Theorems 3.2 and 3.7 follow as corollaries.

Therefore, we shall postpone the proof of the divergence part of Theorem 3.7 until

after we have established Theorems 3.10 and 3.11 below. In some sense Theorems 3.10

and 3.11 below are essentially reformulations of Theorem 2.2 in terms of, respectively,

Ψ-approximable and ψ-approximable points.

Theorem 3.10. Let Ψ : Zn \ {0} → R+ be an approximating function and let y ∈ Im.
Let f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is

monotonic. Let

Θ : Zn \ {0} → R+ be de�ned by Θ(q) = |q| g
(

Ψ(q)

|q|

) 1
m

.

Then

|Ay
n,m(Θ)| = 1 implies Hf (Ay

n,m(Ψ)) = Hf (Inm).

The proof of Theorem 3.10 is similar to that of (3.11). However, we shall omit this

particular argument here. Instead, we shall explicitly deduce Theorem 3.10 from an

even more general result which will be proved in Section 3.3, where the approximating

function will be allowed to depend on p as well as q � see Theorem 3.14.

The following statement is a special case of Theorem 3.10 with Ψ(q) := ψ(|q|).

Theorem 3.11. Let ψ : N → R+ be an approximating function, let y ∈ Im and let

f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is

monotonic. Let

θ : N→ R+ be de�ned by θ(r) = r g

(
ψ(r)

r

) 1
m

.

Then

|Ay
n,m(θ)| = 1 implies Hf (Ay

n,m(ψ)) = Hf (Inm).
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Proof. De�ne Ψ : Zn \ {0} → R+ by Ψ(q) = ψ(|q|). Then, it is not too di�cult to see

that Ay
n,m(Ψ) = Ay

n,m(ψ). Therefore, we may appeal to Theorem 3.10 which tells us

that Hf (Ay
n,m(Ψ)) = Hf (Inm) if |Ay

n,m(Θ)| = 1, where Θ : Zn \ {0} → R+ is de�ned

by Θ(q) = |q|g
(

Ψ(q)
|q|

) 1
m
. However, Θ(q) = |q|g

(
Ψ(q)
|q|

) 1
m

= |q|g
(
ψ(|q|)
|q|

) 1
m

= θ(|q|)
and so Ay

n,m(Θ) = Ay
n,m(θ). We are given that |Ay

n,m(θ)| = 1. Hence it follows that

|Ay
n,m(Θ)| = 1 and the proof is thus complete.

Theorem 3.7 now follows on combining the Inhomogeneous Khintchine�Groshev

Theorem with Theorem 3.11. Furthermore, any progress in removing the monotonicity

constraint on ψ from the Inhomogeneous Khintchine�Groshev Theorem can be

instantly transferred into a Hausdor� measure statement upon applying Theorem 3.11.

Indeed, we suspect that a full inhomogeneous analogue of Theorem 3.1 must be true.

Recall that it is open only in the case when n = 1 or n = 2.

We shall conclude this section by providing further details of the proof of the

divergence part of Theorem 3.7. Additionally we show that Theorem 3.7 holds when

n = 2 under the more satisfying monotonicity assumption that ψ is monotonically

decreasing.

Proof of Theorem 3.7 � Divergence. The result would follow from Theorem 3.11

provided that we could show that |Ay
n,m(θ)| = 1 where θ : N → R+ is de�ned by

θ(r) = rg
(
ψ(r)
r

) 1
m
. Assuming that rg

(
ψ(r)
r

) 1
m
is monotonic when n = 1 or n = 2, we

know by the Inhomogeneous Khintchine�Groshev Theorem that |Ay
n,m(θ)| = 1 if

∞∑
q=1

qn−1θ(q)m =
∞∑
q=1

qn+m−1g

(
ψ(q)

q

)
=∞,

which is true by assumption.

In order to prove the statement subject to the condition that ψ is monotonically

decreasing when n = 2 the argument is a little more complicated and relies on

Theorem 3.6. So, suppose n = 2 and let us de�ne Θ : Z2 \ {0} → R+ by

Θ(q) =


θ(|q|) if q ∈ P (Z2),

0 otherwise.

Note that Ay
n,m(Θ) ⊂ Ay

n,m(θ). Therefore, it would be su�cient for us to show that
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|Ay
n,m(Θ)| = 1. By Theorem 3.6, this would follow upon showing that∑

q∈P (Z2)

Θm(q) =∞.

To do this, we will make use of the following two claims.

Claim 3.12. Let n = 2. If ψ(q)
q

is monotonically decreasing then

∞∑
q=1

qn+m−1g

(
ψ(q)

q

)
�

∞∑
t=1

2t(m+2)g

(
ψ(2t)

2t

)
.

Proof of Claim 3.12. Since ψ(q)
q

is monotonically decreasing, we may bound∑∞
q=1 q

n+m−1g
(
ψ(q)
q

)
from below as follows,

∞∑
q=1

qn+m−1g

(
ψ(q)

q

)
=
∞∑
t=1

∑
2t−1≤q<2t

qm+1g

(
ψ(q)

q

)

≥
∞∑
t=1

∑
2t−1≤q<2t

(2t−1)m+1g

(
ψ(2t)

2t

)

=
∞∑
t=1

(2t−1)m+2g

(
ψ(2t)

2t

)
�

∞∑
t=1

2t(m+2)g

(
ψ(2t)

2t

)
.

On the other hand,

∞∑
q=1

qn+m−1g

(
ψ(q)

q

)
=
∞∑
t=0

∑
2t≤q<2t+1

qm+1g

(
ψ(q)

q

)

≤
∞∑
t=0

∑
2t≤q<2t+1

(2t+1)m+1g

(
ψ(2t)

2t

)

=
∞∑
t=0

2t(2t+1)m+1g

(
ψ(2t)

2t

)
�

∞∑
t=1

2t(m+2)g

(
ψ(2t)

2t

)
.

The desired result follows on combining these upper and lower bounds.
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Claim 3.13. Let n = 2. If ψ(q)
q

is monotonically decreasing then we have

∑
q∈P (Z2)

Θm(q)�
∞∑
q=1

2t(m+2)g

(
ψ(2t)

2t

)
.

Proof of Claim 3.13. We begin by observing that

∑
q∈P (Z2)

Θm(q) =
∑

q∈P (Z2)

θm(|q|) =
∞∑
q=1

∑
1≤p≤q:

gcd(p,q)=1

θm(q). (3.12)

As usual, let ϕ denote the Euler function. Remembering that m and n are constants,

and using the monotonicity of ψ(q)
q
, we have

∞∑
q=1

∑
1≤p≤q:

gcd(p,q)=1

θm(q) =
∞∑
q=1

ϕ(q)θm(q)

=
∞∑
q=1

ϕ(q)

(
qg

(
ψ(q)

q

) 1
m

)m

=
∞∑
q=1

ϕ(q)qmg

(
ψ(q)

q

)

=
∞∑
t=1

∑
2t−1≤q<2t

ϕ(q)qmg

(
ψ(q)

q

)

≥
∞∑
t=1

∑
2t−1≤q<2t

ϕ(q)(2t−1)mg

(
ψ(2t)

2t

)

�
∞∑
t=1

2tmg

(
ψ(2t)

2t

) ∑
2t−1≤q<2t

ϕ(q). (3.13)

We recall (see, for example, [3]) that, for real x > 1, we have

∑
q≤x

ϕ(q) =
3

π2
x2 +O(x log x).

It follows from this that, ∑
2t−1≤q<2t

ϕ(q)� 22t.
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Combining this fact with (3.12) and (3.13) yields

∑
q∈P (Z2)

Θm(q)�
∞∑
t=1

2tmg

(
ψ(2t)

2t

) ∑
2t−1≤q<2t

ϕ(q)�
∞∑
t=1

2t(m+2)g

(
ψ(2t)

2t

)
,

as claimed.

Now, recall that we are given
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
= ∞. Therefore, it follows

from Claim 3.12 that
∑∞

t=1 2t(m+2)g
(
ψ(2t)

2t

)
=∞. In turn, by Claim 3.13, this implies

that
∑

q∈P (Z2) Θm(q) = ∞. Finally, in light of this it follows from Theorem 3.6 that

|Ay
n,m(Θ)| = 1, as required.

As mentioned previously, Theorem 3.2 may also be derived as a corollary of

Theorem 3.11. The argument for this is essentially the same as the �rst part of

the above so we shall omit the details.

3.3 Approximation by Primitive Points and More

The key goal of this section is to present Hausdor� measure analogues of some recent

results obtained by Dani, Laurent and Nogueira in [18]. The setup they consider

assumes certain coprimality conditions on the (m+ n)-tuple (q1, . . . , qn, p1, . . . , pm) of

approximating integers. To achieve our goal we will �rst prove a very general statement

which further extends Theorems 3.10 and 3.11 and is of independent interest. In

particular, we will allow for the approximating function to depend on (p,q) and will

also introduce a �distortion� parameter Φ that allows certain �exibility within our

framework. This allows us, for example, to incorporate the so-called �absolute value

theory� [19, 31, 32].

Within this section Ψ : Zm × Zn \ {0} → R+ will be a function of (p,q), y ∈ Im

will be a �xed point and Φ ∈ Imm will be a �xed m×m square matrix. Further, de�ne

My,Φ
n,m(Ψ) to be the set of x ∈ Inm such that

|qx + pΦ− y| < Ψ(p,q)

holds for (p,q) ∈ Zm × Zn \ {0} with arbitrarily large |q|. Based upon Theorem 2.2,

we now state and prove the following generalisation of Theorems 3.10 and 3.11.



Chapter 3. Hausdor� Measure Khintchine�Groshev Type Statements 81

Theorem 3.14. Let Ψ : Zm × Zn \ {0} → R+ be such that

lim
|q|→∞

sup
p∈Zm

Ψ(p,q)

|q|
= 0 , (3.14)

and let y ∈ Im and Φ ∈ Imm be �xed. Let f and g : r → g(r) := r−m(n−1)f(r) be

dimension functions such that r−nmf(r) is monotonic. Let

Θ : Zm × Zn \ {0} → R+ be de�ned by Θ(p,q) = |q| g
(

Ψ(p,q)

|q|

) 1
m

.

Then

|My,Φ
n,m(Θ)| = 1 implies Hf (My,Φ

n,m(Ψ)) = Hf (Inm) .

Proof. Let

M := max

{
3n, sup

(p,q)∈Zm×Zn\{0}

3Θ(p,q)√
n|q|

}
. (3.15)

By the monotonicity of g and condition (3.14), we have that M is �nite. Let

S := {(p,q) ∈ Zm × Zn \ {0} : |pΦ| ≤M |q|}

and let SΦ be any �xed subset of S such that for each (p′,q) ∈ S there exists

(p,q) ∈ SΦ such that

pΦ = p′Φ and Θ(p′,q) ≤ 2Θ(p,q). (3.16)

Furthermore, let SΦ be such that for all (p,q), (r, s) ∈ SΦ we have

(pΦ,q) 6= (rΦ, s) if (p,q) 6= (r, s).

The existence of SΦ is easily seen. For each (p,q) ∈ SΦ, let

Rp,q := {x ∈ Rnm : qx + pΦ− y = 0} and Υp,q :=
Ψ(p,q)

|q|
.

For (p,q) ∈ SΦ we have that

∆(Rp,q,Υp,q) ∩ Inm =

{
x ∈ Inm :

√
n|qx + pΦ− y|

|q|2
<

Ψ(p,q)

|q|

}
⊂ {x ∈ Inm : |qx + pΦ− y| < Ψ(p,q)}
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since |q|2 ≤
√
n |q|. Also note that for each q ∈ Zn \ {0} there are only �nitely many

p ∈ Zm such that (p,q) ∈ SΦ � indeed, the motivation for introducing the set SΦ is

to ensure such �niteness. Therefore

Λ(Υ) ∩ Inm ⊂My,Φ
n,m(Ψ) ⊂ Inm, (3.17)

where, when de�ning Λ(Υ), the lim sup is taken over (p,q) ∈ SΦ. Hence, by (3.17), it

would su�ce for us to show that

Hf (Λ(Υ) ∩ Inm) = Hf (Inm).

Consider Λ(g(Υ)
1
m ), where the lim sup is again taken over (p,q) ∈ SΦ. Take any

(p′,q) ∈ S and let (p,q) ∈ SΦ satisfy (3.16). Then, since |q| ≤ |q|2, we have that

∆(Rp,q, g(Υp,q)
1
m ) ∩ Inm =

{
x ∈ Inm :

√
n|qx + pΦ− y|

|q|2
< g

(
Ψ(p,q)

|q|

) 1
m

}

=

{
x ∈ Inm : |qx + pΦ− y| < |q|2√

n
g

(
Ψ(p,q)

|q|

) 1
m

}

⊃

{
x ∈ Inm : |qx + pΦ− y| < |q|√

n
g

(
Ψ(p,q)

|q|

) 1
m

}
=
{
x ∈ Inm : |qx + pΦ− y| < 1√

n
Θ(p,q)

}
⊃
{
x ∈ Inm : |qx + p′Φ− y| < 1

2
√
n
Θ(p′,q)

}
.

Also observe that if
{
x ∈ Inm : |qx + p′Φ− y| < 1

2
√
n
Θ(p′,q)

}
6= ∅, then

|p′Φ| ≤M |q|. This can be shown by making suitable modi�cations to the argument

beginning at the end of page 70. It follows that

My,Φ
n,m( 1

2
√
n
Θ) ⊂ Λ(g(Υ)

1
m ) ⊂ Inm. (3.18)

Recall that |My,Φ
n,m(Θ)| = 1. Furthermore, in view of [9, Lemma 4], we have that

|My,Φ
n,m( 1

2
√
n
Θ)| = 1. Together with (3.18) this implies that |Λ(g(Υ)

1
m ) ∩ Inm| = 1.

Further, note that, by (3.14), Υp,q → 0 as |q| → ∞. Therefore, Theorem 2.2 is

applicable with k = nm, l = m(n − 1) and m and we conclude that for any ball

B ⊂ Inm we have that Hf (B ∩ Λ(Υ)) = Hf (B). In particular, this means that

Hf (Λ(Υ) ∩ Inm) = Hf (Inm), as required.



Chapter 3. Hausdor� Measure Khintchine�Groshev Type Statements 83

Before we proceed to exhibit further applications of Theorem 3.14, we show how

Theorem 3.10 in Section 3.2 follows as a corollary of Theorem 3.14. A consequence of

this is that all of the Hausdor� measure results obtained so far in this chapter can be

derived from Theorem 3.14. Furthermore, the rest of the Hausdor� measure results

which will be presented in this chapter will also be deduced using Theorem 3.14. In

short, Theorem 3.14 is an extremely versatile statement which can be used to easily

extract Hausdor� measure statements from Lebesgue measure statements for a wide

range of sets of interest in Diophantine approximation.

Proof of Theorem 3.10. Let Ψ be as in Theorem 3.10. First observe that if Ψ(q) ≥ 1

for in�nitely many q ∈ Zn, then Ay
n,m(Ψ) = Inm and there is nothing to prove.

Otherwise we obviously have that Ψ(q)/|q| → 0 as |q| → ∞. In this case, extending

Ψ and Θ to be functions of (p,q) so that Ψ(p,q) := Ψ(q) and Θ(p,q) := Θ(q), we

immediately recover Theorem 3.10 from Theorem 3.14.

Theorem 3.14 can be applied in various situations beyond what has already been

discussed above. For example, divergence results of [20] can be obtained by using

Theorem 3.14 with

Φ :=

(
Iu 0

0 0

)
where Iu is the identity matrix. In what follows we shall give applications of

Theorem 3.14 in which the dependence of Ψ on both p and q becomes particularly

useful. Namely, we shall extend the Lebesgue measure results of Dani, Laurent and

Nogueira [18] to Hausdor� measures.

First we establish some notation. Recall that for any d ≥ 2 we denote by P (Zd)
the set of points v = (v1, . . . , vd) ∈ Zd such that gcd(v1, . . . , vd) = 1. For any subset

σ = {i1, . . . , iν} of {1, . . . , d} with ν ≥ 2, let P (σ) be the set of points v ∈ Zd such
that gcd(vi1 , . . . , viν ) = 1. Next, given a partition π of {1, . . . , d} into disjoint subsets

π` of at least two elements, let P (π) be the set of points v ∈ Zd such that v ∈ P (π`)

for all components π` of π.

Given an approximating function ψ : N → R+ and �xed Φ ∈ Imm and y ∈ Im, let
My,Φ

n,m(ψ) be the set of x ∈ Inm such that

|qx + pΦ− y| < ψ(|q|) (3.19)

holds for (p,q) ∈ Zm×Zn \ {0} with arbitrarily large |q|. Also, given a partition π of

{1, . . . ,m+n}, letMπ,y,Φ
n,m (ψ) denote the set of x ∈ Inm for which (3.19) is satis�ed for



Chapter 3. Hausdor� Measure Khintchine�Groshev Type Statements 84

(p,q) ∈ Zm×Zn\{0} with arbitrarily large |q| and with (q1, . . . , qn, p1, . . . , pm) ∈ P (π).

Specialising Theorem 3.14 for the approximating function

Ψ(p,q) :=


ψ(|q|) if (q1, . . . , qn, p1, . . . , pm) ∈ P (π),

0 otherwise,

gives the following.

Theorem 3.15. Let ψ : N→ R+ be an approximating function such that ψ(q)
q
→ 0 as

q →∞. Let π be any partition of {1, . . . ,m+n} and let Φ ∈ Imm and y ∈ Im be �xed.

Let f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is

monotonic and let θ : N→ R+ be de�ned by θ(q) = q g
(
ψ(q)
q

) 1
m
. Then

|Mπ,y,Φ
n,m (θ)| = 1 implies Hf (Mπ,y,Φ

n,m (ψ)) = Hf (Inm).

Now, let us turn our attention to the results of Dani, Laurent and Nogueira

from [18]. For the moment, we will return to the homogeneous setting. Given a

partition π of {1, . . . ,m + n} and an approximating function ψ : N → R+ we will

denote by Aπn,m(ψ) the set of x ∈ Inm such that

|qx + p| < ψ(|q|)

holds for (p,q) ∈ Zm × Zn \ {0} with arbitrarily large |q| and with

(q1, . . . , qn, p1, . . . , pm) ∈ P (π). We note that in this case the inequality holds for

(p,q) ∈ Zm ×Zn \ {0} with arbitrarily large |q| if and only if the inequality holds for

in�nitely many (p,q) ∈ Zm × Zn \ {0}. The notation An,m(ψ) will be used as de�ned

in Section 3.1. The following statement is a consequence of [18, Theorem 1.2].

Theorem DLN1. Let n,m ∈ N and let π be a partition of {1, . . . ,m + n} such that

every component of π has at least m+ 1 elements. Let ψ : N→ R+ be a function such

that the mapping x→ xn−1ψ(x)m is non-increasing. Then,

|Aπn,m(ψ)| =


0 if

∑∞
q=1 q

n−1ψ(q)m <∞,

1 if
∑∞

q=1 q
n−1ψ(q)m =∞.
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The following Hausdor� measure analogue of Theorem DLN1 follows from

Theorem 3.15.

Theorem 3.16. Let n,m ∈ N and let π be a partition of {1, . . . ,m+n} such that every
component of π has at least m + 1 elements. Let ψ : N → R+ be an approximating

function. Let f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that the

function r−nmf(r) is monotonic and qn+m−1g
(
ψ(q)
q

)
is non-increasing. Then,

Hf (Aπn,m(ψ)) =


0 if

∑∞
q=1 q

n+m−1g
(
ψ(q)
q

)
<∞,

Hf (Inm) if
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
=∞.

Proof. First note that in light of the fact that qn+m−1g
(
ψ(q)
q

)
is non-increasing we

may assume without loss of generality that ψ(q)
q
→ 0 as q → ∞. To see this, suppose

that ψ(q)
q

9 0. Therefore, there must exist some ε > 0 such that ψ(q)
q
≥ ε in�nitely

often. In turn, since g is a dimension function, and hence non-decreasing, this means

that qn+m−1g
(
ψ(q)
q

)
≥ qn+m−1g(ε) in�nitely often. However, since this expression is

non-increasing, we must have that g(ε) = 0. In particular, this means that g(r) = 0

and, hence, also f(r) = 0 for all r ≤ ε. Thus Hf (X) = 0 for any X ⊂ Inm and so the

result is trivially true.

In view of the conditions imposed on π, we must have that nm > 1. Furthermore,

since Aπn,m(ψ) ⊂ An,m(ψ), it follows from Theorem 3.2 that Hf (Aπn,m(ψ)) = 0 when∑∞
q=1 q

n+m−1g
(
ψ(q)
q

)
< ∞. Alternatively, one can use a standard covering argument

to obtain a direct proof of the convergence part of Theorem 3.16.

Regarding the divergence case, observe that Aπn,m(ψ) = Mπ,0,Im
n,m (ψ), where Im

represents them×m identity matrix. Therefore, if |Mπ,0,Im
n,m (θ)| = |Aπn,m(θ)| = 1 where

θ : N→ R+ is de�ned by θ(q) = q g
(
ψ(q)
q

) 1
m
, then it would follow from Theorem 3.15

that Hf (Aπn,m(ψ)) = Hf (Mπ,0,Im
n,m (ψ)) = Hf (Inm).

Now, by Theorem DLN1, |Aπn,m(θ)| = 1 if q → qn−1θ(q)m is non-increasing

and
∑∞

q=1 q
n−1θ(q)m = ∞. We have that qn−1θ(q)m = qn+m−1g

(
ψ(q)
q

)
which is

non-increasing by assumption. By our hypotheses, we also have

∞∑
q=1

qn−1θ(q)m =
∞∑
q=1

qn+m−1g

(
ψ(q)

q

)
=∞.

Hence the proof is complete.
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If ψ(q) := q−τ for some τ > 0 let us write Aπn,m(τ) := Aπn,m(ψ). The following

result regarding the Hausdor� dimension of Aπn,m(τ) is a corollary of Theorem 3.16.

Corollary 3.17. Let n,m ∈ N and let π be a partition of {1, . . . ,m + n} such that

every component of π has at least m+ 1 elements. Then

dimH(Aπn,m(τ)) =


m(n− 1) + m+n

τ+1
when τ ≥ n

m
,

nm when τ < n
m
.

Proof. For τ ≥ n
m
the result follows on applying Theorem 3.16 with

fδ(r) := rs0+δ where s0 = m(n− 1) +
m+ n

τ + 1
.

Indeed, with δ su�ciently small, all the conditions of Theorem 3.16 are met and

furthermore, letting gδ(r) := r−m(n−1)fδ(r), we have

∞∑
q=1

qn+m−1gδ(q
−τ−1)


<∞ if δ > 0,

=∞ if δ ≤ 0,

since
∞∑
q=1

qn+m−1gδ(q
−τ−1) =

∞∑
q=1

qn+m−1+(τ+1)(m(n−1)−s0−δ) =
∞∑
q=1

q−1−δ(τ+1).

Thus, we have from Theorem 3.16 that

Hfδ(Aπn,m(τ)) =


0 if δ > 0,

Hfδ(Inm) if δ ≤ 0.

This means that Hs0+δ(Aπn,m(τ)) = 0 for δ > 0 and Hs0+δ(Aπn,m(τ)) = Hs0+δ(Inm)

for δ ≤ 0. Therefore, if s0 ≤ nm then dimH(Aπn,m(τ)) = s0 since, in this case,

Hs0+δ(Inm) =∞ whenever δ < 0. Finally, note that s0 ≤ nm if and only if τ ≥ n
m
.

In the case where τ < n
m
observe that Aπn,m(τ) ⊃ Aπn,m( n

m
) so

dimH(Aπn,m(τ)) ≥ dimH

(
Aπn,m

( n
m

))
= nm.

Combining this with the trivial upper bound gives dimH(Aπn,m(τ)) = nm when τ < n
m
,

as required.
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Next we consider two results of Dani, Laurent and Nogueira regarding

inhomogeneous approximation. As before, for a �xed y ∈ Im we let Ay
n,m(ψ) denote

the set of points x ∈ Inm for which

|qx + p− y| < ψ(|q|) (3.20)

holds for in�nitely many (p,q) ∈ Zm×Zn\{0}. Given a partition π of {1, . . . ,m+n},
let Aπ,yn,m(ψ) be the set of points x ∈ Inm for which (3.20) holds for in�nitely many

(p,q) ∈ Zm × Zn \ {0} with (q1, . . . , qn, p1, . . . , pm) ∈ P (π).

Rephrasing it in a way which is more suitable for our current purposes, a

consequence of [18, Theorem 1.1] reads as follows.

Theorem DLN2. Let n,m ∈ N and let π be a partition of {1, . . . ,m + n} such that

every component of π has at least m+ 1 elements. Let ψ : N→ R+ be a function such

that the mapping x→ xn−1ψ(x)m is non-increasing. Then,

(i) if
∑∞

q=1 q
n−1ψ(q)m =∞ then for almost every y ∈ Im we have

∣∣Aπ,yn,m(ψ)
∣∣ = 1.

(ii) if
∑∞

q=1 q
n−1ψ(q)m <∞ then for any y ∈ Im we have

∣∣Ay
n,m(ψ)

∣∣ = 0.

The corresponding Hausdor� measure statement we obtain in this case is:

Theorem 3.18. Let n,m ∈ N and let π be a partition of {1, . . . ,m+n} such that every
component of π has at least m + 1 elements. Let ψ : N → R+ be an approximating

function. Let f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that the

function r−nmf(r) is monotonic and qn+m−1g
(
ψ(q)
q

)
is non-increasing. Then,

(i) if
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
= ∞ then for Lebesgue almost every y ∈ Im we have

Hf
(
Aπ,yn,m(ψ)

)
= Hf (Inm).

(ii) if
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
<∞ then for any y ∈ Im we have Hf (Ay

n,m(ψ)) = 0.

Remark. The proof of this result is similar to the proof of Theorem 3.16 with the only

di�erence being the introduction of y.

Proof. We note here that, by the same reasoning as that given in the proof of

Theorem 3.16, the assumption that qn+m−1g
(
ψ(q)
q

)
is non-increasing means that we

may assume without loss of generality that ψ(q)
q
→ 0 as q →∞.
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To prove statement (i) we �rst note that Aπ,yn,m(ψ) = Mπ,y,Im
n,m (ψ) for any

approximating function. So, by Theorem 3.15 we have Hf (Aπ,yn,m(ψ)) = Hf (Inm)

whenever |Mπ,y,Im
n,m (θ)| = |Aπ,yn,m(θ)| = 1, where θ : N → R+ is de�ned by

θ(q) = qg
(
ψ(q)
q

) 1
m
.

By Theorem DLN2, if q → qn−1θ(q)m is non-increasing and
∑∞

q=1 q
n−1θ(q)m =∞

then |Mπ,y,Im
n,m (θ)| = |Aπ,yn,m(θ)| = 1 for Lebesgue almost every y ∈ Im. That these

two conditions are satis�ed can be veri�ed by the same reasoning as in the proof of

Theorem 3.16. Thus, for almost every y ∈ Im we have |Mπ,y,Im
n,m (θ)| = 1 and for each

of these y's we also have Hf (Aπ,yn,m(ψ)) = Hf (Mπ,y,Im
n,m (ψ)) = Hf (Inm). This completes

the proof of statement (i).

Statement (ii) follows from the convergence part of Theorem 3.7.

Finally, let us re-introduce the parameter Φ ∈ Imm. In this case, considering the

setsMπ,y,Φ
n,m (ψ) (as de�ned on page 83), it follows from [18, Theorem 1.3] that we have:

Theorem DLN3. Let n,m ∈ N and let π be a partition of {1, . . . ,m + n} such that

every component of π has at least m + 1 elements. Let ψ : N → R+ be a function

such that the mapping x → xn−1ψ(x)m is non-increasing. Then, for any y ∈ Im,

(i) if
∑∞

q=1 q
n−1ψ(q)m = ∞ then for almost every Φ ∈ Imm we have that

|Mπ,y,Φ
n,m (ψ)| = 1.

(ii) if
∑∞

q=1 q
n−1ψ(q)m <∞ then for any Φ ∈ Imm we have |My,Φ

n,m(ψ)| = 0.

Combining this with Theorem 3.15 we obtain the following Hausdor� measure

statement.

Theorem 3.19. Let n,m ∈ N and let π be a partition of {1, . . . ,m+n} such that every
component of π has at least m + 1 elements. Let ψ : N → R+ be an approximating

function. Let f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that the

function r−nmf(r) is monotonic and qn+m−1g
(
ψ(q)
q

)
is non-increasing. Then, for any

y ∈ Im,

(i) if
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
= ∞ then for Lebesgue almost every Φ ∈ Imm we have

that Hf (Mπ,y,Φ
n,m (ψ)) = Hf (Inm).

(ii) if
∑∞

q=1 q
n+m−1g

(
ψ(q)
q

)
< ∞ then, for any Φ ∈ Imm, we have that

Hf (My,Φ
n,m(ψ)) = 0.
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Proof. The proof is essentially the same as the proof of Theorem 3.18 with the obvious

modi�cations. Namely, we appeal to Theorem DLN3 rather than Theorem DLN2 in

the divergence part of the proof and in the convergence part, for �xed y ∈ Im and

Φ ∈ Imm, we consider

Rp,q = {x ∈ Rnm : qx + pΦ− y = 0}

for each (p,q) ∈ Zm × Zn \ {0}.

While all of the Hausdor� measure results established throughout this section could

have been obtained by combining Theorem 2.2 with the relevant Lebesgue measure

statement via a proof similar to that of (3.11), it can be seen that Theorem 3.14

provides an easier mechanism for transferring Lebesgue measure statements to their

Hausdor� measure analogues. Moreover, the generality of Theorem 3.14 means that

it is applicable in a vast range of settings including, as we have seen, homogeneous

approximation, inhomogeneous approximation, and approximation with restrictions.



4 | A General Inhomogeneous

Jarník�Besicovitch Theorem

In this chapter we consider another indirect application of the mass transference

principle for linear forms (Theorem 2.2). Namely, we show how the Hausdor�

measure analogue of the Inhomogeneous Khintchine�Groshev Theorem (Theorem 3.7),

obtained in the previous chapter as one of the consequences of Theorem 2.2, can

be used to provide an alternative proof of most cases of a general inhomogeneous

Jarník�Besicovitch Theorem due to Levesley [38].

Furthermore, inspired by this and the (lack of) monotonicity conditions required

in Theorem 3.7, we investigate the necessity of the monotonicity condition imposed

in Levesley's Theorem. We show that, in general, monotonicity cannot be removed

from Levesley's Theorem. Aside from a few minor amendments and the addition of

an explicit proof of Proposition 4.4, the material in this chapter appears here as it is

presented in [2, Section 3.3].

4.1 A Theorem of Levesley

The Hausdor� dimension of Ay
n,m(ψ), in the general inhomogeneous setting, was

determined by Levesley in [38]. To state his result we �rst introduce one additional

piece of notation. Given a function f : N → R+, the lower order at in�nity of f ,

usually denoted by λ, is

λ(f) := lim inf
q→∞

log(f(q))

log(q)
.

Theorem 4.1 (Levesley, [38]). Let m,n ∈ N and let ψ : N→ R+ be a monotonically

decreasing function. Let λ be the lower order at in�nity of 1
ψ
. Then, for any y ∈ Im,

dimH(Ay
n,m(ψ)) =


m(n− 1) + m+n

λ+1
when λ ≥ n

m
,

nm when λ < n
m
.

90
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Remark. In the homogeneous case, when y = 0, this result was previously established

by Dodson [23].

Levesley proved the above theorem by considering the cases of n = 1 and n ≥ 2

separately. In both cases his argument uses ideas from ubiquitous systems. These are

combined with ideas from uniform distribution in the former case and with a more

statistical (�mean-variance�) argument in the latter case.

Using Theorem 3.7, we can give an alternative proof of this theorem in the case

that n ≥ 2. That is, we will prove:

Theorem 4.2. Let m ≥ 1 and n ≥ 2 be integers. Let ψ : N→ R+ be a monotonically

decreasing function and let λ be the lower order at in�nity of 1
ψ
. Then, for any y ∈ Im,

dimH(Ay
n,m(ψ)) =


m(n− 1) + m+n

λ+1
when λ ≥ n

m
,

nm when λ < n
m
.

4.2 An Alternative Proof of (most of) Levesley's Theorem

Recall that in Remark 3.8 we noted that it was su�cient in Theorem 3.7 to assume

that ψ is monotonically decreasing in the case that n = 2. Throughout this section,

we shall assume any mention of Theorem 3.7 refers to a statement including this nicer

monotonicity condition for the n = 2 case.

To prove Theorem 4.2 using Theorem 3.7 we �rst establish a useful lemma.

Lemma 4.3. Let ψ : N→ R+ be monotonic and bounded. Then,

lim inf
q→∞

− log(ψ(q))

log q
= lim inf

t→∞

− log (ψ(2t))

log 2t
.

Proof. Assume �rst that ψ is non-increasing. Note that (2t)∞t=1 is a subsequence of

(q)∞q=1 and so

lim inf
q→∞

− log(ψ(q))

log q
≤ lim inf

t→∞

− log (ψ(2t))

log 2t
.

It remains to prove the reverse inequality. Suppose for now that ψ(q) ≥ 1 for all q ∈ N.
In this case, since ψ(q)→ c for some c ≥ 1 by monotone convergence,

lim inf
q→∞

− log(ψ(q))

log q
= 0 = lim inf

t→∞

− log(ψ(2t))

log 2t
.
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Thus, we may assume that ψ(q) < 1 for all su�ciently large q. Given q ∈ N, set
tq to be the unique integer satisfying 2tq ≤ q < 2tq+1. Then ψ(2tq) ≥ ψ(q) and

log(ψ(2tq)) ≥ log(ψ(q)). Since further q < 2tq+1 and so log q < log 2tq+1, we obtain

lim inf
q→∞

− log(ψ(q))

log q
≥ lim inf

q→∞

− log (ψ(2tq))

log 2tq+1

= lim inf
q→∞

− log (ψ(2tq))

log 2tq + log 2

= lim inf
t→∞

− log (ψ(2t))

log 2t
,

as required.

For non-decreasing ψ the proof is similar. By the same argument as above, it is

again su�cient to show that

lim inf
q→∞

− log(ψ(q))

log q
≥ lim inf

t→∞

− log (ψ(2t))

log 2t
.

We note that if ψ(q) ≥ 1 for all su�ciently large q then, since ψ is bounded,

lim inf
q→∞

− log(ψ(q))

log q
= 0 = lim inf

t→∞

− log (ψ(2t))

log 2t
.

Therefore, we may assume that ψ(q) < 1 for all q ∈ N. Now, along the same lines as in

the argument above, given q ∈ N let t′q be the unigue integer for which 2t
′
q−1 ≤ q < 2t

′
q .

Thus, we have

log 2t
′
q > log q and logψ(2t

′
q) ≥ log (ψ(q)).

Hence, it follows that

lim inf
q→∞

− log (ψ(q))

log q
≥ lim inf

q→∞

− log (ψ(2t
′
q))

log 2t
′
q

= lim inf
t→∞

− log (ψ(2t))

log 2t
,

and the proof is thus complete.

Proof of Theorem 4.2 using Theorem 3.7. To avoid confusion throughout the proof,

for approximating functions ψ : N→ R+ we will write λψ to denote the lower order at

in�nity of 1
ψ
. However, when there is no ambiguity we will just write λ and omit the

additional subscript.
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We observe that, since ψ is assumed to be monotonically decreasing, we must have

λψ ≥ 0. To see this, suppose that λψ < 0. Then, by the de�nition of the lower order

at in�nity, it follows that for any ε > 0 we must have ψ(q) ≥ q−(λψ+ε) for in�nitely

many values of q. In particular, this is true for every 0 < ε < |λψ| and so we conclude

that ψ cannot be monotonically decreasing if λψ < 0.

We will now show that if the result stated in Theorem 4.2 is true for approximating

functions with λ = n
m
, then this implies the validity of the result for approximating

functions with 0 ≤ λ < n
m
. We will then establish the result for approximating

functions with λ ≥ n
m
.

For the time being, assume that the conclusion in Theorem 4.2 holds for any

monotonically decreasing approximating function with λ = n
m

and let ψ : N → R+

be a monotonically decreasing approximating function such that λψ < n
m
. Consider

the function Ψ : N → R+ de�ned by Ψ(q) = min{ψ(q), q−
n
m}. Note that Ψ is a

monotonically decreasing function (since it is the minimum of two monotonically

decreasing functions) and that Ψ(q) ≤ ψ(q) for all q ∈ N. In particular, we have

dimH(Ay
n,m(Ψ)) ≤ dimH(Ay

n,m(ψ)). Next, note that it follows from the fact that

Ψ(q) ≤ q−
n
m for all q ∈ N that λΨ ≥ n

m
. On the other hand, since λψ < n

m
we

know that ψ(q) ≥ q−
n
m for in�nitely many values of q. In particular, this implies that

we must have Ψ(q) = q−
n
m in�nitely often and, consequently, that λΨ ≤ n

m
. Hence,

λΨ = n
m
and so, by our assumption, we see that

dimH(Ay
n,m(ψ)) ≥ dimH(Ay

n,m(Ψ)) = m(n− 1) +
n+m

λΨ + 1
= nm.

Combining this with the trivial upper bound we conclude that dimH(Ay
n,m(ψ)) = nm,

as required.

It remains to be shown that dimH(Ay
n,m(ψ)) = m(n− 1) + n+m

λ+1
for monotonically

decreasing approximating functions ψ : N → R+ with λψ = λ ≥ n
m
. To this end,

suppose ψ is such an approximating function.

Let s0 = m(n− 1) + m+n
λ+1

and consider fδ(r) = rs0+δ where −n+m
λ+1

< δ < n+m
λ+1

. We

aim to show that

Hs0+δ(Ay
n,m(ψ)) =


0 if δ > 0 ,

Hs0+δ(Inm) if δ < 0,

from which the result would follow.
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Note that fδ(r) is a dimension function and r−nmfδ(r) is monotonic. Let

gδ(r) = r−m(n−1)fδ(r) = r−m(n−1)+s0+δ. Since δ > −n+m
λ+1

, and so −m(n−1)+s0+δ > 0,

the function gδ(r) is a dimension function. Thus fδ and gδ satisfy the hypotheses of

Theorem 3.7.

It follows from the de�nition of the lower order at in�nity that, for any ε > 0,

ψ(q) ≤ q−(λ−ε) for all large enough q, and

ψ(q) ≥ q−(λ+ε) for in�nitely many q ∈ N. (4.1)

Combining this with Lemma 4.3, we have

ψ(2t) ≤ 2−t(λ−ε) for large enough t, and

ψ(2t) ≥ 2−t(λ+ε) for in�nitely many t. (4.2)

By Theorem 3.7 it follows that to determine Hfδ(Ay
n,m(ψ)) we are interested in the

behaviour of the sum

∞∑
q=1

qn+m−1gδ

(
ψ(q)

q

)
=
∞∑
q=1

qn+m−1

(
ψ(q)

q

)−m(n−1)+s0+δ

. (4.3)

Observe that, by the conditions imposed on δ, −m(n − 1) + s0 + δ > 0 and also

that, by (4.1), we have ψ(q) ≤ q−(λ−ε) for su�ciently large q. Thus, (4.3) will converge

if

∞∑
q=1

qn+m−1(q−(λ−ε)−1)−m(n−1)+s0+δ =
∞∑
q=1

qn+m−1+(λ+1−ε)(m(n−1)−s0−δ) <∞. (4.4)

This will be the case if

n+m− 1 + (λ+ 1− ε)(m(n− 1)− s0 − δ) < −1

which is true if and only if

n+m

λ+ 1− ε
+m(n− 1) < s0 + δ.
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If δ > 0 we can force the above to be true by taking ε to be su�ciently small. Thus

we conclude that, for δ > 0, (4.3) converges and consequently Hs0+δ(Ay
n,m(ψ)) = 0.

Next we establish that (4.3) diverges when −n+m
λ+1

< δ < 0. First we note, since ψ

is monotonically decreasing, that

∞∑
q=1

qn+m−1

(
ψ(q)

q

)−m(n−1)+s0+δ

=
∞∑
t=1

∑
2t−1≤q<2t

qn+m−1

(
ψ(q)

q

)−m(n−1)+s0+δ

≥
∞∑
t=1

∑
2t−1≤q<2t

(2t−1)n+m−1

(
ψ(2t)

2t

)−m(n−1)+s0+δ

=
∞∑
t=1

2t−1(2t−1)n+m−1

(
ψ(2t)

2t

)−m(n−1)+s0+δ

=
1

2m+n

∞∑
t=1

2t(n+m)

(
ψ(2t)

2t

)−m(n−1)+s0+δ

. (4.5)

We proceed by showing that, when δ < 0, we have for in�nitely many t that

2t(m+n)

(
ψ(2t)

2t

)−m(n−1)+s0+δ

≥ 1. (4.6)

For any δ < 0 we can choose ε > 0 small enough such that

m+ n

λ+ 1 + ε
+m(n− 1) ≥ s0 + δ.

Note that such an ε exists since we are assuming that δ is negative. Rearranging, this

gives

m+ n− (λ+ ε+ 1)(−m(n− 1) + s0 + δ) ≥ 0

and then, exponentiating,

2t(m+n)

(
2−t(λ+ε)

2t

)−m(n−1)+s0+δ

≥ 1.

Now, by (4.2) we have ψ(2t) ≥ 2−t(λ+ε) in�nitely often and so (4.6) holds, thus

proving the divergence of (4.5) and hence also the divergence of (4.3).
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Hence, we have shown that

Hs0+δ(Ay
n,m(ψ)) =


0 if δ > 0 ,

Hs0+δ(Inm) if δ < 0.

If s0 ≤ nm then Hs0+δ(Inm) = ∞ whenever δ < 0. From this it would follow that

dimH(Ay
n,m(ψ)) = s0. The proof is completed upon noting that s0 ≤ nm is equivalent

to λ ≥ n
m
.

4.3 The Necessity of Monotonicity in Levesley's Theorem

In Theorems 4.1 and 4.2 the approximating function ψ is assumed to be monotonic.

However, the main tool in our proof of Theorem 4.2 is Theorem 3.7, which requires

no monotonicity assumptions on ψ for n ≥ 3. This leads immediately to the natural

question of whether this monotonicity assumption is indeed necessary in Levesley's

Theorem (Theorem 4.1).

In an attempt to address this question, let us consider general (not necessarily

monotonic) approximating functions ψ : N→ R+ with λ, the lower order at in�nity of
1
ψ
, satisfying λ > n

m
. Assuming no monotonicity conditions on ψ, and applying similar

arguments to those which we have employed here to prove Theorem 4.2, we obtain the

following bounds on the Hausdor� dimension of Ay
n,m(ψ).

Proposition 4.4. Let m ≥ 1 and n ≥ 3 be integers. If ψ : N → R+ is any function

and λ is the lower order at in�nity of 1
ψ
then, for any y ∈ Im, if λ > n

m
we have

m(n− 1) +
m+ n− 1

λ+ 1
≤ dimH(Ay

n,m(ψ)) ≤ m(n− 1) +
m+ n

λ+ 1
.

Proof. Let ψ : N → R+ be any function with λ > n
m
. We will use Theorem 3.7

to obtain upper and lower bounds for dimH(Ay
n,m(ψ)). To this end, we will consider

dimension functions f(r) = rs and, correspondingly, g(r) = r−m(n−1)+s. We will be

interested in establishing values of s for which the sum

∞∑
q=1

qn+m−1g

(
ψ(q)

q

)
=
∞∑
q=1

qn+m−1

(
ψ(q)

q

)−m(n−1)+s

(4.7)

converges or diverges.
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First of all we will consider when this sum converges. Note that it follows from the

de�nition of lower order at in�nity that for any ε > 0 we have

ψ(q) ≤ q−(λ−ε) for all su�ciently large q ∈ N.

In particular, this means that, for any ε > 0,

∞∑
q=1

qn+m−1

(
ψ(q)

q

)−m(n−1)+s

�
∞∑
q=1

qn+m−1(q−(λ−ε)−1)−m(n−1)+s

=
∞∑
q=1

qn+m−1−(s−m(n−1))(λ+1−ε). (4.8)

Thus, if the sum on the far right-hand side of (4.8) converges then (4.7) will also

converge. Now, it can be seen that the sum on the far right-hand side of (4.8) converges

if

s > m(n− 1) +
m+ n

λ+ 1− ε
.

Since (4.7) also converges for these values of s, it follows from Theorem 3.7 that

Hs(An,m(ψ)) = 0 for s > m(n− 1) +
m+ n

λ+ 1− ε
.

Furthermore, since the above holds for arbitrarily small ε > 0, it follows that

dimH(Ay
n,m(ψ)) ≤ m(n− 1) +

m+ n

λ+ 1
. (4.9)

Now we turn our attention to investigating when (4.7) diverges. From the de�nition

of lower order at in�nity it follows that for any ε > 0 we have

ψ(q) ≥ q−(λ+ε) for in�nitely many q ∈ N.

Consequently, for in�nitely many q ∈ N we have

qn+m−1

(
ψ(q)

q

)−m(n−1)+s

≥ qn+m−1(q−(λ+ε)−1)−m(n−1)+s

= qn+m−1−(λ+ε+1)(s−m(n−1)).
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Thus, if we had, for example,

qn+m−1−(λ+ε+1)(s−m(n−1)) ≥ 1, (4.10)

then the divergence of (4.7) would follow. It can be seen that (4.10) holds when

s ≤ n+m− 1

λ+ 1 + ε
+m(n− 1).

Since ε > 0 was arbitrary, it follows from Theorem 3.7 that

Hs(Ay
n,m(ψ)) = Hs(Inm) when s <

n+m− 1

λ+ 1
+m(n− 1).

Since λ > n
m
we have

n+m− 1

λ+ 1
+m(n− 1) < nm

and, hence, it follows that

Hs(Ay
n,m(ψ)) =∞ when s <

n+m− 1

λ+ 1
+m(n− 1).

Thus, we conclude that

dimH(Ay
n,m(ψ)) ≥ m(n− 1) +

m+ n− 1

λ+ 1
. (4.11)

The proof of the proposition is complete upon combining the upper and lower bounds

given by (4.9) and (4.11), respectively, for the Hausdor� dimension of Ay
n,m(ψ).

We see that the upper and lower bounds we obtain for dimH(Ay
n,m(ψ)) in

Proposition 4.4 do not coincide. Interestingly, it turns out that these bounds are

the best possible if one does not assume monotonicity of ψ � as we will now show.

To the best of our knowledge the following result has not been considered before, even

in the homogeneous setting.

Theorem 4.5. Let m,n ≥ 1 be integers. Let α > n
m

be arbitrary and let s0 be such

that

m(n− 1) +
m+ n− 1

α + 1
< s0 < m(n− 1) +

m+ n

α + 1
.

There exists an approximating function ψ : N → R+ such that for every y ∈ Im we

have dimH(Ay
n,m(ψ)) = s0 and λψ = α (where λψ is the lower order at in�nity of 1

ψ
).
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Proof. Fix s0 satisfying the inequality in the statement of the theorem and let y ∈ Im

be arbitrary. Then, let J := {ak : k ∈ N}, where ak = dk−γe,

γ :=
2

n+m− 1− (α + 1)
(
n+m
β+1

) and β :=
n+m

s0 −m(n− 1)
− 1.

Note that γ < 0. De�ne ψ : N→ R+ by

ψ(q) =


q−α if q ∈ J ,

q−β if q /∈ J.

We show that ψ is an approximating function which satis�es the desired properties

of the theorem. First, note that

m(n− 1) +
n+m

α + 1
> s0,

which implies that
n+m

s0 −m(n− 1)
− 1 > α.

In turn, this implies that β > α and so lim infq→∞
− log(ψ(q))

log(q)
= α, giving λψ = α, as

required.

Recall that if λψ = α then for any ε > 0 there exists some N ∈ N such that

ψ(q) ≤ q−(α−ε) for all q ≥ N , and ψ(q) ≥ q−(α+ε) for in�nitely many q ∈ N.

To establish that the Hausdor� dimension is s0 we note that

dimH(Ay
n,m(ψ)) ≥ dimH(Ay

n,m(q 7→ q−β))

since ψ(q) ≥ q−β for all q. Furthermore, since q → q−β is a monotonic function with

λ(q 7→q−β) = β, by Theorem 4.1 we have

dimH(Ay
n,m(q 7→ q−β)) = m(n− 1) +

m+ n

β + 1
= s0.

Therefore, dimH(Ay
n,m(ψ)) ≥ s0 and it remains to show that dimH(Ay

n,m(ψ)) ≤ s0.

As a consequence of Theorem 3.7 (and Remark 3.9), we only need to verify that
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for all δ > 0 we have

∞∑
q=1

qn+m−1

(
ψ(q)

q

)−m(n−1)+s0+δ

<∞

since this would imply that Hs0+δ(Ay
n,m(ψ)) = 0 and dimH(Ay

n,m(ψ)) ≤ s0 + δ.

We note that

∞∑
q=1

qn+m−1

(
ψ(q)

q

)−m(n−1)+s0+δ

=
∑
q∈J

qn+m−1(q−α−1)−m(n−1)+s0+δ +
∑
q /∈J

qn+m−1(q−β−1)−m(n−1)+s0+δ

=
∑
q∈J

qn+m−1−(α+1)(s0+δ−m(n−1)) +
∑
q /∈J

qn+m−1−(β+1)(s0+δ−m(n−1)). (4.12)

We consider each of the terms on the right-hand side of (4.12) separately and show

that each of them converges. We �rst consider the second sum on the right-hand side

of (4.12). Since δ > 0 we have s0 −m(n− 1) < s0 + δ −m(n− 1) and hence

n+m <

(
n+m

s0 −m(n− 1)

)
(s0 + δ −m(n− 1)).

Recalling that

β =
n+m

s0 −m(n− 1)
− 1

it follows that

n+m− 1− (β + 1)(s0 + δ −m(n− 1)) < −1

which is su�cient for the second sum on the right-hand side of (4.12) to converge.

For the �rst sum on the right-hand side of (4.12) we make the following

observations. First of all notice that

n+m− 1− (α + 1)

(
n+m

β + 1

)
= n+m− 1− (α + 1)(s0 −m(n− 1)).

Also note that

n+m− 1

α + 1
+m(n− 1) < s0 gives n+m− 1− (α + 1)(s0 −m(n− 1)) < 0.
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Thus, provided that δ is su�ciently small,

∑
q∈J

qn+m−1−(α+1)(s0+δ−m(n−1)) =
∞∑
k=1

a
n+m−1−(α+1)(s0+δ−m(n−1))
k

=
∞∑
k=1

⌈
k−γ
⌉n+m−1−(α+1)(s0+δ−m(n−1))

≤
∞∑
k=1

(
k−γ
)n+m−1−(α+1)(s0+δ−m(n−1))

(4.13)

as n+m− 1− (α + 1)(s0 + δ −m(n− 1)) < 0 and γ < 0.

Now, for δ > 0,

2

γ
= n+m− 1− (α + 1)(s0 −m(n− 1))

> n+m− 1− (α + 1)(s0 + δ −m(n− 1)).

Hence,

2 < γ(n+m− 1− (α + 1)(s0 + δ −m(n− 1)))

since γ < 0. Therefore (k−γ)
n+m−1−(α+1)(s0+δ−m(n−1))

< k−2 and so (4.13) converges.

Consequently, since both the component sums converge, it follows that (4.12)

converges, i.e.
∞∑
q=1

qn+m−1

(
ψ(q)

q

)−m(n−1)+s0+δ

<∞,

and we conclude that dimH(Ay
n,m(ψ)) ≤ s0+δ. The desired result follows upon noticing

that δ > 0 can be taken to be arbitrarily small.



5 | Mass Transference Principles for

Rectangles

Another very natural situation, not covered by the setting of systems of linear forms,

for which we might hope for some kind of mass transference principle, is when our

lim sup sets of interest are de�ned by sequences of rectangles. Recently some progress

has been made in this direction by Wang, Wu and Xu [49]. Results of this kind are of

interest, for example, when we consider weighted simultaneous approximation. Before

presenting the results of Wang, Wu and Xu in Section 5.2, we will �rst survey some

results in the theory of weighted simultaneous approximation.

We will conclude this chapter by discussing the problem of obtaining a general

mass transference principle between lim sup sets de�ned by rectangles. By combining

the idea of �slicing� with either the Mass Transference Principle (Theorem 1.22) or a

result of Wang, Wu, and Xu (Theorem 5.7), we will show how we may obtain partial

results in this direction.

This chapter is heavily based on [2, Section 4]. In particular, the majority of the

material presented in Sections 5.2 and 5.3, including Propositions 5.11 and 5.12 in

Section 5.3, appears here as in [2, Section 4]. Any additions or modi�cations made

here have only been done so to improve readability and comprehensiveness.

5.1 Weighted Simultaneous Approximation

Until now, we have been mainly concerned with simultaneous approximation and

approximation by systems of linear forms. In other words, we have been interested

so far in approximation by balls centred at rational points or approximation by

planes. In this chapter we will consider weighted simultaneous approximation, that is,

essentially, approximation by rectangles. Unlike in the classical simultaneous setting,

we now consider approximation where we may require di�erent levels of accuracy

of approximation in di�erent coordinate directions. In this setting there exist natural

extensions of Dirichlet's Theorem and Khintchine's Theorem (Theorems 1.9 and 1.11).

102
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5.1.1 Weighted versions of Dirichlet's and Khintchine's Theorems

Before we proceed to give any statements of theorems, we �rst establish some notation

which will be used throughout this chapter. Suppose τ = (τ1, . . . , τk) ∈ Rk and τi > 0

for 1 ≤ i ≤ k. We de�ne Wk(τ ) to be the set of points x ∈ (x1, . . . , xk) ∈ Ik such that

|qxi + pi| < q−τi , 1 ≤ i ≤ k,

for in�nitely many pairs (p, q) ∈ Zk×N. If the vector τ satis�es the further properties

that

0 < τi < 1 for each 1 ≤ i ≤ k

and τ1 + · · ·+ τk = 1,

then we shall refer to τ as a weight vector. For τ > 0 we will also de�ne

ττ := (τ, . . . , τ) ∈ Rk. Thus, for example, Wk(ττ ) = Ak(τ).

In the setting of weighted approximation, we have the following analogue of

Dirichlet's Theorem.

Theorem 5.1 (Weighted Dirichlet's Theorem). Let τ ∈ Rk be a weight vector.

Then, for any x ∈ Rk and Q ∈ N, there exist q ∈ N with 1 ≤ q ≤ Q and p ∈ Zk such

that

|qxi + pi| < Q−τi , 1 ≤ i ≤ k.

Remark. Notice that if τ = τ 1
k
, then Theorem 5.1 reduces to the standard simultaneous

version (Theorem 1.9).

This weighted version of Dirichlet's Theorem is a consequence of Minkowski's

Linear Forms Theorem � for a statement of Minkowski's Linear Forms Theorem

and details of how it implies Theorem 5.1 we refer the reader to, for example,

[17, Chapter III] and [6, Section 1.4.1].

In much the same way as Theorem 1.2 follows from Theorem 1.1 and Theorem 1.10

follows from Theorem 1.9, the following corollary is a consequence of Theorem 5.1.

Corollary 5.2. Let τ ∈ Rk be a weight vector. Then, for any x ∈ Rk there exist

in�nitely many pairs (p, q) ∈ Zk × N such that

|qxi + pi| <
1

qτi
, 1 ≤ i ≤ k.

Hence, Wk(τ ) = Ik.
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So far, the �weighted� sets we have been dealing with here have essentially been

generalisations of the simultaneously τ -approximable points introduced in Section 1.5.

We can also consider sets of weighted ψ-approximable points. Suppose we are given

τ ∈ Rk and an approximating function ψ : N→ R+. We will denote by Wk(ψ, τ ) the

set of points in Ik which satisfy

|qxi + pi| < ψ(q)τi , 1 ≤ i ≤ k,

for in�nitely many pairs (p, q) ∈ Zk × N. Khintchine himself proved an extension

of his simultaneous theorem (Theorem 1.11) to the setting of weighted simultaneous

approximation.

Theorem 5.3 (Khintchine, [37]). Let ψ : N→ R+ be any approximating function and

let τ ∈ Rk be a weight vector. Then

|Wk(ψ, τ )| =


0 if

∑∞
q=1 ψ(q) <∞,

1 if
∑∞

q=1 ψ(q) =∞ and ψ is monotonic.

5.1.2 The Hausdor� dimension of Wk(τ )

Here we record a general result due to Rynne relating to the Hausdor� dimension of

the sets Wk(τ ). Suppose Q is an arbitrary in�nite set of natural numbers and, given

τ ∈ Rk with τi > 0 for i = 1, . . . , k, let WQ
k (τ ) denote the set of points x ∈ Ik for

which the inequalities

|qxi + pi| < q−τi , 1 ≤ i ≤ k, (5.1)

hold for in�nitely many pairs (p, q) ∈ Zk ×Q, hence WN
k (τ ) = Wk(τ ). De�ne

ν(Q) = inf

{
ν ∈ R :

∑
q∈Q

q−ν <∞

}

and let σ(τ ) =
∑k

i=1 τi.
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Theorem 5.4 (Rynne [44]). Let τ = (τ1, τ2, . . . , τk) ∈ Rk be such that

0 < τ1 ≤ τ2 ≤ · · · ≤ τk. Let Q be an arbitrary in�nite subset of N and suppose that

σ(τ ) ≥ ν(Q). Then,

dimHW
Q
k (τ ) = min

1≤j≤k

{
k + ν(Q) + jτj −

∑j
i=1 τi

1 + τj

}
.

Sets such asWk(τ ) and variations onWQ
k (τ ) have been studied in some depth, with

particular attention paid to the question of determining their Hausdor� dimension,

even before the work of Rynne [44]. For example, consider τ ∈ R for some τ > 1.

Then the set WN
1 (τ) = W1(τ) coincides precisely with the set A(τ) considered in the

Jarník�Besicovitch Theorem (Theorem 1.17). For an overview of some other earlier

results of this kind we direct the reader to the discussion given in [44] and references

therein.

Given an approximating function ψ : N → R+, we write WQ
k (ψ, τ ) to denote the

set of points in Ik which satisfy

|qxi + pi| < ψ(q)τi , 1 ≤ i ≤ k,

for in�nitely many pairs (p, q) ∈ Zk × Q. If the approximating function ψ satis�es a

certain kind of limiting behaviour, then we can derive the Hausdor� dimension of the

set WQ
k (ψ, τ ) as a corollary to Theorem 5.4.

Corollary 5.5 (Rynne [44]). Let Q be an in�nite set of positive integers, let τ ∈ Rk

with τi > 0 for each 1 ≤ i ≤ k, and let ψ : N → R+ be an approximating function.

Assume that the limit

λ := lim
q→∞

− log(ψ(q))

log q

exists and is positive. Furthermore, suppose that σ(τ ) ≥ ν(Q)
λ
. Then,

dimH W
Q
k (ψ, τ ) = min

1≤j≤k

{
k + ν(Q) + λjτj − λ

∑j
i=1 τi

1 + λτj

}
.

Proof. By the de�nition of λ, for any ε > 0 and each 1 ≤ i ≤ k we have

q−λτi−ε ≤ ψ(q)τi ≤ q−λτi+ε
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for all su�ciently large q ∈ Q. It follows that

WQ
k (λτ + τε) ⊂ WQ

k (ψ, τ ) ⊂ WQ
k (λτ − τε).

On letting ε→ 0, we see that dimHW
Q
k (ψ, τ ) = dimHW

Q
k (λτ ). Finally, taking λτ in

place of τ in Theorem 5.4, we obtain

dimHW
Q
k (λτ ) = min

1≤j≤k

{
k + ν(Q) + λjτj − λ

∑j
i=1 τi

1 + λτj

}

and the proof of the corollary is complete.

5.2 A Mass Transference Principle from Balls to Rectangles

Throughout this section let k ∈ N and, as usual, denote by Ik the unit cube [0, 1]k

in Rk. Given a ball B = B(x, r) in Rk of radius r centred at x and a k-dimensional

real vector a = (a1, a2, . . . , ak) we will denote by B
a the rectangle with centre x and

side-lengths (ra1 , ra2 , . . . , rak). Given a sequence (xn)n∈N of points in Ik and a sequence

(rn)n∈N of positive real numbers such that rn → 0 as n→∞ we de�ne

W0 = {x ∈ Ik : x ∈ Bn := B(xn, rn) for in�nitely many n ∈ N}.

For any a ∈ Rk we will also write

Wa = {x ∈ Ik : x ∈ Ba
n for in�nitely many n ∈ N}.

In [49], Wang, Wu and Xu established the following mass transference principle.

Theorem 5.6 (Wang � Wu � Xu [49]). Let (xn)n∈N be a sequence of points in Ik

and (rn)n∈N be a sequence of positive real numbers such that rn → 0 as n → ∞. Let

a = (a1, a2, . . . , ak) ∈ Rk be such that 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak. Suppose that |W0| = 1.

Then,

dimH Wa ≥ min
1≤j≤k

{
k + jaj −

∑j
i=1 ai

aj

}
.

Furthermore, if we have the additional constraint ad > 1, Wang, Wu and Xu are
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also able to say something about the Hausdor� measure of Wa at the critical value

s := min
1≤j≤k

{
k + jaj −

∑j
i=1 ai

aj

}
. (5.2)

Theorem 5.7 (Wang �Wu � Xu [49]). Assume the same conditions as in Theorem 5.6.

If the additional constraint that ad > 1 holds, then

Hs(Wa) =∞.

Essentially, the results of Wang, Wu and Xu allow us to pass from a full

Lebesgue measure statement for a lim sup set de�ned by a sequence of balls to a

Hausdor� measure statement for a lim sup set de�ned by an associated sequence of

rectangles. As an application, Wang, Wu and Xu demonstrate how Theorem 5.6

may be applied to obtain the Hausdor� dimension of the sets Wk(τ ) of weighted

simultaneously well-approximable points. The following is derived in [49] as a corollary

to Theorem 5.6.

Corollary 5.8 (Wang � Wu � Xu [49]). Let τ = (τ1, τ2, . . . , τk) ∈ Rk be such that
1
k
≤ τ1 ≤ τ2 ≤ · · · ≤ τk, then

dimH(Wk(τ )) = min
1≤j≤k

{
k + 1 + jτj −

∑j
i=1 τi

1 + τj

}
.

Proof. We �rst obtain an upper bound for the dimension of Wk(τ ). For this we make

use of a fairly standard covering argument and do not require Theorem 5.6. For

(p, q) = (p1, p2, . . . , pk, q) ∈ Zk × N, let

E(p, q) :=

{
x = (x1, . . . , xk) ∈ Ik :

∣∣∣∣xi − pi
q

∣∣∣∣ < 1

qτi+1
for each 1 ≤ i ≤ k

}
.

Then,

Wk(τ ) =
∞⋂
Q=1

⋃
q≥Q

⋃
p∈Zk:

E(p,q) 6=∅

E(p, q).

Note that for a given q ∈ N there will be � (q + 1)k rectangles E(p, q) which are

non-empty.
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Now, for a �xed 1 ≤ j ≤ k, we can cover a rectangle E(p, q) using

j∏
i=1

q−1−τi

q−1−τj

cubes of side-length 2q−1−τj .

Thus, given ρ > 0 and letting Q(ρ) ∈ N be such that q−1−τj < ρ for all q ≥ Q(ρ),

we see that

Hs
ρ(Wk(τ ))�

∑
q≥Q(ρ)

(q + 1)k
j∏
i=1

q−1−τi

q−1−τj
q−(1+τj)s

�
∑
q≥Q(ρ)

qk+
∑j
i=1 (τj−τi)−s(1+τj)

�
∞∑
q=1

qk+jτj−
∑j
i=1 τi−s(1+τj).

If s >
k+1+jτj−

∑j
i=1 τi

1+τj
, the above sum converges and so, on letting ρ → 0, for such

values of s we see that Hs(Wk(τ )) = 0. Hence, dimH Wk(τ ) ≤ k+1+jτj−
∑j
i=1 τi

1+τj
.

Finally, since the above argument holds with any choice of 1 ≤ j ≤ k we conclude

that

dimH Wk(τ ) ≤ min
1≤j≤k

{
k + 1 + jτj −

∑j
i=1 τi

1 + τj

}
.

Next, we turn our attention to establishing a lower bound for the Hausdor�

dimension of Wk(τ ). For this we will appeal to Theorem 5.6. Let S be the set of

pairs (p, q) ∈ Zk × N with 0 ≤ pi ≤ q for 1 ≤ i ≤ k. For each (p, q) ∈ S, let

B(p,q) = B

(
p

q
,

1

q1+ 1
k

)
.

From Theorem 1.10 we see that∣∣∣∣∣lim sup
(p,q)∈S

B(p,q)

∣∣∣∣∣ = |Ak(q 7→ q−
1
k )| = 1.

If we take a = (a1, . . . , ak) ∈ Rk to be the vector with components ai = k(1+τi)
1+k

for
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each 1 ≤ i ≤ k then

Ba
(p,q) =

{
x ∈ Rk :

∣∣∣∣xi − pi
q

∣∣∣∣ < 1

q1+τi
for each 1 ≤ i ≤ k

}
.

In particular,

lim sup
(p,q)∈S

Ba
(p,q) ⊂ Wk(τ ).

Applying Theorem 5.6 with the vector a speci�ed above we obtain

dimH Wk(τ ) ≥ dimH

(
lim sup
(p,q)∈S

Ba
(p,q)

)

≥ min
1≤j≤k

{
k + jaj −

∑j
i=1 ai

aj

}

= min
1≤j≤k


k + j

(
k(1 + τj)

1 + k

)
−

j∑
i=1

(
k(1 + τi)

1 + k

)
k(1 + τj)

1 + k


= min

1≤j≤k

{
1 + k + jτj −

∑j
i=1 τi

1 + τj

}
.

Finally, observing that this lower bound for the Hausdor� dimension of Wk(τ )

coincides with the upper bound obtained earlier, we conclude that

dimH Wk(τ ) = min
1≤j≤k

{
1 + k + jτj −

∑j
i=1 τi

1 + τj

}
,

as required.

While the proof of Corollary 5.8 given in [49] is novel, and is a neat application of

Theorem 5.6, the result itself was already previously known. In fact, Corollary 5.8 is a

special case of the earlier more general theorem due to Rynne [44] cited in Section 5.1.2

� we may easily recover Corollary 5.8 by taking Q = N in Theorem 5.4 and noting

that ν(N) = 1. Since the hypotheses of Corollary 5.8 demand that τi ≥ 1
k
for all

1 ≤ i ≤ k, we see that the condition σ(τ ) ≥ ν(Q) in Theorem 5.4 is also satis�ed.
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5.3 Mass Transference Principles from Rectangles to Rectangles

The original Mass Transference Principle (Theorem 1.22) allows us to transition from

Lebesgue to Hausdor� measure statements when our original and �transformed� lim sup

sets are de�ned by sequences of balls, i.e. it allows us to go from �balls to balls�.

Theorem 5.6 allows us to go from �balls to rectangles�. Another goal which we might

like to achieve, which is not covered by any of the frameworks mentioned so far, would

be to prove a similar mass transference principle where we both start and �nish with

lim sup sets arising from sequences of rectangles, i.e. from �rectangles to rectangles�.

Problem 5.9. Does there exist a mass transference principle, similar to Theorem 1.22

or Theorem 5.6, where both the original and transformed lim sup sets are de�ned by

sequences of rectangles?

Although in the most general settings this problem remains open, we consider what

can be said in a few special cases.

We �rst observe 1 that if we are in a metric space (X, d), satisfying the hypotheses

of Theorem 1.23, where the balls with respect to d are actually rectangles, then

Theorem 1.23 does gives us a kind of mass transference principle from rectangles

to rectangles. The disadvantage with such a statement obtained in this way, though,

is that the �shape� of the rectangles must be preserved between the associated original

and transformed lim sup sets. Furthermore, the Hausdor� measure statement obtained

will relate to Hausdor� measure with respect to the particular metric with which the

space X is equipped.

In [8] Beresnevich and Velani employ a �slicing� technique, which uses a

combination of a slicing lemma and the original Mass Transference Principle, to prove

Theorem 2.1. We show how an appropriate combination of these two results can also

be applied to considering the problem of proving a mass transference principle for

rectangles. We proceed by stating the �Slicing Lemma� as given by Beresnevich and

Velani in [8].

1The author is indebted to Henna Koivusalo for many conversations about rectangles while she

was a postdoc in York and, in particular, thanks her for making the observation recorded above.
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Lemma 5.10 (Slicing Lemma [8]). Let l, k ∈ N be such that l ≤ k and let f and

g : r → r−lf(r) be dimension functions. Let A ⊂ Rk be a Borel set and let V be a

(k−l)-dimensional linear subspace of Rk. If for a subset S of V ⊥ of positive Hl-measure

Hg(A ∩ (V + b)) =∞ for all b ∈ S,

then Hf (A) =∞.

Suppose that (xn)n = (xn,1, xn,2, . . . , xn,k)n is a sequence of points in Ik. Let

(r1
n)n, (r

2
n)n, . . . , (r

k
n)n be sequences of positive real numbers and suppose that r1

n → 0

as n→∞. Let

Hn =
k∏
i=1

B(xn,i, r
i
n)

be a sequence of rectangles in Ik, where
∏k

i=1 Ai = A1×A2×· · ·×Ak is the Cartesian
product of subsets Ai of Rk. Let α > 1 be a real number and de�ne another sequence

of rectangles by

hn = B(xn,1, (r
1
n)α)×

k∏
i=2

B(xn,i, r
i
n).

So, hn is essentially a �shrunk� rectangle corresponding to Hn from the original

sequence. Note that in this case we only allow shrinking of the original rectangle

in one direction. Then, we are able to establish the following.

Proposition 5.11. Let the sequences Hn and hn be as given above and further suppose

that | lim supn→∞Hn| = 1. Then,

dimH

(
lim sup
n→∞

hn

)
≥ 1

α
+ k − 1.

Proof. Let V = {x = (x1, . . . , xk) ∈ Ik : xi = 0 for all i 6= 1}. Since

| lim supn→∞Hn| = 1, for Lebesgue almost every

b ∈ {x = (x1, . . . , xk) ∈ Ik : x1 = 0}

we have

|(V + b) ∩ lim sup
n→∞

Hn| = 1.

Let us �x a b for which this holds and let W = V + b. Now, lim supn→∞Hn ∩W can

be written as the lim sup set of a sequence of balls Bj = B(xnj ,1, r
1
nj

) with radii r1
nj
.
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Note that | lim supj→∞Bj ∩W | = 1. For each j also let bj = B(xnj ,1, (r
1
nj

)α) and note

that

lim sup
j→∞

bj ∩W = lim sup
n→∞

hn ∩W.

In accordance with our earlier notation, bsj = B(xnj ,1, (r
1
nj

)αs). Therefore, if s ≤ 1
α

then (r1
nj

)αs ≥ r1
nj

for su�ciently large j and so

bsj ⊃ Bj and | lim sup
j→∞

bsj ∩W | = 1.

Thus, for any s ≤ 1
α
we may use the Mass Transference Principle (Theorem 1.22) to

conclude that for any ball B ⊂ W we have

Hs(lim sup
j→∞

bj ∩B) = Hs(B).

In particular, since s ≤ 1
α
< 1, this means

Hs(lim sup
n→∞

hn ∩W ) = Hs(W ) =∞.

Since this is the case for Lebesgue almost every b ∈ {x = (x1, . . . , xk) : x1 = 0} we
can use the Slicing Lemma (Lemma 5.10) to conclude that

Hs′(lim sup
n→∞

hn) =∞

for all s′ ≤ 1
α

+ k − 1. Therefore, it follows that

dimH

(
lim sup
n→∞

hn

)
≥ 1

α
+ k − 1.

Using Theorem 5.7 in place of Theorem 1.22, we are actually able to extend this

argument a little further. Again, let (xn)n = (xn,1, xn,2, . . . , xn,k)n be a sequence

of points in Ik and let (r1
n)n, (r

2
n)n, . . . , (r

k
n)n be sequences of positive real numbers.

Suppose that for some 1 ≤ k0 ≤ k we have r1
n = r2

n = · · · = rk0n for all n ∈ N and also

that r1
n → 0 as n→∞. Let

Hn =
k∏
i=1

B(xn,i, r
i
n)

be a sequence of rectangles in Ik. Next, let 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak0 be real numbers

and suppose ak0 > 1. For each rectangle Hn in our original sequence we de�ne a
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corresponding �shrunk� rectangle

hn =

k0∏
i=1

B(xn,i, (r
i
n)ai)×

k∏
i=k0+1

B(xn,i, r
i
n).

In this case we are able to prove the following.

Proposition 5.12. Let the sequences of rectangles Hn and hn be as given above and

further suppose that | lim supn→∞Hn| = 1. Then,

dimH

(
lim sup
n→∞

hn

)
≥ min

1≤j≤k0

{
k0 + jaj −

∑j
i=1 ai

aj
+ k − k0

}
.

Proof. Let V = {x = (x1, x2, . . . , xk) ∈ Ik : xi = 0 for all i ≥ k0 + 1}. Since

| lim supn→∞Hn| = 1, for almost every

b ∈ {x = (x1, x2, . . . , xk) ∈ Ik : xi = 0 for all i ≤ k0}

we have

|(V + b) ∩ lim sup
n→∞

Hn| = 1.

Let us �x a b for which this holds and let W = V +b. As before, lim supn→∞Hn ∩W
can be written as a sequence of k0-dimensional balls Bj = B(xk0nj , r

1
nj

) with

radii r1
nj
(= r2

nj
= · · · = rk0nj) and centres xk0nj := (xnj ,1, xnj ,2, . . . , xnj ,k0). Note that

| lim supj→∞Bj ∩W | = 1.

This time, for each j let

bj =

k0∏
i=1

B(xnj ,i, (r
i
nj

)ai)

and note that

lim sup
j→∞

bj ∩W = lim sup
n→∞

hn ∩W.

By Theorem 5.7 it follows that

Hs(lim sup
n→∞

hn ∩W ) =∞

where

s := min
1≤j≤k0

{
k0 + jaj −

∑j
i=1 ai

aj

}
.
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Since this is the case for almost every

b ∈ {x = (x1, x2, . . . , xk) ∈ Ik : xi = 0 for all i ≤ k0}

we may use Lemma 5.10 (with l = k − k0) to conclude that

Hs′(lim sup
n→∞

hn) =∞

where

s′ := min
1≤j≤k0

{
k0 + jaj −

∑j
i=1 ai

aj
+ k − k0

}
.

Hence

dimH

(
lim sup
n→∞

hn

)
≥ s′,

as required.

A disadvantage of using the �slicing� arguments above is that we have to impose

quite strict conditions on both the original and transformed rectangles. Namely, the

sides of the original rectangle which are permitted to �shrink� have to be of the same

initial length (but can shrink at di�erent rates). Meanwhile, the rest of the sides of the

original rectangle are not allowed to shrink at all when passing to the corresponding

transformed rectangle. We conclude this section by considering one more situation

where all sides of the original rectangles may have di�erent lengths and are all allowed

to shrink in a speci�ed manner. Let

Hn =
k∏
i=1

B(xn,i, r
ti
n )

be a sequence of rectangles in Ik with 1 ≤ ti for 1 ≤ i ≤ k and rn → 0.

Let the corresponding shrunk rectangles be de�ned as

hn =
k∏
i=1

B(xn,i, r
aiti
n ),

where 1 ≤ ai for 1 ≤ i ≤ k. Suppose without loss of generality that

1 ≤ a1t1 ≤ a2t2 ≤ · · · ≤ aktk. Furthermore, suppose that

D := inf

{
d ∈ R :

∞∑
n=1

rdn <∞

}
.
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By using the �natural� covers of lim supn→∞ hn we can get an upper bound for the

Hausdor� dimension of this lim sup set.

Observation 5.13. Let the sequence of rectangles (hn)n be as de�ned above, then

dimH

(
lim sup
n→∞

hn

)
≤ min

1≤j≤k

{
D + jajtj −

∑j
i=1 aiti

ajtj

}
. (5.3)

Proof. To see this we �rst note that for a �xed 1 ≤ j ≤ k the rectangle hn may be

covered by
j∏
i=1

raitin

r
ajtj
n

balls (i.e. cubes in this case) of radius r
ajtj
n .

Given ρ > 0, let N(ρ) ∈ N be such that r
ajtj
n < ρ for all n ≥ N(ρ). It follows that

Hs
ρ

(
lim sup
n→∞

hn

)
≤

∑
n≥N(ρ)

(
j∏
i=1

raitin

r
ajtj
n

× rajtjsn

)
=
∑

n≥N(ρ)

r
∑j
i=1 (aiti−ajtj)+ajtjs

n .

By the de�nition of D, the above sum converges if

s >
D + jajtj −

∑j
i=1 aiti

ajtj
.

Thus, letting ρ → 0, for such values of s we see that Hs(lim supn→∞ hn) = 0. In

particular, this means that

dimH

(
lim sup
n→∞

hn

)
≤ D + jajtj −

∑j
i=1 aiti

ajtj
.

Since this argument is valid for any 1 ≤ j ≤ k, we conclude that

dimH

(
lim sup
n→∞

hn

)
≤ min

1≤j≤k

{
D + jajtj −

∑j
i=1 aiti

ajtj

}
.

This observation leads us to contemplate the following problem.

Problem 5.14. Under what conditions do we get a lower bound for

dimH (lim supn→∞ hn) which coincides with the upper bound given by (5.3)?
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