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Abstract

This thesis presents a realisation of the most demanding laser systems for a mobile strontium optical clock.

First, stable 689 nm cooling lasers are presented: an amplified semiconductor diode laser and a prototype

of the semiconductor disc laser (SDL/VECSEL). The first was stabilised to a novel miniaturised multi-laser

frequency stabilisation system that allows to stabilise all the six lasers used in the strontium optical clock.

The latter was used for the first time in the second-stage cooling of strontium to obtain a cold cloud of

trapped atoms.

An atomic optical clock requires a laser oscillator for interrogating the clock transition. This thesis

presents the construction and discusses the performance of the cutting-edge ultra-stable interrogation lasers

at 698 nm. One of the systems is a stationary system based at the University of Birmingham, with the

instability of 5 ⇥ 10�15. A mobile version of the interrogation laser is also presented and characterised in

this work. The laser reaches instability of 8 ⇥ 10�16, which is one of the best results for a mobile system.

The mobile laser is a part of the space optical clock project (SOC2), in which a record-low instability for the

bosonic strontium was observed of < 4⇥ 10�16/
p
⌧ .
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CHAPTER 1

INTRODUCTION

Timekeeping has always been very important to humanity from the early beginnings. As the fourth

dimension, somebody could say that time is just as important as the other three spatial dimensions. Although

it is possible to imagine living in a world without one spatial dimension, like Edwin A. Abbott in his book

entitled “Flatland: A romance of many dimensions” [1], nobody can imagine living without the temporal

dimension, time.

Scientific testimony to the importance of time measurement is given by the fact that nowadays it is the

most accurately measured fundamental physical quantity, reaching uncertainty of 2 ⇥ 10�18 expressed in

fractional units for the most stable ytterbium ion clock described by Nicholson et al. in [2]. In comparison,

the most accurate measurement of mass can be done with an order of < 5⇥ 10�9 relative uncertainty [3, 4];

and the most accurate measurement of temperature is in the order of 10�7 [5, 6, 7].

As the speed of light constant is by definition equal to 299 792 458 m/s exactly, it is possible to link the

definition of length to time, and that is exactly how the meter unit is defined in the SI unit system [8]:

“The meter is the length of the path travelled by light in vacuum during a time interval of
1/299 792 458 of a second.”

The ability to accurately measure time is therefore necessary to precisely determine the length of an object.

Modern length measurement methods involve using lasers [9] and the most precise is based on laser inter-

ferometry. The wavelength of that laser must be very well defined, which is achieved by stabilising it to a

reference (e.g. molecular), similar to how it is stabilised in an optical atomic clock.
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1.1 Short history of clocks

The road towards modern atomic clocks was very long and originated from the very beginning of everything

that we know. The Earth’s spin around its own axis is the most evident example of how time can be observed.

It is the reason for the occurrence of day and night which can be counted to measure the time. The moon

orbiting the Earth is another example of an astrophysical oscillator that can be used to measure time. Our

ancestors used full moons to count synodic months that last on average ⇠ 29.5 days long [10]. Changing

seasons, caused by the Earth orbiting the Sun, were another source of information, allowing them to count

the years.

To be able to more precisely determine the time of day, our ancestors learnt how to measure the day’s

phase. They used a wall or stick that cast di↵erent shadows depending on the position of the Sun in the

sky. By assigning di↵erent positions of the shadow to di↵erent parts of a day (hours), the first sundials

were created [11]. Sundials were good enough to determine the time of day and to measure hours. However,

they had many cons as they could not be used indoors, during the night or on a cloudy day, on a ship and

finally, they were not precise enough to measure short periods of time. To overcome these obstacles, other

chronometers were also invented.

One of them was a water clock that used the steady flow of water to measure time intervals. It was already

known in ancient Egypt that the most advanced designs had a passive feedback mechanism for regulating the

water flow rate. Using water in the clock could be troublesome as it could not be moved during operation,

and it would not work in temperatures below the freezing point of water. The latter problem was eliminated

by replacing the water with liquid mercury. However, a very neat solution was to use very fine sand instead

of liquid. This idea gave birth to a sand glass. Although the accuracy of a liquid clock could be better under

controlled conditions, the sand glass was easy to produce, more compact and it turned out to be very useful

on the ships, where they were used for navigation [12].

Another way of measuring time intervals was based on the steady rate of a chemical reaction. This

reaction was mainly the burning of di↵erent fuels like wax or coal oil [13].

In the 16th century, Italian scientist Galileo Galilei was the first to study the properties of the pendulum,

and its ability to measure time intervals. The first to implement the pendulum in a clock, however, was Dutch

mathematician Christiaan Huygens in the 17th century. Huygens also developed a spring balance clock that

had the great advantage of being operational in every position, independent of the gravitational field. Both

the pendulum and spring balance clocks were the first steps towards constructing the marine chronometer

that revolutionised the navigation around the seas [14].
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Early 20th century was the time of the first electronic clocks. The most significant was the quartz clock

that uses a quartz crystal as an oscillator. When an alternating voltage is applied to the crystal, it vibrates,

thanks to the piezoelectric e↵ect [15]. Each crystal has a di↵erent resonant frequency, which depends on

the shape of the crystal and its physical properties. Most commonly, crystals are calibrated to resonate at

⇠ 32768 Hz, which corresponds to 215 Hz. This number is convenient since the signal at this frequency

can be simply divided down to 1 Hz by using binary frequency dividers. The magnitude of the frequency

is chosen to be a trade o↵ between optimising the size of the crystal, and the power consumption of the

resonant electronic circuit [15].

Early atomic clocks

The beginning of the 20th century was also the time of the first developments towards atomic clocks; although

the idea of using electromagnetic waves to realise time standards can be traced back to 1873 when James

Clerk Maxwell proposed it in his book “A treatise on electricity and magnetism” [16]. It all started with the

revolution in quantum physics, and advances in experimental methods and apparatus. Stern and Gerlach

contributed towards developing the molecular beam techniques with their famous series of experiments around

the year 1922, where they first demonstrated separation of molecules occupying di↵erent magnetic states by

using an inhomogeneous magnetic field [17]. The inhomogeneous magnetic field was later used in beam

caesium clocks for the initial state preparation of atoms and the final state detection. In 1937, Isidor Isaac

Rabi came up with a method of exciting the magnetic resonance in molecular beams [18] and a year after,

together with his team, was the first to observe a magnetic resonance in molecular beams [19]. Positive

results motivated Rabi to use his method to construct the first atomic clock. Their project was unfortunately

interrupted by the second World War, but even if it had been continued they would have obtained accuracies

of the order of 10�8. This was achievable with existing clocks at the time and would not have brought any

advantage [20].

In 1949 Norman Foster Ramsey, a former PhD student of Rabi, invented a new method of addressing the

molecular beams by using two separated oscillatory fields [21]. He subsequently showed the method to work

experimentally in the following years. The new scheme of interrogating the atoms increased the resolution

significantly making the way for the first atomic clocks.

In 1955 Louis Essen and Jack Parry developed the first caesium atomic clock at the National Physical

Laboratory (NPL) in Teddington, UK. They were also the first to measure the frequency of the hyperfine

clock transition in caesium, which became the base for other atomic clock experiments, and eventually led
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to the redefinition of the second in 1967 [20]. The International Committee on Weights and Measures agreed

on the definition of a second as follows [8, 22]:

“The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the caesium 133 atom.”

Atom fountain clocks

The Ramsey method of interrogating the atoms involves two, preferably identical, oscillatory fields that atoms

pass through. The molecular beam travelled horizontally in early experiments, which needed two identical

Ramsey resonators. In the 1950s Jerrold Zacharias tried to realise a new idea of using only one Ramsey

resonator by transforming the horizontal orientation of the experiment into vertical, with the atom source

aiming upwards [23]. The main point of the idea was that the atoms pass through the resonator once in

their way up and turn back due to gravitational acceleration, passing through the same resonator in their

way back down. This method was supposed to select only slow atoms from the whole thermal distribution,

increasing the resolution of the measurement and removing some systematic errors. This type of atomic

clock was named after fountains because of the stream of atoms going up and then reversing back down.

Unfortunately, Zacharias’ experiment with hot molecular beam did not bring any positive results and it was

soon abandoned [24].

The idea of the fountain clock was resurrected after the invention and development of laser cooling and

trapping methods [25]. Cooled and trapped cloud of atoms have much smaller temperatures than a beam of

thermal atoms in the order of a few µK [24]. Additionally, such a cloud can consist of hundreds of millions

of atoms giving a good signal to noise ratio. Velocity of the cloud is distributed around zero, which helps

to prevent the expansion of the cloud. It can therefore be ejected up so that it passes through the Ramsey

cavity on the way up, and on the way down. In modern fountain clocks, lasers are not only used for cooling

and trapping atoms, but also for state preparation and state detection.

In 1989 John Hall led the theoretical consideration of the fountains [26] with ultra-cold atoms, and in

the same year, Mark Kasevich realised the first experiment with sodium, in which he obtained a 2 Hz wide

Ramsey fringe [27]. Although he did not build an optical clock out of it, the first fountain clocks appeared

soon after, with the development of the first caesium fountain for metrological use in France [28]. This design

became the basis for future fountain clock designs
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Clocks in space

When the Soviet Union launched the first man-made satellite Sputnik [29] into space, it opened a new era

for space exploration and inspired scientists and governments to create a navigation system with the help of

satellites.

The very first satellites were equipped with very stable quartz clocks. Thanks to the high stability and

robustness of the clock it was possible to generate a stable radio frequency signal. A signal sent from such a

satellite and received by a stationary point on Earth would be shifted in frequency due to a Doppler shift.

This shift is significant as the velocity of the orbiting satellite can reach very high values on the order of

104 km/h. If the orbit and speed of the satellite are well known, based on the shape of the recorded Doppler

curve, it is possible to determine the location of a receiver on the ground. This technology was known as

the Navy Navigation Satellite System (NNSS, NAVSAT or TRANSIT) [30] and was developed mainly for

navigation around the seas. One of the requirements for the NNSS was that it should not take longer than

the 2 minutes emergence time of a submarine to determine the position. Location calculations required high

computational power to adequately fit the Doppler curve, which was not easy in the 1960s. The 2 minute

requirement was eventually achieved, but this was still relatively long and its applications were mainly limited

to vessels and stationary objects. For long measurement times lasting days, it was possible to determine the

position down to a metre accuracy [31].

The first atomic reference standards to be sent into space were launched on the Navigation Technology

Satellite (NTS-1) in 1974 [32, 33]. NTS-1 carried a pair of rubidium vapour frequency standards and their

goal was to test the concept of the atomic standards in space. Soon after in 1977, a pair of the first space

caesium clocks were launched into space on the Navigation Technology Satellite 2 (NTS-2)[34, 33, 32]. Thanks

to the lower instability of the new atomic clocks of 5 ⇥ 10�13 and 2 ⇥ 10�13 for satellite NTS-1 and NTS-2

respectively [32], it was finally possible to try out new things that could not be tested with quartz clocks.

For example, NTS-2 was used to test the gravitational time shift associated with Einstein’s theory of general

relativity. The NTS-2 mission also proved the potential of the atom frequency reference, which led to further

development of the modernised Global Positioning System (GPS).

1.2 Clock operation

Despite di↵erent mechanisms being used in di↵erent types of clocks, the basic idea of their operation remains

the same. In figure 1.1 a schematic diagram of a clock operation is presented.
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Every clock needs to consist of an oscillator and a reference. The oscillator generates a periodic signal

that can be compared with the eigenfrequency of the reference. The di↵erence between the frequencies of

the oscillator and reference is observed by a detector and the detuning information is processed and fed back

to the oscillator mechanism which then corrects its frequency to reach the reference eigenfrequency. In this

way, the stability of the reference is transferred into the oscillator. The time is obtained by counting the ticks

of the oscillator, which can by done by a person or mechanism for slow oscillations. For fast oscillations, it

might be necessary to divide the frequency to be able to read the result.

Figure 1.1: Schematics of a clock. The frequency signal ⌫osc from an oscillator is split into two parts. One
part is compared with a reference frequency ⌫ref with the help of a detector. The signal from the detector
is processed by a feedback servo to generate an error signal, which is used to correct the frequency of the
oscillator. The frequency of the second part of the signal is divided and delivered to an output e.g. digital
time display.

The pendulum is a good example of the reference in a mechanical clock. The length of the pendulum

and gravitational field dictate its oscillation eigenfrequency. The clock is powered by the potential energy

stored in the clockspring, which is the clock’s oscillator. The frequency of the pendulum is transferred

to the clockspring by an escapement mechanism. If it was not for the escapement, the clock spring would

unwind with an unknown angular frequency. Escapement acts as a feedback servo, stopping and releasing the

unwinding spring with every swing of the pendulum. Additionally, the escapement uses the potential energy

of the clockspring to excite the pendulum, preventing its oscillations from dying out. The eigenfrequency of

a 25 cm long pendulum in Earth’s gravitational field is approximately equal to 1 Hz, which is much higher
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than the Earth’s rotation frequency equal to ⇠ 12 µHz. To make the comparison between the two clocks,

it is useful to divide the frequency of the pendulum clock by using gearing, commonly known as clockwork,

which powers the minute and hour hand on the clock dial.

The same analogies also work for an optical atomic clock. The clock laser is the oscillator that is shone

over the reference atoms. Part of the laser light energy is transferred to the atoms causing excitation if the

frequency of the laser is equal to the frequency of the reference clock transition. Detuning of the laser from

the oscillator can be observed with a detection scheme, and an appropriate error signal can be generated by

an electronic feedback servo that adjusts the optical frequency of the laser. Although this setup is enough

to become a stable frequency standard, the optical frequency is too high to be directly compared with any

other electronic or mechanical clock, and thus it needs to be divided into lower frequencies. This is done by

an optical frequency comb, which is the counterpart of the mechanical gearing.

The aforementioned error signal is a function of the detuning from the reference resonance, and it carries

essential information on how to reach it. It can be any function that crosses zero for a detuning value

equal to zero and preferably linear in that section. Now consider an oscillator having frequency ⌫osc, and

reference at frequency ⌫ref . The best error function would be a function that is not only linear around the

resonance, but in the entire domain. It can be written as ferr(⌫osc) = A ·(⌫osc�⌫ref ), where A is a sensitivity

coe�cient. For each argument of this function there is only one unique value. Therefore, it is possible to

precisely know how much to correct the laser’s frequency to tune it back to resonance, no matter how far

it is detuned. In practice, such an error signal is very di�cult or even impossible to obtain. One reason is

that both the reference and the oscillator consist of a spectrum of di↵erent frequencies rather than a single

frequency only. In an optical atomic clock, this is usually a Lorentz, or Gaussian distribution, both for the

laser oscillator and atomic reference. An example of the frequency spectrum for a Lorentzian shape oscillator

and reference is presented in the top part of figure 1.2. The reference, drawn with a black curve, acts as a

bandpass filter that absorbs every frequency except for the Lorentzian-shaped band around its eigenfrequency

⌫ref . For an oscillator with detuning �⌫, drawn as a green curve, only the frequencies within the band pass

will be transmitted through the reference. In the figure, this is marked as the intersection of green and

black profiles. Blue and red shadowed intersection areas correspond to frequencies lower and higher than the

resonance frequency of the reference, respectively. An example error signal can be generated by subtracting

the blue part of the intersection from the red part, and it is plotted for di↵erent values of detuning �⌫ in

the bottom part of figure 1.2. An error signal with a similar shape, but opposite sign could be obtained by

di↵erentiating the reference bandpass function.
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Figure 1.2: Schematics of error signal generation. (top) Lorentzian shaped frequency spectrum of an os-
cillator and reference, plotted with green and black solid lines, respectively. The central frequency of the
oscillator ⌫osc and reference ⌫ref are marked with green and black dashed lines, respectively. The detuning
of the oscillator from the reference frequency is �⌫ = ⌫osc � ⌫ref . Spectra intersection of reference and
oscillator signals is marked with blue and red area. Blue and red colours show part of the intersection for
frequencies lower and higher than the reference frequency ⌫ref , respectively. (bottom) An example error
signal is obtained by subtracting the blue area from the red area, and is generated for di↵erent detuning
values �⌫. The green point shows an error value generated for detuning visible in the top part of the figure.

1.3 Optical atomic clocks

It is a natural question to ask, why develop more complicated optical clocks if there are already well es-

tablished atomic microwave clocks available. One of the reasons is the quantum projection noise, which is

the fundamental limitation for all the atomic clocks. Obtaining an accurate measurement with an atomic

clock depends on measuring atom population in the excited and ground state. Quantum projection noise is

caused by random population fluctuations, which a↵ect the reading accuracy. Optical transitions can have

a lower value of the quantum projection noise, which can be estimated for a specific atomic transition with

the following equation [35]

�(⌧) ' �⌫

⌫0

p
Tp
N⌧

(1.1)
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where ⌫0 and �⌫ is the frequency and linewidth of the transition, respectively, N is the number of particles

measured, T is the period of the coherent measurement, and ⌧ is the total averaging time. As presented by

the formula, the noise value will be smaller for a transition with narrower linewidth �⌫, or higher frequency

⌫0. The latter motivates the use of the optical transition over the microwave hyperfine transitions. The limit

can also be lowered by increasing the number of atoms or by a longer interrogation time.

1.3.1 Operation

In figure 1.3 a simplified scheme of how an optical atomic clock works is presented. First, an ultra-stable laser

is required to probe the atomic clock transition. The laser beam is shone onto the cooled and trapped sample

of atoms. An absorption signal is observed with a detector, while a servo system generates an error signal to

provide feedback to the laser. As the laser stabilises to the atomic transition, its frequency strictly follows the

frequency of the atomic reference transition. The time can be obtained by counting the frequency; however,

for a laser, the frequency is equal to hundreds of THz and existing electronics is not fast enough to count the

oscillations. One way of transferring the stability into lower frequencies is by using an optical frequency chain,

which is described in more detail in [36]. A less complicated solution came with the invention of an optical

frequency comb by T. W. Hänsch [37], who was honoured with a Nobel prize in 2005. The optical frequency

comb is a phase-locked femtosecond laser that consists of a very broad spectrum of light, resembling a comb

when plotted in frequency space. The teeth spacing of the comb is equal to the repetition rate of the laser,

while the carrier envelope o↵set is equal to the phase di↵erence between the pulses. The latter is eliminated

in the di↵erence frequency combs thanks to frequency di↵erence generation [38]. The frequency comb can be

stabilised to the clock laser with a signal generated by taking a beat note between the laser and one tooth of

the frequency comb. This will transfer the stability of the clock laser to every tooth of the frequency comb

creating a link to microwave frequencies that can be counted with electronics or compared with microwave

atomic clocks.

1.4 Importance of atomic clocks

One of the possible applications of the atomic clocks is chronometric geodesy [39, 40], sometimes referred

to as relativistic geodesy. According to the theory of general relativity, time flows di↵erently in di↵erent

gravitational potentials due to time dilation [41]. Optical clocks are sensitive enough to measure very small

changes in time due to this e↵ect, and therefore, can be used to measure gravitational potential. The di↵erence
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Figure 1.3: Schematic of an optical atomic clock. The clock laser is locked to the atomic reference with the
help of a servo system. Part of the laser beam is sent to the optical frequency comb where a beat note between
the laser and frequency comb tooth is generated. The beat note is used to stabilise the frequency comb, which
transfers the stability of the clock laser into lower frequencies that can be counted by fast electronics.

in time flow can be observed by comparing two optical clocks operating at di↵erent gravitational potentials

e.g. at di↵erent altitudes.

Thanks to the high stability and accuracy of optical clocks, it is also possible to put the fundamental

physics to test. One example is in measuring the stability of fundamental constants. Some experiments

suggest that fundamental constants such as the electron to proton mass ratio, the fine structure constant,

and the light quark mass might be susceptible to drift [42, 43]. It is also possible to test the gravitational red-

shift of Einstein’s equivalence principle, by sending optical clocks into space, such as with the STE-QUEST

project [44].

The global economy may also be influenced by atomic clocks. All national and international trades depend

strongly on the time of released information and changing prices for example due to change of the exchange

rates. Although insignificant to the average person, for large banks and financial institutions, it is crucial to

be able to tell precisely the time of a transaction. It happened that unsynchronised clocks by as low as 15 ms

were used for early release of trading information that when picked up by special algorithm it led to an early

trade worth $25 millions in shares [45]. Thanks to atomic clocks it is possible to precisely synchronise clocks
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between trading institutions, not only within a single country, but worldwide. Another example of the impact

on the economy, as well as the ecology, is the use of the atomic clock for the synchronisation of power stations.

A national electricity grid is connected to many power stations across the country, which inject alternating

current into the grid. Phase and frequency of the current injected by the power station should match the

phase and frequency of the power grid to achieve the best e�ciency. The better the synchronisation of the

power stations, the more accurate the phase and frequency of the injected current will be, resulting in the

reduction of energy losses.

Improvement in atomic clocks can also improve the accuracy of the global positioning system (GPS). Every

GPS satellite has an atomic clock on-board that is synchronised with other GPS satellites and metrological

institutions on Earth. GPS satellites produce and distribute a radio frequency signal with information on

their position and time when the signal was sent. The signal needs time to travel the distance between

the satellite and receiver. That time can be computed by comparing the time of sending and receiving the

signal and is used to calculate the distance between the satellite and receiver. By having access to signals

from at least four GPS satellites, it is possible to determine latitude, longitude and altitude of the receiver.

Sophisticated receivers can determine the position to an accuracy of a centimetre [46]. Making GPS even more

precise will further improve navigation, as well as other fields of research such as geology and meteorology.

The GPS signal is already being used in the remote sensing of water vapour in the atmosphere to improve

the weather forecasts [47, 48].

1.5 State-of-the-art

1.5.1 Optical clocks

The atomic optical clocks keep beating new stability and accuracy records year by year. The best strontium

lattice clocks achieve uncertainty levels as low as 10�18 [2, 49, 50], with the lowest uncertainty level of 2⇥10�18

obtained by Nicholson et al. [2] at JILA, USA. The most recent stability record of 3.1⇥ 10�17 at one second

was obtained by Campbell et al. at JILA, USA [51], beating 1.8⇥ 10�16 obtained by Ushijima et al. [49] at

RIKEN, Japan.

Single ion optical clocks can reach similar level of performance with uncertainty on 10�18 level, with

Huntemann et al. obtaining the lowest value for the single ion clock of 3⇥10�18, with ytterbium ion at PTB,

Germany.

The transportable systems are more di�cult to construct and they feature larger uncertainties on 10�17
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level. The most accurate transportable strontium lattice clock, presented very recently by Koller et al. [52],

has uncertainty of 7.4⇥ 10�17 and instability of 1.3⇥ 10�15 at one second.

1.5.2 Ultra-stable lasers

Ultra-stable, narrow-linewidth lasers are not only an indispensable part of the optical clocks [53, 54], but also

are used in the field of fundamental physics [55, 56, 57], such as test of Lorentzian invariance [58, 59, 60, 61],

metrology [62], gravitational wave detection [63, 64], search for dark matter [65, 66], and Einstein’s theory

of general relativity [67, 39]. The ultra-stable lasers can also find application in creation of a new generation

of radar systems [68], ultra-stable microwaves generation [69] and communication [70].

An ultra-stable laser is obtained by stabilising a laser to an optical resonator made of an ultra-low

expansion material, such as ULE glass or Zerodur. State-of-the-art lasers can reach instabilities on a very

low level of 10�17. One of the best instability was obtained by a laser with a 48 cm long cavity at the room

temperature, reaching value as low as 8⇥ 10�17 as presented by Häfner et. al [71] at PTB, Germany. Even

lower instability was achieved very recently with a cryogenic single-crystal silicon cavity, reaching value of

5⇥ 10�17, as presented by Matei et al. [72] at PTB, Germany in collaboration with JILA, USA. The paper

also reports of obtaining ultra-narrow linewidth of 5 mHz and it features very low drift of 100 µHz/s. For

comparison, drift of the room temperature ULE cavity presented by Häfner et. al [71] was 15 mHz/s, which

is two orders of magnitude higher.

Traditionally, the optical resonator uses dielectric mirrors that limit the performance of the ultra-stable

laser due to the Brownian noise. Recent developments in crystalline mirror coatings lead to reduction of

the Brownian noise by ten times [73, 74] and are likely to contribute to beating new stability and linewidth

records of the ultra-stable lasers in the near future [72].

The mobile ultra-stable laser is more di�cult to construct. The optical cavity in such a system needs to

be rigidly mounted and it should be small in size. Also, the laser requires more attention as when it comes to

making it less sensitive to changing acceleration, which is unavoidable in the mobile environment. Di↵erent

geometries have been tested by various groups around the world. An ultra-stable laser with spherical cavity

design was demonstrated by Leibrandt et al. [75], with acceleration sensitivity between 1 ⇥ 10�10/g and

4 ⇥ 10�11/g for di↵erent axes, where g is the standard gravitational acceleration. A vertically mounted

mobile cavity was presented by Argence et al. [76], with acceleration sensitivity between 4 ⇥ 10�11/g and

1⇥ 10�11/g. A horizontal cavity was presented by Nazarova et al. [77], with acceleration sensitivity between

3.0 ⇥ 10�10/g and 3.2 ⇥ 10�11/g. Another horizontal transportable cavity, with special ridges used for
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mounting, was presented by Chen et al. [78] and it features acceleration sensitivity between 3.9 ⇥ 10�10/g

and 1.7⇥ 10�11/g. An alternative force-insensitive cube cavity design was presented by Webster et al. [79],

with acceleration sensitivity between 2.5⇥ 10�11/g and 1⇥ 10�13/g. The cube cavity seems to be the best

solution for the mobile experiment when it comes to vibration insensitivity. Downside of the cavity is its

volume that grows cubically with the length.

The longer the cavity is, the narrower its spectral linewidth. Due to the volume constraints, the mobile

cavities not always can be as long as their stationary versions. Also, the rigid mounting of the mobile cavity

requires larger contact surface area with the cavity’s housing. In a result, the performance of the mobile

ultra-stable lasers is lower and usually of the order of 10�15. One of the best instability results of a mobile

system was reached by Argence et al. [76] with ⇠ 5 ⇥ 10�16 and in a transportable optical clock system

developed at PTB, with ⇠ 4⇥ 10�16 as presented in [52, 80].

1.6 This work

My thesis reports on progress in the development of the mobile laser systems, necessary for the realisation

of the mobile strontium lattice optical clocks. This thesis together with theses written by B. O. Kock [81],

W. He [82] and L. L. Smith [83] create a whole picture of the miniaturisation process of the lattice strontium

clocks at the University of Birmingham. While the other theses focus mostly on the development of the atomic

package, this work shows the realisation of the most demanding laser used for the interrogation of atoms,

which commonly limits the performance of an optical clock. Along the development of the interrogation laser,

this thesis also presents construction of the laser used for the second-stage cooling of strontium, which is the

second most demanding laser in the experiment. The work also presents a frequency stabilisation system

(FSS), designed to stabilise all the lasers in the strontium lattice clock experiment, with a single optical

cavity.

At the beginning of chapter 2, I discuss the basic concepts of a frequency reference. In this chapter, I

also introduce the Allan deviation as a tool of inspecting the frequency stability. I give examples of di↵erent

types of noise and analyse the behaviour of the Allan deviation. At the end of the chapter, I discuss the use

of a Fabry-Pérot interferometer and atoms as a reference frequency standard, and briefly indicate the most

important sources of inaccuracy and instability.

In chapter 3, I talk about the use of strontium as a frequency standard. I present a typical strontium

lattice clock cycle sequence and give a short introduction to how the strontium energy structure is used to

cool and trap the atoms.
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In chapter 4, I show a design of the modular, amplified diode laser system that I have built for the second-

stage cooling of strontium. Also in the chapter, I report on using a prototype of the semiconductor disk laser

for second-stage cooling of strontium, for the first time. At the end of the chapter, I present a design and

construction of the compact optical cavity that I have built for the frequency stabilisation system (FSS).

In chapter 5, I present construction of the ultra-stable stationary laser that I have built to use for the

interrogation of strontium atoms. The laser system can also serve as an ultra-stable frequency reference to

stabilise the optical frequency comb and it can be used to characterise other laser systems. In the chapter,

I also analyse the vibrational and acoustical isolations that can improve performance of the interrogation

laser. Also, I discuss the influence of the RF frequency modulators stability on the stability of the lasers.

In section 5.4, I show the construction of the mobile interrogation laser, which was built within the space

optical clock 2 (SOC2) project. As part of the collaboration between di↵erent institutions across Europe, I

have assembled the interrogation laser system, using the components provided by di↵erent partners. I have

characterised the mobile interrogation laser and prepared it to be integrated with the atomic package. At

the end of the chapter, I compare the instability of the interrogation lasers and the RF frequency sources.
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CHAPTER 2

FREQUENCY STANDARDS

Timekeeping relies on a source of frequency that defines equally spaced intervals of time, which can

be counted to keep track of the time passed. Years, full moons (months), and days were the first observed

phenomena used to measure time. The ancient civilisations observed 12 full moons every year, which inspired

them to establish the duodecimal system [10]. With 12 as a base, they decided on dividing daylight into 12

parts when constructing a sundial clock. Back then, night was considered to be completely separate from

day, and it also was divided into 12 equal parts. Egyptians used 12 stars to determine time during the night.

Dividing both day and night into 12 parts was probably the origin of the 24 hour day [84]. As people were

able to measure even shorter periods of time using sand clocks and water clocks, they invented minutes and

seconds. These originated from Greek astronomers, who used a sexagesimal system derived from Babylonians,

and were even used before, by the Sumerians. The number 60 was considered to be a convenient number

as it could be easily divided by 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60; where 2, 3, and 5, are the prime

numbers. Dividing an hour into 60 minutes, brought ease into calculating the time for events occurring 1 to

6 times in an hour. Since the number 60 is also divisible by 12, it could easily fit into the 12 hour clock’s

dial.

2.1 Frequencies of the clocks

Let us consider two rulers with di↵erent ticks, as presented in figure 2.1. The red ruler has ticks every

centimetre, whereas for the green ruler, every millimetre. Both rulers can be used to measure the length of

a blue rod, also shown in the figure, which gives the result of 3 cm when measured with the red ruler, and

3.4 cm when measured with the green ruler. As the green ruler’s ticks are more frequent, it is possible to

measure objects with higher precision. Although it would be useful for measuring short objects, it would be
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Figure 2.1: An example with two rulers used to measure the length of an object.

overkill for measuring a 100 m long football pitch.

By analogy with the rulers, time can be measured with high or low precision clocks. The more frequent

the ticks of the clock, the more precisely we can measure time. In table 2.1, di↵erent ranges of frequencies,

and their corresponding periods, are presented together with the clock type. The Earth’s year, and day, have

relatively low frequencies of 32 nHz, and 11 µHz, respectively. By constructing a sundial, people were able to

measure the phase of the day’s oscillation, and determine time more precisely, however, not precisely enough

to count minutes and seconds.

Frequency Period Oscillator

1 nHz – 1 µHz 109 s – 106 s Earth (1 year), Moon (1 Month)

1 µHz – 1 mHz 106 s – 103 s Earth (1 day)

1 mHz – 1 Hz 103 s – 100 s Pendulum

1 Hz – 1 kHz 100 s – 10�3 s Pendulum, Balance spring, Pulsar

1 kHz – 1 MHz 10�3 s – 10�6 s Quartz, Electronic

1 MHz – 1 GHz 10�6 s – 10�9 s Quartz, Electronic

1 GHz – 1 THz 10�9 s – 10�12 s Microwave source, H maser, Cs atomic clock

1 THz – 1 PHz 10�12 s – 10�15 s Laser source, Optical atomic clock

1 PHz – 1 EHz 10�15 s – 10�18 s

1 EHz – 1 ZHz 10�18 s – 10�21 s X-ray source

Table 2.1: Example of oscillators for di↵erent frequency ranges and corresponding periods. Data taken from
[15].

With the invention of the pendulum clock, the frequency of oscillation was increased to levels of 1 Hz. Sub-

sequent improvements to the pendulum clock revolutionised navigation, thanks to Huygens’ marine chronome-

ter which allowed determination of the position at sea.
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Pulsar is a celestial body discovered recently in 1967. It is a very stable oscillator emitting electromagnetic

radiation with the frequency spread from Hz level up to gamma radiation [85, 86, 87]. Low frequency pulsars

with frequencies Hz - kHz range were first to be discovered and it was shown that they feature very high

stabilities, similar to atomic clocks [88] and could be used in the construction of pulsar clocks [89].

A quartz crystal is the most popular oscillator operating in the range from kHz to GHz with electrically

induced oscillations. Its popularity is mostly a result of a good trade o↵ between relatively high stability,

compactness and low cost.

The atomic clocks and hydrogen masers feature frequencies in the level of few GHz. In particular, caesium

atomic clock used in the definition of second operates at the frequency of 9,192,631,770 Hz [8, 22]. Optical

atomic clocks operate at optical frequencies of couple hundreds of THz, for example ⇠ 429.2 THz in the case

of strontium, ⇠ 518.3 THz for ytterbium and ⇠ 411.2 THz for calcium ion. Atomic clock based on mercury

atoms uses transition from the outside of visible range with even higher frequency ⇠ 1.129 PHz [55].

Tendency shows that higher clock performance can be obtained by moving to higher frequencies and it can

be expected that future developments will result in creating clocks based on x-ray or even gamma radiation.

2.2 Precision and accuracy

It is important to know the di↵erence between precision and accuracy. Precision is the ability to get the same

result over many measurements. In practice, by increasing the precision of a measured value, it is possible to

increase the number of digits, in the number representing the measured value. The dominant type of error

in a precise measurement is systematic error.

Di↵erent from precision is accuracy, which describes the ability to get the true result. Sometimes, an

accurate value can be obtained by performing many measurements and looking at the distribution of the

results to learn about statistics of the measurement. This knowledge allows to find the expectation value for

example from the parameters of a fitted statistical distribution function.

The di↵erence between precision and accuracy is shown in figure 2.2. The red dots on each axis show the

true value of a measurement. Blue ticks represent the measured values. The first set of measurements (a)

is not accurate and not precise. Measurement (b) is precise but not accurate. Measurement (c) is accurate

but not precise. Finally, measurement (d) is both accurate and precise.

For example, the pulsar clocks, shown in table 2.1, are not the most precise clocks. However, they can

give a very accurate measurement of time, when averaged over a long period.

In the case of the atomic clocks, transitions between the energy levels are used as a reference frequency.
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Figure 2.2: Chart showing the di↵erence between precision and accuracy. The red dots represent the true
value, while the blue ticks show the results of measurement. (a) Measurement which is not precise and not
accurate. Measured values comprise of large systematic error and large random error. (b) Measurement
precise but not accurate. Measured values comprise of low random error and large systematic error. (c)
Accurate but not precise measurement. Measured values comprise of low systematic error and large random
error. When averaged, measured values get close to the true value. (d) Measurement accurate and precise.
Measured values comprise of both low systematic error and low random error.

In analogy to the ruler from the previous subsection, the higher frequency of an atomic transition, the

better precision of the clock. This is di↵erent from accuracy, which depends mostly on how well defined the

transition is and whether it is sensitive to external factors.

2.3 Stability

2.3.1 Allan deviation

The standard variance is a very good tool to assess the amplitude of an error in measurements where its

mean is equal to zero. In the case of an oscillator, the systematic error can be largely significant and its value

can change in time. Allan variance is often used to describe the stability of an oscillator. It was introduced

to replace standard variance which is unable to give any information about types of error.

Allan variance is defined as [90]

�2
y(⌧) =

1

2

⌦
(yi+1 � yi)

↵
=

1

2(M � 1)

M�1X

i=1

(yi+1 � yi)
2 (2.1)

where M is the number of intervals, yi is the average fractional frequency of the interval i and brackets hai

stand for expectation value of a. The average fractional frequency can be defined as the derivative of phase

x

yi =
1

⌧
(xi+1 � xi). (2.2)
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It is common to use Allan deviation as well, which is simply the square root of Allan variance

�y(⌧) =
q

�2
y(⌧) (2.3)

Allan deviation allows to distinguish between di↵erent types of noise when plotted. More details about Allan

variance and interpreting data can be found in [91].

2.3.2 Types of noise

Allan deviation is a very useful tool that can be used in the characterisation of noise in frequency measure-

ments. By analysing the shape of the Allan deviation, it is possible to distinguish di↵erent types of noise in

the measured frequency. The power law is a tool that describes the relation between the slope of the Allan

deviation, and the dominant type of noise [15].

Random frequency walk (Brownian noise)

Random walk of frequency, also called Brownian frequency noise or red frequency noise, is a type of noise that

accumulates as it is being averaged, and causes a frequency standard to drift away from the set frequency.

If Brownian noise is dominant in the measured frequency data, the corresponding Allan deviation calculated

for the frequency follows the curve given by

�y = A ·
p
⌧ , (2.4)

where �y is the value of the Allan deviation, A is the proportion coe�cient and ⌧ is the interrogation time.

An example of simulated Brownian frequency noise is presented in figure 2.3a. For the simulated frequency,

the Allan deviation was calculated and is shown in figure 2.3b. As expected, the Allan deviation follows the

A ·
p
⌧ slope.

Flicker frequency noise

Flicker frequency noise is also called pink frequency noise. The name “pink” refers to a spectral feature

of this noise, which is higher for frequencies towards red (low). The noise features power spectral density

proportional to 1/f where f is the frequency. It is a type of noise that although does not cause the long term

drift of the frequency standard, is not possible to reduce by averaging over an increased interrogation time.

In a frequency measurement where the flicker frequency noise is dominant, the calculated Allan deviation

19



(a) (b)

Figure 2.3: Brownian frequency noise. (a) Generated frequency with the Brownian frequency noise only. (b)
Allan deviation of the generated frequency with the Brownian frequency noise. The Allan deviation follows
�y = A ·

p
⌧ slope.

follows the curve given by

�y = A ·
p
⌧
0
= A. (2.5)

A generated frequency with flicker frequency noise dominant is presented in figure 2.4a. The Allan

deviation of the generated frequency is presented in figure 2.4b with blue points. As expected, it follows the

blue horizontal dashed line, which suggests that the frequency is stable despite the interrogation time.

(a) (b)

Figure 2.4: Flicker frequency noise. (a) Generated frequency with the flicker frequency noise only. (b)
Allan deviation of the generated frequency with the flicker frequency noise. The Allan deviation follows
�y = A ·

p
⌧
0
= A slope.
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White frequency noise

White frequency noise is a type of noise that is not systematic and its mean value averages down to zero.

The noise is the same across all frequencies, meaning a flat power spectral density plot. The name “white”

derives exactly from that feature in analogy to light, which appears white when consisting of all wavelengths

equally. As the noise results from a Gaussian process, it can be averaged down over several measurements

and longer interrogation times. When the Allan deviation is plotted for a frequency with dominant white

frequency noise, it will follow the curve given by

�y = A ·
p
⌧
�1

. (2.6)

An example of generated white frequency noise is presented in figure 2.5a. The fractional Allan deviation

of the frequency was also calculated and is presented in figure 2.5b with blue points. As expected, the longer

the frequency is interrogated, the more precisely it can be measured, and the Allan deviation goes down with

the interrogation time. This follows the red dashed line, corresponding to the A ·
p
⌧
�1

slope.

(a) (b)

Figure 2.5: White frequency noise. (a) Generated frequency with the white frequency noise only. (b)
Allan deviation of the generated frequency with the white frequency noise. The Allan deviation follows
�y = A ·

p
⌧
�1

slope.

Brownian phase noise (Random phase walk)

Every wave consists of a frequency and phase, and both the frequency and phase can be a↵ected by di↵erent

types of noise. The random frequency walk was already presented as it a↵ects the frequency, causing its
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long-term drift. Phase can also be a↵ected by Brownian noise; however, it does not have the same resultant

e↵ect on the frequency.

To simulate the frequency with Brownian phase noise being dominant, the frequency was calculated as

an instantaneous derivative of the phase noise. This result is presented in figure 2.6a. The Allan deviation of

the frequency was also calculated and is presented in figure 2.3b with blue points. Clearly, it follows the red

dashed line denoting the A ·
p
⌧
�1

slope. Comparing the figures 2.6, with figures 2.5 showing white frequency

noise, it is possible to see the identity of the two types of noise. Although they can have a di↵erent origin,

they cannot be di↵erentiated from each other, and thus, are treated as the same type of noise.

(a) (b)

Figure 2.6: Brownian phase noise. (a) Generated frequency with the Brownian phase noise only. (b)
Allan deviation of the generated frequency with the Brownian phase noise. The Allan deviation follows
�y = A ·

p
⌧
�1

slope. Note that it is the same slope as for the white frequency noise, therefore, both of them
are treated as the same type of noise.

Flicker phase noise

Flicker noise can also be present on the phase of the measured waveform. An example of a frequency with

flicker phase noise dominant is presented in figure 2.7a. In the case of phase noise, both the flicker and white

phase noise follow the same A ·
p
⌧
�2

slope when Allan deviation is plotted. To increase the sensitivity of

the Allan deviation, a modified Allan deviation is used to distinguish between these two types of noise. The

modified Allan deviation of the generated frequency is plotted with blue points in figure 2.7b. It reduces

with increased averaging time faster than the white frequency noise, following the

�y = A ·
p
⌧
�2

(2.7)
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slope drawn in the figure with a cyan dashed line.

(a) (b)

Figure 2.7: Flicker phase noise. (a) Generated frequency with the flicker phase noise only. (b) Modified
Allan deviation of the generated frequency with the flicker phase noise. The modified Allan deviation follows
�y = A ·

p
⌧
�2

slope. The modified Allan deviation was used in order to increase sensitivity to distinguish
flicker phase noise from white phase noise.

White phase noise

A frequency with white phase noise being dominant is presented in figure 2.8a. The frequency plot looks

very similar to the frequency plot with the previously discussed flicker phase noise, and it is hard to tell the

di↵erence by only looking at the frequency plot. The modified Allan deviation is plotted in figure 2.8b with

blue points. The points follow the purple dashed line denoting

�y = A ·
p
⌧
�3

, (2.8)

proving the usefulness of modified Allan deviation, as it allows distinction between flicker phase and white

phase noise.

The frequency of an oscillator features di↵erent types of noise that can be identified by analysing di↵erent

slopes present in the Allan deviation plot.
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(a) (b)

Figure 2.8: White phase noise. (a) Generated frequency with the white phase noise only. (b) Modified
Allan deviation of the generated frequency with the white phase noise. The modified Allan deviation follows
�y = A ·

p
⌧
�3

slope. The modified Allan deviation was used in order to increase sensitivity to distinguish
flicker phase noise from white phase noise.

2.4 Fabry-Pérot interferometer

A Fabry-Pérot interferometer (FPI) can be used for various applications. One common application is in the

spectral analysis of the laser light with a scanning FPI. The focus of this thesis however, will be shifted

towards another application: the stabilisation of lasers.

Stabilising a laser to the FPI simply means, transferring the FPI’s length stability, to the laser’s stability

of its wavelength. In this context, the FPI is also called an optical reference. If the mirrors are separated by

air or a vacuum, the FPI can also be referred to as an optical cavity.

An FPI consists of two reflective parallel surfaces. In the case of an optical cavity, these might be two

dielectric mirrors separated by a spacer. Light injected to the cavity will circulate between the mirrors,

interfering with itself during every pass [92].

In figure 2.9, the reflection of an electromagnetic wave by a dielectric mirror is depicted. The dielectric

reflective coating consists of alternating layers of high and low refractive index materials [93], such as Tantalum

Pentoxide Ta2O5 (n=2.1), and silica SiO2 (n=1.5). The electromagnetic wave reflects at every boundary

between the two materials, changing phase by 180� every time it reflects from a medium with a higher

refraction coe�cient than the medium it propagated from. On the other hand, there is no phase shift for

a wave reflected from a lower refractive index medium. The thickness of each layer is chosen, so that the

optical path length corresponds to a quarter of a wavelength of the light being reflected. This way, all the
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reflected beams are in-phase, constructively interfering with each other (green waves in figure 2.9).

Light circulating between two mirrors of an optical cavity can interfere constructively during every pass,

as shown on the left part of figure 2.9. In this case, the incident wave drawn in red, is in phase with the

reflected wave, drawn in green. The waves form a standing wave with nodes located on the surface of each

mirror.

Figure 2.9: Reflection by a dielectric mirror. The dielectric coating is constructed from the alternated high
and low refractive index layers, with the optical thickness designed to be equal to the quarter of wavelength
of the incident light. The figure shows incident and reflected electric field of an electromagnetic wave drawn
with red and green respectively. The reflected beam experiences a 180� and 0� phase shift when reflected
from a higher and lower refractive index medium correspondingly.

The condition for a standing wave to form inside the optical resonator means that the nodes will form at

the surface of the mirrors [92]. This can only be true for waves for which integer multiple of their wavelength

equals to double the distance between the mirrors

� =
2L

N
, (2.9)

where L is distance between the mirrors, N is an integer number, and � is the wavelength in optical medium.

In optical frequency ⌫ units this can be written as

⌫ =
Nc

2L
, (2.10)

where c is the phase velocity of light in medium. The spacing between the adjacent longitudinal modes of
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the resonator is called the free spectral range (FSR) of the resonator. It can be defined as

FSR =
c

2L
. (2.11)

The spectral resolution of the resonator depends strictly on the free spectral range and finesse F = FSR/�⌫.

The latter can be linked to reflectivity coe�cient of the mirrors R and for high reflectivity values it can be

written in the following relation [92]

F = ⇡

p
R

1�R
. (2.12)

The resonance width �⌫ is represented by a ratio of the mode’s optical frequency and finesse of the resonator

�⌫ =
FSR

F =
c

2L

⇡
p
R

1�R
. (2.13)

The above shows that in order to have a high spectral resolution (low resonance width), the optical resonator

needs to be either very long or have very high reflectivity of the mirrors.

The FPI can provide a stable frequency reference, assuming that its resonance frequency does not change.

When the spacer of an optical resonator is made of an ultra-low expansion material, and placed in a stable

environment, its length can become a very stable reference. Unfortunately, the length of such a resonator

cannot be well defined, and it can change due to temperature or internal stresses. Therefore, the optical

resonator cannot be an accurate frequency standard. Even if it was very stable in the short term, after long

interrogation times, it will drift away due to material ageing that cannot be controlled. On the other hand,

with very high finesse and low spectral resolution, the resonator can be very precise.

2.4.1 Sperical resonators

Spherical resonator is a special kind of an optical resonator, with mirrors being of spherical shape. Each

mirror of the resonator can be described with so the g parameter

gi = 1 +
L

Ri
, (2.14)

where L is length of the resonator and Ri is the radius of curvature of the ith mirror. The radius is a positive

number for a convex mirror and a negative number for concave mirror. The resonator is said to be stable if

the following confinement condition is met

0  g1g2  1. (2.15)
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A longitudinal mode of the spherical resonator is the Gaussian beam. For a standing wave formed

inside the resonator, the curvature of the wavefront at each mirror matches the mirror’s radius of curvature.

Following the basic Gaussian optics, it is possible to calculate Rayleigh length z0 of the beam formed inside

the resonator by using the relation [92]

z0 =

p
�L(R1 + L)(R2 + L)(R1 +R2 + L)

(R1 +R2 + 2L)
. (2.16)

Similarly, positions of the mirrors z1 and z2 in respect to the waist position can be calculated using relations

z1 =
�L(R2 + L)

(R1 +R2 + 2L)
, (2.17)

z2 = z1 + L. (2.18)

Waist radius w0 of the Gaussian beam inside the resonator is equal to

w0 =

r
�z0
⇡

. (2.19)

Finally, it is very useful to know the beam radius wi at the ith mirror when constructing a resonator. This

can be calculated using the following relation

wi = w0

s

1 +

✓
zi
z0

◆2

. (2.20)

Knowing values of the above parameters also simplifies the process of mode matching the injected laser beam.

Resonant mode frequencies of the spherical resonator

As mentioned before, Gaussian beam forms the longitudinal modes of the spherical resonator. The condition

for the resonant frequencies in the Fabry-Pérot interferometer, described by the equation 2.10 is still valid

for the Gaussian beam inside a spherical resonator, but only if the resonator is symmetrical. This means

that both the mirrors have the same radius of curvature R1 = R2. If that is not the case, it is necessary to

use a more general equation for resonance frequencies of the Gaussian modes inside a spherical resonator

⌫ =
Nc

2L
+

�⇣

⇡

c

2L
, (2.21)
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where �⇣ = arctan (z2/z0)�arctan (z1/z0) [92]. The free spectral range still stays the same and is independent

of the curvature of the mirrors.

Transverse modes of the spherical resonator

We have learnt that the Gaussian modes can be formed inside the resonator and that they correspond to the

longitudinal modes. However, those are not the only solution of the Helmholtz equation inside the spherical

resonator. Another valid solution of the equation are Hermite-Gaussian modes. Those are commonly called

transverse electric modes (TEM) and their intensity distribution profiles are presented in figure 2.10. For

more information about the nature of Hermite-Gaussian modes, please refer to [92].

Figure 2.10: Intensity distribution for various Hermite-Gaussian modes. The numbers (l,m) indicate the
mode’s order.

It might be useful to write equation 2.21 in a more general form that also describes frequencies of the

Hermite-Gaussian modes. This can be written as

⌫l,m =
Nc

2L
+ (l +m+ 1)

�⇣

⇡

c

2L
, (2.22)

where l and m are the integer numbers representing the order of the mode [92]. From this equation, we can

see that the same frequency corresponds to modes (l,m) and (m, l). However, it is worth highlighting that

the equation is valid for a perfect resonator and in practice (l,m) and (m, l) modes are at slightly di↵erent

frequencies.
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2.4.2 Thermal noise in the optical resonators

In a controlled environment, the instabilities coming from a changing air pressure and vibrations can be

eliminated. However, the thermal e↵ects have a big influence on the stability of the resonator, even in a

highly stabilised temperature environment. The spacer and mirror substrate of an optical resonator can be

made of the ultra-low expansion material to limit the thermal behaviour. However, the mirror coating must

be made of a special selection of dielectric materials, which also feature much higher coe�cient of thermal

expansion. The thermal noise in such mirror coatings was studied in detail by Gorodetsky [94]. The most

dominant and therefore limiting type of noise is Brownian thermal noise.

Following the paper by Kessler et al. [95] the thermal noise in an optical resonators can be split into three

contributions of the spacer, mirror substrate and mirror coating. Let x be the mean distance between two

mirrors of the resonator. To analyse the behaviour, it is necessary to calculate power spectral density of the

thermal fluctuation of x, here denoted as Sx(f), where f is the fluctuation frequency of the force F0 acting

on the mirror surface. We can write

Sx(f) =
2kBT

⇡2f2

Wdiss

F 2
0

, (2.23)

where kB is the Boltzmann constant, T is the temperature and Wdiss is the power dissipated in the system,

averaged in time, for amplitude F0 and frequency f of the oscillatory force [95]. The dissipated power can

be defined with the use of maximum elastic strain energy U and loss angle of the system �, by the following

relation

Wdiss = 2⇡fU�. (2.24)

Here, the loss angle is an angle for which its tangent equals to the ratio of the imaginary and real part of the

e↵ective permittivity [96].

Assuming that the force acting on the mirror of an optical resonator comes from a Gaussian shape beam,

it will lead to pressure distribution along the radius r, which can be written as

p(r) = ± 2F0

⇡w2
exp (�2r2/w2), (2.25)

where w is the Gaussian 1/e2 radius [95].

The first to consider is the contribution coming from the coating, which directly interacts with the

Gaussian beam. Assuming similar elasticity of the coating and substrate, and a homogeneous loss angle of
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the coating �ct, the thermal fluctuations of the coating can be written as

S(ct)
x = S(sb)

x (f)
2p
⇡

1� 2�

1� �

�ct

�sb

dct
w

, (2.26)

where � is the Poisson ratio of the coating material, dct is the coating’s thickness [95]. As the coating is

a thin layer on a substrate, its thermal fluctuation is greatly influenced by the thermal fluctuation of the

substrate, S(sb)
x . This can be written as the following relation

S(sb)
x =

4kBT

⇡f

1� �2

2
p
⇡Ew

�sb, (2.27)

where E is the Young’s modulus [95].

The third part of the contribution comes from the spacer. Assuming that it is of cylindrical shape with

a drilled hole inside, the averaged thermal fluctuation of the spacer over its cross-section can be written as

SL(f) =
4kBT

⇡f

L

2⇡E
�
R2

sp � r2sp
��sp, (2.28)

where L, Rsp and rsp are the length, outer diameter and inner diameter of the spacer, correspondingly [95].

Finally, we can write an equation for the thermal fluctuations of the entire spacer, which consists of two

coatings, two substrates and a spacer, as

Sx(f) = S(sp)
x (f) + 2S(sb)

x (f) + 2S(ct)
x (f) =

4kBT

⇡fF 2
0

(Usp�sp + 2Usb�sb + 2Uct�ct) , (2.29)

where Usp, Usb and Uct are elastic strain energies of the spacer, substrate and coating respectively [95]. It is

very useful to express the thermal fluctuations as the fractional length fluctuation of the entire resonator

Sy(f) = Sx(f)/L
2. (2.30)

Both equations 2.29 and 2.30 show 1/f dependence. Following the noise power law [15], the 1/f dependence

can be recognised as the flicker frequency noise, Allan deviation of which is a constant value [95]

�y =
q
2 ln (2)Sy(f)f =

s

2 ln (2)
4kBT

⇡F 2
0L

2
(Usp�sp + 2Usb�sb + 2Uct�ct) = const. (2.31)

This shows that every resonator has its own thermal noise limit, that depends on the shape, size and material
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of its components. The Allan deviation of a laser stabilised to the resonator very often averages down with

the white frequency noise (
p
⌧�1), until it reaches the thermal noise floor. The Allan deviation will then

start following a positive slope, due to slow drifts of temperature of the system. Nowadays, it is relatively

easy to find the thermal noise limit by means of the finite element modelling.

2.5 Atomic reference

Atoms can be very good frequency standards thanks to the internal electron energy structure that can be very

well defined. This way the energy structure is always the same for an atomic species and it is independent

of its location in the entire universe. More importantly, it does not change with time, for example due to

the ageing process. The energy di↵erence between two levels corresponds to the photon energy, absorbed or

emitted by the electron. Every electromagnetic wave is defined by its wavelength and oscillation frequency.

The frequency of a transition can be used as a reference standard and it can be very well defined and stable

because of the stable nature of the atom’s energy structure.

2.5.1 Microwave atomic reference

Unlike bosonic atoms that have total spin equal to an integer, fermionic atoms have total spin equal to a

half of an integer, leading to additional interaction between the nuclear and electron spins. This causes the

energy levels to split into a hyperfine structure.

The energy di↵erence between hyperfine states corresponds to microwave frequencies of 300 MHz –

300 GHz, which is very convenient due to the existence of RF electronics operating in the same frequency

range. This enabled a direct link between hyperfine atomic transitions, and existing electronic clocks, such

as the quartz clock.

The most well known microwave atomic reference is Caesium, whose hyperfine structure is still used to de-

fine a second. The frequency of the hyperfine splitting of the ground state corresponds to 9.192631770 GHz [8].

Rabi interrogation scheme

The traditional way of interrogating atoms is to let them interact with a microwave field, inside a microwave

cavity. First, atoms need to be prepared so that all occupy the same ground state. Next, they are transferred

through a microwave cavity, where they interrogate with a microwave field. If the microwaves are in resonance

with the atomic transition, the population of the ground and excited state will oscillate with the so called

31



Rabi frequency. After exiting the interrogation cavity, atoms are sorted by state to measure the phase of the

Rabi oscillation. This is then used to correct the frequency of the microwaves in the interrogation cavity,

to set it closer to the resonant frequency of atoms. The resolution of the measurement in this scheme, is

limited by the interrogation time of the microwave field with atoms, and it can be improved by increasing the

length of the interrogation cavity. Constructing large resonators to obtain better resolution brings technical

di�culties, and thus, the Ramsey interrogation scheme is commonly used [97, 19, 18, 21, 20].

Ramsey interrogation scheme

The Ramsey interrogation scheme requires two resonant cavities instead of one. The interrogation time of

each cavity is chosen to be a quarter of the full Rabi oscillation. Between the cavities, the atoms are left

alone without any interactions, allowing them to evolve freely. Quarter of the full oscillation corresponds to

a ⇡
2 change in phase, thus a jargon expression is commonly used that each cavity applies a ⇡

2 pulse to the

atoms. For a resonant beam of light, ⇡
2 pulse corresponds to the half population of the ground state being

transferred to the excited state.

In figure 2.11, a schematic of each interrogation method is presented. Figure 2.11a shows an example of

a simple Rabi interrogation scheme. In the figure, atoms move from left to right. As the atoms pass through

the microwave cavity (green), they interact with a microwave field for an interrogation time equal to t. After

passing through the interrogation cavity, the phase is measured with a detector. Figure 2.11b shows the

Ramsey scheme which is very similar. However, in this case, there are two interrogation cavities separated

by the free evolution time equal to T .

The Ramsey scheme is used to obtain a better resolution by using shorter pulses that interact with the

atoms. The resolution is proportional to the free evolution time T [97, 21, 20].

2.5.2 Optical atomic reference

Despite the increasing accuracy and stability of microwave optical clocks, their performance is fundamentally

limited by the frequency and linewidth of the atomic transition. The selection of an atomic transition is very

important, and moving from microwave into higher optical frequency transitions allows an increase in the

performance of the atomic clocks.

In optical atomic clocks, laser light is used to interact with the atoms, instead of microwaves. However

the most common interrogation schemes still follow the Rabi and Ramsey sequence that was described in the

previous subsection.
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(a) Rabi interrogation scheme.

(b) Ramsey interrogation scheme.

Figure 2.11: Di↵erence between Rabi and Ramsey interrogation schemes.

2.5.3 Linewidth broadening

In an atomic reference, the source of imprecision and instability is directly linked to the behaviour of the

atomic transition, which can be susceptible to broadening or shifting.

Doppler broadening

Particles in a cloud of atoms move with velocities described by the Maxwell-Boltzmann distribution [98].

The velocity distribution f(v) depends strongly on the temperature of the cloud T , and can be written as

f(v) =

r⇣ m

2⇡kT

⌘3
4⇡v2 exp

✓
�mv2

2kT

◆
(2.32)

where m is mass of particles, k is Boltzmann constant, and v is velocity.

The relative movement of an object, that is also a frequency reference, with respect to an observer, leads

to a shift in the frequency recorded by the observer. This is known as the Doppler e↵ect

⌫ = ⌫0

p
1� v2/c2

1⌥ (v/c) cos ✓
(2.33)
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where ⌫ is the frequency recorded by an observer, ⌫0 is the original reference frequency of the object, v is

velocity, c is the speed of light, and ✓ is the angle between the observation direction and direction of the

movement [99, 15]. In atomic physics, the e↵ect can introduce a distortion of the measured atomic transition

frequency by shifting it, in the case of a stream of moving atoms; or by broadening the narrow, natural

linewidth of the transition. In this context, any movement by the atoms during the interrogation time is

undesired, as it can decrease the precision of the measurement in the case of a cloud of thermal atoms, or the

accuracy in the case of the movement of the entire atom cloud. Taking the optical clock transition 1S0 ! 3P0

in strontium-87 as an example, the natural linewidth of the transition is in the sub-Hertz range, whereas

atoms at room temperature have their linewidth broadened by up to > 500 MHz due to the Doppler e↵ect.

It is because of this e↵ect that the atoms need to be cooled down to the µK level with laser cooling

techniques, in order to obtain the full precision of the atoms in the optical atomic clock.

Power broadening

Let us consider a resonant laser light beam being shone over an atom. The probability of the atom ex-

periencing the absorption or stimulated emission of a photon increases with the increase of the laser light

intensity. The higher the intensity, the more frequently atom will absorb and emit a photon, meaning a lower

lifetime of the excited state. The Heisenberg principle links the natural lifetime ⌧ to the natural linewidth

of a transition ⌧ in the following relation

� =
1

2⇡⌧
, (2.34)

which shows that shortening the lifetime increases the linewidth of the transition [99, 100].

Each transition is characterised by its saturation intensity

Isat =
2⇡2hc�

3�3
, (2.35)

where h is the Planck constant, c is the speed of light and � is the transition’s wavelength [99, 15]. The

saturation intensity is expressed in units of [W/m2] and it is necessary to define the saturation parameter S0

for the resonant laser light beam

S0 ⌘ I

Isat
(2.36)

where I is the intensity of the laser light. In a two level system, a saturation parameter equal to 1 indicates

that the population di↵erence is Ng�Ne

Ng+Ne
= 0.5, where Ng and Ne are the number of atoms in the ground state

and excited state, respectively. The di↵erence approaches zero for S0 >> 1.
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The linewidth of the transition is broadened due to the power of the on-resonant laser and it can be

written as

�0 = �
p
1 + S0 (2.37)

where �0 is the broadened linewidth. It is because of the power broadening that the intensity of the clock

laser probing the reference transition should not be too high. For example, the 698 nm clock transition of

87Sr with a natural linewidth equal to 1.2 mHz [101] has a saturation intensity as low as ⇠ 4.6 nW/m2. In

practice, however, the interrogation laser does not stay perfectly on the resonance the entire time and bigger

beam intensities are used to probe the transition.

Collisional broadening

When a light emitting atom experiences a collision with another body, its electronic structure is perturbed,

which leads to a phase shift of the emitted electromagnetic wave. The mean free path of the atoms in the

atmospheric pressure is of the order of 100 nm [102], which at room temperature, gives atoms a few hundred

picoseconds between collisions on average. The mean time between the collisions ⌧c can be used to calculate

the Lorentzian linewidth broadening

�� =
1

⇡⌧c
(2.38)

Using kinetic gas theory, it is possible to write a substitute for the mean time between the collisions to obtain

a more convenient formula

�� =

r
3

4mkBT
d2p (2.39)

where m is the mass of the light emitting atom, kB is the Boltzmann constant, T is the gas temperature,

d is the diameter of the atom, and p is pressure of the gas [99, 15]. The value of the linewidth broadening

for a strontium atom in room temperature (⇠ 300 K), and atmospheric pressure (⇠ 100 kPa) would be

⇠ 560 MHz. This kind of broadening is avoided by putting the experiment in a vacuum chamber to eliminate

the background gas pressure.

2.5.4 Other uncertainty sources

State-of-the-art atomic clocks require a very detailed analysis of all the possible uncertainties a↵ecting the

accuracy of the measurement. For optical clocks, the largest sources of uncertainty are due to the black body

radiation shift [103], the Stark shift induced by the lattice laser, and the quadratic Zeeman shift [50].
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Black body radiation and Stark shift

The energy levels of the electronic structure of an atom can be influenced by an electric field, which is

commonly known as the Stark shift. This shift can be caused by a laser (e.g. cooling laser, probing laser, or

in the case of the optical lattice clock, the lattice laser). A special case of the Stark shift is the black body

radiation shift [99, 15].

Black body radiation shift comes from the surrounding environment of the reference cloud. The most

significant shift is from the vacuum chamber as it is the closest object, and usually it is shielding the radiation

coming from the outside. The atoms being probed in the optical clocks have very low temperatures in the

order of µK, which is about 8 orders of magnitude lower than the vacuum chamber at room temperature.

Common practice to address that source of uncertainty is to precisely control the temperature of the

vacuum chamber. As the shift is adding a systematic error, it is possible to compensate for it once we know

its nature. When the temperature of the vacuum chamber is very well defined, it is possible to calculate the

correction to the reference frequency reading.

Another practice that helps in reducing the black body radiation shift is to place the atomic cloud inside

a cryogenic chamber [49]. This method both reduces, and stabilises the surrounding temperature around the

boiling point of the refrigerant, which is ⇠ 77 K for liquid nitrogen. On the other hand, this method is more

di�cult to implement, and more expensive to run.

Zeeman shift

As well as being sensitive to electric fields, the energy levels can also be sensitive to magnetic fields. This

e↵ect is known as the Zeeman e↵ect, and its linear part can usually be easily eliminated by using magnetic

shields or magnetic compensation coils. However, the quadratic part of this e↵ect might still be significant

in the case of the most accurate clocks. This e↵ect introduces a systematic error, which can be estimated

and removed from the measurement.
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CHAPTER 3

NEUTRAL STRONTIUM AS A FREQUENCY STANDARD

There are many di↵erent elements available when it comes to choosing one for an optical atomic clock.

Some are believed to be more or less accurate, but it is not all about accuracy that matters. A perfect element

for an optical clock should be abundant and stable. More importantly, its energy levels should be accessible

with existing lasers, meaning that there should be lasers available for cooling, trapping, and probing the

clock transition of the atom. The atomic structure should be very well known, with suitable transitions to

cool the atoms down to low temperatures, and a narrow linewidth clock transition. Ideally, clocks should be

cheap to produce, easy to construct, and reliable. These qualities make the clock a good time reference, and

may decide whether the atom is good enough to redefine the second in the future.

At the moment, the neutral strontium atom is one of the most probable candidates to be used in the new

definition of the second [104, 105, 106]. This is not only due to the aforementioned qualities of the atom, but

also due to the number of strontium clocks already built around the world. Before the redefinition, however,

strontium clocks must be well tested and compared with each other, in order to ensure they all give the same

results [107]. Some comparisons between di↵erent labs have already been carried out by using bidirectional

satellites [108, 109] or fibre links [110, 111, 112]. In the near future, direct comparisons will be possible thanks

to the development of the transportable clocks, like the one presented by Koller et al. in [52].

3.1 Energy structure of strontium

A part of the strontium energy structure, that is most important in understanding the operation of a strontium

lattice clock, is presented in figure 3.1. Although every transition drawn in this figure could be used as a

frequency reference, not every one is equally good. It is possible to define the resonance quality factor Q of
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a transition as

Q =
⌫

�⌫
(3.1)

where ⌫ and �⌫, are the optical frequency and linewidth of the transition, respectively. The larger the quality

factor, the better the transition is, to become a reference standard. Transitions with a MHz linewidth such as

1S0 ! 1P1 drawn with blue, and 3P0,1,2 ! 3S1 transitions drawn with orange and dashed grey, have quality

factors ⇠ 2�30⇥107. The red transition 1S0 ! 3P1 has a narrower linewidth and therefore a higher quality

factor of ⇠ 6⇥ 1010. Finally, the transition 1S0 ! 3P0 has an extremely narrow linewidth in the order of a

millihertz for 87Sr, which gives a large quality factor of ⇠ 4 ⇥ 1017. This is 10 orders of magnitude higher

than the blue 1S0 ! 1P1 transition, and much higher than any other described transition. Additionally, the

state can be easily addressed with diode lasers that are available at that wavelength, and thus, it is the best

transition in neutral strontium to be used as a clock reference.

Nevertheless, other transitions are also important for the strontium lattice clock, as they are used for

atom preparation. Atoms need to be cooled down in order to fully benefit from the ultra-narrow linewidth

of the clock transition; otherwise, the linewidth will be broadened up to hundreds of megahertz due to the

Doppler e↵ect mentioned before in subsection 2.5.3. The blue transition 1S0 ! 1P1 with a 32 MHz linewidth

is a perfect transition to be used for atom cooling. The narrower red transition 1S0 ! 3P1 helps in obtaining

lower temperatures and is used in second-stage cooling. The 3P0 ! 3S1 and 3P2 ! 3S1 transitions help in

transferring the population from the long decaying 3P0 and 3P2 states back into the ground state.

3.2 Clock cycle

A strontium lattice clock operates in sub-second cycles of preparing atoms and interrogating the clock tran-

sition. Each cycle finishes with a destructive detection of atoms that removes atoms from the trap. With no

atoms in the trap it is necessary to start from the beginning, by cooling atoms and loading them into the

trap. In figure 3.2, an example of a clock cycle sequence is presented. Each step of the sequence is described

in detail, in the following sections. In a nutshell, strontium atoms are first cooled and trapped with a blue

461 nm laser. Simultaneously, repump lasers are being used to increase the number of atoms trapped. When

the blue cooling temperature limit is reached, a red 689 nm laser is used to lower temperature of the trapped

atoms. Initially, the linewidth of the laser is artificially broadened to avoid abrupt changes that would lead

to more atoms being lost. Next, linewidth broadening is removed to allow single frequency cooling. Finally,

atoms are transferred into an optical lattice and the red laser is turned o↵. Atoms confined in the optical
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Figure 3.1: The most important energy levels and transitions in neutral strontium. �, ⌫, and �⌫ are the
wavelength in vacuum, optical frequency, and natural linewidth of the transition, respectively. Data values
taken from [113].
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Figure 3.2: Clock cycle sequence in a strontium lattice clock. The 813 nm lattice laser, marked with green,
is turned on for the entire time as it does not a↵ect the other steps of the cycle. The time where it is not
significant is marked with faded green. Times based on [114].

lattice are interrogated with a 698 nm laser. After interrogation, the blue 461 nm laser is used to destructively

detect the number of atoms that stay in the ground state. Afterwards, repump lasers are used to transfer

the population from the 3P0 clock state, down to the ground state, where they can be destructively detected

by another pulse of 461 nm laser light. The sequence usually finishes by taking a background picture with

the 461 nm laser turned on.

3.3 First stage cooling

In figure 3.1, the energy levels and the most important transitions in Strontium are shown. First to be

described is the blue 461 nm transition 1S0 ! 1P1. This is an allowed transition between two singlet states,

and therefore the spectral line for this transition is broad and has a value of about �⌫ h 32 MHz. The upper

energy level 1P1 splits linearly in a magnetic field, while the ground state is insensitive to magnetic fields.

This quality makes the transition good for laser cooling, and the trapping of strontium atoms. The relatively

large linewidth of the transition provides a good basis to initially cool the atoms and obtain a good capture

rate with the trap. On the other hand, the broad transition results in limiting the minimum temperature to

which the atoms can be cooled down to. This temperature is equal to ⇠ 700 µK, and is mainly limited by

the Doppler cooling limit [115].
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3.3.1 Pre-cooling

The capture velocity of a trap describes the maximum velocity of an atom that can be captured in the trap.

For a magneto-optical trap, it depends strongly on the used atomic transition, specifically on the optical

frequency ⌫ and natural linewidth �⌫ of the transition. It can be estimated with a simple formula [116]

vc =
c

Q
(3.2)

where Q is the transition quality factor described by equation 3.1, and c is the speed of light. Using this

relation, capture velocities for the blue 461 nm and red 689 nm cooling transitions can be estimated to be

15 m/s and 5 mm/s, respectively.

Every experiment in atomic physics starts from a source of atoms. Atom dispensers and ovens are the

most commonly used atom sources in neutral strontium clock experiment. Both sources heat up in order

to release atoms that are launched towards the main part of the experimental setup. Thermal emission of

atoms leads to a velocity distribution that can be approximated by the Maxwell-Boltzmann distribution [98].

Because of the low vapour pressure of strontium, the oven needs to be heated up to high temperatures in the

order of ⇠ 500 �C (⇠ 773 K) [117] to obtain a su�cient flux of atoms. The velocity probability distribution

for this temperature is presented with a red curve in figure 3.3. The capture velocity of a blue magneto-optical

Figure 3.3: Maxwell-Boltzmann velocity distribution for 500�C (⇠ 773 K) and 0�C (⇠ 273 K) strontium
atoms.

trap (MOT) is equal to 15 m/s [115], and is relatively low compared with the mean velocity of atoms exiting

the atom source. This means that the blue MOT can only capture a very small fraction of atoms from the

thermal distribution presented by the red curve in the figure 3.3. Replacing the oven with an atom dispenser
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can slightly reduce the temperature down to ⇠ 350� C (⇠ 620 K) [81], which is still relatively hot. This

temperature can be further reduced by using a newly developed laser controlled atom source [118] that emits

atoms with thermal distribution close to room temperature, around ⇠ 50 � C (⇠ 320 K).

Atom sources are usually integrated into an experimental setup, in a way that produces a collimated

beam of atoms. The beam will have a Maxwell-Boltzmann distribution of velocities, corresponding to the

temperature of the atom source, only in the direction of beam propagation. Pre-cooling techniques may be

used in order to increase the capture rate of the magneto optical trap. This relies on slowing atoms from

the fast part of velocity distribution, down below the MOT’s capture velocity. A Zeeman slower is used as a

popular method of pre-cooling atoms, and will be described in the following subsection.

Zeeman slower

Let us consider a beam of atoms moving from left to right. An individual atom can be slowed down by

absorbing a photon coming from the opposite direction. During the absorption, the photon’s momentum ~~k

is transferred to the atom and thus reduces its speed; where ~k is a wave number, and ~ is the reduced Planck

constant. An excited atom will spontaneously re-emit the photon in a random direction, and after many

spontaneously emitted photons, the momentum coming from this e↵ect will average down to zero. Therefore,

only the absorbed photons change the atom’s momentum when averaged over a long time. Assuming that a

beam of atoms consists of particles moving in the same direction, it can be slowed down by taking a beam

of resonant laser light and shining it from the opposite direction, as shown in the top part of figure 3.4.

An atom absorbing a photon experiences a force, that in a two level model, can be written as [119, 120]

~F = ~~k�p, (3.3)

where �p is the excitation rate that depends on the saturation intensity Is and natural linewidth �/2⇡ of the

transition, intensity I and detuning � of the laser beam from the atomic resonance, and the Doppler shift

seen by the atoms !D = �~k · ~v, in the following relation

�p =
s0�⇡

1 + s0 +
⇣

�+!D
�⇡

⌘2 (3.4)

The relative movement of atoms with respect to the laser beam leads to the Doppler shift in the observed

laser frequency. For a counter-propagating beam of atoms and laser light, the frequency seen by the atoms

is shifted towards higher frequencies. The shift changes as the atoms are being slowed down, which causes
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Figure 3.4: Zeeman slower operation principle. Atoms are being slowed down by a counter-propagating beam
of laser light at optical frequency ⌫laser that can be absorbed when in resonance with the atomic transition.
A Zeeman slower produces a magnetic field gradient that modifies the energy of the {1P1, me = +1} energy
level to compensate for the decreasing Doppler frequency shift ⌫dopp as the atoms are being slowed down
along the slower.

the monochromatic laser beam to be no longer resonant with the atomic transition. Thus, only atoms within

a small range of velocities, determined by the laser detuning, can be slowed down. A narrow linewidth

laser can be replaced with a broader one that produces a resonant frequency for every class of speeds. This

would, however, require a more powerful laser, in order to keep the same spectral power density level. A

common approach that utilises a narrow linewidth laser is modifying the energy of the upper atomic level to

compensate for the decreasing Doppler shift of the slowed atoms. The Zeeman e↵ect is used to do this as it

splits the upper 1P1 level into three, where the magnitude of the splitting is approximately proportional to

the applied magnetic field.

A Zeeman slower consists of an electromagnetic coil or a set of permanent magnets that produce a magnetic

field, with a gradient along the beam of atoms. The magnetic field gradient is engineered to optimise the

slowing process for a given element, which depends on the atomic source type and the output velocity target.

Usually, it starts with a high magnetic field next to the atomic source and it drops down to zero at the science

chamber, as presented in the middle part of figure 3.4. The bottom part of the same figure shows how the
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energy levels in strontium are modified due to the magnetic field along the Zeeman slower.

In order to obtain a su�ciently slow beam of atoms, often the Zeeman slower needs to be relatively long

(0.3–1 m). The longer the distance the atomic beam travels, the more it diverges, and less atoms reach the

centre of the science chamber. Diverged atoms must eventually hit a wall of the vacuum chamber, where

they condense, and can no longer be used in the cooling process. An alternative to the Zeeman slower is

the 2-Dimensional Magneto-Optical Trap (2D MOT), which also uses laser light, but from two directions

perpendicular to the direction of the flux of atoms, improving the collimation of the molecular beam. More

information about the 2D MOT can be found in [121, 81].

3.3.2 Dark state repumping

Here is an example of how a good knowledge of the energy structure of strontium can further improve laser

cooling e�ciency. An atom excited to the 1P1 state can either decay to the ground state 1S0, which is the

most probable, or through the 1D2 state to the metastable states 3P0 and 3P2. The lifetime of these states

are equal to a couple hundred seconds [122, 123], which is relatively long compared with the sub-second long

cooling cycle. Atoms occupying these states cannot absorb the light of the cooling laser. As a result, the

atoms can no longer take part in the cooling process [116]. Knowing this, it is possible to find another energy

level that is accessible by lasers, and can be used as an intermediate transition, to pump the atoms back

to the ground state. The 3S1 state is perfect for this purpose as it can be reached from both the 3P0 and

3P2 state with 679 nm and 707 nm laser light, respectively. Atoms from the 3S1 state can decay to all three

3P0,1,2 states, and those that reach the 3P1 state decay further to the ground state 1S0. Such a process

is called optical repumping, and the lasers used in the process are referred to as repump lasers, repumping

lasers, or repumpers.

3.3.3 Blue magneto-optical trap

Blue magneto-optical trap (blue MOT) is a part of the first stage cooling. It consists of 3 pairs of counter-

propagating beams of 461 nm light and a magnetic field produced by two coils in anti-Helmholtz configuration.

Three pairs of cooling beams are needed to cool the atoms down in each of three dimensions. Instead splitting

power of the laser into 6 beams, the light used for cooling atoms in one direction can be reflected back to be

used for cooling the opposite direction as well. In this manner it is only necessary to split the laser beam

into three, having twice as much power per beam available.

The Zeeman e↵ect is as much important in the case of a 3D MOT as it was in the Zeeman slower. Anti-

44



Figure 3.5: In the first stage cooling atom is being slowed down by absorbing counter-propagating photons
of 461 nm light. Momentum from the photon is therefore transferred to the atom which is slowed down as
an e↵ect. Atom spontaneously decays from excited state emitting a photon in random direction. The total
recoil momentum that comes from emitting photons sums up to zero after several acts of absorption.

Helmholtz magnetic coils create gradient of magnetic field with zero value in the centre. When analysing

magnetic field along one dimension only, it has positive magnetic field induction value on one side of the trap

while negative value on the other side as presented in top part of figure 3.6. The magnetic field splits the

energy levels of 1P1 state into three as presented on the bottom part of the figure.

The role of the MOT is not only to slow the atoms but also pull hem towards the centre of the trap.

Atoms that are too much to the left from the centre should experience a force acting towards the centre. This

means that this atoms should only interact with the laser light coming from the left and be insensitive to the

light coming from the opposite direction. Cooling laser beam pairs have orthogonal circular polarisations �+

and �� to let the atoms distinguish between the two beams. The laser frequency is red-detuned from the

resonant frequency of the cooling transition. As it is depicted in figure 3.6 state with me = +1 can be only

excited with �+ beam while state me = �1 with �� beam. Thus, atoms that are on the left will be excited

by the left beam and pushed towards the centre while those on the right will be pushed by the right beam

towards the centre. Note that detuning � from the me = 0 state is necessary in order to avoid over-oscillation

of atoms around the trap centre [115][120]. Detuning also increases probability of absorbing cooling light for

atoms being further away from the centre, increasing value of the mean force acting on the atoms. Detuning

value for strontium blue MOT is usually of the order of 40–70 MHz, compared with the transition’s linewidth

equal to 32 MHz [83, 116].

3.4 Second stage cooling

It is possible to overcome the cooling limit of the blue cooling transition by using transition with narrower

linewidth. Red 689 nm transition 1S0 ! 3P1 is between the ground singlet state and a triplet state that

makes it thousand times less probable for a photon to be absorbed and its spectral linewidth is equal to
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Figure 3.6: Schematics of 1-dimensional magneto-optical trap. Colours denote di↵erent polarizations: red
for �� and blue for �+. State with me = +1 can be only excited with �+ beam while state me = �1 with
�� beam. Thanks to that e↵ect, atoms on the left are excited with the left beam and pushed towards the
centre, while those on the right are pushed by the right beam towards the centre. Note that detuning � from
the me = 0 state is necessary.

�⌫ h 7.5 kHz. Narrower linewidth helps in lowering the value of the Doppler limit down to ⇠ 200 nK.

However, that temperature cannot be reached because of the recoil temperature limit equal to ⇠ 500 nK

[115].

In practice, the first phase of cooling atoms with the blue light lowers their temperature down to mK level.

This temperature is not low enough for the atoms to be transferred into an optical lattice where temperature

should be lower than 20 µK [124]. Therefore, usually a red 689 nm laser is used to cool atoms down by a

factor of 103 to order of µK [125]. Reported number of atoms from the paper in a red MOT is 106.

Figure 3.7: In the second-stage cooling atom absorbs counter-propagating photons of 689 nm light.

The concept of the magneto-optical trap is the same as it was in blue MOT. Using di↵erent transition

requires adjusting values of the magnetic field values, beam intensities and detuning from resonance. The

same anti-Helmholtz coils are used to ensure overlap of blue and red trap centres.

After atoms are cooled down in a blue MOT, the beams are turned o↵ and magnetic field is ramped

down from ⇠ 100 G/cm to ⇠ 3 G/cm [126]. Because of much smaller values of the magnetic field, the stray
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magnetic field is no longer negligible as it was in the blue MOT. The stray magnetic field can be easily

eliminated with a pair of additional compensation coils.

In the blue MOT the saturation intensity of the cooling transition is about 40 mW/cm2 while saturation

intensity of the red cooling transition is only 3 µW/cm2 [115]. For this reason one has to be careful to

not have too much power in the cooling beams and not let the atoms be heated up by the excessive power.

Usually, few hundreds of µW/cm2 of power are necessary for red cooling beam [126, 127].

3.4.1 Broadband cooling

Narrow linewidth of the red cooling transition leads to decreased capture velocity of the trap down to 5 mm/s,

as it was estimated in subsection 3.3.1. Velocity of the blue MOT cooled atoms is equal to 370 mm/s, assuming

they reach the Doppler cooling temperature limit of ⇠ 700 µK. This is much higher than the capture velocity

of the red MOT, which results in low transfer e�ciency of atoms from blue to red MOT.

Broadband cooling is a method of increasing the capture rate of the red MOT by artificially broadening

the laser linewidth. This allows atoms in every class of velocities to absorb the narrow-linewidth laser light

in order to be cooled. The broadening is usually done with an acousto-optical modulator (AOM) or electro-

optical modulator (EOM) by changing very fast frequency of the modulators in discrete steps in order to

generate sidebands around the central laser frequency. In the experiment of Katori et al. [116], 30 sidebands

separated by 50 kHz were enough to obtain 90% transfer e�ciency.

Intensity hyper-saturation broadband cooling

Instead of adding sidebands to the cooling laser, it is possible to increase intensity of the cooling laser. This

e↵ect was observed in Space Optical Clock 2 (SOC2) project [114] and detailed description can be found in

L. L. Smith’s thesis [83]. The method involves using a powerful laser to trigger power broadening of the red

689 nm cooling transition in strontium atoms. Saturation intensity of the red cooling transition in strontium

is equal to ⇠ 3 µW/cm2. This is a relatively low value and it is easy to have 3 orders of magnitude higher

intensity of the cooing beam ⇠ 3 mW/cm2 that broadens the narrow transition linewidth to the order of

megahertz.

Supplementing explanation can be given with the use of figure 3.8. In the figure the black solid line is

the natural spectral line of the 1S0 ! 3P1 transition. The line has Lorentzian shape and linewidth equal to

7.5 kHz. Dashed lines show frequency spectrum of a resonant laser light at di↵erent intensities. All of them

have Lorentzian shape and linewidth equal to 7.5 kHz. Intensity is described with saturation parameter S0
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Figure 3.8: Intensity hyper-saturation e↵ect in broadband cooling of strontium. Black solid line shows
Lorentzian-shape natural line of 1S0 ! 3P1 transition with linewidth equal to 7.5 kHz. Di↵erent intensities
of resonant laser are drawn with green blue and red dashed lines, all having Lorentzian shape and the same
linewidth of 7.5 kHz. Intensities are described by saturation parameter S0 that was defined by equation
2.36. Blue and red arrows show spectral areas where the laser intensity profiles fully saturate the atomic
transition. Width of that area is defined here as saturation width. Saturation width for blue and red profiles
are ⇠ 70 kHz and ⇠ 240 kHz respectively. Please note that di↵erent laser intensities broaden the natural
linewidth of the transition, which is not presented in the figure for simplicity.

that was defined earlier with equation 2.36. Saturation widths marked with blue and red arrows show a

range of frequencies, where atomic transition is fully saturated despite the laser detuning from the resonance.

The higher laser intensity and saturation parameter, the wider span of laser detuning frequencies where the

transition will be saturated. As a result, a laser with much higher intensity than the saturation intensity of

the transition would be perceived by the atom in the same way as a laser with similar intensity but broader

linewidth.

3.4.2 Single frequency cooling

The broadband red MOT is an intermediate pre-cooling step of transferring atoms from the blue MOT into

the single-frequency red MOT. With atoms trapped in the broadband red MOT, it is possible to gradually

reduce broadening of the red cooling laser until only the original narrow linewidth of cooling laser is left.
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The laser linewidth is much narrower when compared with the original broadening and therefore the MOT

obtained with the laser is referred to as a single frequency red MOT.

3.5 Optical lattice

Although the cold strontium atoms trapped in a magneto-optical trap are already very cold and confined,

they are not suitable to be used as a reference. Atoms in the MOT keep being excited with the resonant laser

light, which is transferring the population between the ground and excited state. Operation of strontium

clock requires the clock transition 1S0 ! 3P0 to be probed with a clock laser, which cannot be done when

atom is in the upper 3P1 state. Moreover, the presence of the red cooling light and trap’s magnetic field

alter the energy structure of the strontium atom, bringing more systematic errors into the final uncertainty

budget of the optical clock.

An optical lattice is used to confine the cooled strontium atoms. It is created by overlapping at least two

beams of laser light, having the same amplitude and wavelength, to form a standing wave. Such a standing

wave creates a periodic optical energy potential that similarly to a quantum well has discrete energy levels

that atoms can occupy [128].

The electric field coming from the lattice lasers shifts the atomic energy levels due to the Stark e↵ect. The

magnitude of the Stark shift depends on the wavelength and it might be di↵erent for di↵erent energy levels.

A wavelength that shifts ground 1S0 and clock 3P0 states by the same factor is called magic wavelength.

As the shift for both states is the same, the energy di↵erence remains the same. The most popular magic

wavelength in strontium is 813 nm. However, other magic wavelength may be found around 915 nm [115].

Figure 3.9: After two stages of cooling, atoms are confined in an optical lattice. An optical lattice is a optical
potential that is created when counter-propagating beams of light create a standing wave.

3.6 Clock interrogation

When the ultra-cold strontium atoms are already confined in the optical potential, it is finally possible to

use them in the main part of the experiment, which is interrogation with a clock laser. Interrogation is based
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on comparing the optical frequency of the clock laser with the 1S0 ! 3P1 clock transition in order to obtain

information on the detuning, which can be used to adjust the clock laser frequency. In the result, the clock

laser obtains the frequency of the atomic transition, which is stable and very well defined (accurate). With

the whole cooling and trapping cycle being relatively slow (0.5–1 s), it is very important that the clock laser

is stable enough, not to drift too far away from the atomic resonance, between the interrogation stages. For

this reason, the clock laser is stabilised to an ultra-stable Fabry-Pérot cavity, with the state-of-the-art cavities

reaching instability level as low as 5⇥ 10�17 in fractional frequency units [129].

The interrogation of the atoms can be performed by using di↵erent methods. Anyway, it relies on applying

a pulse of light to transfer the atom population from the ground to clock state. The closer the laser frequency

is to the resonance, the higher probability for the atom to be excited by the light. Thus, after each pulse it

is necessary to count how many atoms were excited state and how many atoms stayed in the ground state,

in order to calculate what was the excitation probability.

3.6.1 First ground state detection and clean up

After the first interrogation pulse, fraction of atoms are transferred from the ground into clock state. The

lifetime of the clock transition is very long when compared with the cooling cycle time and the atoms stay

in the clock transition for the entire cycle time.

A resonant blue 461 nm light pulse is used to remove the atoms being in the ground state from the optical

lattice. The repelling force comes from atoms absorbing the light and it is possible to record an absorption

image that can be used to estimate the number of atoms in the ground state. Alternatively, the number of

atoms can be inferred from measuring the fluorescence intensity e.g. with a photo-multiplying tube. Atoms

in the clock state cannot interact with the blue cooling laser. Therefore, they stay confined within the lattice

potential.

3.6.2 Clock to ground state repumping

Once the number of atoms in the ground state is known it is necessary to calculate how many atoms is in

the clock state. Very useful for a detection would be a broad transition starting from the clock state, similar

to 1S0 ! 1P1 transition used for detection of atoms in the ground state. On the other hand, this would

require another laser and instead of looking for such a transition, it is possible to transfer the population of

the clock state back to the ground state and use the 461 nm pulse again.

Atoms can be transferred very fast from the clock state to ground state by using the repump lasers. the
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repump lasers will pump the population to the 3S1 state, where it decays through the 3P1 state down to the

ground state.

3.6.3 Second ground state detection

With the atoms transferred from the clock state to the ground state, it is possible to repeat the detection

scheme that was already used before. This way, the same laser with the same parameters is used for detecting

populations of both states. This also makes it simpler to calculate the population ratio.

3.6.4 Background detection

During the detection of the ground state, an absorption or fluorescence image can comprise a constant

systematic error, which may come from the scattered or reflected blue 461 nm detection light. To measure

the value of that constant, an extra 461 nm blue pulse is produced when there are no atoms left in the optical

lattice. This is commonly known as the background measurement.
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CHAPTER 4

COOLING LASER SYSTEMS

This chapter presents the construction of the second-stage red cooling laser at 689 nm. First, I present

a mobile amplified system in master oscillator power amplifier (MOPA) configuration that was constructed

to be a part of the strontium mini clock project. The system is built in a modular box having dimensions

35⇥25⇥8 cm3 and it uses components design, such as mirror mounts, well tested in drop tower experiments.

In this chapter, I also present an alternative laser technology that was tested for second-stage cooling of

strontium. The laser under test was the semiconductor disc laser (SDL) also known as the vertical-external-

cavity surface-emitting-laser (VECSEL). At the end of the chapter, I present construction of a compact

optical cavity as a part of frequency stabilisation system (FSS), designed for the stabilisation of all the lasers

used in strontium optical clock experiment. Most importantly, the cavity is designed to lock the second-stage

red cooling laser, as well as, to narrow down the linewidth of the laser.

4.1 Modular amplified tunable diode laser for second-stage cooling

One of the tasks in the experiment was to design and construct a red MOT 689 nm laser. The laser does not

have to be powerful, because only a couple of mW of power per trapping beam is necessary. Nevertheless,

having to choose between either, two lasers in a master-slave configuration, or one master oscillator power

amplifier (MOPA) laser, the latter seemed to be a better choice, due to a significantly higher power output

reaching up to 500 mW, while the complexity and cost is on a similar level for either of the solutions.

The MOPA system consists of a master laser, which is the source of the desired optical frequency, amplified

by an optical amplifier. The master laser in my design is an external cavity diode laser (ECDL) [130].

In a typical Fabry-Pérot (FP) laser diode, the diode’s output facet partially reflects light back into the

semiconductor area, triggering stimulated emission and causing it to lase. In an ECDL, the laser diode is
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anti-reflection coated in order to extend the resonator beyond the laser diode, where a grating or partially

reflecting mirror could be used. An ECDL can be built in free space, or by using an optical fibre as the

resonator. The external cavity of an ECDL forms a resonator that allows the easy tuning of the wavelength,

by filtering the spectrum of the back-reflected light. Extending the length of a resonator also results in a

narrower linewidth for the laser.

An ECDL can be constructed using two popular configurations: Littrow or Littman-Metcalf [131, 132].

Schematics for each of them can be seen in figure 4.1. In the Littrow configuration, a grating di↵racts

the first order beam back to the laser diode, and the zero-order beam straight to the output of the laser.

The wavelength of the output can be tuned by rotating the grating. In the Littman-Metcalf configuration,

the laser beam hits the grating at a higher angle and the first order di↵racted beam is reflected back by a

mirror. The reflected beam di↵racts for a second time, and part of it returns to the laser diode and stimulates

emission. The grating in this configuration can be fixed, and the wavelength is tuned with the mirror instead.

This has the advantage of the output beam always being at the same position. The double di↵raction of the

laser beam has the benefit of a narrower linewidth on the output. However, it also results in a reduced power

level when compared with the Littrow configuration [133, 134].

The MOPA system needs an optical amplifier, and for a free space system, a tapered amplifier (TA) is

a good solution. The TA works in a similar way to a laser diode, where both facets are accessible and anti-

reflection coated. The semiconductor in the tapered amplifier chip has a special tapered shape resembling

a funnel. The seed laser is being amplified more and more as it travels through the amplifier. The shape

prevents the chip from being damaged by distributing the power over a larger area and lowering the power

density inside the semiconductor. Laser light injected from the narrower part of the funnel triggers stimulated

emission in the gain region of the amplifier, creating a new beam of laser light which has the same frequency

and direction as the seed laser.

A downside of the tapered amplifier is its deformed beam shape on the output, which needs to be

collimated with a cylindrical lenses in order to achieve a symmetrical collimated beam. Even the collimated

beam does not have a perfectly Gaussian profile, which causes the fibre coupling e�ciency to be about 50%.

The tapered amplifier chip, used in the 689 nm laser, needs to be seeded with a relatively high power

(> 10 mW). For this reason, it was decided that the master laser of our MOPA system should be in the

Littrow configuration, in order to maximise the power.
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Figure 4.1: Littrow configuration versus Littman-Metcalf configuration in the External Cavity Diode Laser.
Light from the laser diode is collimated and falls on a blazed grating. In the Littrow configuration (left)
the first order di↵racted beam goes back to the laser diode to cause stimulated emission. Wavelength can
be tuned by changing the angle of the grating. In the Littman-Metcalf configuration (right) the first order
di↵racted beam is reflected back with a mirror. Wavelength can be tuned by changing the angle of the mirror.

4.1.1 Laser design

The ECDL cavity consists of a laser diode, grating, and a collimation lens, and it is drawn as a red rectangle

in figure 4.2a. The laser’s wavelength depends strongly on the diode’s temperature. Thus the temperature

must be kept constant to avoid wavelength fluctuations. The entire cavity is temperature stabilised with a

thermoelectric cooler (TEC). A 10 ⌦ thermistor is used to sense the temperature of the cavity next to the

laser diode socket. The laser diode was manufactured by Eagleyards Photonics, and was designed to be used

in an external cavity. It is specified to output up to 35 mW of power in an ECDL. Both the laser diode and

collimating lens are anti-reflection (AR) coated to avoid any interference by the back reflected light with the

mode of the resonator. Without the AR coating, the front facet of the laser diode would reflect part of the

light back into the semiconductor forming an optical resonator and causing stimulated emission. The modes

of that internal resonator would then compete with the modes of the extended cavity, e↵ectively reducing the

mode-hop free tuning range of the laser. The grating is glued to a mirror mount with very fine adjusters, and

a piezoelectric transducer is placed between the adjuster and grating’s platform, to allow a precise control of

the tilt.

The 0th order beam exits the ECDL cavity at an angle. This is compensated for with a mirror, which

sends the beam through a compact, very low power (VLP) Faraday optical isolator (FOI) with ⇠ 40 dB

isolation. The laser beam profile is elliptical, therefore, it needs to be shaped with an anamorphic prism pair

(APP) in order to fit through the small aperture, of the isolator, of ⇠ 2.7 mm. The isolator protects the

ECDL from the back-reflected light coming from the other optical components. The back-reflected light can
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(a)

(b)

Figure 4.2: (a) Master oscillator power amplifier (MOPA) design for the second-stage cooling of strontium.
LD – laser diode; CL – collimation lens; GRT – grating; PZT – piezoelectric transducer; APP – anamorphic
prism pair ;FOI – Faraday optical isolator; �/2 – half-wave plate; PBS – polarisation beam splitter; FC –
fibre coupler; FL – focusing lens; TA – tapered amplifier; RCL – re-collimating lens; CyL – cylindrical lens
(b) Picture of the working MOPA.

not only a↵ect the stability of the laser, but also damage the laser diode.

After the isolator the beam is split into two by using a polarising beam splitter (PBS) and a half-wave

plate retarder, which allows the continuous adjustment of the power ratio between the beams. The weaker

beam, with ⇠ 250 µW of power, is coupled into a fibre-integrated electro-optical modulator and can be used

for the stabilisation of the laser. The stronger beam passes through an additional 40 dB isolator, and is used

to seed the tapered amplifier chip with ⇠ 15 mW of power. The second isolator is needed to isolate the stray

light emitted by the TA, which is a small fraction of the output power, but for high amplification values it

becomes more significant. To match the mode of the seeding beam with the mode of the TA, a focusing lens

is used.

The tapered amplifier chip is integrated within a bone package and it was provided from Toptica Photonics.

I designed a special holder to mount the chip inside the laser, which enables a trouble-free replacement of the

bone mount. The holder is made of copper, which acts as a very good heatsink, and is temperature stabilised

with a Peltier element. The amplified beam after the TA is deformed because of the tapered shape of the

amplifier, and needs to be reshaped. First, the beam is re-collimated with a spherical lens. However, the

beam is more divergent in one direction than in the other (astigmatism), which needs to be compensated

with a cylindrical lens (lens CyL2 in figure 4.2a). Two additional cylindrical lenses form a telescope to shape

the oval shape of the beam (CyL1 and CyL3 in the figure). The beam passes through an optical isolator
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again, which protects the TA chip from being damaged, and is fibre coupled.

The MOPA system is compact and modular, having dimension 35⇥ 25⇥ 8 cm3. The maximum obtained

powers are 300 mW, 216 mW and 71 mW, measured after the TA, isolator, and fibre, respectively.

4.1.2 Narrowing the 689nm laser

Let us consider the Lorentzian-shaped spectral lines of an atomic transition, and of laser light. Each of them

is defined by its full width at half maximum (FWHM) linewidth. Laser spectroscopy is based on scanning the

laser spectral line across the atomic line, to measure the absorption spectrum. Line shape of the measured

spectrum will be a convolution of two Lorentzian functions, which is also a Lorentzian function with the

FWHM linewidth equal to the linear sum of FWHM linewidths of the atomic transition and the laser [135].

The smaller the laser linewidth is, compared with the atomic transition, the more negligible the e↵ect it has

on the shape of the observed absorption spectrum. In laser cooling, the laser linewidth should also be much

narrower than the linewidth of the atomic transition, so that the final temperature is limited by the width

of the transition only, and not by the laser.

The natural linewidth of the red MOT cooling transition 1S0 ! 3P1 is as low as 7.5 kHz. The red cooling

laser with a ⇠ 1 kHz linewidth should be low enough to obtain the best cooling results.

Free-running linewidth of the MOPA laser is estimated to be in 30–100 kHz range. This value is much

higher than the target 1 kHz, which brings the need of narrowing down the linewidth. It can be done by very

fast locking the laser to a high finesse optical resonator. The MOPA laser was initially locked to a triangular

Fabry-Pérot interferometer made of invar, which has a low coe�cient of thermal expansion in comparison to

other metals.

The invar triangular cavity was not stable enough to meet the second-stage cooling requirements, which

was the motivation to construct a more stable and more compact optical resonator, described later in sec-

tion 4.3.

4.1.3 Laser current source

Size and miniaturisation play an important role in constructing a mobile experiment. Compactness saves

space and energy consumption, as well as it helps get closer to the commercialisation of the device. Not only

do we focus on reducing the size of the optical components and vacuum chambers in our experiment, but also

on building more compact electronics. In many mobile experiments, electronics consume the most amount

of space, and it is common to see experiments where electronics occupy ten times more space than the main
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part of the experiment.

Figure 4.3: Current source chip next to a pound sterling coin.

In the red cooling laser design, a new compact current source was used. It was manufactured by Analog

Technologies Inc. and is specified to have a very low noise below 2 µA (0.1 Hz to 0.5 MHz RMS) with a

stability below 100 ppm/�C. In the red cooling laser, two such chips were used. One giving up to 200 mA of

current, powering the diode; and the second giving up to 1 A of current, driving the tapered amplifier chip.

A picture of the chip next to the pound coin is presented in figure 4.3.

4.2 Semiconductor disk laser for atom cooling

In the process of miniaturisation it is important to be open for newly emerging technologies that can sim-

plify the experiment. An example of such technology is the semiconductor disk laser (SDL), which can be

constructed to operate at the wavelength of the second-stage cooling transition in strontium [136]. The ad-

vantage of the laser is its relatively high power of > 100 mW without using an additional amplifier, clean

beam profile and its tunability.

This section reports on testing the semiconductor disk laser for laser cooling of strontium. The laser uses

AlGaInP semiconductor and it is described in detail in [136].

4.2.1 Laser chip

Semiconductor disk lasers, or vertical external-cavity surface-emitting lasers (VECSEL), are a newly emerging

kind of semiconductor laser, that delivers a high optical power output with a spectrally narrow linewidth.

The VECSEL chip, as presented in figure 4.4a, consists of a semiconductor active layer that is deposited on
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top of a Bragg reflector, on a substrate. In figure 4.4b, a photograph of a VECSEL chip is shown, where the

chip is visible as a black square wafer. On top of the chip, a circular diamond heat spreader plate is mounted,

for better heat removal from the chip. In contrast to a semiconductor laser diode, the VECSEL chip is not

pumped with current but with a high-power laser light. A green Verdi laser is used to produce the pump

beam in our case, with a power level of around 3 W at 532 nm.

(a) (b)

Figure 4.4: (a) Diagram of a VECSEL chip. (b) Photograph of a VECSEL chip with a diamond heat
spreader contacted on top.

4.2.2 VECSEL construction

The VECSEL chip needs an external resonator in order to form a laser. In figure 4.5 a complete laser design

is presented. The VECSEL chip is mounted in a mirror mount, on top of a thermoelectric cooler (TEC) that

stabilises its temperature. On the hot side of the TEC, a water block is mounted for water cooling which

is used to sink the heat coming from the pump laser. Although the pump light is fully absorbed by the

gain medium, a small amount of light is reflected from a diamond heat spreader, which is contacted on top

of the VECSEL chip with a capillary bonding method. The VECSEL chip emits a beam perpendicular to

its surface, which is collimated by a concave mirror M1 mounted on a piezoelectric transducer (PZT). The

collimated beam passes through a birefringent filter (BRF) and hits the output mirror M2. The laser can

be coarsely tuned over a range of ten nanometres, by changing the angle of the birefringent filter and the

temperature of the VECSEL chip with the TEC. The PZT provides fine tuning of the laser by changing the
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Figure 4.5: Diagram of the VECSEL (vertical external-cavity surface-emitting laser). TEC – thermoelectric
cooler, PZT – piezoelectric transducer, BRF – birefringent filter, M1 – concave mirror with 100 mm ROC,
M2 – flat output mirror.

length of the laser’s cavity, which spreads between the M2 mirror and the Bragg reflector on the VECSEL

chip.

The laser outputs up to 120 mW of red laser light at 689 nm through its main output. Additionally, two

weak beams, with the power level close to a mW, leak through the concave mirror M1, and can be used for

stabilising the laser, or for inspection. The laser outputs a relatively high power laser beam compared with

an ECDL (external-cavity diode laser) operating at the same wavelength, which gives powers up to 30 mW.

Even higher power levels can be obtained by using a MOPA (master-oscillator power amplifier) system, which

outputs up to 500 mW thanks to the use of a tapered amplifier. However, the beam profile, after the tapered

amplifier, is degraded significantly. In contrast to that, the VECSEL naturally has a good Gaussian beam

profile, shaped by the laser’s cavity. The beam profile of the VECSEL, measured at the laser output, is

presented in figure 4.6. Both the vertical and horizontal beam profile has a 1/e2 Gaussian beam diameter

equal to 2.0 mm. Another disadvantage of the tapered amplifier is that it can introduce extra noise to the

laser’s spectrum, broadening the spectral linewidth of the laser, which does not occur in the VECSEL.

To obtain a stable and narrow linewidth laser, it is required that the pump beam is at a stable power

level. Fluctuating power would change the temperature of the gain medium, leading to instability in the

laser. On the other hand, frequency fluctuations in the pump laser does not a↵ect the frequency stability of

the VECSEL. Another source of instability in the VECSEL is caused by the change in length of the laser’s

cavity. This includes slow temperature drifts as well as vibrations. The latter is mainly induced by the

water cooling system on the VECSEL chip, and was identified to be the most significant. To compensate for

the vibrations, the laser was stabilised with a PZT mounted on the M1 mirror to an external Fabry-Pérot
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Figure 4.6: Beam profile of the VECSEL measured directly at the main output.

interferometer (FPI), using a side-of-fringe locking technique on the transmitted signal.

The goal of the campaign the University of Birmingham took part in, was to test whether it is possible

to use a VECSEL to cool the atoms, especially the second-stage cooling of strontium using the 1S0 ! 3P1

transition. Requirements for the second-stage cooling laser are particularly high, due to the narrow natural

linewidth of the 1S0 ! 3P1 transition being equal to ⇠ 7.5 kHz. Therefore, the VECSEL should not only

have an intrinsic narrow linewidth, but should also be stable to stay on the transition.

To test the laser, a SOC2 (space optical clock 2) atomic package was used, which is described in [83]. The

VECSEL was set up in a neighbouring laboratory, since the only available pump laser was already there,

thus it was necessary to guide its light with a 10 m long fibre to reach the atomic package. As presented in

figure 4.7, before coupling into the fibre, the light first passes through a Faraday optical isolator (FOI), and

an AOM which provides additional isolation and can be used for fine-tuning the frequency of the laser beam.

The laser beam after the AOM is split into two beams and coupled into two 10 m long fibres. One fibre was

used to deliver the light to the FPI for stabilisation. The second fibre was coupled with a fibre beam splitter

(FBS), to separate part of the light for inspection. The remaining part was split again into three beams, that

covered the three directions in the laser cooling of atoms, to obtain a magneto-optical trap (MOT).
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Figure 4.7: Diagram of a setup used for laser cooling with a VECSEL. FOI – Faraday optical isolator, AOM
– acousto-optical modulator, FPI – Fabry-Pérot interferometer, PD – photodiode, MOT – magneto-optical
trap, PBS – polarising beam splitter, FBS – fibre beam splitter, PZT – piezoelectric transducer. VECSEL is
stabilised to a piezo tunable Fabry-Pérot interferometer with a servo electronics, using the side of the fringe
locking method.

4.2.3 VECSEL linewidth

The linewidth of the VECSEL was measured by superimposing its beam with a reference laser beam, to

obtain a beat note which was analysed with a spectrum analyser. A commercial ECDL diode laser was

used as a reference laser. This was stabilised to a 10 cm long optical cavity, under vacuum, with a finesse

of around 10000, and was described in detail in a paper by Nevsky et al. [59]. As described in the paper,

the laser’s linewidth is below 1 kHz, with a small linear drift of approximately 0.5 Hz/s, which makes the

laser a good, stable reference. The frequency spectrum of the beat note is presented in figure 4.8a, with

a triple Lorentzian function (red line) fitted to the measured data points (blue points). The full width at

half maximum (FWHM) of the Lorentzian function fitted to the carrier is equal to 54 kHz. The spectrum

also features two Lorentzian-shape sidebands, 500 kHz away from the carrier. The sidebands come from the

locking bandwidth of the reference laser’s electronics, which usually is around 500 kHz. It is believed that

the linewidth of the VECSEL is limited by the locking method. The laser is stabilised to an external cavity

with a finesse above 1000, which is placed in atmospheric pressure. In figure 4.8b, a recorded beat note

frequency is presented (top), as well as the corresponding fractional Allan deviation (bottom). The peaks in

the frequency plot correspond to the opening and closing of the doors in the laboratory where the FPI was

located. Even with the doors kept closed, local pressure fluctuations, caused for instance by air currents,

limited the value of the fractional Allan deviation to be higher than 2⇥ 10�10 (value calculated for the first

30 s from the top figure 4.8b), which corresponds to 87 kHz for the absolute Allan deviation. This value is
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(a) (b)

Figure 4.8: (a) Frequency spectrum of a beat note measurement between the VECSEL and a commercial
narrow-linewidth diode laser system. The residual bandwidth of the spectrum analyser was 30 kHz, and the
sweep time was 2.274 ms across a 5 MHz span. The red line shows a triple Lorentzian function fitted to the
blue data points. (b) Measured frequency of a beat note between the VECSEL and highly-stabilised com-
mercial ECDL laser (top) and fractional Allan deviation of the frequency (bottom). Peaks in the frequency
measurement correspond to the opening and closing of the door in the laboratory.

close to the value of the linewidth from figure 4.8a.

4.2.4 VECSEL for second-stage cooling

Although the measured linewidth is not good enough to obtain the lowest possible temperature of the MOT,

it is su�cient for the initial second-stage broadband cooling. As shown previously in figure 4.7, light from

the VECSEL is coupled into the fibre and guided to the atomic package. When switching the lasers between

a commercial ECDL laser and the VECSEL, a fibre to fibre connector is used, to ensure the alignment of the

beams inside the science chamber remains the same. The laser beam is evenly split into three MOT beams,

and each beam is used to provide cooling in one of the three directions.

To make a second-stage red MOT with the VECSEL, initially, atoms needed to be trapped in a first-stage

blue MOT. To do this, a 922 nm commercial diode laser, with a second harmonic generation at 461 nm,

was used. After optimising the blue MOT, the sequence for the red MOT was optimised using a commercial

diode laser operating at 689 nm. Once everything was optimised, the red cooling light was replaced with

light from the VECSEL by just reconnecting the fibre.

A picture of a MOT obtained with the VECSEL is presented in figure 4.9a. To take this picture, a pulse

of resonant 461 nm blue cooling light was used to fluoresce the cloud, as the red fluorescence is not strong
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enough to be clearly visible on the camera. The Gaussian fit to the atomic cloud is shown in figure 4.10a

and it gives the dimensions to be 4�h = 0.42 mm and 4�v = 0.34 mm. For comparison, pictures of magneto-

optical traps obtained with the commercial ECDL laser are presented in figures 4.9b, 4.9c, and 4.9d. Fitted

Gaussian functions to the pictures are presented in figures 4.10b, 4.10c, and 4.10d, respectively. Figures 4.9b

and 4.10b show a cloud of strontium atoms in the optimised broadband frequency MOT, where the diameters

of the cloud are approximately three times smaller, and equal to 4�h = 0.13 mm and 4�v = 0.09 mm. Figures

4.9c and 4.10c show a reduced broadband frequency MOT, where the cloud has diameters of 4�h = 0.06 mm

and 4�v = 0.05 mm. Finally, figures 4.9d and 4.10d show the single frequency MOT, with cloud diameters of

4�h = 0.07 mm and 4�v = 0.05 mm. The number of atoms in the VECSEL MOT could be estimated from

the fluorescence intensity of the cloud, and was found to be ⇠ 1⇥ 106. For comparison, the estimated atom

number obtained in a broadband second stage MOT with the commercial laser is ⇠ 6⇥ 106.

The reason for the VECSEL MOT cloud being bigger than the commercial ECDL MOT clouds is the

higher temperature of the strontium atoms. Due to the poor stabilisation of the VECSEL, it was unable to

stay on atomic resonance for long enough, however, this can easily be improved in the next iterations of the

VECSEL.
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(a) (b)

(c) (d)

Figure 4.9: Fluorescence pictures of the second stage magneto-optical traps, obtained by probing the blue
1S0�1P1 transition after performing the cooling sequence. (a) Second stage MOT obtained with a VECSEL.
The estimated number of atoms in the MOT is 1⇥ 106. (b) Second stage MOT obtained with a commercial
ECDL laser. The optical frequency of the laser was artificially broadened to improve the transfer ratio from
the first stage MOT. The estimated number of atoms in the MOT is 6 ⇥ 106. (c) Same as (b) but with
decreased frequency broadening and power. (d) Same as (b) and (c) but without artificial broadening (single
frequency). The estimated number of atoms in the MOT is 5⇥ 106.
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(a) (b)

(c) (d)

Figure 4.10: Fit to the fluorescence pictures of the second stage magneto-optical traps shown in figure 4.9.
Each figure presents a 2-dimensional Gaussian function fitted to the raw data. (a) Second stage MOT
obtained with a VECSEL. The horizontal and vertical diameters of the MOT, derived from the Gaussian
fit, are equal to 4�h = 0.42 mm and 4�v = 0.34 mm, respectively. (b) Second stage MOT obtained with a
commercial ECDL laser. The optical frequency of the laser was artificially broadened to improve the transfer
ratio from the first stage MOT. (c) Same as (b) but with decreased frequency broadening and power. (d)
Same as (b) and (c) but without artificial broadening (single frequency).
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4.3 Frequency Stabilisation System

In pursuit of a transportable optical lattice clock, the construction of a mobile frequency stabilisation system

(FSS) was necessary. This is used to stabilise multiple laser systems that are used in the strontium optical

clock experiment. The main and most important part of the system is a reference cavity, which serves as

a length standard and is used for referencing the wavelengths of the lasers. The FSS should be insensitive

to any external factors like temperature or acceleration, while being relatively small, rigidly mounted and

cost-e↵ective at the same time.

4.3.1 Stability of a reference cavity

The standing wave inside a resonator of length L can only be formed by a wavelength, whose integer multiple

is equal to double the length of the resonator 2L. This condition can also be written as:

nL = N
�vac

2
, (4.1)

where N is an integer called the longitudinal mode number, �vac is the wavelength in a vacuum, and n is

the refractive index of the medium between the mirrors of the resonator, so that nL is the optical length

of the resonator. Any variation in the optical length would change the value of the wavelength �vac that

resonates, and therefore should be avoided. There are two main factors that can change the optical length:

the temperature which changes the length of the spacer due to thermal expansion, and the refractive index,

change in which can be caused, for example, by a change in air pressure.

Temperature

First, we consider the temperature fluctuations that would change the length of the spacer. Due to the

thermal expansion, the length changes according to the following formula:

L

T
= ↵L, (4.2)

where T stands for temperature and ↵ is the coe�cient of thermal expansion of the spacer. By di↵erentiating

equation 4.1 with respect to temperature, and by substituting in equation 4.2, we can derive a formula that

66



describes the change of the resonating wavelength, with a change in the temperature of the spacer:

�vac

T
= 2↵

nL

N
. (4.3)

Often, it is more convenient to use the optical frequency ⌫, instead of the wavelength. Knowing that

�vac = cvac
⌫ , we can take its derivative with respect to temperature and substitute in equation 4.3. After

a few transformations and simplifications, we obtain the following equation describing the deviation in the

optical frequency, resulting from the deviation in the temperature of the spacer:

⌫

T
= �1

2
↵
cvacN

nL
, (4.4)

where cvac is the speed of light in a vacuum. It is also useful to give a formula for the fractional wavelength

temperature sensitivity:
�

�
= ↵ T, (4.5)

as well as the fractional frequency temperature sensitivity:

⌫

⌫
= �↵ T. (4.6)

Interestingly, both fractional sensitivities, 4.5 and 4.6, are independent of the length of the resonator, the

wavelength, and the refractive index. Moreover, we see that they closely follow the linear thermal expansion

equation 4.2.

The best temperature controller, available in our laboratory, can stabilise the temperature to the 1 mK

level in a 24 hour period. I will now analyse how three di↵erent materials would be a↵ected by a temperature

change of 1 mK. Let us consider a cavity, whose spacer is made of aluminium. The coe�cient of thermal

expansion of aluminium is 22.2⇥ 10�6 m/(m ·K). Using equation 4.4, I can calculate that, for a 30 mm long

spacer, it would result in a 9.65 MHz/mK sensitivity, if we consider the 38000th longitudinal mode of the

cavity, which corresponds roughly to a wavelength of 689 nm. Invar, with a CTE one order of magnitude

lower than aluminium and equal to 1.5⇥10�6 m/(m ·K), gives us a sensitivity of 652 kHz/mK under the same

conditions. The third material is ultra-low expansion (ULE) glass manufactured by Corning, with a mean

coe�cient of thermal expansion of 0 ± 30 ⇥ 10�9 m/(m · K) for temperatures between 5�C and 35�C. The

calculated sensitivity for this material is 0± 13 kHz/mK. All of the above results are compared in table 4.1.

It is clear that ULE is the best of all three, having the lowest value for the thermal sensitivity. If kept at the
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Material CTE [m/(m*K)] T sensitivity (frac freq) [1/mK] T sensitivity [kHz/mK]

Aluminium 22.2⇥ 10�6 �2.2⇥ 10�8 -9700 (@ 689 nm)

-14000 (@ 461 nm)

Invar 1.5⇥ 10�6 �1.5⇥ 10�9 -650(@ 689 nm)

-970 (@ 461 nm)

ULE 0± 30⇥ 10�9 0± 30⇥ 10�12 0± 13 (@ 689 nm)

0± 19 (@ 461 nm)

Table 4.1: Comparison of di↵erent materials used for constructing an optical cavity. The temperature
sensitivity is presented in fractional frequency units, as well as the temperature sensitivity for the red cooling
transition wavelength (689 nm) and for the blue cooling transition wavelength (461 nm).

zero-crossing temperature, this material has a coe�cient of thermal expansion close to zero, and therefore it

is commonly used for the most demanding laser in the experiment, the clock laser. For the red cooling, we

need a laser that would not drift away from the cooling transition. The linewidth of the cooling transition is

approximately 7.5 kHz. From table 4.1, we see that the temperature sensitivity of the spacer made of ULE

is the same order of magnitude as the transition’s linewidth. If we stabilise the temperature of the cavity to

the 1 mK level in a 24 hour period, in practice, it could mean that it would be necessary to correct the laser’s

frequency every day, which is acceptable. On the other hand, the linewidth of the transition used for the

blue cooling has a linewidth of 32 MHz. This means that even the aluminium cavity would be good enough,

if stabilised to the same 1 mK level. However, using the ULE material instead would lower the requirement

of the temperature stabilisation down to the 0.1 K - 1 K level.

Air pressure

After analysing the temperature influence on the stability of the cavity and the stabilised lasers, we would

like to see what the influence of the air pressure is, and whether it is necessary to keep the cavity under

vacuum. Looking at equation 4.1

nL = N
�vac

2
, (4.7)

we see that the resonance condition depends not only on the length of the resonator, but also on the refractive

index of medium that fills the space between the mirrors, air in our case. The refractive index of air depends

on many factors like humidity, air composition, temperature, but most significantly pressure, which is about

a hundred times more influential, and relatively hard to control. The influence of atmospheric conditions

on the refractive index of air was formulated by Edlén in [137] and updated by Birsch et al. in [138, 139].
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The updated formula will be used to simulate how the optical frequency of the resonant mode changes with

changing atmospheric pressure.

First, we would like to see how the air pressure changes in our laboratories. The pressure was recorded over

a two month period in GGTop [140] laboratory (high-spec, without windows, with A/C), and for one month in

iSense [141, 142] laboratory (low-spec, with windows, without A/C) by courtesy of Dr. Alexander Niggebaum.

Both measurements were taken with a half hour acquisition rate. The data was compared with atmospheric

pressure data, taken at the Birmingham international airport by the Met O�ce [143], and presented in figure

4.11. We see from the figure that the air pressure in the laboratories follows the pressure readings at the

airport. Therefore, it is reasonable to use the data from the airport in our analysis due to it being a large

dataset covering a few decades. Transforming equation 4.1, we obtain the optical frequency ⌫ as a function

of pressure P

⌫(P ) =
cN

2L

1

n(P )
. (4.8)

Using this equation and the Edlén equations, we can calculate how the frequency of the cavity’s resonant

mode changes with atmospheric pressure. This is presented by the right axis in figure 4.11, as the refractive

index in this pressure range can be approximated by a linear function. For the calculation, we have assumed

a relative humidity of 50% and a temperature of 20�C.

We would like to consider two types of cavities: one with a vent hole, the other without the vent hole. The

pressure inside the first cavity is well known, as it strictly follows the atmospheric pressure, while the pressure

inside the second cavity is not as straightforward and we would like to analyse whether it stays constant. In

my considerations, I assume that the cavities feature optically contacted mirrors, and the contacted mirrors

were polished to reach a �/10 flatness at � = 633 nm. This means that the distance between the peak and

valley of the flat surface is no greater than 63.3 nm, and therefore, the average distance between the two

contacted surfaces is assumed to be around 60 nm. That space between the mirror and the spacer, although

it is unnoticeable, may cause the air to leak from the inside to the outside, and vice versa. The flow of air

caused by the di↵erence in pressure inside and outside can be classified by using the Knudsen number [144]

Kn = �FMP /d, (4.9)

where �FMP is the mean free path of the particle, and d is the characteristic length of the physical system.

The mean free path of an air particle in atmospheric pressure is around 68 nm. The Knudsen number

calculated for the air flow between the mirror and the cavity is close to Kn = 1. This value classifies
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Figure 4.11: Atmospheric pressure measured at three di↵erent locations: the Birmingham International
Airport (data taken by the Met O�ce [143]), GGtop laboratory, and iSense laboratory, both in the Quantum
Hub, Metalurgy and Materials building of the University of Birmingham. The right vertical axis is the
deviation of the simulated optical frequency from the mean value, caused by the pressure change inside a
30 mm long cavity operating at 689 nm.

the flow to be transitional according to Kandlikar [145], which means that the Navier-Stokes equations for

the continuum flow are no longer valid and molecular flow should be considered, with the intermolecular

collisions still playing a crucial role. Therefore, to simplify the problem, I will assume that the two surfaces

are separated by an order of magnitude smaller distance, which lets us treat the flow as free molecular. I will

show that even then, the distance is not small enough to keep the pressure inside the cavity invariable.

To simplify the problem, I will treat the space between the mirror and the spacer as a duct with a

rectangular cross section, with the longer side equal to the circumference of the mirror. Following [144], the

volumetric flow rate Q̇ is proportional to the conductance of the duct Cm and the pressure di↵erence

Q̇ = (Pin � Pout)Cm, (4.10)

where Pin and Pout is pressure on the inlet and outlet, respectively. Conductance of the duct can be expressed
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as the entrance aperture conductance C↵ multiplied by the transmission probability ↵.

Cm = C↵↵. (4.11)

The transmission probability can be calculated using an approximated formula from [144], for the transmission

probability of a long duct of rectangular cross section

↵ =
16

3⇡3/2

a

l
ln

✓
4
b

a
+

3

4

a

b

◆
, (4.12)

where a, b, l are the height, width, and length of the duct, respectively. The calculated value of the probability

in our example is 3.07⇥ 10�5. The entrance aperture conductance C↵ from equation 4.11 can be expressed

by

C↵ = ab

r
RT

2⇡Mm
, (4.13)

where R is the universal gas constant, T is the absolute temperature, Mm is the molar mass or air. In our

case it is equal to 2.8⇥ 10�8 m3

s , making the duct conductance equal to 8.5⇥ 10�13 m3

s .

By treating the air as an ideal gas, we can use the ideal gas equation pV = nRT , where p is the pressure,

V is the volume, n is the number of moles of gas. Assuming the temperature stays constant, we can write

Q̇ =
t
(pV ) = RT

n

t
. (4.14)

Using the ideal gas equation again, with the assumption that the volume and temperature inside the cavity

does not change, we can write
P (t)

n(t)
=

P0

n0
, (4.15)

where P0 and n0 are pressure (P0 = P (t = 0)) and number of moles (n0 = n(t = 0)) at the beginning,

respectively. By substituting n(t) with the integrated formula 4.14, while assuming that the pressure at the

inlet of the duct is equal to the atmospheric pressure Pin = Patm, and the pressure at the outlet is equal to

the cavity pressure P (t) = Pout(t), we obtain

P (t) =
P0 � Patm

1 +RT/VcavCnt
+ Patm, (4.16)

where Vcav is the volume of the cavity.

By analogy with electronic circuits, the small distance between the mirror and the spacer acts as a
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(a) Short-term measurement - spikes correspond to the

opening and closing of the door
(b) Long-term pressure measurement

Figure 4.12: Simulation of the air pressure inside the cavity, with and without a venting hole. The vent
hole plots (bottom) follow the ambient pressure. The pressure inside the cavity without the venting hole
(upper) were simulated assuming a 30 mm long optical cavity with optically contacted mirrors, leaving a
6 nm spacing between the mirror and the spacer. The long-term data is based on the measurements taken
by the Met O�ce [143].

resistor, while the volume of the cavity acts as a capacitor. Combining both elements results in a low-pass

filter, where the cut-o↵ frequency drops with a rise in resistance or volume. In the case of a 30 mm long

cavity, 1 in outer diameter and 1/2 in inner diameter, the volume of the air inside is relatively small, and

despite the high resistance of the mirrors, it will make the low-pass filter less e↵ective in filtering the slowly

changing atmospheric pressure fluctuations. In figure 4.12, a simulation of the air pressure inside the two

types of cavities is presented, assuming an over-optimistic 6 nm space between the bonded mirror and the

spacer. Figure 4.12a is based on a measurement inside the laboratory with a 4 Hz recording rate. Spikes

in the figure, caused by the opening and closing of the door in the laboratory, are slightly damped, in the

case of the cavity without the vent, but not completely. The long-term pressure behaviour is presented in

figure 4.12b and it does not seem to di↵er for the two cavities. Based on the pressure data, we could simulate

the resonant frequency change to calculate the fractional Allan deviation, which is presented in figure 4.13.

In the same figure, the two vertical dashed lines represent the required instability levels for our blue and

red cooling lasers. Levels were calculated by assuming that our lasers should not deviate from the atomic

transition frequency by more than 1/10 of the natural linewidth of the transition. We see that both cavities

have similar levels of instability, with the no-vent cavity being slightly better for lower interrogation times.

Both cavities are on the edge of the required instability for the blue cooling laser, but only for short times.
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Figure 4.13: The fractional Allan deviation for the simulated frequency of the resonant mode of the cavity,
based on the pressure data shown in figure 4.12. Vertical dashed lines represent the required instability levels
for the blue and red cooling laser for strontium, assuming the laser should not deviate by more than 1/10 of
the transition’s natural linewidth.

In our experiment, we would like to stabilise both the blue cooling laser and the red cooling laser, using a

small and portable reference cavity. One possibility is to use a cavity with a vent hole placed inside a vacuum

chamber. This solution would ensure the independence of the refraction index from the air pressure, as long

as the vacuum pressure level was kept at a relatively low and stable level (around 10�4 mbar). However,

this solution also has the disadvantage of additional equipment like vacuum pumps being required, a rise

in the power consumption by the experiment, and also the doubling of size in the case of small cavities.

Another possibility is to further upgrade the no-vent cavity, by sealing the gap between the mirror and the

spacer. The sealant should be carefully chosen, so as not to a↵ect the thermal performance of the cavity.

Therefore, it should either feature a small coe�cient of thermal expansion, or be elastic. Here I propose using

vacuum-grade grease (e.g. Apiezon L Grease); vacuum sealing wax (e.g. Apiezon Wax); silicone compound

(e.g. Vacseal); or sodium silicate, which is also known as liquid glass, and commonly used for sealing and

bonding. Using a sealant could not only provide a stable reference cavity, but would also make it easier to

miniaturise, to make it a part of a compact mobile or space-compatible experiment. An alternative method
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of obtaining a sealed optical bond might be using hydroxide-catalysis bonding method, described in more

detail in [146].

4.3.2 Construction of a reference cavity

The reference cavity was designed to be relatively compact in comparison with some of the counter designs

like the one presented by Nevsky et al. [59]. The spacer is of a cylindrical shape, 30 mm long and 1 inch

diameter. It is made of ultra-low expansion (ULE) glass, which ensures low temperature fluctuations in the

length of the cavity. Each end of the spacer is polished to provide a flat surface with a flatness below �/10,

and a parallelism of the two surfaces below 30 arc seconds.

The cavities’ mirrors are made with 1/2 inch diameter fused silica substrates. One mirror is flat, while

the other mirror is concave with a 0.5 m radius of curvature. The concave mirror features a flat ring on the

edge of the concave side to make optical contact bonding possible. The reflective coating of the mirrors was

custom designed, to support all the optical frequencies used in the strontium optical clock:

• 99.97% @ 689 nm;

• 99.7% @ 461 nm, 814 nm and 922 nm;

• > 99.97% @ 698 nm;

• > 99.95% @ 679 nm and 707 nm.

Each mirror also has anti-reflection coatings, on the opposite side, covering the same range of wavelengths.

The cavity was constructed by attaching the mirrors on each end of the spacer, by optical contact bonding.

To do this, each surface of the spacer and the mirror was precisely cleaned with ultra-pure acetone and then

joined together. Thanks to this technique, there is no need to use any glue, which would significantly a↵ect

the mean value of the coe�cient of thermal expansion. The whole procedure was performed in a clean room,

under a laminar flow hood, to avoid contaminating the surfaces. In figure 4.14, two identical optical cavities,

with optically contact bonded mirrors are presented.

Cost-e↵ectiveness of the cavity

The main goal of our new cavity was not only to reduce the size, but also to make it relatively cheap to

produce. For a 30 mm long cavity, material price is not a problem, but precise machining and preparation

may drive up the price. I have considered a spacer, which should be made of either ULE or Zerodur, to
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Figure 4.14: Reference cavities next to a pound coin.

have a low temperature sensitivity. I have asked three di↵erent companies for a quotation for ten pieces of

30 mm long spacer, with two parallel faces polished to obtain a �/10 flatness. Through consultation with the

companies, it was decided that the cavity should be of a cylindrical shape to minimise the costs. The three

companies gave us quotations with huge price discrepancies:

• Company A: £872/pc,

• Company B: £3500/pc,

• Company C: £230/pc.

The di↵erence in price comes from the di↵erent manufacturing processes and profiles of the company. The

most expensive, company B, is a company producing components for the aerospace industry, which requires

extreme precision and accuracy, meaning they would have to spend many work-hours on each spacer, driving

the price high. Company A manufactures such a spacer by machining a long 1 in diameter rod, cutting it into

30 mm pieces, drilling each piece, and then polishing them together. This way, the material is not wasted

and the amount of machining is minimised, but still it requires many work-hours. Company C has the most

e↵ective manufacturing process. It starts from a 30 mm thick plate of ULE material and does the polishing

first. Then, the holes are drilled, and every piece is cut away with a milling machine. This approach requires

greater care not to destroy the polished faces, but allows to obtain a very cost-e↵ective way of producing the

spacers.
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The mirrors for the cavity are produced from fused silica, which has proven to be a good material for

ultra-stable clock laser cavities, while being relatively cheap. The best dielectric coating method is ion-beam

sputtering, which gives the lowest losses and should be used for ultra-high finesse mirrors. In our case, the

largest finesse that we need to obtain is 10000, and therefore, it is enough to use a magnetron sputtering

method, which is cheaper. In the case of ultra-stable clock cavities, it is also common to coat only the inner

part of the mirror, leaving an uncoated edge for the optical contact bonding. Again, such a selective coating

would increase the price of the cavity and is not necessary for our application, as the coated surface can also

be optically contact bonded if flat enough.

By compromising and avoiding overkill in the components’ quality, I was able to produce a portable

reference cavity, with a material cost as low as £673/pc. The cavity may further lower the cost of the whole

setup if it is proven that the vacuum is not necessary to obtain the required stability. For comparison,

the price of an ultra-stable optical cavity, with a fancy geometry, can be up to £10000. If we had chosen

company B to produce a spacer, and took the IBS coated mirrors, the price could reach £5000 per piece.

Free spectral range measurement

The spacer is specified to be 30.00 ± 0.02 mm long, which would correspond to a free spectral range of

4.996 ± 0.004 GHz. Since the mirrors are optical contact bonded to the spacer, we will assume that the

distance between the flat mirror and the surface of the spacer is 0 ± 60 nm. One of the mirrors is concave

with a 500±2.5 mm radius of curvature, which makes the central point, on the concave surface of the mirror,

to be 0.0068 ± 0.0005 mm away from the spacer. The distance between the central points of the mirrors

should therefore be 30.01± 0.02 mm, making the free spectral range slightly smaller 4.993± 0.004 GHz.

Once the cavity is built, it is possible to measure the free spectral range to see whether it meets the

expected value. For this, I used two lasers, one operating at around 689 nm, and the other around 698 nm.

The cavity is temperature stabilised to around 20�C. First, I locked the 689 nm laser to the fundamental mode

of the cavity using one of the laser outputs, while measuring the optical frequency of the laser on another

output, using a Bristol Instruments wavelength meter model 671A, which was continuously calibrated with

an internal HeNe laser, and can measure the optical frequency with 60 MHz absolute accuracy. The resonance

of the cavity was read as ⌫i = 434969.12± 0.06 GHz, which corresponds to the N = i longitudinal mode of

the cavity. By tuning the laser, I could find another mode at ⌫i�3 = 434954.19± 0.06 GHz, corresponding to

the N = (i�3) mode. Next, I modulated an output of the ultra-stable 698 nm laser, with an Electro-Optical

Modulator, and coupled it into the cavity. The EOM generates a sideband in the frequency domain, which
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can be simply tuned to reach the resonant frequency of the cavity. Again, I measured the optical frequency,

with a wavelength meter, to be ⌫j = 429229.97 ± 0.06 GHz, which corresponds to the N = j longitudinal

mode of the cavity. Knowing that 2nL
c = N

⌫ , I would like to find i and j, such that they satisfy the condition

⌫

N
=

⌫i
i
=

⌫i�3

i� 3
=

⌫j
j
. (4.17)

A script was written to find i and j, for which

r
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i
� ⌫i�3

i� 3
)2 + (

⌫i
i
� ⌫j

j
)2 + (

⌫i�3

i� 3
� ⌫j

j
)2 (4.18)

is the smallest. Although many solutions have been found, only one of them lay within the estimated cavity

length of 30.01± 0.02 mm. The obtained values are i = 87158 and j = 86008, giving the length of the cavity

to be

L = 30.0274± 0.0004 mm. (4.19)

The free spectral range of the cavity is therefore equal to

FSR = 4.99058± 0.00006 GHz. (4.20)

The obtained value for the free spectral range will be used in the next subsection for calculating the finesse

of the cavity.

Finesse measurement

To assess whether the target reflectivity of the mirrors was achieved, I performed a measurement of the finesse.

Since the cavity’s finesse is expected to be between 1000 and 10000 for di↵erent wavelengths, measuring the

finesse by ring-down spectroscopy is relatively di�cult, as it is a very short time e↵ect and would require a

very fast photodiode. An alternative is measuring the linewidth of the cavity. To do this, it is necessary to

have a laser with a linedwidth either much smaller than the cavity’s linewidth or comparable but accurate

and well known.

Linewidth measurement at 698 nm

The spectroscopy of the cavity at 698 nm was relatively easy to perform, as this is the wavelength of the

clock laser, which has a very narrow linewidth below 1 kHz, much smaller than the expected linewidth of
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Figure 4.15: Linewidth of the reference cavity at 698 nm. The blue points are the measured data points.
The red curve is a Lorentzian fit.

the cavity. For the measurement, the clock laser remained locked to the clock cavity. The fibre-coupled

output of the laser was modulated with an electro-optical modulator (EOM) to generate sidebands. One of

the sidebands was then used to scan through the resonance of the cavity, while the photodiode measured the

intensity of the transmitted light. The transmission signal is presented in figure 4.15. The frequency sweep

was performed with a function generator referenced to a GPS disciplined rubidium standard. The sweep took

500 steps across a 6 MHz span with a step time of 0.01 s. The signal from the photodiode was recorded with

an oscilloscope, and each of the 500 steps was averaged over the step time to get a set of points, to which a

Lorentzian curve was fitted. From the fitting parameters, it was possible to determine the full width at half

maximum (FWHM) of the fitted Lorentzian to be 490± 2 kHz. The fit was performed with the least-squares

method, where the standard deviation of each point from the averaging was used as a weight for the fitting.

To calculate the finesse F of the cavity, we use the following relation

F =
FSR

�⌫
, (4.21)
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Figure 4.16: Reflectivity and corresponding finesse of the mirrors for the ’red’ wavelengths. The blue solid
line is the targeted reflectivity curve of the design (reflection calculated from a refined theoretical design by
Layertec GmbH). The red point is the measured value of the reflectivity at the wavelength of the clock laser
(698.4 nm). The dashed green line is the corrected reflectivity curve assuming additional constant losses,
lowering the whole spectrum. The fine-dashed red curve is the corrected reflectivity curve assuming a spectral
shift due to manufacturing tolerances. The solid red vertical line represents the wavelength of the red cooling
laser (689 nm).

where F is the finesse and �⌫ is the cavity’s resonance linewidth [92]. The finesse value at 698 nm is equal to

F698nm = 10190± 50. (4.22)

The reflectivity of the mirrors is calculated according to the transformed equation 2.12 in the following form

R = 1 + 2 sin2
⇣ ⇡

2F

⌘
�
r

(sin2
⇣ ⇡

2F

⌘
+ 1)2 � 1, (4.23)

to get a value of R = 99.9692± 0.0002%.
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Finesse at 689 nm

The measurement of the finesse at 689 nm would be more di�cult due to the large linewidth of the used

laser compared with the linewidth of the cavity. To assess the finesse at this wavelength, I used the targeted

reflectivity curve of the design, that was calculated by Layertec GmbH, who designed and manufactured

the mirror coatings. The curve is presented in the figure 4.16 with a solid blue line. By performing the

measurement of the linewidth at 698 nm, as described in subsection 4.3.2, we could derive the reflectivity

of the mirrors at that wavelength, which is presented in the figure 4.16 with a red point. It is clearly seen

that the measured reflectivity value at 698 nm is lower than the targeted reflectivity, and therefore the whole

curve must have shifted as well. There are two possibilities for this. First, our mirrors might not be clean

enough, and therefore have additional losses from scattering or absorption. This would a↵ect the reflectivity

by shifting the curve down, and lowering it by roughly 0.01% from its targeted values. For 689 nm, it would

mean a shift from the target of 99.97% to 99.96%. The second possibility is that, due to the tolerances

used in the manufacturing process, the curve has shifted spectrally in the horizontal direction. Then, the

targeted value of the reflectivity for 690 nm corresponds to the measured reflectivity value at 698 nm. With

the spectral shift equal to 8 nm, the reflectivity at 689 nm would still stay close to 99.97%. Although the

finesse at 689 nm cannot be precisely determined, we can estimate its value to be between 7000 and 10000.

4.3.3 Cavity housing

Thermal shielding

The reference cavity was constructed to be relatively small, and to be part of a mobile experiment. This

requires a rigid mounting that could withstand variable acceleration in all directions. On the other hand, it

is important to keep the temperature as stable as possible, to reach a stability at the 1 mK level or better.

To reach these two requirements, the cavity’s rigid housing was designed to act as a thermal shield as well.

For this reason, it features multilayer passive shielding that is well used in ultra-stable clock lasers.

The cross section of the full housing assembly is shown in figure 4.17. First, the cavity is mounted inside

an inner cylindrical shell, made of aluminium, using four 4 mm diameter soda-lime glass beads symmetrically

distributed on the bottom, and two viton balls on the top. Each ball is constrained by an approximately

3.5 mm diameter hole, inside the aluminium can. The viton balls are used to push on the cavity so that it

cannot move, while the glass spheres provide thermally resistant single-point support, and are rigid enough

to ensure that the optical axis of the cavity stays in place. The inner can is then mounted using the same
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Figure 4.17: Design of the housing for the mobile cavity. The outer can is made of monolithic piece of
aluminium, which is temperature stabilised with a Peltier element. The inner can is also made of aluminium
and is mounted inside the outer can with symmetrically distributed beads, which provides low thermal contact
between the layers. One of the bead is made of viton to provide elasticity and radial force holding the can
inside. The same mounting method is used to hold the optical cavity inside the inner can.

method inside an outer thermal shield, except for the balls positions which are rotated 180� around the

optical axis. Not only does this maximise the thermal distance between the outer shield and the cavity, but

also makes it symmetrical, to distribute the heat evenly. The temperature of the outer can is stabilised with

a thermo-electric cooler (TEC) element that is placed on the bottom of the can. The outer can’s cross section

shape is a combination of the O-shape profile and U-shape profile, and it is made of a monolithic piece of

aluminium to provide a better thermal conductivity and homogeneity. The advantage of the O-shape profile

is that it fits the cavity better, making the distance between the cavity and the shield the same at any point.

The disadvantage of the O-shape profile is the lack of a flat surface that could be used for attaching a TEC

module. Combining it with the U-shape profile solves this problem. Each can is closed with a lid at the

front, while the rear side is a part of the monolithic body. The whole housing assembly is also constructed to

be vacuum-compatible. This means that all the materials are suitable to be placed under vacuum with little

outgassing, and was designed to avoid trapped air pockets that could cause virtual leaks.

Vacuum system

If necessary, the cavity might be put inside a vacuum chamber, to improve its thermal stability and avoid

the fluctuations in the refractive index of air. Vacuum system is planned to be built in the very near future.
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Figure 4.18: Ion pump with an attached compression valve. The ion pump controller is visible in the
background, showing the pressure in units of mbar.

Low-cost disposable compression pinch valve

The biggest advantage of our cavity is its compactness. Adding a vacuum chamber to the design brings the

necessity of using extra components like a vacuum valve, used for evacuating air from the chamber, which

is very big in comparison with the rest of the setup. To keep the stabilisation system small, a low-cost

compression valve was developed. It is made of a homogeneous piece of oxygen-free cooper, in the shape of

a straight pipe, with two DN16CF flanges on each end. In contrast to the stainless steel flanges, the copper

flanges cannot have a knife-edge for sealing, as the copper is too soft. Instead, the flange features an annulus

shaped ridge, that acts like a copper gasket, which is used to seal two flanges together. Since the compression

valve was designed to be disposable, the lack of the removable gasket does not bring any disadvantage to the

system.

To close the valve, first a pliers wrench is used to flatten the copper tube until the thickness is small

enough to use a bolt cutter. With a bolt cutter, it is possible to apply a very large pressure on the tube,

causing the copper to seal itself. It is advised to perform a three-step compression on the flattened part.

First, to seal one side of the tube (vacuum chamber), second, to seal another side of the tube (turbo pump),

and then, to finish with a cut in-between to separate the two parts. A traditional valve is suggested to be

mounted on the turbo pump side, which could be closed before the compression sealing process. This will
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Figure 4.19: Diagram presenting realisation of a dual-sideband locking method. O↵set radio frequency (RF)
signal � from the function generator is combined with the Pound-Drever-Hall (PDH) radio frequency signal
with a tee and sent to an electro-optic modulator (EOM). To isolate the two frequency generators, a low-pass
filter (LPF) and high-pass filter (HPF) are used before the tee. The EOM phase-modulates the laser light,
which then passes through a polarising beam splitter (PBS), quarter-wave plate (�/4) to be coupled into the
optical cavity. The cavity reflected beam is diverged to hit a fast photo diode (PD). Signal from the photo
diode is demodulated with PDH radio frequency signal using a mixer to obtain an error signal. The error
signal is then amplified by a servo controller and used to stabilise the laser.

protect the turbo pump from any abrupt leaks that can occur during the pinching process. A successfully

compressed valve is presented in figure 4.18. It was tested with a pressure level of 4 ⇥ 10�9 mbar, which is

more than good enough for the reference cavities, and we believe that the valve can also be used for ultra-high

vacuum (UHV) systems, if baked before the compression.

The valve is very easy to manufacture, and costs a few tens of pounds if done by our mechanical workshop.

It can be done in any size, both DN16CF or DN32CF, with the pipe diameter being limited by the cutting

capacity of the bolt cutter. The equipment used for compressing the valve costs less than £150 making it

a↵ordable for every laboratory.

4.3.4 Laser stabilisation method

Dual-sideband locking

Cavity miniaturisation brings the disadvantage of a rising free spectral range with a decrease in the cavity’s

length. It is common in various experiments for the lasers to be locked to a fundamental mode of the optical

resonator, while the laser beam frequency is tuned with a double-pass acousto-optical modulator (AOM) to

reach a desired frequency (e.g. atomic transition frequency). On one hand, using an AOM is an e�cient

83



solution for low frequencies, below a few hundred MHz. On the other hand, the AOM usually has a small

radio frequency bandwidth, which limits the tuning range of the AOM. For our 30 mm long cavity, the free

spectral range is equal to 5 GHz. This means that in the most pessimistic scenario, we would have to have

a 1.25 GHz AOM in a double-pass configuration which, if it exists, would be extremely ine�cient.

An alternative to using a double-pass AOM is a dual-sideband locking method. It uses a high bandwidth

electro-optical modulator (EOM) to generate o↵set sidebands in the frequency domain, and another EOM

to generate locking sidebands on each o↵set sideband. This method utilises the high RF bandwidth of a

fibre-based EOM reaching even a few GHz. In figure 4.19, a diagram of the locking scheme is presented. In

practice, it is the same as Pound-Drever-Hall method described in [147] except for an extra function generator

generating the o↵set radio frequency �. This frequency is combined with the Pound-Drever-Hall RF using

a tee. Low-pass and high-pass filters are additionally used to avoid interference between the two frequency

generators. This lets us use only one EOM instead of two. An error signal is generated by mixing the PDH

RF with the signal from the photo diode. The shape of the obtained error signal is also presented in figure

4.19. It is possible to stabilise our laser to either of the o↵set sidebands, and by changing the o↵set RF

frequency, we can change the frequency of the laser over a wide range of a couple of GHz.

Instead of changing the frequency of the laser beam, it is possible to change the cavity length by changing

the temperature, or mechanically applying a force on the spacer to cause its deformation of the spacer.

However, those shifts all the resonance lines, so they can be used only when one laser is in use. Thanks to

the dual-sideband method, we can lock many lasers at the same time, and easily tune them without any

mechanical interference.

Multi-frequency locking

Another challenge is whether it is possible to use one cavity, with strontium-selective broadband mirrors, to

stabilise all the lasers:

• 461 nm - blue cooling laser,

• 679 nm - repump I laser,

• 689 nm - red cooling laser,

• 707 nm - repump II laser,

• 813 nm - optical lattice laser.
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Figure 4.20: Scheme of frequency stabilisation system. Merged coupling is responsible for combining the
beams and coupling them into the cavity. The blue 461 nm beam is merged using a long-pass mirror
(LPM650). The lattice 813 nm laser is merged using a short-pass mirror (SPM750).The repump lasers
are combined using the same polarisation with a non-polarising beam splitter (BS(50:50)), with a 50:50
reflection:transmission ratio. The red cooling laser 689 nm, having an orthogonal polarisation to the repump
lasers, can be combined using a polarising beam splitter (PBS). The Pound-Drever-Hall (PDH) part is used
to separate the beams reflected back from the cavity, to use them for the Pound-Drever-Hall locking of every
individual laser. A non-polarising beam splitter with 90:10 reflection:transmission ratio (BS(90:10)) is used
to diverge the cavity reflected beam to detect it with a photo diode (PD). The cavity transmission beams
enter the inspection part, where a dispersive prism separates them, causing them to hit a di↵erent point on a
CCD (charge-coupled device) camera. A calcite beam displacer (CBD) is used to separate the repump lasers
from the red cooling laser using polarisation. A CCD camera is used to inspect the quality of the cavity’s
modes.

To use a single cavity, it is necessary to find a way of combining all of those wavelengths into one beam

that would be coupled into the cavity. It is also important for the Pound-Drever-Hall (PDH) stabilisation

method to distinguish between the reflected beams. In figure 4.20, the planned scheme for locking the lasers

using one cavity is presented. The green-background region is responsible for merging the beams together

and coupling them into the cavity. The blue cooling laser (461 nm) is relatively easy to merge with the other

beams, for example, by using a long-pass dichroic mirror (LPM650) with a cut-o↵ wavelength of 650 nm,

which reflects blue 461 nm and transmits wavelengths above 650 nm. For merging the lattice laser (813 nm),

we use the same method, but with a short-pass dichroic mirror (SPM750) with a cut-o↵ wavelength of

750 nm instead. This reflects 813 nm beam while transmitting wavelengths below 750 nm. Combining the

red lasers (679 nm, 689 nm, 707 nm) into one beam is more di�cult because their wavelengths are very close
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to each other. The red cooling laser (689 nm) can be combined with the repump lasers by using two linear

orthogonal polarisations and a polarising beam splitter (PBS). The two repump lasers are less important

and can be merged with a non-polarising beam splitter (BS(50:50)), having the same polarisation. In the

Pound-Drever-Hall locking method, it is necessary to diverge the cavity reflected beam from the incident

beam. Usually, an optical Faraday isolator or a quarter wave plate, with a polarising beam splitter, is used

to separate the reflected beam, but then it would not be possible to use it with many wavelengths and

polarisations. As shown in figure 4.20, in the blue background, we use a non-polarising beam splitter with

90:10 reflection:transmission ratio (BS(90:10)) instead, which allows to diverge the reflected light, to split it

back with long-pass/short-pass mirrors and PBS, onto fast photo diodes (PD) for Pound-Drever-Hall locking.

To distinguish between the two repump lasers sharing the same polarisation, it is possible to use a di↵erent

PDH modulation frequency for each laser beam, and use radio-frequency (RF) high-pass and low-pass filters

to separate the PDH photo diode signals before demodulation. In the red background in figure 4.20, the

cavity transmitted beam is inspected with a CCD camera to see whether the lasers are locked to the right

mode of the cavity. A dispersive prism is used to separate the overlapped laser beams, to hit di↵erent parts

of the CCD camera. A calcite beam displacer (CBD) is used to additionally split the red lasers, using their

polarisation.

Locking many lasers using one resonator brings the advantages of saving space, using less equipment,

as well as having the same reference for all the lasers. The knowledge on any long-term drift detected in

one of the lasers can be used to apply correction to all the lasers simultaneously. The system can be small,

and it is possible to use integrated optics and fibre integrated components to miniaturise it even more. A

disadvantage of the system is that we need to use a beam splitter with a 90:10 reflection:transmission ratio,

which will transmit only 10% of the incoming light, to be coupled into the cavity. Still, the 90% output can

be used for something else, like power level diagnostics, or can be coupled into a wavelength meter. Also, the

powers necessary for the locking are relatively low (⇠ 10 µW level), so the loss is still small compared with

the power level of the main output of the laser. In the presented configuration, it is also possible that the

red cooling 689 nm laser has an orthogonal polarisation with respect to the other beams, which can increase

stability and avoid cross-talking.
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CHAPTER 5

ULTRA-STABLE INTERROGATION LASER

The interrogation laser is a vital element for every optical clock. Its role is to provide a stable optical

frequency, which is used to interrogate the atomic clock transition. The interrogation data can then be used

to correct the laser’s frequency, so that it stays on resonance. Apart from its important role in the optical

atomic clock, such an ultra-stable laser can also be used in a vast range of experiments covering fields like

fundamental physics investigation [148], communication [70], and astrophysics [63].

In this chapter I present the development of the ultra-stable interrogation lasers for spectroscopy of the

clock transition in strontium. At the beginning, I present the construction of a stationary system at the

University of Birmingham that was built to serve as a reference to further the development of a mobile

system. The laser is constructed in a modular package and the only element that stops the system from

being mobile is the reference cavity that is not rigidly mounted. I present possible sources of instability and

measures of how to isolate from them. Also in this chapter, I present the assembly of a mobile interrogation

laser that was developed towards space applications within the Space Optical Clock (SOC2) project. Some

characterisations of the laser are presented such as instability measurement, acceleration sensitivity, pressure

sensitivity and laser power sensitivity. At the end of this chapter I compare the instability of the stationary

system with the SOC2 mobile system, as well as, with the RF frequency standards used in the laboratory.

5.1 Stationary interrogation laser

The stationary system consists of a modular external cavity diode laser (ECDL) stabilised to an ultra-stable

optical cavity. The entire optical part of the system, including the laser, stands on a vibration isolation

platform. The entire system has dimensions ⇠ 460⇥510⇥1000 mm3 and is subject to further miniaturisation.
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5.1.1 ECDL design

An ECDL was built in a Littrow configuration, using a ruled grating with 1800 lines per millimetre. An

anti-reflection coated laser diode is used to avoid interference with light reflected back from the grating.

Both the laser diode and a f = 3.1 mm collimation lens are mounted inside a collimation package, which

provides easy adjustment of the position and polarisation. The grating is mounted on a mirror mount with

very fine adjustment screws, which provides coarse tuning of the laser. For the fine tuning, a piezoelectric

transducer is mounted between the screw and platform of the mirror mount. All the elements are enclosed

inside a case made of aluminium, which forms the external cavity of the ECDL, with approximately 10 cm

distance between the laser diode and the grating. The aluminium case is temperature stabilised using two

thermoelectric coolers (TEC) on the bottom, with a 10k thermistor mounted next to the laser diode to

optimise for the temperature stability of the laser diode. The hot side of the TECs is attached to the thick

aluminium base of the laser’s box, which serves as a heat sink. The ECDL case, as a part of the entire laser

system, is shown in figure 5.1a.

The laser beam exits the ECDL cavity through a wedged window, which protects the grating and diode

against dirt and dust coming from the outside. With two mirrors on adjustable mounts, the beam is guided

through a tandem Faraday optical isolator (FOI), which provides approximately 57 dB isolation. This

protects the laser against the reflected light, which might cause instabilities in the laser’s optical frequency,

or even break the laser diode. After the isolator, another two mirrors on adjustable mounts are used to

couple the laser light into a polarisation maintaining FC/APC fibre by a fibre coupler (FC). Just before the

fibre coupler, the beam passes through a calcite polarisation beam displacer (PBD), which provides a high

extinction ratio of 100 000:1. The beam displacer is used to clean the polarisation before injecting the beam

into the polarisation maintaining fibre.

The laser also features screened wiring inside the box with SMA connectors for controlling the PZT. This

helps to avoid cross-talking between the wires, and provides an appropriate cable type for the RF part of the

signal for the PZT. A picture of the complete laser box is presented in figure 5.1b

The laser diode is operated at room temperature and outputs powers up to 35 mW, measured at the

output of the ECDL cavity. When tuned close to the desired frequency of the 1S0 ! 3P0 clock transition in

strontium, which is approximately equal to 429.228 THz, the power measured after the isolator is equal to

24 mW for a 77.6 mA laser current (90 mA recommended maximum current). After the isolator, the laser

beam is coupled into a fibre beam splitter, which splits one input into three outputs, labelled from 1 to 3, as

presented in figure 5.2.
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(a)

(b)

Figure 5.1: (a) External cavity diode laser design for the interrogation laser. LD – laser diode; CL – collima-
tion lens; GRT – grating; PZT – piezoelectric transducer; FOI – Faraday optical isolator; PBD – polarisation
beam displacer; FC – fibre coupler. (b) Laser box with labelled backplane connectors for the piezoelectric
transducer (PZT) voltage, laser diode (LD) current and thermoelectric cooler (TEC) temperature stabilisa-
tion.

The power levels at the outputs are equal to 3.4 mW, 2.7 mW, and 3.2 mW for output number 1, 2, and

3, respectively. The first output is connected with a fibre-to-fibre connector to a fibre-coupled integrated

optical phase modulator (EOM). The EOM is used to generate side-bands in the optical frequency spectrum,

necessary for the Pound-Drever-Locking of the laser to a reference cavity. The second output is used for

inspection with a wavelength meter and an optical comb. The third fibre output provides light that can be

guided with a fibre to the atomic package, with which to interrogate the atoms.

5.1.2 Stabilisation of the laser

Although an ECDL may have an intrinsic narrow linewidth (30 – 100 kHz), it is much larger than the linewidth

of a clock transition (1 mHz – 1 Hz). Also, its optical frequency deviates due to mechanical instabilities,

temperature variations, and atmospheric pressure fluctuations. Therefore, it is necessary to stabilise the laser

to a stable, narrow linewidth reference to both narrow down the linewidth of the laser and limit its drifts. A

reference that is commonly used in laser stabilisation is the resonant mode of an ultra-stable optical resonator

(Fabry-Pérot interferometer) with an ultra-high finesse.

The ECDL laser is stabilised with the Pound-Drever-Hall (PDH) method, described in detail in [147]. A
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Figure 5.2: Locking and distribution of the interrogation laser. ECDL – external cavity diode laser; EOM –
electro-optical modulator; AOM – acousto-optical modulator; BS – beam splitter; OFC – optical frequency
comb; PD – photodiode; CCD - charge-coupled device camera; PDH – Pound-Drever-Hall.

schematics of the PDH locking setup is shown in red area in figure 5.2. The Laser beam is phase modulated

with a fibre integrated electro-optical modulator to generate sidebands needed for the PDH locking. The

collimated beam double-passes an AOM operated at 80 MHz, and passes through a mode-matching lens

that optimises the overlap between the cavity and beam modes. The beam passes through the 90:10 (reflec-

tion:transmission) beam splitter and is coupled into the reference cavity. Most of the cavity reflected light is

diverted by the 90:10 beam splitter into a fast photodiode. The RF part of the signal from the photodiode

is demodulated with a 10 MHz signal, which is also used for driving the EOM. The 10 MHz signal comes

from a 4-channel direct digital synthesiser (DDS) that is referenced by a GPS disciplined rubidium oscillator

that will be described in subsection 5.3.3. The output of the mixer, where the signal is demodulated, gives

an error signal that is amplified and filtered by PDH servo, and fed back to the laser for a fast lock with the

laser diode current, and slow lock with the laser’s PZT. At the transmission output there is a 50:50 beam

splitter that splits the laser beam between a photodiode and CCD camera, both used for inspecting the lock

quality.
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5.1.3 Reference cavity

The reference cavity was manufactured by Advanced Thin Films. It is made of an ultra low expansion (ULE)

glass spacer with optically contact bonded ULE mirrors. One of the mirrors is planar, whereas the other is

concave with a 1 m radius of curvature (ROC), and both have a diameter of 25.4 mm. The length of the

spacer is equal to 77.5 mm. The shape of the spacer is designed to optimise its performance for the cavity

standing in an upright, vertical direction. It features a midplane ring, used to support the cavity at three

points which are located at equal distances from both mirrors, providing a 3-fold symmetry of the system.

In this configuration, vertical acceleration causes both mirrors to displace in phase, roughly by the same

distance, e↵ectively reducing the sensitivity of the cavity to seismic noise [149].

5.1.4 Thermal shield and vacuum system

The reference cavity needs to be under a stable environment with ultra-low temperature and pressure fluctua-

tions. A special vacuum system was constructed to provide these conditions, and its cross section is presented

in figure 5.3.

Vacuum chamber

The most outer can of the system is a vacuum chamber made from a stainless steel CF150 reducing cross.

On the top of the cross, there is a stainless steel CF150 blank flange with an indium sealed 1 inch window

in the centre, for optical access to the cavity. The flange is sealed with the cross using a copper gasket. The

bottom flange is made of aluminium, which cannot be sealed with a copper gasket. Therefore, a viton gasket

is used instead. The flange also has an indium sealed window, used for optical access to couple the beam

into the optical cavity. The window is tilted to avoid the etalon e↵ect and prevent the reflected beam from

interfering with the rest of the setup. The flange is made of aluminium, rather than stainless steel, for better

thermal properties. Additionally, the flange features fins on the bottom side to increase heat exchange with

the air, since it also serves as a heatsink for the thermoelectric coolers (TEC) mounted on the inner side.

The cross also has two CF32 connectors on the sides. A military 19 pin connector feedthrough is mounted

on one of them, while the other one is used to connect the valve with the 20 l/s ion pump. The ion pump

keeps the pressure level inside the vacuum chamber below 1⇥ 10�7 mbar.
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Figure 5.3: Cross section of the vertical cavity vacuum system. The vacuum chamber is made from a CF150
reducing cross, with two CF150 flanges on each end. The optical cavity is placed inside two thermal shields.
The outer thermal shield is temperature stabilised with three thermoelectric coolers (TEC).

Thermal insulation

The temperature of the reference cavity has to be stabilised to below the µK level, to stabilise the interrogation

laser down to a 1 ⇥ 10�15 fractional frequency instability level. Usually, the best temperature controllers

are able to stabilise the temperature at a mK level, which is not good enough for the reference cavity. For

that reason, a special passive thermal shielding has been developed, to filter fast temperature fluctuations.

Slow temperature drifts would still be present, but slow enough that they could be easily compensated for

by referencing the stabilised laser to the atomic clock transition.

The optical cavity is placed inside two thermal shields made of aluminium. The outer shield stands

on three thermoelectric coolers (model PKE71A0020 from Peltron GmbH), which are used to stabilise its

temperature. Home made thermal grease, consisting of ultra-high vacuum grease mixed with powdered silver,

is applied on each side of the TEC to improve thermal contact between the surfaces. Grease was chosen over

the glue, due to di↵erent coe�cients of thermal expansion that would induce internal stress inside the TEC,

and could lead to its breakage. Two 10k thermistors are attached to the outer shield, one at the top and one

at the bottom. The bottom one is used as a probe for stabilising the temperature. The other 10K thermistor
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is attached at the midpoint of the inner shield for monitoring the temperature. Three spherical glass beads

are used to separate the two thermal shields to decrease thermal conductivity between the layers. A spherical

shape, for the supports, is advantageous because of a single-point contact with a tangential surface. The

aluminium thermal shields and the inner side of the bottom vacuum flange are highly polished, to further

reduce the conductivity between the layers due to radiation, by lowering the emissivity coe�cient.

The reference cavity is placed inside the inner shield, on three titanium tubes with a 4.25 mm outer

diameter and 0.25 mm wall thickness. Such legs provide both rigid support, and relatively low thermal

conductance, compared with other shapes and materials. On each end of the tube, a 4 mm diameter spherical

glass bead is glued to provide uniform support for the cavity, with a low thermal contact between the surfaces.

Titanium legs stand on a low thermal expansion Zerodur ring, which also stands on three glass beads. A

PTFE ring is placed on top of the Zerodur ring to give additional support to the titanium legs, to avoid

twisting of the cavity body. Additionally, a layer of aluminium foil is placed between the inner thermal shield

and the cavity, to maximise the thermal time constant between the cavity and the outer thermal shield.

The thermal time constant between the outer and inner shield was measured to assess the thermal

insulation abilities of the system. First, the temperature of the outer shield was set to 20�C, and left

over a couple of months to allow the inner shield and the cavity to approach this temperature. Next, the

set temperature of the outer shield was changed to approximately 25�C. It took approximately 10 minutes

for the outer shield to stabilise to the new temperature setting. During this process, readings of the inner

shield thermistor resistance were taken with an Agilent 34410A multimeter, for a period of 100 hours at 10 s

intervals. The measured data points are presented in figure 5.4a with blue circles (not distinguishable due

to high resolution of the measurement). The function fitted to the data is shown as a red curve, comprising

two exponential functions, one of which is amplitude modulated with a sine, creating a damped oscillator

curve. From the fitted function, a time constant for the first exponent is calculated to be ⌧1 = 25 hours. This

time constant is assigned to the radiative heat exchange between the layers. The second exponent gives us a

short-term time constant equal to ⌧2 = 5 hours, which might be assigned to temperature stabilisation across

the outer shield, or heat conduction through the glass supports. The sine component might originate from the

temperature controller, which after changing the temperature set point, slightly overshoots by approximately

0.1 K and oscillates before it finally stabilises. For comparison, figures 5.4c and 5.4e show fits with exponential

function only and double-exponential function, respectively. Corresponding fit residuals plots are shown in

figures 5.4d and 5.4f, respectively. It can be clearly seen when comparing the three fit residuals figures, that

5.4b, with the lowest amplitude and no obvious pattern being visible corresponds to the best fitting function.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: (a)Measurement of thermal time constant between the outer thermal shield and the inner thermal
shield. The temperature of the outer shield was changed and blue points represent temperature values on
the inner shield. The red curve shows a fitted exponential function with sinusoidal, exponentially decaying
oscillations as per equation on the plot. (b) Fit residuals for 5.4a (c) Single-exponential fit. (d) Fit residuals
of single-exponential fit. (e) Double-exponential fit. (f) Fit residuals of double-exponential fit.
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By analogy with electronic circuits, highly polished layers of aluminium, separated by a vacuum, act as a

thermal resistor with resistance R, which when combined with the heat capacitance C of the thermal shield,

form a thermal low-pass filter. With a thermal time constant ⌧ = RC = 25 h, we can calculate the cut-o↵

frequency of the low-pass filter according to the formula fc = 1
2⇡⌧ , giving the result of fc = 1.8 µHz. By

knowing the mass of the inner shield, it is possible to calculate its capacitance Cin = 0.678 kJ/K. The thermal

resistance between the shields can be calculated from the relation ⌧ = RC, giving the result R = 135 K/W.

The average emissivity factor ✏ of the shields’ surfaces can be estimated, by transforming the formula for

radiation heat transfer between two bodies into the following form:

✏ =
A1/A2 + 1

A1R�(T2 + T1)(T 2
2 + T 2

1 ) +A1/A2
. (5.1)

In this equation, A1 and A2 are the areas of the outer and inner shield, respectively, R is the thermal

resistance between the layers, � is the Stefan-Boltzmann constant, and T1 and T2 are the temperatures of

the outer and inner shield, respectively. To obtain this formula, the view factor was assumed to be equal

to 1. The estimated value of emissivity ✏ = 0.038 is in accordance with the value range ✏ = 0.02� 0.05 taken

from the literature [150, 151], for highly polished aluminium.

5.1.5 Finesse

During the cavity vacuum system rebuild, the reference cavity was stored in a cupboard for more than a

month, in atmospheric pressure. Although it was boxed in a protective case, it could have been exposed to

dust and humidity that could a↵ect the cavity’s finesse. When the cavity was placed back into the refurbished

vacuum chamber, cavity ring-down spectroscopy was performed to see if the cavity finesse had degraded.

The cavity was first locked to the cavity, both with a fast current and slow PZT. When the unlimited

integrator on the PDH servo controlling the slow PZT was switched to reset mode, causing the laser to

immediately fall out of the lock, the signal from the transmission photodiode was recorded with an oscillo-

scope. The recorded signal is presented in figure 5.5 with an exponential decay curve fitted as a red line.

The measured decay time from the fitted function is equal to ⌧ = 27.234± 0.015 µs, which corresponds to a

finesse of 331000± 500.

The finesse of the same cavity, measured three years earlier by Johnson in [152], was equal to 341000±2000,

which indicates the finesse is on a similar level. Therefore, no significant degradation of the finesse was

observed.
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Figure 5.5: Finesse measurement with cavity ring-down spectroscopy. The red curve shows an exponential
fit to the data (blue circles).

5.1.6 Stability measurement

The stability of the laser was assessed by comparing its frequency against another stationary clock laser

system, featuring a 10 cm long horizontal cavity with a finesse of 285000 ± 2000, described in [152]. To do

this, both lasers were stabilised to a resonant mode close to the clock transition frequency (⇠ 429.228 THz),

and their outputs were superimposed on a fast photodiode, mounted on a bias-T for a faster response. The

beat note frequency was taken from the AC-coupled output of the bias-T. The amplified and filtered signal

was recorded using a computer connected to a dead-time-free frequency counter. A linear function was fitted

to the frequency data, to get the value of cavity linear drift which was equal to 3 Hz/s. Since the linear

drift can be compensated for with an AOM, by programming its DDS, it was removed from the frequency

readings. Fractional Allan deviation was calculated using a script written in python, and is drawn with a blue

line in figure 5.6, showing an instability level of 5⇥10�15 at 1 s. This result shows a significant improvement

compared to the earlier implementation of the laser, presented by Johnson in [152], which reached a 2⇥10�14

instability level at 1 s. Although the instability is already low, there is still capacity for improvement, so that

it reaches the estimated thermal noise limit of 1⇥ 10�15, presented in the figure with a dashed red line.
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Figure 5.6: Fractional Allan deviation of the beat note frequency, with the linear drift removed, showing
the relative instability between the vertical-cavity and horizontal-cavity clock lasers. There is a visible
improvement at 1 s, from 2⇥ 10�14 to 5⇥ 10�15, when compared with result obtained by Johnson in [152].
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5.2 Acoustic insulation

To reach the thermal noise limit of the cavity, it is important to isolate the laser system from other sources

of noise. One significant source is acoustical noise that is transferred both through the air and table, and

causes the reference cavity to vibrate. Vibrations, as with any other kind of acceleration, will change the

distance between the mirrors, degrading the stability performance of the optical reference.

The acceleration sensitivity for a similar vertical cavity design was measured by Ludlow et al. [149] to

be 7⇥ 10�10/g. It is required to isolate the system from external vibrations, with acceleration values at the

1⇥ 10�6/g level, to be able to reach an instability level of 1⇥ 10�15.

5.2.1 Sound reflection

The power of a sound wave can be reduced in three di↵erent ways: by reflection, absorption, or di↵raction.

To build a high performance acoustic insulation box, it is crucial to reflect sound waves coming from the

outside, and absorb, as much as possible, the sound residues that were transmitted through the wall. It is

clear that the right choice of materials is crucial in designing the acoustic insulation box. The outer surface

of the box wall should be made of a rigid material that reflects most of the sound, whereas the inner part of

the box should be lined with sound absorptive material.

Every material has an acoustic impedance, which describes the material’s ability to transfer sound waves

[153]. The characteristic impedance Z of a material is expressed in Rayl units, and its value depends on the

density of the material ⇢, and the speed of sound inside the material c. It can be calculated by multiplying

those two values, as presented by the following equation

Z0 = ⇢0c0. (5.2)

The index 0 means that those values are derived for static air pressure p0 = 1 atm and constant density.

Comparison of the characteristic impedance values, for di↵erent materials, is presented in table 5.1.

Sound waves are reflected at the boundary of two materials. Reflection R and transmission T coe�cients

of the boundary are described by the following formulas [153]

R =
Z2 � Z1

Z2 + Z1
, (5.3)

T =
2Z2

Z2 + Z1
, (5.4)
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Material Characteristic impedance
(MRayls)

Material Characteristic impedance
(MRayls)

Aluminum 17.0 Lucite 3.2

Brass 40.0 Concrete 8.0

Copper 44.5 Ice 2.95

Iron(cast) 33.5 Cork 0.12

Lead 23.2 Oak 2.9

Nickel 51.5 Pine 1.57

Silver 39.0 MDF⇤ 1.7

Steel 47.0 Rubber (hard) 2.64

Glass (Pyrex) 12.9 Rubber (soft) 1.0

Quartz (X-cut) 15.3 Air at 20� C 0.000415

Table 5.1: Characteristic impedance values for di↵erent solids and air. Data taken from [154]. ⇤Value for
the medium density fibreboard (MDF) spans greatly for various manufacturing methods, here calculated for
Young’s modulus number E = 4 GPa and density ⇢ = 750 kg/m3.

where Z1 and Z2 are the acoustic impedances of the first medium where the original wave propagates and

the second medium that reflects the wave, respectively. Using 5.3 and 5.4 we can derive a simple relation

between R and T

T = R+ 1 (5.5)

Since it is common to use the sound power level to describe acoustic properties, it is useful to use the

sound power reflection r and transmission ⌧ coe�cients instead, which have the following forms

r = R2, (5.6)

⌧ = T 2Z1

Z2
. (5.7)

Note that contrary to the reflection R and transmission T coe�cients, the power reflection r and transmission

r coe�cients add up to one

r + ⌧ = 1 (5.8)

The formula for the power reflection coe�cient 5.6 can be used to choose the materials that will reflect

the sound the best. Maximising the reflection means maximising the di↵erence in the materials’ impedance

|Z2 � Z1|. Comparing the values in the table 5.1, we find that a cork is outstanding when it comes to a
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solid with a low acoustic impedance, and it is the most e↵ective when combined with a material having high

acoustic impedance. Creating a boundary made from cork and steel, gives us a power reflection coe�cient

of 1 � rcs = 1 ⇥ 10�2. A boundary of air and steel would give us a very good value of 1 � rsa = 4 ⇥ 10�5,

compared to 1� roa = 6⇥ 10�4 for oak and air.

5.2.2 Reflection versus medium thickness

To learn how the thickness of the medium improves the sound reflectivity, it is necessary to consider a

three-medium problem. As presented in [153], the following formula describes the reflection coe�cient

R =
(1� Z1/Z3) cos(kl) + i(Z2/Z3 � Z1/Z2) sin(kl)

(1 + Z1/Z3) cos(kl) + i(Z2/Z3 + Z1/Z2) sin(kl)
, (5.9)

where Z1, Z2, and Z3 are the impedances of each medium, k = 2⇡/� is the wave number, l is the thickness

of the second medium, and i is the imaginary unit. Note that for small angles, where kl << 1, sine can be

approximated by its argument, and cosine by 1, simplifying the formula to

R =
Z3 � Z1

Z3 + Z1
, (5.10)

which is the same as equation 5.3 for the two medium problem. The transmission coe�cient can be calculated

using the formula 5.5. It is now clear that for small values of kl, the middle medium is invisible for the passing

wave. For example, assuming a sound velocity in the air of 343 m/s, a 2 cm thick oak wall sandwiched by

air, and that the small angle approximation can be used for angles smaller than 30�, we obtain a value for

the critical frequency equal to fcr = 142 Hz. The oak wall can be treated as being invisible, for waves with

a frequency lower than the critical frequency value.

5.2.3 Soundproof enclosure

The number of equipment, together with the air conditioning unit inside the laboratory, makes the laboratory

a noisy environment which we need to isolate our ultra-stable clock lasers from. Ultra-stable clock laser

systems used to have two acoustic boxes, one for each cavity. After moving the system to a new stone table,

table surface was limited and it was necessary to build a bigger box that could fit two clock lasers inside.
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(a) Simulation of the sound pressure level inside soundproof enclosures for a frequency equal to f = 1000Hz. The

red circle is a monopole sound source, rectangles on the left are acoustic enclosures made of 2 mm thick steel (upper

rectangle) and 20 mm thick oak wood (lower rectangle). The blue colour inside the boxes indicates reduced sound

pressure level

(b) Mean sound pressure levels inside the oak box (blue curve), inside the steel box (green curve), and outside the

boxes (red curve). For better visibility, the curves have been smoothed using a moving average over ten samples. It

is clear that the steel box with cork inside, should isolate from sound, better than the wooden box.

Figure 5.7: Acoustic enclosure sound pressure level simulation
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Acoustic enclosure simulation

Sound propagation inside the laboratory was modelled as a 2D model, with a monopole sound source, using

COMSOL Multiphysics modelling software. Two acoustic boxes were placed symmetrically in the room, at

the same distance from the noise source as presented in figure 5.7a. One of the boxes (top) is made of a

2 mm thick steel, whereas the other one (bottom) is made of 20 mm thick wood. The sound pressure level is

presented in the figure using colours, where red denotes a high pressure level, and blue a low pressure level.

It is clear from the figure, that both boxes significantly reduce noise inside. In figure 5.7b, the mean sound

pressure levels, inside and outside the boxes, are presented as a function of the frequency of the noise source.

The performance of the boxes are at a similar level. Each of them gives approximately 20 dB attenuation for

sound at low frequencies (around 100 Hz), and it increases with the frequency, reaching 30 dB above 1000 Hz.

An important point to mention is that the simulation does not account for the sound absorption abilities

of the material, and therefore, wood might be a better choice for the material. A similar material to wood,

with even higher absorption abilities, is medium density fibreboard (MDF). The characteristic impedance of

the MDF depends strongly on the manufacturing process as the physical properties such as Young’s modulus

E and material density ⇢ may vary. Using the basic formulas for the impedance 5.2 and speed of sound in

the material c =
p
E/⇢, it is possible to estimate characteristic impedance of the MDF to be 1.7 MRayls.

For this calculation Young’s modulus and density was chosen to be equal to E = 4 GPa and ⇢ = 750 kg/m3,

respectively. The estimated value is slightly higher than pine and lower than oak, which was shown in table

5.1. Having similar properties to wood, the MDF has also other advantages such as high homogeneity, cost

e↵ectiveness and ease of processing. Thus, it was chosen to build the soundproof enclosure with.

Clock lasers enclosure

The soundproof enclosure is made of a 20 mm thick medium density fibreboard (MDF). The box was originally

supplied with a 1 inch thick blue acoustic foam, with 1 inch long spikes. Due to high dusting, the foam had

to be removed because it was not appropriate for use around optical components. It was replaced with a

2 inch thick acoustic foam, mounted on a 6 mm thick MDF. The foam has a density of 90 kg/m3, and a

hardness of 180 N. According to the manufacturer specifications, the noise reduction coe�cient (NRC) of

the foam is equal to 0.78, where an NRC equal to 1 indicates perfect absorption. Between the foam acoustic

tile and the box, a thin layer of the Green Glue was applied. The Green Glue is an elastomeric particulate

compound, which according to specifications, damps the low frequency noise. The acoustic foam tile was

mounted using screws, as advised by the Green Glue manufacturer. The patent describing the elastomeric
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particulate compounds can be found in reference [155].

Noise measurements were carried out to test the acoustical performance of the new box. Sound power

levels were compared between the new box, old box, and outside the box. Additional measurements were

taken in an empty o�ce, as a reference for how noisy the laboratory environment is. The microphone used

for taking measurements with, can be treated as a flat-response microphone, between 100 Hz and 10 kHz.

The results are presented in figure 5.8. As shown in the plot, the enclosures are not very e↵ective in the low

frequency region, where they are ’invisible’ to the sound waves. However, an improvement can be seen for the

’new box’ at the 100 Hz region, which could be achieved by applying the elastomeric particulate compound

between the box layers. At higher frequencies, it is clear that the both boxes are very e↵ective, with the

inside of the box comparable to an empty and quiet o�ce. The curves were obtained by computing the power

spectral density using Welch’s method, with a segment length of 1024.

5.2.4 Table-transferred noise

In our laboratory, a very problematic source of vibrational noise is the air conditioning unit that stands

directly on the floor. Thus, more e↵ort than usual is required to isolate from this floor-transferred noise.

While it is important to isolate the airborne sound from the laser system, it is important not to forget that

an even larger amount of sound can be transferred through the floor to the table, and then to the entire

system.

Simulation

Following the same reasoning as for the soundproof enclosure, it is necessary to have two materials with

extreme values for the characteristic impedance, so that the reflection coe�cient was as high as possible.

This task is more di�cult when it comes to isolating the table legs, as the material has to support a high

load. Looking at the table 5.1, it is clear that a combination of steel and air is one of the most e↵ective

solutions, giving a power transmission coe�cient as low as ⌧air�steel = 3.5⇥10�5. For this reason, most of the

optical tables are floated on air cushions, reducing the noise being transferred through its legs. Unfortunately,

the heavy stone table that supports clock lasers cannot be floated on air cushions and another solution has

to be found.

Cork is another material with a low characteristic impedance, which in addition, is a solid. A boundary

of steel and cork results in a power transmission coe�cient of ⌧cork�steel = 1 ⇥ 10�2. Although it is over

two orders of magnitude higher than the boundary of steel and air, it can be part of a multilayer cork-steel
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Figure 5.8: Sound power levels relative to an empty, quiet o�ce (turquoise). The red curve corresponds
to the inside of the new box, the green curve to the old box, and the navy blue curve to the laboratory
background noise without any box.
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(a) Simulation of the sound pressure level in the laboratory for a frequency of f = 511Hz. Values on the axes are

coordinates in meters, the red circle is a monopole sound source, rectangles on the left are acoustic enclosures made

of 4 mm steel, and 3 mm cork (upper rectangle), and 20 mm oak board (lower rectangle). It was assumed that the

walls of the laboratory act as soft boundaries (they absorb the incident waves).

(b) Mean sound pressure levels on the granite table with a steel leg (blue curve), on the granite table with additional

cork bricks (green curve), and directly on the floor (red curve). For better visibility, the curves have been smoothed

using a moving average over ten samples. It is clear that the cork bricks help in reflecting the sound waves, which

leads to better noise isolation.

Figure 5.9: Table-transferred acoustic noise simulation
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system, that can even outperform the air floated tables. For reference, the value of the power transmission

coe�cient, for a boundary of concrete and steel, is equal to ⌧concrete�steel = 0.5

A simulation, using COMSOL Multiphysics modelling software, was carried out to confirm the choice of

materials. In the model, a concrete floor was considered, with a monopole noise source placed centrally in

the middle, as presented in figure 5.9a. Two tables, each represented by a granite slab supported by a steel

leg, are standing on the floor, each at the same distance from the noise source and from the floor edge. The

table on the right side of the figure, additionally has two cork bricks. One is placed between the concrete

floor and the steel leg, while another is placed between the steel leg and the granite slab. The colours in

the figure show sound pressure levels due to sound propagation in the setup, with red showing high pressure

levels, and blue showing low pressure levels. Clearly, the table featuring the cork bricks (on the right of the

figure) is better isolated from the floor, showing reduced sound pressure levels.

In figure 5.9b, the mean value of the sound pressure level as a function of source frequency is plotted for

the granite slab without cork (blue line), with the cork (green line), and for the concrete floor (red line).

The table with the cork bricks shows significant improvement over the table without the cork bricks, with

insulation between 20 dB and 40 dB for most frequency values.

Measurement

The ultra-stable laser systems had to be moved from the floated optical bench, standing in the middle of

the laboratory, to a heavy ⇠ 1 ton granite table in the laboratory corner. The granite slab rests on a steel

frame with five legs, each leg having adjustable bottom and top supports. The fifth leg is located between

two other legs, and allows the choice between a three-point support or a traditional four-point support table.

A 10 cm thick brick was placed under each leg of the table, to maximise the reflection of the sound waves

propagating in the floor. Similarly, a cork brick was put between the steel frame and the granite slab of the

table.

Measurements were performed to assess the e↵ectiveness of the cork bricks. To do this, a sledgehammer

was used to excite vibrations in the floor, while a PCB 393B31 acceleration sensor was used to measure

the Z-component of the acceleration on the table surface, and an additional sensor was placed on top of

a vibration isolation platform, which stood on the table surface. The sledgehammer features a built-in

dynamometer, which triggers the measurement acquisition and gives the value of the excitation force. First,

six measurements were performed, with the table standing on three legs, and the cork bricks in place. Next,

six measurements were performed for the table standing on three legs, with one cork brick replaced by a
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steel brick instead. The averaged power spectral density is presented in the top of figure 5.10. Clearly, the

blue line representing the vibration on the granite slab with the cork under the table’s legs, is lower than the

green line representing the same table without the cork brick. Data for the vibration isolation platform is

also presented, but do not show any di↵erence due to the low resolution of the used sensor (1⇥10�12 g2/Hz).

Note that the experiment was carried out with only one leg without the cork brick, and the vibrations in

the table for the ’Granite, no cork’ measurement (green line) would be even higher, if all legs had their cork

brick removed.
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Figure 5.10: Measurement of the vibration transferred from the floor to the optical table. In the top figure,
the ⇠ 1 ton granite table is considered with and without a cork brick under its leg. The acceleration was also
measured on the vibration isolation platform, which stood on top of the table. An improvement is clearly
visible for the table with the cork bricks. The acceleration level on the platform remains unchanged, probably
due to an insu�cient sensitivity of the acceleration sensor. In the bottom figure, a comparison between the
granite table and floated optical bench (both in the same laboratory) is presented. A sledgehammer with a
built-in dynamometer was used to excite the vibrations in the floor.
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The red curve in the bottom part of figure 5.10 shows the acceleration level for the air floated table in

the laboratory. Although it should outperform the granite table, the level of the vibrations is very high,

comparable to the vibration level measured directly on the floor. Possible reasons for this are that the

vibrations might have transferred through the cables, or the table was not well adjusted to the load it was

holding. The latter may mean that the air pressure is too high, causing the table to push against the

mechanical limiter. These issue will be reviewed and fixed in the near future.

5.3 Stability of the lasers and frequency shifters

When constructing a stable optical clock, it is necessary to provide a stable frequency standard, which could

be used as a reference for frequency generators, driving equipment such as acousto-optical modulators (AOM),

or electro-optical modulators (EOM). The frequency standard can also be useful in stabilising the optical

frequency comb, or as a reference for measuring devices such as spectrum analysers and frequency counters.

Every laser used in the strontium clock experiment needs to be stable enough to stay on the absolute

optical frequency of the atomic transition that it is meant to address. It means that the required stability

depends on the natural linewidth of the transition it is used for, as well as on the linewidth of the laser. In

order to meet the requirements, it is often necessary to stabilise the laser to an additional external reference;

for example atomic spectroscopy, a stable optical Fabry-Pérot resonator, another laser, or a RF frequency

standard through the optical frequency comb. On top of that, the ability to finely tune the laser’s frequency is

crucial, and this is done by using either an AOM, or EOM (please refer to the dual-sideband locking method

in subsection 4.3.4). The stability of the frequency driving the AOMs and EOMs needs to stable enough so

that it does not a↵ect the stability of the optical frequency of the beam passing through those modulators.

5.3.1 Stability requirements for the lasers

Let ⌫atom be the optical frequency and � the natural linewidth of the atomic transition. Then, �/⌫atom will

be the linewidth of the transition in fractional frequency units. By making the assumption that the laser at

the optical frequency of the transition should not deviate by more than 1/10th of the linewidth, it is possible

to obtain a condition for the required instability �⌫laser of the laser’s frequency ⌫laser as follows

�⌫laser <
�

10 · ⌫atom
< �⌫atom =

�

⌫atom
, (5.11)
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Name Transition Wavelength Optical
frequency

Natural
linewidth

Required
instability

Blue cooling 1S0 ! 1P1 461 nm 651 THz 32 MHz 4.9⇥ 10�9

Red cooling 1S0 ! 3P1 689 nm 435 THz 7.5 kHz 1.7⇥ 10�12

Repump 1 3P0 ! 3S1 679 nm 441 THz 1.4 MHz 3.2⇥ 10�10

Repump 2 3P2 ! 3S1 707 nm 424 THz 7 MHz 1.7⇥ 10�9

Clock 88Sr 1S0 ! 3P0 698 nm 429 THz 1 Hz 2.3⇥ 10�16

Clock 87Sr 1S0 ! 3P0 698 nm 429 THz 1.2 mHz 2.8⇥ 10�19

Table 5.2: Required fractional frequency instability of the lasers used to address the transitions in ultra-cold
strontium. To obtain the result, the criterion that the laser cannot drift by more than �/10 was assumed,
where � is the natural linewidth of the atomic transition. For simplicity, it was also assumed that the
linewidth of the laser is much smaller than the natural linewidth of the transition.

where �⌫atom can be linked to the quality factor Q of the atomic transition in a simple relation �⌫atom = 1/Q.

The required laser instabilities for the strontium transitions are presented in table 5.2.

The ultimate stability of the lasers can be obtained by stabilising them to the most stable laser in the

experiment, the clock laser, the stability of which is presented in section 5.1.6, figure 5.6. This could be done

in a few di↵erent ways. One solution would be locking the optical frequency comb to the ultra-stable clock

laser. The teeth of the laser would then share the same level of stability and could be used to lock all the

di↵erent lasers. Another solution would be having a Fabry-Pérot transfer cavity, with one mirror mounted

on a piezo-electric actuator. By injecting an ultra-stable clock laser to the cavity, it would be possible to

lock the cavity to the laser. The same cavity could then be used to stabilise other lasers, provided that the

cavity features highly reflective mirrors, for the wavelengths of interest.

5.3.2 Stability requirements for the frequency shifters

Now let us consider using a frequency shifter to tune the laser’s optical frequency ⌫laser, by the frequency of

the shifter fRF , to match the frequency of the atomic resonance

⌫atom = ⌫laser + fRF . (5.12)

The instability of fRF is equal to �fRF in fractional frequency units of the frequency shifter. The combined

instability of the laser’s frequency, and the frequency shifter’s frequency, should therefore be smaller than
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Name Transition Wavelength Natural
linewidth

Instability �fRF

for AOM shift
fRF = 80 MHz

Instability �fRF

for EOM shift
fRF = 2.5 GHz

Blue cooling 1S0 ! 1P1 461 nm 32 MHz 4.0⇥ 10�2 1.3⇥ 10�3

Red cooling 1S0 ! 3P1 689 nm 7.5 kHz 9.4⇥ 10�6 3.0⇥ 10�7

Repump 1 3P0 ! 3S1 679 nm 1.4 MHz 1.8⇥ 10�3 5.6⇥ 10�5

Repump 2 3P2 ! 3S1 707 nm 7 MHz 8.8⇥ 10�3 2.8⇥ 10�4

Clock 88Sr 1S0 ! 3P0 698 nm 1 Hz 1.3⇥ 10�9 4.0⇥ 10�11

Clock 87Sr 1S0 ! 3P0 698 nm 1.2 mHz 1.5⇥ 10�12 4.8⇥ 10�14

Table 5.3: Required fractional frequency instability of the frequency shifters used for the fine-tuning of lasers
used in the ultra-cold strontium experiment. Frequency shifting in the experiment may be done either by
using an AOM, which most commonly provides a 80 MHz shift; or an EOM, which can be used to tune the
frequency by up to 2.5 GHz. To obtain the results, a criterion was assumed whereby the optical frequency
of the laser beam cannot drift by more than �/10, where � is the natural linewidth of the atomic transition.
For simplicity, it was also assumed that the linewidth of the laser is much smaller than the natural linewidth
of the transition.

1/10th linewidth of the atomic transition

q
(⌫laser · �⌫laser )

2 + (fRF · �fRF )
2 < ⌫atom · �

10 · ⌫atom
< ⌫atom · �⌫atom . (5.13)

Making the assumption that the laser is already stable enough (⌫atom · �⌫atom >> ⌫laser · �⌫laser ), we obtain

fRF

⌫atom
· �fRF <

�

10 · ⌫atom
< �⌫atom . (5.14)

This simply leads to the following condition for the fractional frequency instability of the RF signal

�fRF <
�

10 · fRF
. (5.15)

In table 5.3 the required instabilities of optical frequency shifters are presented. As always, the most crucial

is the clock laser, and the frequency shifters need to be driven with a very stable frequency source.

5.3.3 Rubidium frequency standard

As the frequency stability is very important in the clock experiment, it is necessary to use a very good

frequency standard, as a reference to other oscillators. The best solution would be to use the ultra-stable
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strontium optical clock as a reference. However, this is in the development stage and not yet available. For

this reason, a rubidium frequency standard, the model FS725 from Stanford Research Systems is used, as this

provides a very stable and accurate frequency, compared with alternative crystal-based oscillators. Despite

its high stability, the standard is still liable to long-term drifting in the frequency. It is possible to compensate

for the drift, by providing a reference 1 PPS (pulse per second) signal. Such a signal could be obtained from

GPS satellites, which are referenced to the UTC time standards.

Green circles in figure 5.11 present the instability of the rubidium frequency standard. The data points

were obtained by measuring the frequency of one frequency standard with a frequency counter referenced by

another identical frequency standard and then calculating the fractional Alan deviation. Blue circles show

the same SRS FS725 rubidium frequency standards, but GPS disciplined. The GPS disciplined data features

a bump around 5⇥ 103 s, which is caused by the standards’ frequency being corrected by the GPS signal. In

this case, the rubidium standard outputs a 1 PPS signal, which is compared with the 1 PPS signal coming

from the GPS receiver [156]. To obtain the accurate referencing, the GPS signal is integrated with a long

time constant of ⌧1 = 65, 536 s, and used to calibrate the rubidium standard. This results in the 1 PPS signal

of the standard exponentially approaching the 1 PPS signal coming from the GPS, with a time constant of

⌧n = 8, 095 s. The time constant ⌧n is in accordance with the position of the bump (⇠ 5000 s) in the Allan

deviation plot. To predict the stability of the 1 PPS GPS signal, a function f(⌧) = B/
p
⌧ was fitted to the

tail of the GPS disciplined standard, and is drawn with a blue dashed line, with the fitting parameter equal

to B = 1.2⇥ 10�10. For comparison, the instability of a GPS receiver presented by Michael A. Lombardi in

[157] reaches 4⇥10�12 at 103 s, and 1⇥10�13 at 105 s, which is close to the instability of the GPS, represented

by the fitted function. The di↵erence in instability may be attributed to the low-cost GPS receivers used to

discipline the rubidium standard, which occasionally dropped the 1 PPS signal.

The rubidium standard can be used to stabilise the optical frequency comb, which would transfer its

frequency into the optical frequency region. Comparing the instability plot of the standard, with the required

stability data in table 5.2, we see that its performance would be good enough to stabilise the low-demanding

blue cooling laser, and repump lasers. However, the short term stability of the standard would not be enough

for the more demanding red cooling laser. This implies that the additional optical frequency standard is

necessary for the red cooling laser.

The rubidium standard is most useful when it comes to referencing the frequency shifters. As shown in

table 5.3, its stability is good enough to reference the frequency shifters of all the lasers in the 88Sr optical

clock experiment. Using a high-frequency shifter, referenced by the rubidium standard, might limit the
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Figure 5.11: Rubidium standard instability (green points) compared with the same rubidium standard disci-
plined with the GPS signal (blue points). The dashed blue line shows the fit to the tail of the GPS disciplined
standard instability, and it predicts the stability of the GPS 1 PPS signal. See text for more detail.
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performance of the 87Sr clock, due to the narrow linewidth of the probed transition.

5.4 Mobile interrogation laser

In this section I will present the construction and characterisation of the mobile interrogation laser, which

was developed within the Space Optical Clock 2 (SOC2) project. A part of this work was also published in

[158].

The SOC2 project [159, 160] is part of the European Space Agency’s (ESA) ELIPS-3 programme. It is

run by an international consortium of universities and companies across Europe, and funded by the European

Union’s Seventh Framework Programme. The main goal of the project is to construct a transportable optical

atomic clock, that will outperform existing microwave clocks, and serves to prepare optical clocks for future

use at the International Space Station (ISS). Such a clock could be used in the future, to test the theory of

general relativity, map the gravitational potential of the Earth, or perform interferometry in space [159].

5.4.1 Reference cavity

The cavity vacuum assembly is presented in figure 5.12. The vertical position of the cavity was chosen to

reduce the influence of seismic noise [76]. The cavity is mounted on three thin titanium legs with screws,

using bush washers and Belleville washers, to ensure the cavity would not loosen over time. The titanium

legs are attached to a gold-plated aluminium outer thermal shield, which is similarly suspended on three

titanium legs inside a gold-plated aluminium vacuum chamber. Additionally, there is an extra gold-plated

aluminium inner thermal shield attached to the cavity, to provide better thermal stability for the cavity.

The many shielding layers around the cavity acts as a thermal low-pass filter, filtering fast changes in the

temperature. Gold plating is used to decrease the emissivity of the material’s surface, and therefore decrease

heat transfer between the layers due to radiation. The temperature of the outer thermal shield is stabilised

with a copper finger, which is used as a thermal feed-through, with a thermoelectric cooler (TEC) attached

outside the vacuum chamber. The vacuum chamber around the cavity is necessary to eliminate the heat

transfer between the layers due to convection, as well as reduce the atmospheric pressure fluctuations, which

would change the refractive index between the mirrors of the cavity. The vacuum chamber is designed to

maintain a low pressure level of around 10�7 mbar, by use of a 2 l/s ion pump and a getter. Along the axis

of the vacuum chamber, there are two tilted viewports, one for coupling the light into the cavity, and one

for inspecting the transmission through the optical resonator. The light is delivered to the system with a

114



Figure 5.12: Tranportable optical cavity assembly. Courtesy of Dr Rodolphe Le Targat.
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polarisation maintaining fibre, collimated and shaped with mode matching lenses, to get the best overlap of

the Gaussian beam with the mode of the cavity.

The cavity’s spacer is a cylindrical shape, 100 mm long with a 110 mm diameter, and is made of ultra-low

expansion (ULE) glass. The spacer features a 7 mm thick collar, located at the equator, that is used to

support the cavity close to its midpoint. A high-reflection coated dielectric mirror is optically contacted to

each side of the cavity. The mirrors are made of a fused silica substrate, which has a coe�cient of thermal

expansion (CTE) much higher than ULE. To compensate for the mismatch of CTE, an ULE annulus ring is

optically contacted to each mirror. This method allows us to obtain a lower thermal noise limit of 5⇥ 10�16

compared with the standalone ULE mirrors with a thermal noise value of over 8⇥ 10�16. The optical cavity

is made from a 1 m radius of curvature concave mirror and a flat mirror. This gives us a 272 µm and 258 µm

1/e2 Gaussian beam radii on the concave and the flat mirror, respectively at 698 nm.

Transportation of the reference cavity

The in-vacuum reference optical cavity package, for the interrogation laser of the space optical clock project,

was developed at LNE-SYRTE, Paris Observatory in Paris, France, and then transported by car by Dr R. Le Tar-

gat and Dr J. Lodewyck to Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The

route is presented in figure 5.13. The ion pump maintaining the vacuum in the system, was powered by a

car socket throughout the 820 km long journey, successfully keeping the vacuum at a low level without any

interruptions. The cavity mounting has been proven to keep the cavity in place throughout the journey,

without any problems or misalignment.

5.4.2 Laser head

The laser head was developed at Leibniz Universität Hannover in Germany, and the design is presented in

figure 5.14. It is a fibre-coupled single diode laser, which is relatively compact. The diode can be kept

at a temperature close to room temperature, which is advantageous to the system. The laser diode (LD),

on a special mount, is temperature stabilised with a thermo-electric cooler (TEC), and collimated with a

collimating lens (CL). The collimated beam passes through a 1 nm full width at half maximum (FWHM)

interference filter (IF), which is used for the coarse tuning of the wavelength, and then a cat’s eye lens

(L1) focuses the beam onto an out-coupling mirror, with 30% reflectivity and mounted on a piezo-electric

transducer (PZT). The PZT lets us tune the wavelength of the laser, by changing the length of the external

cavity, between the laser diode and the mirror. The re-collimating lens (L2) collimates the beam, after the
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Figure 5.13: The optical resonator in a vacuum chamber was transported from Paris, France, to Braunschweig,
Germany, approximately 830 km by car. Courtesy of Google Maps.

cat’s eye retro-reflector, back to its original shape. The two mirrors (M1 and M2) are used to inject the light

into the polarisation-maintaining fibre with a fibre coupler (FC). Before reaching the fibre-coupler, the beam

passes through two optical Faraday isolators (OFI1 and OFI2), to avoid any interference by back-reflected

light shining onto the laser diode.

This laser head design brings many advantages to our system. Its greatest one is its high power of 15 mW,

after the fibre (3̃0 mW before the fibre), while using a single diode only. It gives us enough power for the

whole experiment, and it replaced a previously used laser in a master-slave configuration. Another major

advantage of the laser is that it can be easily tuned by rotating an interference filter, which does not divert

the laser beam and it stays well injected into the fibre. Also, the interference filter is attached to a rotatable

mount which can be accessed without opening the lid. The previously used laser head had to be kept at a

relatively high temperature of around 50�C to reach the desired wavelength. In our laser head, the diode is

stabilised at the room temperature, which is easier to do and consumes less power. It is important for a laser

intended to be used in space.
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Figure 5.14: Laser head of the ultra-stable 698 nm laser. LD - laser diode; CL - collimating lens; IF -
interference filter; L1 - cat’s eye lens; PZT - piezo-electric transducer; OC - out-coupling mirror; L2 - re-
collimating lens; M1, M2 - fibre-coupling mirrors; OFI1, OFI2 - optical Faraday isolators; FC - Fibre coupler.
Figure also used in [158].

5.4.3 Distribution module

As presented in figure 5.15 and 5.16, the laser head is placed inside a distribution module, where the beam

is first mode-filtered with a single mode, polarisation maintaining fibre. Then the laser light is split between

three branches using a polarising beam splitter and a non-polarising beam splitter. The first branch is used

for Pound-Drever-Hall stabilisation to the high finesse reference cavity, presented in subsection 5.4.1. To

do this, the beam first passes through a double-pass 200 MHz AOM1, and is coupled into a fibre-coupled

EOM. After the fibre, the beam is shaped with mode-matching lenses, and coupled into the cavity using

two mirrors. One of the mirrors is also a non-polarising beam splitter, with a 10:90 reflection:transmission

splitting ratio. The beam that is reflected back, from the cavity, transmits through the beam splitter and

hits the photodiode. The radio frequency (RF) part of the signal from the photodiode is filtered, amplified,

and demodulated, using the EOM’s frequency to generate the PDH error signal. The error signal is then

amplified using servo electronics. The fast output from the servo electronics is fed back to the DC-coupled

fast modulation input of the laser head for fast locking. The slow output is fed back to the laser’s PZT for

slow locking. On the cavity’s output, there is an additional photodiode monitoring the power level of the light

that is transmitted through. The voltage on the photodiode is compared with a reference voltage, to correct

the power level, before the cavity, with the AOM1, so that the transmitted power is stable. The AOM1 is

also used for frequency shifting the frequency of the laser, so that it is kept at the resonance frequency of the

clock transition in strontium.
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Figure 5.15: Distribution module. ECDL - external cavity diode laser; PBS - polarising beam splitter; BS -
non-polarising beam splitter; AOM - acousto-optical modulator; EOM - electro-optical modulator; FC - fibre
coupler; PD - photodiode; PDH - Pound-Drever-Hall; FLS - fibre link stabilisation; OFC - optical frequency
comb.

The second and third branches are sent to the optical frequency comb (OFC) and the atomic package,

respectively. The light is frequency shifted with an 80 MHz AOM, which also acts as an optical switch,

and coupled into the fibre. After the fibre output, there is a half-reflecting mirror which reflects part of

the light back into the fibre. The reflected light passes through the AOM again and is superimposed with

original beam before it hits the photodiode. At the photodiode, the beat note frequency is read to be of

double the modulation frequency of the AOM (160 MHz). This frequency is phase-locked, by a fibre link

stabilisation servo, to a reference frequency by modifying the AOM’s frequency. This way, any phase-shifts

that have accumulated inside the fibre, due to thermal e↵ects and mechanical instability, are cancelled out.

The advantage of this system is that one beam splitter and one reference beam mirror are used for both

beams, which e↵ectively lets us stabilise the fibre link between the atomic package and the optical frequency

comb.
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Figure 5.16: Picture of the distribution module. Labels as in the schematic figure 5.15. Red colour represents
the initial beam, also used for PDH locking. Blue colour line and green colour line present beam path used
for the atomic package and the the optical frequency comb respectively.

By and large, the system features all necessary components for operating the optical atomic clock, in-

cluding the fibre link stabilisation, power stabilisation, AOMs for switching on and o↵ the beams and for

fine-tuning the frequency to reach the atomic resonance. Despite many outputs and the fibre link stabilisa-

tion, the laser head gives enough power to operate them all without amplification. It is also easy to change

the laser’s frequency on the atomic output, to switch between the 88Sr and 87Sr isotopes, which is presented

in figure 5.17. The optical frequencies of the SOC2 laser were established by measuring a beat note frequency

between the laser’s OFC output and the stationary ultra-stable laser called ’Beast’, which is stabilised to the

87Sr clock transition. The Beast laser is described in detail by Häfner in [71, 80]. Our beat note is read to be

57 MHz, which places our laser output frequency between the 87Sr and 88Sr clock transitions, about 23 MHz

away from 87Sr, and roughly 39 MHz away from 88Sr. This frequency di↵erence can be tuned with AOM1

or by changing the AOM2/AOM3 frequency.
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Figure 5.17: Frequencies chart of the mobile interrogation clock laser beams in relation to the strontium
clock transitions and the Beast stationary laser.

5.4.4 Mode matching and coupling e�ciency

It is necessary to match the Gaussian mode of the laser beam with the fundamental Gaussian mode of the

cavity, in order to obtain an e�cient injection. This process is commonly know as the mode matching of the

laser beam. In our setup, we have built a telescope, after the collimated output of the fibre-coupled EOM,

to overlap the modes as much as possible. The telescope is formed by f = 60 mm and f = 25 mm lenses that

reduce the waist of the beam by a factor of 2.4, giving a theoretical value, for the mode overlap, of above 99%

if placed at the optimal distance. To measure the coupling e�ciency, we measured the the power level of the

cavity reflected part of the beam, using the DC-coupled output of the Pound-Drever-Hall (PDH) photodiode.

We measured the reflected power levels in three situations; when the laser is unlocked (Punlocked), when the

laser is locked to the carrier (Pc�locked), and when the laser is locked to the PDH sideband (Ps�locked). In

the first case, we measured the combined power of the two sidebands 2Ps, and the carrier Pc. During the

second measurement, we obtained a value for the power level corresponding to the two sidebands 2Ps, plus

the power of the carrier, partially reflected back due to the ine�cient coupling, (1 � ✏)Pc, where ✏ is the

coupling e�ciency coe�cient. The third step of the measurement gave us a power level equal to the sum of

the power of the carrier Pc, the power of the first sideband Ps, and the partially reflected power of the second
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sideband (1� ✏)Ps. Thus, we obtain the simultaneous equations

8
>>>>>>>>><

>>>>>>>>>:

Punlocked = Pc + 2Ps

Pc�locked = (1� ✏)Pc + 2Ps

Ps�locked = Pc + Ps + (1� ✏)Ps

9
>>>>>>>>>=

>>>>>>>>>;

(5.16)

which we can use to calculate the relative power in the sideband Ps/Pc = 21%, as well as the coupling

e�ciency ✏ = 0.69. The e�ciency value is smaller than expected from the calculations, which we assign to

mechanical tolerances. Thanks to the e�ciency value being known, we will be able to evaluate the power

absorbed/scattered by the cavity.

To lock the laser to one of the sidebands, we have simply changed the phase of the demodulation signal

on the DDS by 180�, which inverts the error function, allowing us to lock to the sideband using exactly the

same settings and cabling.

5.4.5 Stability performance of the laser

The stability of the SOC2 clock laser was assessed by comparing its frequency to the Beast laser’s frequency.

It was performed by measuring the beat note frequency with a dead-time-free frequency counter; the FXE

from K+K GmbH. To do this, two beams were overlapped and shone over a fast photodiode. The signal

from the photodiode was filtered, amplified, and sent to the frequency counter. To analyse the instability

of the SOC2 laser, we computed the fractional frequency Allan deviation, which is plotted in figure 5.18.

When calculating the Allan deviation, the linear frequency drift was removed. The plot shows a 24-hour long

measurement, with the blue dotted line. The green squared line shows the best 1-hour slot within the full

measurement, which was found using a script that analysed each 1-hour long window to find the best stability.

The best instability the laser achieved in under 1 s is 7.9⇥ 10�16. Thanks to the Beast laser being one order

of magnitude more stable than our mobile laser (8 ⇥ 10�17 in two seconds [71]), we can assume that the

plotted Allan deviation represents our SOC2 interrogation laser only. The estimated thermal noise limit of

our cavity is approximately 5⇥ 10�16. The minimum value of the measured instability is therefore very close

to the estimated thermal noise limit. The full measurement being less stable than the best 1-hour window is

probably caused by the pressure fluctuations, inside the cavity vacuum chamber, that were observed at the

ion pump controller. We will analyse the influence of the vacuum level fluctuations, in more detail, in the
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Figure 5.18: Fractional Allan deviation of the SOC2 interrogation laser with linear drift removed. The blue
dotted line shows a 24-hour long measurement. The green squared line shows the best 1-hour slot within the
full measurement, and is seen to be approaching the minimum of 7.9⇥ 10�16. The thermal noise limit of the
cavity is presented by the red dashed line. Figure also used in [158].

next subsection.

5.4.6 Influence of the vacuum pressure level on stability

The resonant mode frequency of the cavity depends on the optical length of the optical resonator, as shown

by the formula 4.1 in section 4.3.1

nL = N
�vac

2
, (5.17)

where n is the refractive index of air, L is the distance between the mirrors, N is the mode’s number (integer),

and �vac is the laser’s wavelength in vacuum. The optical length is proportional to the refractive index of the

medium n, in which the light propagates. Although the refractive index in vacuum is equal to 1 by definition,
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(a) Frequency simulation. (b) Fractional Allan deviation.

Figure 5.19: (a) Simulated frequency of the resonant mode of the cavity. The simulation was based on the
ion pump current readings, using the modified Edlén equations to estimate the refractive index of air inside
the cavity. (b) The blue circled line represents the fractional Allan deviation of the simulated frequency. The
green squared line represents the fractional Allan deviation of the measured frequency of the laser, which was
taken on the same day as the pressure measurement. Both frequencies have the linear drift removed. Figures
also used in [158].

the perfect vacuum does not exist, and the residual pressure level keeps the refractive index slightly higher.

We have noticed the presence of pressure fluctuations, in the vacuum chamber of the clock laser, that

could influence the stability of the laser. The vacuum chamber was designed to maintain the pressure level at

1⇥10�7 mbar, however, due to leaks in the base flange, the pressure level fluctuates and was 2.5⇥10�6 mbar

during the measurements. To see what influence it would have on the cavity’s mode frequency, we have

recorded the current through the ion pump, to simulate the change in the refractive index inside the vacuum

chamber. The recorded current level was used to calculate the pressure inside the vacuum chamber, which was

used to calculate the refractive index of air using the modified Edlén equations [137, 138, 139]. The calculated

refractive index is n � 1 = 4.21 ⇥ 10�7, and the pressure sensitivity of the pressure level is estimated to be

�120 Hz/(10�6 mbar) or �3 ⇥ 10�13/(10�6 mbar) in fractional frequency units. The simulated frequency

is presented in figure 5.19a. The fractional Allan deviation of the simulated frequency was calculated and

is presented in figure 5.19b as blue circles, together with the fractional Allan deviation calculated for the

measured frequency of the laser (green squares). Both measurements were performed roughly at the same

time and linear drifts were removed for both of them. As shown in the figure, the simulation curve and the

measurement curve are very close to each other, which suggests that the residual pressure fluctuations might

be the main reason for the instability of the clock laser. The vacuum chamber leak is planned to be fixed in
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the near future.

5.4.7 Power sensitivity

When the laser is locked to the cavity, the laser’s beam travels between the mirrors of the cavity, causing the

power to accumulate inside the cavity. Part of the power leaks outside, and the other part is scattered or

absorbed by the mirror coating. The absorbed part of the light leads to local heating of the mirror coating

and the mirror substrate, causing deformation. We would like to investigate how the distance between the

mirrors changes due to this e↵ect. More information about the photo-thermal e↵ect in mirrors can be found

in the article by Farsi et al. [161].

The laser remained stabilised to the fundamental mode of the cavity, with approximately 20 µW of light

being sent into the cavity. This power can easily be changed with the double-pass AOM1 shown in figure 5.15.

To examine the power sensitivity, we have modulated the power, before the cavity, with a square signal with

the modulation period equal to 20 s. By using a photodiode on the output of the cavity, we could measure

the transmitted power amplitude which was found to be 0.5 µW, and corresponds to about 20% modulation

depth. Simultaneously, the frequency of the laser was measured with a frequency counter, to observe a double

exponential curve, also presented in figure 5.20. The black points show an averaged frequency measurement,

with the linear drift removed. The red curve is a double exponential fit f(x) = Aexp(�Bx)+C exp(�Dx)+E.

The two time constants from the fitted function are equal to 1/B = 3.05 s and 1/D = 0.24 s. The amplitudes

for the long-term and the short-term e↵ects are equal to A = �37 Hz and C = �53 Hz, respectively. From

the amplitude values, it is possible to calculate the overall power sensitivity, which is equal to 180 Hz/µW

or 4.2⇥ 10�13/µW in fractional frequency units.

During standard operation of the clock, we measured approximately 1.5 µW of power transmitted through

the cavity. To obtain a 10�15 instability level, this power has to be stable at a level of 3.5 nW or 2.3⇥ 10�3

in relative power. The power before the EOM is at the 1 mW level, and it is required that it would not

fluctuate by more than 2.3 µW. However, due to spatial mode filtering with the polarisation maintaining

fibre, and the fluctuating laser amplitude, the power fluctuations were observed to exceed this limit.

To ensure that the power fluctuations in the beam would not a↵ect the instability level of the clock laser,

we have introduced a power stabilisation system into our setup. As presented in figure 5.15, the photodiode

is used to measure the cavity’s transmitted power. The voltage from the photodiode is then compared with a

reference voltage by a servo, which modifies the RF power sent to the AOM, to keep the transmitted optical

power on a stable level. The AOM needs to be operated below the maximum e�ciency RF power value,
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Figure 5.20: Power sensitivity measurement. Power of the laser beam injected to the optical resonator is
reduced, which leads to deformation of the resonator’s mirrors due to the photo-thermal e↵ect. Black points
show the relative optical frequency change of the interrogation laser, after the power level is changed. Red
curve shows a double-exponential fit to the data points.

to ensure a roughly linear response to the RF power change. To assess whether the power stabilisation is

working, we analyse the fractional Allan deviation of the laser’s frequency when the power stabilisation is

turned on and when it is turned o↵. In figure 5.21, the fractional Allan deviation when the power stabilisation

is turned on and o↵ is represented by blue points and green squares, respectively. We see that with the power

stabilisation turned on, the laser’s instability reaches lower values for averaging times ⌧ larger than 100 ms.

The reduction, although noticeable, is smaller than expected. As described in subsection 5.4.6, the pressure

level in the chamber might cause additional frequency fluctuations of the laser. It is therefore believed, that

the power stabilisation performance measurement was limited from the relatively high pressure level in the

vacuum chamber.

5.4.8 Acceleration sensitivity

As the ultra-stable laser is a part of a mobile system, it is also important to know how it behaves when it

accelerates in various directions. The most crucial element of the laser is the reference cavity, as the laser is
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Figure 5.21: Fractional Allan deviation of the laser’s frequency with power stabilisation turned on (blue
points) and turned o↵ (green squares). Figure also used in [158].

stabilised to it and its frequency closely follows the resonance frequency of the cavity. In this section we will

analyse how sensitive the frequency of the laser is to acceleration change on the reference cavity. This can be

done in two di↵erent ways. An active way would be when the cavity is shaken in di↵erent directions, while

accelerometers measure the acceleration values along the three axes. A static way allows us to average the

results over a longer period, as we only use the gravitational acceleration, but, by rotating the cavity, can

change the direction in which it is applied. Thanks to this, we can use an acceleration value which is very

well known. To measure the acceleration sensitivity we will use the static approach.

Measurements were performed in five directions: Z, X, Y, X’ and Y’, which are also shown in figure 5.22a.

First, the acceleration sensitivity was measured in the Z direction, by flipping the cavity upside down. The

revolution of the cavity is shown in figure 5.22b, with a beat note frequency visible on a spectrum analyser

at the top of the figure. In this way, the acceleration along the Z axis was changed from �g to +g, where

g ⇡ 9.81 m/s2 is the value of the Earth’s gravitational acceleration. To see how the frequency changes,

while the flipping was performed, the laser remained locked to the cavity and its frequency was recorded

using a frequency counter. The recorded frequency is presented in figure 5.23a. The red line and the blue
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(a) Coordinates.

(b) Cavity revolution.

Figure 5.22: (a) Coordinates assigned to the cavity (top view). The blue circle represents the cavity, whereas
the red circles show the position of the supports. (b) The procedure for measuring acceleration sensitivity
in the Z direction. At the top of the figure, a spectrum analyser screen is visible, with a red arrow pointing
at the beat note frequency. The span of the spectrum analyser is 1 MHz. Figure also used in [158].

line represent linear functions fitted to the frequency, when the cavity rests upside down and in its upright

position, respectively. To obtain a value for the sensitivity, the frequency shift was divided by the change in

acceleration, in that direction, to get a result of SZ = �3.6⇥ 10�10/g.

The measurement of the acceleration sensitivity in the X and Y directions were performed in a similar

way. The frequency change from the cavity’s upright position to when the cavity was lying on its side was

measured. Since the acceleration sensitivity value along Z direction was already known from the previous

measurement, it was only necessary to rotate the cavity by 90�. This way, the gravitational acceleration

vector overlapped with the X and Y axis, for the acceleration sensitivity measurement in the X and Y

direction, respectively. The observed frequency shift is presented in figure 5.23b for the X axis, and in figure

5.23c for the Y axis. The shift results from zeroing the acceleration along the Z axis, and from applying an

acceleration g along the X and Y direction. Since we already know the value of the acceleration sensitivity

in the Z direction, we can use it to extract the X and Y sensitivities from the measurement. The sensitivities

in X and Y direction are equal to SX = �5.8⇥ 10�10/g and SY = �3.1⇥ 10�10/g, respectively.

In figure 5.23, the equations of the fitted linear functions are also presented. From the equations we can

see that not only the frequency shifts, but also the drift of the cavity changes for di↵erent positions. This

can be caused by the relaxation of the material, and internal stresses caused by the mounting.

The acceleration sensitivity measurement along X’ direction was performed by tilting the cavity, by small
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(a) Frequency change during 180
�
revolution.

(b) Frequency change during 90
�
revolution. (c) Frequency change during 90

�
revolution.

Figure 5.23: Acceleration sensitivity measurements in (a) Z direction, (b) X direction and (a) Y direction.

angles ↵ and �↵ in the X’ direction, as presented in figure 5.24. By tilting the cavity by both positive

and negative angle ↵, we change the acceleration along the Z axis to the same value, from g cos (↵) to

g cos (�↵) = g cos (↵). Therefore, if we subtract the frequencies at those two di↵erent positions, we will obtain

a frequency shift, resulting from the change in acceleration along the X’ axis from g sin (↵) to g sin (�↵).

The measurement was carried out in the following sequence. First, the cavity was levelled in its upright

position. Second, the cavity was tilted towards the positive values of the x’ axis by ↵ = 2.7�, so that the

X’ axis was pointing slightly downwards (exactly as presented in figure 5.24 ). Third, the cavity was tilted

towards the negative values of the X’ axis by the same angle (�↵ = �2.7�). Last, the cavity was again

levelled in its upright position. During the whole sequence, the frequency of the laser was measured with

a frequency counter, and it is plotted in figure 5.25a. The red line in the figure shows a linear fit to the
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Figure 5.24: Procedure for the acceleration sensitivity measurement along the X’ and Y’ axes.

(a) Frequency change during a 90
�
revolution. (b) Frequency change during a 90

�
revolution.

Figure 5.25: Acceleration sensitivity measurements in (a) X’ direction and (b) Y’ direction

frequency, when the cavity is tilted by a positive angle ↵. The blue line shows a linear fit to the frequency,

when the cavity is tilted by a negative angle �↵. The green line shows a linear fit to the frequency, when the

cavity is levelled in its upright position. From the fitting parameters, we can see that the frequency changed

by �f(↵) = �527 Hz and �f(�↵) = 297 Hz for the positive angle and negative angle tilt, respectively.

This change is partly caused by the decreasing acceleration value along the Z axis, which shifts the frequency

by �fZ(↵) = SZ�aZ(↵), where SZ is the acceleration sensitivity along the Z axis, and �aZ(↵) is the

value of the acceleration change along the Z axis. In our case, the acceleration changes from aZ = -g to

aZ = -g cos (↵), giving �aZ(↵) = g(cos (↵) � 1). Similarly, part of the frequency change results from the

increasing acceleration along the X’ axis, from aX0 = 0 to aX0 = sin (↵), giving �aX0(↵) = g sin (↵). We can
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now write the following equation

�f(↵) = �fZ(↵) + �fX0(↵) = SZ�aZ(↵) + SX0�aX0(↵) = SZg(1� cos (↵)) + SX0g sin (↵). (5.18)

For positive angle tilt and negative angle tilt we can write the following simultaneous equations:

8
>>>><

>>>>:

�f(↵) = SZg(1� cos (↵)) + SX0g sin↵

�f(�↵) = SZg(1� cos (↵))� SX0g sin↵

9
>>>>=

>>>>;

(5.19)

The only unknown in these simultaneous equations are the sensitivity values SZ and SX0 . Solving these

equations using the fitting parameters, we obtain the sensitivity in the X’ direction SX0 = �2.0 ⇥ 10�11/g

and Z direction SZ = �2.4 ⇥ 10�10/g, which is in good agreement with the result obtained by flipping the

cavity upside down.

The sensitivity in the Y’ direction was obtained in a similar way to the X’ direction, with a slightly di↵erent

sequence. First, the cavity was levelled. Second, the cavity was tilted by a negative angle �↵ = �2.7�, so

that the Y’ axis pointed slightly upwards. Third, the cavity was tilted to the other side by a positive angle

↵ = 2.7�, so that the Y’ axis pointed slightly downwards. Then, the cavity was levelled and the sequence

was repeated. The measured frequency is presented in figure 5.25b. The green line shows a linear fit to the

frequency, when the cavity is positioned in its upright position. The red line is a linear fit to the frequency,

when the cavity is tilted by a negative angle �↵. The blue line is a linear fit to the frequency, when the

cavity is tilted by a positive angle ↵. Again, from the fitting parameters, we obtain �f(↵) = �7027 Hz and

�f(�↵) = 7160 Hz for the positive angle and negative angle tilt, respectively. Solving the set of simultaneous

equations 8
>>>><

>>>>:

�f(↵) = SZg(1� cos (↵)) + SY 0g sin↵

�f(�↵) = SZg(1� cos (↵))� SY 0g sin↵

9
>>>>=

>>>>;

(5.20)

we obtain a value, for the sensitivity in the Y’ direction, equal to SY 0 = �3.5 ⇥ 10�10/g. The sensitivity

value for Z, calculated from the measurement, is equal to SZ = 1.4⇥ 10�10/g; however, due to the relatively

large sensitivity in the Y’ direction, the value cannot be determined accurately.

Ideally, thanks to the axial symmetry of the system, we should only need to distinguish between two

types of acceleration sensitivity: axial and radial. Due to mechanical constraints, manufacturing tolerances,
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Figure 5.26: Radial acceleration sensitivity as a function of the azimuthal angle. Blue crosses show the
measured values of the acceleration sensitivity. The green curve shows a sinusoidal fit to the points.

and the type of mounting, we observe di↵erent values for the acceleration sensitivity, for di↵erent azimuth

angles. I define the azimuthal angle ' as an angle measured from the X’ axis ( fig. 5.22a ). This way, for the

X’ axis 'X0 = 0�, for the X axis 'X = 45�, for the Y’ axis 'Y 0 = 90�, and for the Y axis 'Y = 135�. Using

the 3-fold symmetry of the system, we assume that the sensitivity S(') has the condition:

S(') = S('+ 120�). (5.21)

From the performed measurements, we have also observed that the additional antisymmetric condition ap-

plies:

S(') = �S('+ 180�). (5.22)

Both conditions 5.21 and 5.22 lets us narrow the range of arguments from the full angle 360� to just 60�,

giving:

• SX0 = S(0�) = �S(60�),

• SX = S(45�) = S(45�),

• SY 0 = S(90�) = �S(30�),

• SY = S(135�) = S(15�).

The sensitivity values, for the azimuthal angles in bold, are plotted in figure 5.26 with blue crosses. The

radial acceleration sensitivity function is expected to be a periodic function, to not break the symmetry
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conditions 5.21 and 5.22. The green curve in the figure shows a sinusoidal fit to the points, with amplitude

4.9⇥ 10�10/g and period 40�. The root mean square (RMS) radial acceleration sensitivity is therefore equal

to Sr�RMS = 3.5⇥ 10�10/g

Compared with counter designs, the cavity does not have a smaller acceleration sensitivity, which is

probably the result of a rigid mounting, which can withstand very large values, of several g, for the acceleration

in any direction.

5.5 SOC2 atomic package

One of the University of Birmingham roles, within the SOC2 project, was to construct a neutral strontium

atomic package, and integrate it with the laser systems. The atomic package provides a cooled and trapped

strontium atomic cloud, which serves as a reference for the complete clock. It consists of a permanent-magnet

Zeeman slower, developed at the National Physical Laboratory (NPL) [162], as well as an atom oven and

science chamber, both developed at the University of Birmingham. The details on the construction of the

package can be found, in detail, in a thesis written by L. L. Smith from the University of Birmingham [83].

The development of the package can be described by obtaining three milestones: trapping the atoms into

the first-stage magneto-optical trap (MOT), the second-stage magneto-optical trap, and then transferring

them into the optical lattice. After obtaining those milestones and optimising the package, the system was

transported to the German national metrology institute Physikalisch-Technische Bundensanstalt (PTB), to

be integrated with the clock laser and characterised.

During the development and optimisation, the system was also used to test, for the first time, a newly

emerging type of laser, for the laser cooling of strontium. The semiconductor disk laser (SDL) was successfully

used to obtain a demanding second-stage red MOT, which is described in subsection 4.2.4.

5.5.1 Package transportation

The atomic package needed to be transported from the University of Birmingham to the Physikalisch-

Technische Bundesanstalt (PTB) in Braunschweig, Germany. PTB is a German national metrology institute,

where the atomic package was integrated with the mobile interrogation laser described in the section 5.4.

As a metrology institute, PTB not only has primary frequency standards, but also another strontium lattice

optical clock that can be used to characterise the performance of the space optical clock.

The atomic package was transported overnight, by approximately 1100 km, using a van. Pictures of the
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Figure 5.27: Atomic package transportation from the University of Birmingham to PTB in Braunschweig,
Germany, approximately 1100 km by car. Courtesy of Google Maps.

system being loaded and unloaded from the van are presented on the top of figure 5.27. The transportation

route is presented on a map in the same figure, and is marked with a blue curve. The system was not

powered throughout the journey, including the ion pumps maintaining the ultra-high vacuum inside the

science chamber. Despite this, the pressure level inside the science chamber stayed at a low level, and the

ultra-high vacuum was restored at the destination by turning the ion pumps back on. This proves the high

robustness of the system, as the system remained sealed and leak-free, in spite of high vibration levels and

changing acceleration. For more information about the atomic package, please refer to [83].

134



5.6 Interrogation of the clock transition

After the SOC2 atomic package was transported to PTB, it was integrated with the clock laser described in

section 5.4. In this section I will show the results obtained by using the mobile interrogation laser to probe

the strontium clock transition in the transportable atomic package.

5.6.1 Clock transition spectroscopy

Ultimately, the clock laser is necessary for interrogating the atoms that provide the long-term reference, to

keep the laser stable and accurate. Before the laser is used to stabilise to the 1S0 ! 3P0 clock transition, it

needs to be frequency tuned to be close to the transition. To do this, we have utilised the beat note between

our laser and the stationary optical clock system that is operating using the 87Sr isotope. Next, by having

the 88Sr atoms trapped in the lattice, we could scan the frequency of the clock laser output in search for the

resonance line. A helpful tool in tuning the laser closer to the resonance was the frequency chart in figure

5.17 presented in section 5.4.

In figure 5.28a, the first interrogation of the atoms is presented. The blue points represent the measured

data, while the red curve shows a fitted Gaussian function. The full width at half maximum (FWHM) is equal

to 880±20 Hz. During this measurement, the pressure in the vacuum chamber was relatively high, causing the

laser’s spectral line to broaden over the measurement period. The measured linewidth is therefore dominated

by the linewidth of the laser, which is a Gaussian shape due to the nature of the pressure fluctuations inside

the vacuum chamber.

The pressure level inside the clock laser vacuum chamber was temporarily improved from 10�6 mbar to

10�7 mbar, by increasing the ion pump voltage for a short time, to lower the current leakage. Lowering the

pressure level helped with reducing the linewidth of the laser, which in result lead to a narrower spectroscopy

results, as shown in figure 5.28b. This time, the fitted function has a Lorentzian shape, as expected, with

the FWHM equal to 32± 2 Hz.

Despite a short-term pressure level improvement, the clock laser has still shown poor instability, on the

10�14 level, after a couple of hours when the pressure level degraded again. To provide stable laser light for

the atoms, the SOC2 clock laser was phase-locked to the stationary ’Beast’ laser [71]. To do this, we utilised

the beat note detection setup, which was previously used to study the stability of the laser. The beat note

frequency was sent to a phase comparator, where it was compared with a stable frequency taken from a

referenced DDS (direct digital synthesiser). The phase di↵erence was then used to compensate for any beat

note frequency drifts, by using a double-pass AOM (AOM1 in figure 5.15), to transfer the stability of the
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(a) First interrogation (b) The best interrogation

Figure 5.28: Spectroscopy of the clock transition in 88Sr with the mobile interrogation laser. (a) The first
interrogation is presented with blue points and red curve is a Gaussian fit to the points. The broad linewidth
and Gaussian shape is caused by the instability of the pressure level in the reference cavity vacuum chamber.
(b) Plot showing the best interrogation results when the pressure level in the clock laser vacuum chamber
was temporarily lowered. Blue points show the measured spectroscopic data, while red curve is a Lorentzian
fit to the data. A tenfold reduction of the measured linewidth can be observed.

stationary clock laser system onto the SOC2 clock laser. The interrogation of the clock transition, with the

clock laser phase-locked to the Beast clock laser, was performed and the result is presented in figure 5.29.

The linewidth of the fitted Lorentzian function equals 9.3± 0.9 Hz. The linewidth of the transition is mostly

limited by the bosonic nature of the 88Sr isotope, introduced by collisions between the atoms in the cloud. In

the future, the laser will be used with the fermionic 87Sr isotope, which is less abundant and therefore harder

to work with, but the linewidth can be significantly reduced by 3 orders of magnitude down to 1.2 mHz [101].

5.6.2
88
Sr clock preliminary results

By repeatedly interrogating the clock transition, it is possible to get information on the absolute frequency

drift of the clock laser. It is also possible to apply correction to the clock laser’s frequency after every

interrogation sequence, so that it stays around the absolute frequency of the strontium clock transition.

As previously shown, the 88Sr clock transition was interrogated with the clock laser, in order to obtain

the spectral line shape of the transition. The same transition was then used to correct the clock laser’s

frequency. The stability of the 88Sr referenced clock laser, against the stationary Beast ultra-stable system,

is represented by the black triangles in figure 5.30. As expected, the longer the clock transition is being

interrogated for, the more accurate the result, and the lower the frequency instability, as the systematic
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Figure 5.29: Spectroscopy of the clock transition in 88Sr with a phase-locked SOC2 clock laser to a more
stable reference laser. The obtained transition linewidth is narrower than without the phase-lock, which
shows a room for improvement of the interrogation laser stability. The instability is most likely caused by
too high pressure level in the reference cavity vacuum chamber. Data also presented in [114].

errors average out. The black dashed line shows a fit to the data f(⌧) = A/
p
⌧ , where A = 3.9⇥ 10�16, and

represents the potential performance of the 88Sr clock, assuming white frequency noise dominates. This is

the best instability measurement obtained with the bosonic atoms, and more thorough results are expected

in the near future [163]. For the most recent update on the results, please refer to a thesis by S. Origlia [164].

5.7 Frequency references’ instability comparison

Up to this point, di↵erent oscillators have been presented. Depending on the application and the requirements,

some might be a better choice than others. For example, a laser referenced to an ultra-stable cavity has a

very good frequency stability in the short term, but due to temperature drifts in the optical resonator, the

long-term stability might be worse than some of the crystal oscillators.

Di↵erent frequency oscillators are compared in figure 5.31. Red triangles represent the stand-alone SOC2

mobile interrogation laser (data also presented in figure 5.18). Magenta upside-down triangles represent

the stability of the University of Birmingham stationary interrogation laser (data also presented in figure

5.6). Black triangles show the preliminary 88Sr clock transition stability (data also presented in figure 5.30).

Data points drawn with green circles represent Stanford Research Systems (SRS) FS725 rubidium frequency

standard. Blue circles show the same SRS FS725 rubidium frequency standard but GPS disciplined (data

also presented in figure 5.11). Cyan coloured diamonds show the instability of a DDS (model 409B from

Novatech), which is limited by its internal reference. Yellow square points represent the instability of a VCO
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Figure 5.30: The instability of the ultra-stable clock laser at its best performance (red triangles) and the
same clock laser referenced to the clock transition in 88Sr atoms. The dashed black line shows a fit to the
data and represents the potential performance of the strontium optical clock. The black interrogation data
points courtesy of S. Origlia.

(ZX95-100-S+ from Minicircuits), the stability of which is most probably limited by the stability of the

reference voltage.

As expected, the best stability is obtained with the interrogation laser locked to strontium atoms, which

averages down with 3.9⇥ 10�16
p
s/⌧ rate. Next are the ultra-stable lasers, featuring very good instability

level < 10�14 but only for a couple of seconds because of the slow drift of the reference cavity. It is

beneficial to use an ultra-stable laser as a stable frequency reference, but only to obtain good stability in

short time scales up to 100 – 1000 s. After that time other RF frequency references, such as the rubidium

frequency standard SRS FS725, can obtain a better performance. The rubidium frequency standard can be

additionally disciplined with the GPS signal, that averages down with 1.2 ⇥ 10�10
p
s/⌧ rate. Such a GPS

disciplined frequency reference is not only a stable frequency source but also accurate, as the GPS signal

used for disciplining comes from calibrated GPS satellites’ atomic clocks. Frequency from the direct digital
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Figure 5.31: Instability comparison of various frequency standards.

synthesiser (DDS) starts on a good stability level of 10�10, and then it slowly drifts away. The drift could

be removed for example by disciplining it to the GPS signal, as it was done with the rubidium frequency

standard. The worst measured frequency source was the VCO. It needs a stable voltage source that is used

as a reference standard and it is possible that the frequency stability was limited by the stability performance

of the voltage reference.

In section 5.3 we have discussed frequency stability requirements for lasers and frequency shifters, used

in the strontium lattice clock. Having an access to the optical frequency comb, it is possible to transfer

stability of any radio or optical frequency source into the lasers’ optical frequency. Referring to the table

5.2, which shows the frequency stability requirements for the lasers, it is possible to learn that the GPS

disciplined rubidium frequency standard is good enough to stabilise blue cooling laser and repumping lasers.

It also should be good enough to stabilise the red broadband second-stage cooling laser, however, the stability

might be not good enough for the single-frequency second-stage cooling laser. Best results would be obtained

by stabilising all the lasers, used in the cooling, to the interrogation laser that is referenced to the clock

transition.

The analysis of what frequency source would be a suitable reference for the frequency shifters can be done
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by referring to table 5.3 in section 5.3. The VCO is good enough to drive an 80 MHZ frequency shifter for

blue cooling and both repump lasers. It is also good enough to drive a 2.5 GHz frequency shifter for the same

lasers, however, the optical frequency of the 679 nm repump laser might drift away after ⇠ 100 s. For the

second-stage red cooling laser, it is better to use a more stable frequency source, such as the DDS. The DDS

might also be good enough for an 80 MHz frequency shifter in the clock laser system, used for interrogating

88Sr atoms for up to ⇠ 104 s. For a 2.5 GHz frequency shifter, it is recommended to use more stable frequency

source, for example the rubidium frequency standard. Finally, the rubidium frequency standard can have

insu�cient stability for the frequency shifters used in a clock laser setup that interrogates the narrower 87Sr

transition. Instead, the interrogation laser’s frequency should be used.

5.8 State-of-the-art clock lasers

At the beginning of this chapter I described the stationary ultra-stable interrogation laser. The instability of

the laser was measured to reach 5⇥10�15 at 1 s. This is better than the first iteration of the laser (2⇥10�14)

presented by S. Johnson [152]. Although the interrogation laser is not as stable as state-of-the-art ultra-stable

lasers with temperature compensated fused silica mirrors [71, 76], its instability is only 5 times higher than

the laser using similar cavity design with ULE mirrors (⇠ 1 ⇥ 10�15), presented by Ludlow et al. [149]. To

perform the absolute characterisation of an oscillator’s stability, it is necessary to have an even more stable

reference. Alternatively, it is possible to closely estimate the performance by having two reference oscillators

operating with a similar performance, and using the three-corner hat method [165]. Unfortunately, at this

stage neither did we have a more stable nor two similar references to compare with. It is believed that

the instability measurement was limited by the reference ultra-stable laser, based on a horizontal-cavity and

described in detail by S. Johnson [152]. Better characterisation of the lasers might be possible in the future,

as the next generations of the stationary ultra-stable clock laser will be constructed.

In this chapter, I have also described the mobile ultra-stable laser for space applications, which I have

assembled, characterised and prepared for integration with the atomic package. The laser obtained instability

value of 7.9 ⇥ 10�16, close to the estimated thermal noise limit of ⇠ 5 ⇥ 10�16. The stability performance

of the laser is on a similar level as state-of-the-art transportable ultra-stable lasers. For example the laser

presented by Argence et al. [76] reached instability 5 ⇥ 10�16 and the laser presented by Koller et al. [52]

reached 4⇥ 10�16. It is believed that the stability performance is limited by relatively high pressure level in

the optical resonator vacuum housing (⇠ 10�6 mbar), which will be improved in the very near future.

The acceleration sensitivity of the mobile laser’s optical resonator is between 2.0 ⇥ 10�11/g and 5.8 ⇥
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10�10/g as measured for di↵erent axes. This values are not as good as in its archetype presented by Argence et

al. [76], with acceleration sensitivity values between 1⇥10�11/g and 4⇥10�11/g. Nevertheless, the obtained

values are similar as in other cavity designs presented by Leibrandt et al. [75] (4⇥ 10�11/g – 1⇥ 10�10/g),

Nazarova et al. [77] (3.2 ⇥ 10�11/g – 3.0 ⇥ 10�10/g) and Chen et al. (1.7 ⇥ 10�11/g – 3.9 ⇥ 10�10/g). The

acceleration sensitivity should be good enough for the laser to be used on the international space station when

placed in the vibration isolation platform. The cavity design presented by Webster et al. [79] (1⇥ 10�13/g

– 2.5⇥ 10�11/g) can be considered in the future to improve the acceleration sensitivity for more demanding

mobile applications. This cavity, however, is rather expensive to produce and very di�cult to construct in

a bigger size that would increase the stability performance. Apart from increasing the passive insensitivity,

the further upgrades may also include an active feedback stabilisation system, such as the one presented by

Leibrandt et al. [75].

Future developments of the ultra-stable lasers can utilise crystalline coatings, which feature very high

reflectivity values and have smaller thermal noise limit [73, 74]. By using those coatings in the force insensitive

cube cavity (Webster et al. [79]) it will be possible to outperform current transportable ultra-stable lasers,

reaching instability level of 10�17 in the room temperature. Also in the future, the ultra-stable lasers can use

another approach in order to improve their performance and, for example, replace the Fabry-Pérot resonators

with other kinds of reference.

Spectral hole burning (SHB) is a promising alternative to the ultra-stable optical cavities. With this

method, it is possible to bleach a spectral hole in a broad absorption spectrum of the material [166]. The

frequency of a spectral hole can be tailored to match the requirements for a desired application, and it can

feature a very narrow linewidth [167]. It can serve as a secondary frequency standard, and it can be used

to stabilise a laser, for example by using the well known PDH locking method [168]. The downside of the

SHB is that the material requires to be under a very low temperature in order to keep the spectral hole.

This means that an extra high-end cryogenic system might be required. The latest achievements in the field

include stabilisation of the laser to obtain instabilities of 6⇥ 10�16 [169]. Although this result is not as good

as for the cryogenic silicon optical cavity, it might lead to the further advancements in the near future.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

Precision timekeeping plays an important role in the modern world. It impacts many aspects of every-

one’s life by being used, both directly and indirectly, in navigation, telecommunication, economy, metrology,

manufacturing and more. It is also necessary and commonly used in many fields of scientific research, where

it allows for obtaining more accurate results, e↵ectively pushing the boundaries of the modern science.

There always is a demand for the improvement of the clocks and frequency oscillators. A list of possible

improvements includes not only increased performance, for example stability, accuracy or precision, but also

a mobile design that is insensitive to external factors, and a more compact size. The miniaturisation process

is very di�cult and it brings many challenges. Usually, it is very di�cult or even impossible to keep the full

performance of a lab-based experiment, while significantly reducing its size. In many cases a compromise

has to be found between the size of a device and its performance. On the other hand, it is important to

remember that it is not only the size that makes the experiment mobile. For it to be mobile, it also needs to

be designed in a certain way that makes it insensitive to external factors like changing value and direction of

the acceleration vector.

The main focus of my thesis was to develop mobile subsystems necessary for the construction of the

optical clock. The clock that is being developed will be based on neutral strontium atoms, and we want it to

be flexible so it could be used with both 87Sr and 88Sr isotopes. The lattice strontium clock usually requires 6

tunable lasers for the first-stage cooling, second-stage cooling, repumping-I, repumping-II, interrogating the

clock transition and the optical lattice, corresponding to wavelengths of 461 nm, 689 nm, 679 nm, 707 nm,

698 nm and 813 nm, respectively. Each of this lasers needs to be stabilised in order to stay at the exactly right

wavelength. Other experiments usually use separate stabilisation system for each of the lasers and either

stabilise them to the atomic spectroscopy, wavelength meter or optical cavity. This work gave a ground to
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believe that all of those lasers can be locked to a single optical cavity, which e↵ectively saves space and money.

In section 4.3 I have presented a prototype of such a cavity, which has a custom-tailored mirror coating to

meet di↵erent requirements for each of the lasers. This work also suggests a method of injecting all the six

lasers into a single cavity, suitable for using the PDH locking method with, and still letting to do the mode

inspection on the transmitted light. Furthermore, when using the traditional PDH locking method, it is

only possible to lock at the frequency of the longitudinal mode of the cavity, which might be di↵erent from

the resonant frequency of the atomic transition. This is another challenge that makes it di�cult to stabilise

multiple lasers to a single cavity. In this work I suggest that a fibre-coupled EOM can be used to implement

a simple dual-sideband locking method to obtain a smoothly tunable locking point between the FSR of the

optical cavity. In the near future, the frequency stabilisation system and its cavity will be upgraded and

characterised in more detail. It will be tested with other lasers and the frequency optical comb will be used

to measure the drift of the cavity. It will also be upgraded with the vacuum chamber in order to obtain a

more stable environment.

On the laser side, my thesis focused mainly on two laser systems with the most extreme requirements: the

698 nm interrogation laser and 689 nm second-stage cooling laser. Those two lasers need to have very narrow

linewidths and be ultra-stable in order to successfully use them in the experiment. In sections 4.1 and 4.2 I

presented two di↵erent laser technologies that could serve as the 689 nm second stage cooling laser. The first

is a tunable MOPA system based on the semiconductor laser diode and semiconductor tapered amplifier.

The semiconductor laser has an advantage of a low cost, but it is still di�cult to obtain good power levels in

that wavelength range. However, we show that good power levels can be reached with a modular home-built

MOPA system with very small driving electronics and without any water cooling. The laser is stabilised to

the multiple-laser stabilisation system, and is part of the mobile MiniClock project.

The second laser described in section 4.2 is based on a semiconductor disk laser. We used a newly

developed prototype of the laser at 689 nm and were the first group to obtain a demanding second-stage

strontium MOT with that laser. It brings advantage of high power levels, good beam profile, narrow linewidth

and a very broad tunability. The laser required water cooling, which also caused vibration leading to frequency

instability. Characterisation of the laser provided a very important feedback that will contribute to the further

development of the laser to enhance its stability and ease of use in the near future.

A laser that is discussed the most in this thesis is the interrogation 698 nm laser as it is the heart of the

optical clock, hence it requires the highest attention. This dissertation talked about two interrogation laser

systems. The stationary system based at the University of Birmingham described in 5.1 and a mobile system
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developed within the SOC2 project, currently placed at PTB in Germany, and presented in section 5.4. The

stationary system was constructed to be a base for the further experiments and a tool that could be used for

the stabilisation of the optical frequency comb and characterisation of the other lasers. We obtained good

stability results making it the most stable laser with the narrowest linewidth in Birmingham. It also became

one of the few state-of-the-art ultra-stable lasers in the UK. In the near future, the stationary laser will be

used to investigate the entanglement between the strontium atoms in the optical lattice.

The mobile interrogation laser described in this thesis is part of the SOC2 project. It was developed as an

early-stage study, preparing the strontium optical clock to be used at the international space station (ISS).

As described in 5.4, it is one of the most stable mobile lasers, built in a special way to withstand high values

of acceleration. The measured vibrational sensitivity makes it suitable to be used in the ISS. It was integrated

with the SOC2 atomic package to form a mobile strontium lattice clock, where we managed to measure a

record-low instability value for the bosonic clock of < 4⇥10�16/
p
⌧ . Furthermore, the SOC2 atomic package

was recently used to observe a very narrow linewidth of the 88Sr clock transition, equal to 220 mHz [163].

Currently, the mobile interrogation laser is being upgraded to further increase its stability and address the

problems with the leaking vacuum chamber. A major plan of the SOC2 project for the near future is to

further optimise the system to obtain a record-low inaccuracy at 10�17 level for 88Sr. Next, the system will

be used with the fermionic 87Sr isotope to obtain similar levels of instability and inaccuracy. When that is

operational and well tested, the mobile clock will be transported to various locations around the world, to be

tested in the field, and compared with other laboratory-based state-of-the-art optical clocks. Most recently

the package became part of a new project called I-SOC (Space Optical Clock on the ISS), funded by the

European Space Agency (ESA). Within the project there is a plan of using an ESA antenna to compare the

mobile clock with the atomic clock ensemble in space (ACES) on the ISS. Further plans also include using

the mobile clock for the measurement of the gravitational red shift and search of the dark matter topological

defects crossing the Earth [66].

Overall, this thesis contributed to development of state-of-the-art lattice strontium clocks. Making those

clocks mobile will open a new possibility for comparison between di↵erent labs around the world. Apart from

the fundamental science research, this can also contribute to redefinition of second in the future.
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